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Introduction
• Computing accurately AC losses in twisted super-

conducting (SC) wires is an expensive task due
to the strong nonlinearity of the e-j relation in the
superconductor.

• When the system presents a helicoidal symmetry,
an efficient 2D model can be implemented.

• Objectives:
– Model the magnetic response and compute AC

losses for different types of excitations.
– Account in 2D and 3D for coupling currents in wire

matrix due to filaments twist.

2D model for helicoidally invariant boundary conditions

• The geometrical transformation, with α = 2π/p,
ξ1 = x cos(αz) + y sin(αz),

ξ2 = −x sin(αz) + y cos(αz),

ξ3 = z,

from x = (x, y, z) to ξ = (ξ1, ξ2, ξ3), with Jacobian
JT = ∂x/∂ξ, makes the geometry ξ3-invariant.

• If boundary conditions are also ξ3-invariant, then
the problem is 2D in terms of (ξ1, ξ2). This is the
case for
– an applied transport current,
– a longitudinal field (along z).

The h-formulation is expressed in the new system ξ:

• The 1-form h transforms as hx = J−T hξ.
• The 2-form j = curl h transforms as jx = (J/detJ)jξ.
• Current is not always along ξ3 ⇒ a 3-component h is

necessary: h(ξ1, ξ2) = h‖(ξ1, ξ2)︸ ︷︷ ︸
in plane (ξ1,ξ2)

+h⊥(ξ1, ξ2)︸ ︷︷ ︸
in ξ3 direction

.

Modified h-formulation for h = h‖ + h⊥:(
∂t(µ̃h) ,h′

)
Ω

+
(
ρ̃ curl h , curl h′

)
Ωc

= 0

with µ̃ = µ J−1J−T det(J)︸ ︷︷ ︸
=T−1, indep. of ξ3

and ρ̃ = ρ JTJ/ det(J)︸ ︷︷ ︸
=T , indep. of ξ3

.

Function space for h = h‖ + h⊥:

• h‖: edge functions in Ωc, gradient of nodal func-
tions + cohomology basis in ΩC

c .
• h⊥: "perpendicular edge functions" in Ωc and

constant per region in ΩC
c .

⇒ curl h = 0 in ΩC
c is strongly satisfied.

Note: the system (ξ1, ξ2, ξ3) is not orthogonal. The
components h‖ and h⊥ are coupled via µ̃ and ρ̃.

• This 2D model is equivalent to the 3D model.

• Introducing the power law for ρ does not bring
new difficulties.

3D verification model
Classical 3D h-formulation (h-φ) on a fraction of the twist pitch length p with periodic boundary conditions.

p/6

x y

z

(
∂t(µh) ,h′

)
Ω

+
(
ρ curl h , curl h′

)
Ωc

= 0

• Power law for SC: ρ =
ec

jc

(
‖j‖
jc

)n−1

, n ∈ [10, 100], ec = 10−4 V/m.

• Periodic cohomology functions to impose net current intensities.
• Newton-Raphson method and adaptive time-stepping scheme.

⇒ General model for all types of excitations.
NB: Ω is the complete numerical domain. Ωc is the conducting domain and ΩC

c is its complementary.

2D model for non-helicoidally invariant boundary conditions
Example: a transverse field along y transforms as

hx =

0
1
0

⇒ hξ =

 sinαξ3
cosαξ3

αξ1 cosαξ3 − αξ2 sinαξ3


⇒ it is ξ3-dependent. The problem is no longer 2D.

The solution h is expanded as a series.
The formulation is integrated along ξ3: quasi 3D model.

Expansion:

h(ξ1, ξ2, ξ3) =
∞∑

k=−∞

(
h‖,k(ξ1, ξ2)fk(ξ3) + h⊥,k(ξ1, ξ2)fk(ξ3)

)

with


fk(ξ3) =

√
2 cos(αkξ3), k < 0,

f0(ξ3) = 1,

fk(ξ3) =
√

2 sin(αkξ3), k > 0,

chosen so that 〈fk1 , fk2〉 = 1
p

∫ p
0
fk1fk2 dξ3 = δk1k2 .

• In ΩC
c , h can be strongly made curl-free by linking the

h‖,±k DOFs with the h⊥,∓k DOFs.

• For linear materials, all modes are decoupled. For
a constant transverse field, only h‖,±1 and h⊥,±1 are
nonzero. It is therefore equivalent to the 3D model.

• For superconductors, the nonlinearity couples the
modes. The model is an approximation when we
truncate the series→ further work.

Results
Applied current (helicoidally invariant BC): I(t) = 0.5 Ic sin(2πt/T ), T = 0.1 s.
Nb-Ti filaments (n = 50, jc = 7× 109 A/m2) in a Cu matrix (ρ = 1.81× 10−10 Ωm, value for 1 T).
Filament radius: 35 µm. Matrix radius: 155 µm. Twist pitch length p = 1 mm.
Solution of the 2D equivalent model at t = T/4:

Magnetic flux density Current density in matrix

0 00.15b (T) j (A/m2) 4× 105

x

y

Arrows: x-y-components. Colored elements: z-component.

For this (coarse) resolution with similar accuracy:
3D 2D

# DOFs 22.5k 2.3k
CPU time 33 min 1 min 30

The 3D model with unstructured mesh is less accurate at
the same discretization level.

2D vs 3D at t = T/4 on the characteristic red line:
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Transverse field (non-heliciodally invariant BC):
bapp(t) = bmax sin(2πt/T ) êy, bmax = 0.5 T, T = 0.1 s.
Cu fil. (ρ = 1.81×10−10 Ωm) in a matrix (ρ = 10−8 Ωm).

3D Quasi 3D
# DOFs 44k 7k

CPU time 3 min 45 25 s
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Models are implemented in GetDP.
,

Conclusions
In the purely helicoidal case, the 2D model does not
introduce any approximation, and strongly reduces
the computational work.
In the non-helicoidally invariant case with linear ma-
terials, the same conclusions hold.

Further work:
• Implement the transverse case for nonlinear ma-

terials. First investigations suggest that the first two
modes will already provide a good approximation.
• Consider different geometries, such as CORC ca-

bles. Apply the approach on the t-a-formulation.
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