What Formulation Should One Choose for Modeling a 3D HTS Magnet Motor Pole with a Ferromagnetic Material?

Julien Dular¹, Kévin Berger², Benoît Vanderheyden¹, Christophe Geuzaine¹ ¹ Liège University, Belgium, ² GREEN, Université de Lorraine

Introduction

Modeling the magnetic behavior of systems with hightemperature superconductors (HTS) and ferromagnetic materials (FM) is an expensive task due the strongly nonlinear behaviors.

 Not all formulations yield the same efficiency. In this work, we compare the performance of different finite element formulations on a 3D problem.

Problem definition

Four HTS bulks are put on an iron substrate, and are magnetized by an inducting coil. One eighth is modeled.

HTS bulk Ω_{c}

• Power law:
$$ho = rac{e_c}{j_c} \left(rac{\|j\|}{j_c} \right)^{n-1}$$
 with $e_c = 10^{-4}$ V/m

- Kim's law: $j_c = j_c(\mathbf{b}) = 5 \times 10^8 / (1 + \|\mathbf{b}\| / b_0)$ A/m², $b_0 = 0.5$ T.
- Power index: $n = n(\mathbf{b}) = n_1 + (n_0 n_1)/(1 + \|\mathbf{b}\|/b_0)$, $n_0 = 21$, $n_1 = 5$.

Iron substrate

• Saturation law (saturation at ≈ 2.2 T) extracted from measurements.

Magnetizing coil Ω_s

• $I_{s}(t) = \begin{cases} I_{\max} \sin 2\pi t/T, & t < T, \\ I_{\max} e^{-(t-T)/\tau}, & t > T, \end{cases}$ $I_{\max} = 2 \text{ kA}, T = 2 \text{ ms}, \tau = 10 \text{ ms}. \end{cases}$

• In particular, we propose a **coupled formulation** as an efficient choice for these kind of systems.

• Number of turns: 55.5. Constant current density $||j_s||$, no eddy currents.

h-conform formulations

Classical h-conform formulation, with Ω the full domain, Ω_c the conducting domain, Ω_c^C its complementary:

 $\left(\partial_t(\mu \boldsymbol{h}) , \boldsymbol{h}'\right)_{\Omega} + \left(\rho \operatorname{\mathbf{curl}} \boldsymbol{h} , \operatorname{\mathbf{curl}} \boldsymbol{h}'\right)_{\Omega_{\mathbf{c}}} = 0$

It involves the **permeability** μ and the **resistivity** ρ .

The source current I_s is strongly imposed via a precomputed source field h_s satisfying curl $h_s|_{\Omega_s} = j_s$. Two main possibilities for the function space:

• Full h-formulation, with edge elements in Ω and a spurious finite resistivity in the non-conducting domain. This formulation is widely implemented in commercial softwares (e.g. Comsol) [1].

• Hybrid $h - \phi$ -formulation, where $h = h_s + \text{grad } \phi$ in Ω_c^c so that $\operatorname{curl}(h - h_s)|_{\Omega_s^c} = 0$ is strongly satisfied. Currents are imposed via cohomology basis functions.

b-conform formulations

Classical b-conform formulation, with Ω_s the coil volume, a the magnetic vector potential ($b = curl a, e = -\partial_t a$):

 $(\nu \operatorname{curl} \boldsymbol{a} \ , \operatorname{curl} \boldsymbol{a}')_{\Omega} + (\sigma \, \partial_t \boldsymbol{a} \ , \boldsymbol{a}')_{\Omega_{\mathsf{c}}} = (\boldsymbol{j}_{\mathsf{s}} \ , \boldsymbol{a}')_{\Omega_{\mathsf{s}}}$

Coupled formulations

The HTS nonlinearity is easier to handle with ρ . By contrast, the saturation law is easier with ν .

 \Rightarrow Motivation for a **coupled formulation**.

Domain decomposed in two parts: Ω_a and Ω_h .

HTS domain $\subset \Omega_h$ and FM $\subset \Omega_a$

Depending on where we place the remaining domain, we end up with two different formulations:

- *h*-*a*-formulation: the rest is placed in Ω_a . The vector potential is gauged.
- $h-\phi$ -a-formulation: the rest is placed in Ω_h . The ϕ potential is introduced, as well as the source field.

Coupling via the common boundary Γ_m :

 $\left(\partial_t(\mu h), h'\right)_{\Omega_h} + \left(\rho \operatorname{curl} h, \operatorname{curl} h'\right)_{\Omega_h, c}$ $=\left\langle \partial_t oldsymbol{a} imes oldsymbol{n}_{\Omega_a}
ight.,oldsymbol{h}'
ight
angle_{\Gamma_{\mathsf{m}}}$

It involves the reluctivity $\nu = 1/\mu$ and the conductivity $\sigma = 1/\rho$. The source current I_s is weakly imposed via the right-hand side term.

The vector potential a is not unique in Ω_c^{C} :

- It can be made unique by introducing a spurious **non-zero conductivity** in the non-conducting domain. This approach is sometimes used in commercial softwares. We denote is as the \bar{a} -formulation.
- It can be gauged with a tree-cotree technique. We denote this method as the *a*-formulation.

 $ig(
u \, {f curl} \, oldsymbol{a} \, , {f curl} \, oldsymbol{a}' ig)_{\Omega_{f a}} - ig(oldsymbol{j}_{f s} \, , oldsymbol{a}' ig)_{\Omega_{f s}} = ig\langle oldsymbol{h} imes oldsymbol{n}_{\Omega_{f a}} \, , oldsymbol{a}' ig
angle_{\Gamma_{f m}}$

The formulation is **mixed**. To avoid instability and satisfy the **inf-sup condition**, one of the fields (*h* or *a*) has to be enriched on Γ_h [2].

Summary and comparison

Formulation	Function space	Support of DOFs	$\sigma \neq 0$ in Ω_{c}^{C} ?		
h-formulation	$\mathcal{H}(\Omega) = \{ \boldsymbol{h} \in H(\mathbf{curl}; \Omega) \}$	Edges in Ω	Yes		
h - ϕ -formulation	$\mathcal{H}_{\phi}(\Omega) = \{ \boldsymbol{h} \in H(\operatorname{curl}; \Omega) \mid \operatorname{curl} \boldsymbol{h} = \boldsymbol{0} \text{ in } \Omega^{C}_{c} \}$	Edges in Ω_{c} , nodes in Ω_{c}^{C}	No	HIS σ	ρ
\bar{a} -formulation	$\bar{\mathcal{A}}(\Omega) = \{ \boldsymbol{a} \in H(\mathbf{curl}; \Omega) \}$	Edges in Ω	(Yes)		
a-formulation	$\mathcal{A}(\Omega) = \{ \boldsymbol{a} \in H(\operatorname{curl}; \Omega) \mid \operatorname{co-tree} \operatorname{gauge} \operatorname{in} \Omega_{c}^{C} \}$	Edges in Ω_{c} , facets in Ω_{c}^{C}	No		
h- a -formulation	$oldsymbol{h} \in \mathcal{H}(\Omega_{ extsf{c}})$, $oldsymbol{a} \in \mathcal{A}(\Omega_{ extsf{c}}^{ extsf{C}})$	Edges in Ω_{c} , facets in Ω_{c}^{C}	No	FM μ	ν
h - ϕ - a -formulation	$oldsymbol{h}\in\mathcal{H}_{\phi}(\Omega_{a})$, $oldsymbol{a}\in\mathcal{A}(\Omega_{a})$	Edges in $\Omega_{h,c}$, nodes in $\Omega_{h,c}^{C}$, facets in Ω_{a}	No		

Results

The problem is solved by the six formulations on the same mesh. They yield results of similar accuracy. The model is implemented in GetDP, and time integrated with an implicit Euler method and adaptive time steps.

 (\mathbf{a})

Linearization:

• Newton-Raphson (N-R) for ρ and ν .

Solution of the h- ϕ -a-formulation:

j during pulse (a)-(b), and during relaxation (c)-(d).

Conclusions

We presented a **coupled formulation** that is suited for modeling 3D hybrid systems with HTS and FM.

It proved to be more robust and efficient than other classical formulations, as was the case in 2D.

- For σ or μ , N-R is **not robust**, even with relaxation factors.

Fixed point method instead \rightarrow slower convergence. This is the main motivation for a **coupled formulation**.

Performance:

Formulation	# DOFs	# iterations	CPU time		y ~
h-formulation	35,532	4,057	5h58		
h - ϕ -formulation	12,172	3,937	3h38		
\bar{a} -formulation	29,010	2,955	4h45		
a-formulation	26,964	3,147	3h07		
h-a-formulation	32,045	1,124	1h25		2
h - ϕ - a -formulation	16,070	1,108	1h16	(C)	

 \Rightarrow When possible, it is beneficial to introduce a scalar potential for h and to gauge a.

 \Rightarrow The *h*- ϕ -*a*-formulation is **robust** and is the most efficient method. Compared to the h-a-formulation, it requires many less DOFs.

Further work: find an alternative to the fixed point method for σ and μ .

References

Grilli Francesco, et al. "Development of a three-dimensional finite-element model for high-temperature superconductors based on the H-formulation." Cryogenics 53 (2013): 142-147. Dular Julien, et al. "On the Stability of Mixed Finite-[2] Element Formulations for High-Temperature Superconductors," in IEEE Transactions on Applied Superconductivity 31.6 (2021): 1-12.

Acknowledgements

Computational resources are provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11.