# **2D FEM Calculation of AC Losses in Twisted Superconductors with a Helicoidal Transformation**



Julien Dular<sup>1</sup>, Mariusz Wozniak<sup>2</sup>, André Nicolet<sup>3</sup>, Benoît Vanderheyden<sup>1</sup>, Christophe Geuzaine<sup>1</sup> <sup>1</sup> Liège University, Belgium, <sup>2</sup> CERN, Switzerland, <sup>3</sup> Aix-Marseille University, France

#### Introduction

- Computing accurately AC losses in twisted superconducting (SC) wires is an expensive task due to the strong **nonlinearity** of the e-j relation in the superconductor.
- When the system presents a **helicoidal symmetry**, an efficient **2D model** can be implemented.
- Objectives:
  - Model the magnetic response and compute AC losses for different types of excitations.
  - Account in 2D and 3D for coupling currents in wire matrix due to filaments twist.

# **3D** verification model

Classical **3D** h-formulation  $(h-\phi)$  on a fraction of the twist pitch length p with periodic boundary conditions.



# $\left(\partial_t(\mu \boldsymbol{h}) \;, \boldsymbol{h}'\right)_{\Omega} + \left(\rho \operatorname{\mathbf{curl}} \boldsymbol{h} \;, \operatorname{\mathbf{curl}} \boldsymbol{h}'\right)_{\Omega_{\mathbf{c}}} = 0$

• Power law for SC:  $\rho = \frac{e_c}{j_c} \left(\frac{\|\boldsymbol{j}\|}{j_c}\right)^{n-1}$ ,  $n \in [10, 100]$ ,  $e_c = 10^{-4}$  V/m.

- Periodic cohomology functions to impose net current intensities.
- Newton-Raphson method and adaptive time-stepping scheme.

 $\Rightarrow$  General model for all types of excitations.

NB:  $\Omega$  is the complete numerical domain.  $\Omega_c$  is the conducting domain and  $\Omega_c^c$  is its complementary.

# 2D model for helicoidally invariant boundary conditions

• The geometrical transformation, with  $\alpha = 2\pi/p$ ,

 $\begin{cases} \xi_1 = x \cos(\alpha z) + y \sin(\alpha z), \\ \xi_2 = -x \sin(\alpha z) + y \cos(\alpha z), \\ \xi_3 = z, \end{cases}$ 

from  $\boldsymbol{x} = (x, y, z)$  to  $\boldsymbol{\xi} = (\xi_1, \xi_2, \xi_3)$ , with Jacobian  $J^{T} = \partial x / \partial \xi$ , makes the geometry  $\xi_{3}$ -invariant.

- If **boundary conditions** are also  $\xi_3$ -invariant, then the problem is 2D in terms of  $(\xi_1, \xi_2)$ . This is the case for
  - an applied transport current,
  - a longitudinal field (along z).

The h-formulation is expressed in the new system  $\boldsymbol{\xi}$ :

- The 1-form h transforms as  $h_x = J^{-T} h_{\mathcal{E}}$ .
- The 2-form  $j = \operatorname{curl} h$  transforms as  $j_{\boldsymbol{x}} = (J/\det J)j_{\boldsymbol{\xi}}$ .
- necessary:  $h(\xi_1, \xi_2) = h_{\parallel}(\xi_1, \xi_2) + \underline{h_{\perp}(\xi_1, \xi_2)}$ . in plane  $(\xi_1, \xi_2)$  in  $\xi_3$  direction

Modified *h*-formulation for  $h = h_{\parallel} + h_{\perp}$ :

$$\left(\partial_t(\tilde{\boldsymbol{\mu}}\boldsymbol{h}),\boldsymbol{h}'\right)_{\Omega} + \left(\tilde{\boldsymbol{\rho}}\operatorname{\mathbf{curl}}\boldsymbol{h},\operatorname{\mathbf{curl}}\boldsymbol{h}'\right)_{\Omega_{\mathsf{c}}} = 0$$

with 
$$\tilde{\boldsymbol{\mu}} = \boldsymbol{\mu} \underbrace{\boldsymbol{J}^{-1}\boldsymbol{J}^{-\mathsf{T}}\det(\boldsymbol{J})}_{=\boldsymbol{T}^{-1}, \text{ indep. of } \xi_3}$$
 and  $\tilde{\boldsymbol{\rho}} = \boldsymbol{\rho} \underbrace{\boldsymbol{J}^{\mathsf{T}}\boldsymbol{J}/\det(\boldsymbol{J})}_{=\boldsymbol{T}, \text{ indep. of } \xi_3}$ .

Function space for  $h = h_{\parallel} + h_{\perp}$ :

- $h_{\parallel}$ : edge functions in  $\Omega_{c}$ , gradient of nodal functions + cohomology basis in  $\Omega_c^c$ .
- Current is not always along  $\xi_3 \Rightarrow$  a 3-component h is  $h_{\perp}$ : "perpendicular edge functions" in  $\Omega_c$  and constant per region in  $\Omega_c^C$ .

#### $\Rightarrow$ curl h = 0 in $\Omega_c^c$ is strongly satisfied.

Note: the system  $(\xi_1, \xi_2, \xi_3)$  is not orthogonal. The components  $h_{\parallel}$  and  $h_{\perp}$  are coupled via  $\tilde{\mu}$  and  $\tilde{\rho}$ .

- This 2D model is **equivalent** to the 3D model.
- Introducing the power law for  $\rho$  does not bring new difficulties.

## 2D model for non-helicoidally invariant boundary conditions

Example: a transverse field along y transforms as

$$\boldsymbol{h}_{\boldsymbol{x}} = \begin{pmatrix} 0\\1\\0 \end{pmatrix} \Rightarrow \boldsymbol{h}_{\boldsymbol{\xi}} = \begin{pmatrix} \sin \alpha \xi_{3} \\ \cos \alpha \xi_{3} \\ \alpha \xi_{1} \cos \alpha \xi_{3} - \alpha \xi_{2} \sin \alpha \xi_{3} \end{pmatrix}$$

Expansion:  $\boldsymbol{h}(\xi_1,\xi_2,\xi_3) = \sum \left( \boldsymbol{h}_{\parallel,k}(\xi_1,\xi_2) f_k(\xi_3) + \boldsymbol{h}_{\perp,k}(\xi_1,\xi_2) f_k(\xi_3) \right)$ 

- In  $\Omega_c^c$ , h can be strongly made curl-free by linking the  $h_{\parallel,\pm k}$  DOFs with the  $h_{\perp,\mp k}$  DOFs.
- For linear materials, all modes are decoupled. For

 $\Rightarrow$  it is  $\xi_3$ -dependent. The problem is **no longer 2D**.

The solution h is expanded as a series. The formulation is integrated along  $\xi_3$ : **quasi 3D model**.

with 
$$\begin{cases} f_k(\xi_3) = \sqrt{2} \cos(\alpha k \xi_3), & k < 0, \\ f_0(\xi_3) = 1, \\ f_k(\xi_3) = \sqrt{2} \sin(\alpha k \xi_3), & k > 0, \end{cases}$$

hosen so that 
$$\langle f_{k_1}, f_{k_2} \rangle = \frac{1}{p} \int_0^p f_{k_1} f_{k_2} \ d\xi_3 = \delta_{k_1 k_2}.$$

a constant transverse field, only  $h_{\parallel,\pm 1}$  and  $h_{\perp,\pm 1}$  are nonzero. It is therefore **equivalent** to the 3D model.

• For superconductors, the nonlinearity couples the modes. The model is an **approximation** when we truncate the series  $\rightarrow$  *further work*.

#### Conclusions

In the purely helicoidal case, the 2D model does not introduce any approximation, and strongly reduces the computational work.

In the non-helicoidally invariant case with **linear ma**terials, the same conclusions hold.

#### Further work:

- Implement the transverse case for nonlinear materials. First investigations suggest that the first two modes will already provide a good approximation.
- Consider different geometries, such as CORC cables. Apply the approach on the t-a-formulation.



#### Results

Applied current (helicoidally invariant BC):  $I(t) = 0.5 I_c \sin(2\pi t/T), T = 0.1 s.$ Nb-Ti filaments (n = 50,  $j_c = 7 \times 10^9$  A/m<sup>2</sup>) in a Cu matrix ( $\rho = 1.81 \times 10^{-10} \Omega$ m, value for 1 T). Filament radius: 35  $\mu$ m. Matrix radius: 155  $\mu$ m. Twist pitch length p = 1 mm. Solution of the 2D equivalent model at t = T/4: 2D vs 3D at t = T/4 on the characteristic red line:

Magnetic flux density

#### Current density in matrix







Time (s)

#### References

Stenvall Antti, Francesco Grilli, and Mika Lyly. "Current-[1] penetration patterns in twisted superconductors in self-field." IEEE TAS 23.3 (2012): 8200105-8200105.

Satiramatekul, T., et al. "Magnetization modeling of twisted [2] superconducting filaments." IEEE TAS 17.2 (2007): 3737-3740.

### Acknowledgements

Computational resources are provided by the CÉCI, funded by the F.R.S.-FNRS under Grant No. 2.5020.11. The authors thank Bruno de Sousa Alves for his help concerning perdiodic cohomology function in Gmsh.