2D FEM Calculation of AC Losses in Twisted

Superconductors with a Helicoidal Transformation

Introduction

e Computing accurately AC losses in twisted super-
conducting (SC) wires is an expensive task due
to the strong nonlinearity of the e-j relation in the
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3D verification model
Classical 3D h-formulation (h-¢) on a fraction of the twist pitch length p with periodic boundary conditions.

superconductor.

(O¢(uh) ,h'), + (pcurl b ,curl b)) =0

C

e When the system presents a helicoidal symmetry,

an efficient 2D model can be implemented.

e Objectives:
— Model the magnetic response and compute AC
losses for different types of excitations.

— Account in 2D and 3D for coupling currents in wire
matrix due to filaments twist.

e Power law for SC: p =

. n—1
Ce (HJH> ,n € [10,100], ec = 10~% V/m.

Je \ Je

e Periodic cohomology functions to impose net current intensities.
e Newton-Raphson method and adaptive time-stepping scheme.

= General model for all types of excitations.
NB: Q is the complete numerical domain. Q. is the conducting domain and € is its complementary.

2D model for helicoidally invariant boundary conditions

e The geometrical transformation, with o = 27 /p, The h-formulation is expressed in the new system &:

e The 1-form h transforms as h, = J ' he.
e The 2-form 5 = curl h transforms as j, = (J/det J)j,.
e Current is not always along &3 = a 3-component h is

necessary: h(§1,§2) = h(§1,&2) +hi(&,8).
\—— N’

in plane (£1,£2) 1N &3 direction

&1 = xcos(az) + ysin(az),

§a =

53227

—x sin(az) + y cos(az),

fromx = (z,y,2) 10 & = (&1, &2, &3), with Jacobian

J' = 0x/0¢, makes the geometry &s-invariant. Modified 7-formulation for b = h + k. :

e |[f boundary conditions are also &3-invariant, then
the problem is 2D in terms of (£1,&3). This is the
case for

— an applied transport current,
— a longitudinal field (along z).

(0 (fh) ,h’)Q + (pcurl h , curl h')Q =0

C

with o= p J 1T "det(J)and p = p J'J/det(J).
— —

=T—1, indep. of &3 =T, indep. of {3

Function space for h = h + h | :

e h): edge functions in €, gradient of nodal func-
tions + cohomology basis in QY.

e h,: "perpendicular edge functions" in )¢ and
constant per region in Q.

= curl h = 0 in QY is strongly satisfied.

Note: the system (&1, &5, &3) is not orthogonal. The
components h and h_ are coupled via i and p.

e This 2D model is equivalent to the 3D model.

e Introducing the power law for p does not bring
new difficulties.

2D model for non-helicoidally invariant boundary conditions

Example: a transverse field along y transforms as Expansion:
0 sin s h(&1,82,83) = Z (h.k (&1, 62) k(&) + Ry k(6. 62) fu(€3))
hy= (1| = he= cos a3 k=—00
0 &y cos afsy — as sin as fe(€3) = \/5005(04]{53)7 k <0,
it is £5-dependent. The problem is no | 2D with | Jolés) =1,
= 1t Is £3-dependent. The problem is no longer 2D.
a7Cep P | fe(&3) = V2sin(akés), k>0,

The solution h is expanded as a series.

: hosen h — 1 (P — _
The formulation is integrated along £3: quasi 3D model. chosen so that (fi,, fr.) p fO Tia Tho d83 = Oy

Results

Applied current (helicoidally invariant BC): I(¢) = 0.5 I sin(27t/T), T = 0.1 s.
Nb-Ti filaments (n = 50, j. = 7 x 10Y A/m?) in a Cu matrix (p = 1.81 x 1071Y Om, value for 1 T).
Filament radius: 35 pm. Matrix radius: 155 pm. Twist pitch length p = 1 mm.

Solution of the 2D equivalent model at ¢t = T'/4: 2D vs 3D at ¢t = T'/4 on the characteristic red line:
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For this (coarse) resolution with similar accuracy: G 0 0.02 0.04 0.06 0.08 0.1
3 0.15 [ . | | =
3D 2D o 01l ———-3D—matr!x .
# DOFs 22.5Kk 2.3k [ 2D - matrix N )
CPUtime 33 min 1 min 30 a 0.05 - 2~ 2~
| |
The 3D model with unstructured mesh is less accurate at 00 0.02 0.04 0.06 0.08 0.1
the same discretization level. Time (s)
Transverse field (non-heliciodally invariant BC): £ +
Bapp (t) = bmax sin(27t/T) &,, bmax = 0.5 T, T = 0.1 s. =02 5 3D o .
Cufil. (p = 1.81x 1071 Qm) in a matrix (p = 107° Om). = . uasi
0 B
3D Quasi 3D S
# DOFs 44Kk 7k 20 ‘ ‘
. . = 0 0.02 0.04 0.06 0.08 0.1
CPUtime 3 min 45 25 s = Time (s)

Models are implemented in GetDP,

e INQS, h can be strongly made curl-free by linking the

h) 1+, DOFs with the h | +; DOFs.

e For linear materials, all modes are decoupled. For

a constant transverse field, only b ., and h 4, are
nonzero. It is therefore equivalent to the 3D model.

e For superconductors, the nonlinearity couples the

modes. The model is an approximation when we
truncate the series — further work.

Conclusions

In the purely helicoidal case, the 2D model does not
iIntroduce any approximation, and strongly reduces
the computational work.

In the non-helicoidally invariant case with linear ma-
terials, the same conclusions hold.

Further work:

e Implement the transverse case for nonlinear ma-
terials. First investigations suggest that the first two
modes will already provide a good approximation.

e Consider different geometries, such as CORC ca-
bles. Apply the approach on the t-a-formulation.
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