About Boyd functions and admissible sequences

Thomas Lamby

February 10, 2022

Boyd functions

A function $\phi:(0, \infty) \rightarrow(0, \infty)$ is a Boyd function if it is continuous, $\phi(1)=1$ and

$$
\bar{\phi}(t):=\sup _{s>0} \frac{\phi(s t)}{\phi(s)}<\infty
$$

for all $t \in(0, \infty)$. The lower and upper Boyd indices of a Boyd function ϕ are defined by

Boyd functions

A function $\phi:(0, \infty) \rightarrow(0, \infty)$ is a Boyd function if it is continuous, $\phi(1)=1$ and

$$
\bar{\phi}(t):=\sup _{s>0} \frac{\phi(s t)}{\phi(s)}<\infty
$$

for all $t \in(0, \infty)$. The lower and upper Boyd indices of a Boyd function ϕ are defined by

$$
\underline{b}(\phi):=\sup _{t<1} \frac{\log \bar{\phi}(t)}{\log t}=\lim _{t \rightarrow 0} \frac{\log \bar{\phi}(t)}{\log t}
$$

and

$$
\bar{b}(\phi):=\inf _{t>1} \frac{\log \bar{\phi}(t)}{\log t}=\lim _{t \rightarrow \infty} \frac{\log \bar{\phi}(t)}{\log t}
$$

respectively.

Admissible sequences

A sequence $\sigma=\left(\sigma_{j}\right)_{j \in \mathbb{N}}$ of positive real numbers is admissible if there exists a constant $C>0$ such that $C^{-1} \sigma_{j} \leq \sigma_{j+1} \leq C \sigma_{j}$ for all j. lower and upper Boyd indices of σ are defined by

and

respectively.

Admissible sequences

A sequence $\sigma=\left(\sigma_{j}\right)_{j \in \mathbb{N}}$ of positive real numbers is admissible if there exists a constant $C>0$ such that $C^{-1} \sigma_{j} \leq \sigma_{j+1} \leq C \sigma_{j}$ for all j. Let $\underline{\sigma}_{j}:=\inf _{k \geq 1} \sigma_{j+k} / \sigma_{k}$ and $\bar{\sigma}_{j}:=\sup _{k \geq 1} \sigma_{j+k} / \sigma_{k}$. The lower and upper Boyd indices of σ are defined by

$$
\underline{s}(\sigma):=\sup _{j \in \mathbb{N}} \frac{\log \underline{\sigma}_{j}}{\log 2^{j}}=\lim _{j} \frac{\log \underline{\sigma}_{j}}{\log 2^{j}}
$$

and

$$
\bar{s}(\sigma):=\inf _{j \in \mathbb{N}} \frac{\log \bar{\sigma}_{j}}{\log 2^{j}}=\lim _{j} \frac{\log \bar{\sigma}_{j}}{\log 2^{j}},
$$

respectively.

Classical link

Given an admissible sequence σ, the function

$$
\phi_{\sigma}(t):= \begin{cases}\frac{\sigma_{j+1}-\sigma_{j}}{2^{j}}\left(t-2^{j}\right)+\sigma_{j} & \text { if } t \in\left[2^{j}, 2^{j+1}\right), j \in \mathbb{N}_{0} \\ \sigma_{0} & \text { if } t \in(0,1)\end{cases}
$$

with $\sigma_{0}=1$ is a Boyd function.

Properties of the Boyd functions

- The indices $\underline{b}(\phi)$ and $\bar{b}(\phi)$ are two numbers such that $\underline{b}(\phi) \leq \bar{b}(\phi)$.
- Given $\varepsilon>0$ and $R>0$, there exists $C>0$ such that $C^{-1} t^{\bar{b}(\phi)+\varepsilon} \leq \phi(t) \leq C t^{\underline{b}(\phi)-\varepsilon}$,
- In the same way, we also have
for any $t \geq R$.

Properties of the Boyd functions

- The indices $\underline{b}(\phi)$ and $\bar{b}(\phi)$ are two numbers such that $\underline{b}(\phi) \leq \bar{b}(\phi)$.
- Given $\varepsilon>0$ and $R>0$, there exists $C>0$ such that

$$
C^{-1} t^{\bar{b}(\phi)+\varepsilon} \leq \phi(t) \leq C t^{\underline{b}(\phi)-\varepsilon},
$$

for any $t \leq R$.

- In the same way, we also have

Properties of the Boyd functions

- The indices $\underline{b}(\phi)$ and $\bar{b}(\phi)$ are two numbers such that $\underline{b}(\phi) \leq \bar{b}(\phi)$.
- Given $\varepsilon>0$ and $R>0$, there exists $C>0$ such that

$$
C^{-1} t^{\bar{b}(\phi)+\varepsilon} \leq \phi(t) \leq C t^{\underline{b}(\phi)-\varepsilon},
$$

for any $t \leq R$.

- In the same way, we also have

$$
C^{-1} t^{\underline{b}(\phi)-\varepsilon} \leq \phi(t) \leq C t^{\bar{b}(\phi)+\varepsilon}
$$

for any $t \geq R$.

1 germ versus 2 germs

We will denote by \mathcal{B}^{∞} the set of continuous functions $\phi:[1, \infty) \rightarrow I$ such that $\phi(1)=1$ and

$$
0<\underline{\phi}(t):=\inf _{s \geq 1} \frac{\phi(t s)}{\phi(s)} \leq \bar{\phi}(t):=\sup _{s \geq 1} \frac{\phi(t s)}{\phi(s)}<\infty
$$

for any $t \geq 1$. Given $\phi \in \mathcal{B}$, we denote by ϕ_{∞} the restriction of ϕ to $[1, \infty)$ and by ϕ_{0} the restriction of ϕ to $(0,1]$.

Proposition

The application

$$
\tau: \mathcal{B} \rightarrow \mathcal{B}^{\infty} \times \mathcal{B}^{\infty} \quad \phi \mapsto\left(t \mapsto \frac{1}{\phi_{0}(1 / t)}, \phi_{\infty}\right)
$$

is a bijection.

A representation theorem

Theorem

A function $\phi:[1, \infty) \rightarrow I$ belongs to \mathcal{B}^{∞} if and only if $\phi(1)=1$ and there exist two bounded continuous functions $\eta, \xi:[1, \infty) \rightarrow$ I such that

$$
\phi(t)=e^{\eta(t)+\int_{1}^{t} \xi(s) \frac{d s}{s}} .
$$

Corollary

A function $\phi: / \rightarrow$ I belongs to \mathcal{B} if and only if $\phi(1)=1$ and there exist four bounded continuous functions $\eta_{0}, \xi_{0}:(0,1] \rightarrow I$ and $\eta_{\infty}, \xi_{\infty}:[1, \infty) \rightarrow$ I such that

A representation theorem

Theorem

A function $\phi:[1, \infty) \rightarrow I$ belongs to \mathcal{B}^{∞} if and only if $\phi(1)=1$ and there exist two bounded continuous functions $\eta, \xi:[1, \infty) \rightarrow$ I such that

$$
\phi(t)=e^{\eta(t)+\int_{1}^{t} \xi(s) \frac{d s}{s}} .
$$

Corollary

A function $\phi: I \rightarrow I$ belongs to \mathcal{B} if and only if $\phi(1)=1$ and there exist four bounded continuous functions $\eta_{0}, \xi_{0}:(0,1] \rightarrow I$ and $\eta_{\infty}, \xi_{\infty}:[1, \infty) \rightarrow I$ such that

$$
\phi(t)= \begin{cases}e^{\eta_{0}(t)+\int_{1}^{1 / t}} \xi_{0}(s) \frac{d s}{s} & \text { if } t \in(0,1] \\ e^{\eta_{\infty}(t)+\int_{1}^{t} \xi_{\infty}(s) \frac{d s}{s}} & \text { if } t \in[1, \infty)\end{cases}
$$

A representation theorem

One has $S V \subset \mathfrak{B}^{\infty} \subset R$.

Corollary

If σ is an admissible sequence, then there exist two bounded continuous functions $\eta, \xi:[1, \infty) \rightarrow I$ such that

$$
\sigma_{j}=e^{\eta\left(2^{j}\right)+\int_{1}^{2^{j}} \xi(s) \frac{d s}{s}},
$$

for all $j \in \mathbb{N}$.

A representation theorem

One has $S V \subset \mathfrak{B}^{\infty} \subset R$.

Corollary

If σ is an admissible sequence, then there exist two bounded continuous functions $\eta, \xi:[1, \infty) \rightarrow I$ such that

$$
\sigma_{j}=e^{\eta\left(2^{j}\right)+\int_{1}^{2^{j}} \xi(s) \frac{d s}{s}},
$$

for all $j \in \mathbb{N}$.

Properties of the admissible sequences

If σ is an admissible sequence, for any $\varepsilon>0$ there exists a constant $C>0$ such that

$$
C^{-1} 2^{(s(\sigma)-\varepsilon) j} \leq \underline{\sigma}_{j} \leq \frac{\sigma_{j+k}}{\sigma_{k}} \leq \bar{\sigma}_{j} \leq C 2^{(\bar{s}(\sigma)+\varepsilon) j}
$$

for any $j, k \in \mathbb{N}$.

Properties of the admissible sequences

If σ is an admissible sequence, for any $\varepsilon>0$ there exists a constant $C>0$ such that

$$
C^{-1} 2^{(\underline{s}(\sigma)-\varepsilon) j} \leq \underline{\sigma}_{j} \leq \frac{\sigma_{j+k}}{\sigma_{k}} \leq \bar{\sigma}_{j} \leq C 2^{(\bar{s}(\sigma)+\varepsilon) j}
$$

for any $j, k \in \mathbb{N}$.
Remark
The previous inequalities are not necessarily valid for $\varepsilon=0$.

Some instructive examples

Consider the increasing sequence $\left(j_{n}\right)_{n}$ defined by

$$
\left\{\begin{array}{l}
j_{0}=0 \\
j_{1}=1, \\
j_{2 n}=2 j_{2 n-1}-j_{2 n-2} \\
j_{2 n+1}=2^{j_{2 n}}
\end{array}\right.
$$

Then, define the admissible sequence σ by

$$
\sigma_{j}:=\left\{\begin{array}{ll}
2^{j_{2 n}} & \text { if } j_{2 n} \leq j \leq j_{2 n+1} \\
2^{j_{2 n}} 4^{j-j_{2 n+1}} & \text { if } j_{2 n+1} \leq j<j_{2 n+2}
\end{array} .\right.
$$

The sequence oscillates between $(j)_{j}$ and $\left(2^{j}\right)_{j}$ and we have $\underline{s}(\sigma)=0$ and $\bar{s}(\sigma)=1$.

Some instructive examples

Let $\sigma_{0}=1, \alpha>0$ and σ be defined by

$$
\sigma_{j+1}:=\left\{\begin{array}{ll}
\sigma_{j} & \text { if } j_{2 n} \leq j \leq j_{2 n+1} \\
\sigma_{j} 2^{\alpha} & \text { if } j_{2 n+1} \leq j<j_{2 n+2}
\end{array} .\right.
$$

We have $\underline{s}(\sigma)=0, \bar{s}(\sigma)=1$ and for all $\varepsilon>0$, there exists $C>0$ such that $\sigma_{j} \leq C 2^{j \varepsilon}$ for all j.

Relations between Boyd functions and admissible sequences

Proposition

$$
\begin{aligned}
& \text { If } \phi \in \mathcal{B} \text { and } \sigma_{j}=\phi\left(2^{j}\right) \text { or } \sigma_{j}=1 / \phi\left(2^{-j}\right) \text { then we have } \\
& \underline{b}(\phi) \leq \underline{s}(\sigma) \leq \bar{s}(\sigma) \leq \bar{b}(\phi) \text {. }
\end{aligned}
$$

\squareIf $\phi \in \mathcal{B}, \sigma_{j}=\phi\left(2^{j}\right)$ and $\theta_{j}=1 / \phi\left(2^{-j}\right)$ then
$b(\phi)=\min \{s(\sigma), s(\theta)\} \quad$ and $\bar{b}(\phi)=\max \{\bar{s}(\sigma), \bar{s}(\theta)\}$

Corollary

If ϕ belongs to \mathcal{B}, then we have $\underline{b}(\phi)=\min \left\{\underline{s}\left(\tau_{1}(\phi)\right), \underline{s}\left(\tau_{2}(\phi)\right)\right\}$
\square

Relations between Boyd functions and admissible sequences

Proposition

If $\phi \in \mathcal{B}$ and $\sigma_{j}=\phi\left(2^{j}\right)$ or $\sigma_{j}=1 / \phi\left(2^{-j}\right)$ then we have $\underline{b}(\phi) \leq \underline{s}(\sigma) \leq \bar{s}(\sigma) \leq \bar{b}(\phi)$.

Proposition

If $\phi \in \mathcal{B}, \sigma_{j}=\phi\left(2^{j}\right)$ and $\theta_{j}=1 / \phi\left(2^{-j}\right)$ then

$$
\underline{b}(\phi)=\min \{\underline{s}(\sigma), \underline{s}(\theta)\} \quad \text { and } \quad \bar{b}(\phi)=\max \{\bar{s}(\sigma), \bar{s}(\theta)\} .
$$

Corollary

If ϕ belongs to \mathcal{B}, then we have $\underline{b}(\phi)=\min \left\{\underline{s}\left(\tau_{1}(\phi)\right), \underline{s}\left(\tau_{2}(\phi)\right)\right\}$

Relations between Boyd functions and admissible sequences

Proposition

If $\phi \in \mathcal{B}$ and $\sigma_{j}=\phi\left(2^{j}\right)$ or $\sigma_{j}=1 / \phi\left(2^{-j}\right)$ then we have $\underline{b}(\phi) \leq \underline{s}(\sigma) \leq \bar{s}(\sigma) \leq \bar{b}(\phi)$.

Proposition

If $\phi \in \mathcal{B}, \sigma_{j}=\phi\left(2^{j}\right)$ and $\theta_{j}=1 / \phi\left(2^{-j}\right)$ then

$$
\underline{b}(\phi)=\min \{\underline{s}(\sigma), \underline{s}(\theta)\} \quad \text { and } \quad \bar{b}(\phi)=\max \{\bar{s}(\sigma), \bar{s}(\theta)\} .
$$

Corollary

If ϕ belongs to \mathcal{B}, then we have $\underline{b}(\phi)=\min \left\{\underline{s}\left(\tau_{1}(\phi)\right), \underline{s}\left(\tau_{2}(\phi)\right)\right\}$ and $\bar{b}(\phi)=\max \left\{\bar{s}\left(\tau_{1}(\phi)\right), \bar{s}\left(\tau_{2}(\phi)\right)\right\}$.

Boyd function obtained from one admissible sequence

Boyd function obtained from one admissible sequence

Some elementary examples:

$$
\phi_{\sigma}(t)= \begin{cases}\frac{\sigma_{j+1}-\sigma_{j}}{2^{j}}\left(t-2^{j}\right)+\sigma_{j} & \text { if } t \in\left[2^{j}, 2^{j+1}\right) \\ \frac{1 / \sigma_{j}-1 / \sigma_{j+1}}{2^{j}}\left(t-2^{-j-1}\right)+1 / \sigma_{j+1} & \text { if } t \in\left(2^{-j-1}, 2^{-j}\right] .\end{cases}
$$

Boyd function obtained from one admissible sequence

Some elementary examples :

$$
\phi_{\sigma}(t)= \begin{cases}\frac{\sigma_{j+1}-\sigma_{j}}{2^{j}}\left(t-2^{j}\right)+\sigma_{j} & \text { if } t \in\left[2^{j}, 2^{j+1}\right), j \in \mathbb{N}_{0} \\ \frac{1}{\phi(1 / t)} & \text { if } t \in(0,1)\end{cases}
$$

Boyd function obtained from one admissible sequence

Some elementary examples :

$$
\phi_{\sigma}(t)= \begin{cases}\frac{\sigma_{j+1}-\sigma_{j}}{2^{j}}\left(t-2^{j}\right)+\sigma_{j} & \text { if } t \in\left[2^{j}, 2^{j+1}\right), j \in \mathbb{N}_{0} \\ t^{s} & \text { if } t \in(0,1)\end{cases}
$$

where s satisfies $\underline{s}(\sigma) \leq s \leq \bar{s}(\sigma)$.

Constructing a regular Boyd function from an admissible sequence

Let

$$
f(x)=\left\{\begin{array}{cc}
x^{2} & \text { if } x \geq 0 \\
0 & \text { else }
\end{array}\right.
$$

to define

$$
g: x \mapsto \frac{f(x)}{f(x)+f(1-x)}
$$

on $[0,1]$.

Constructing a regular Boyd function from an admissible

 sequence$$
\binom{X}{Y}=\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right)\binom{x}{y}
$$

For $j \in \mathbb{N}$, we set

$$
\left\{\begin{array}{c}
X_{j}=2^{j} \cos \alpha+\sigma_{j} \sin \alpha \\
Y_{j}=-2^{j} \sin \alpha+\sigma_{j} \cos \alpha
\end{array},\right.
$$

and

$$
\tau^{(j)}(X)=Y_{j}+\left(Y_{j+1}-Y_{j}\right) X
$$

to consider the curve

$$
Y=\tau^{(j)}\left(g\left(\xi^{(j)}(X)\right)\right)
$$

on $\left[X_{j}, X_{j+1}\right]$.

Constructing a regular Boyd function from an admissible sequence

It gives rise to

$$
Y(y)=\tau^{(j)}\left(g\left(\xi^{(j)}(X(x))\right)\right)
$$

on the original Euclidean plane.
Let $\eta_{j}^{(\alpha)}$ be the function $x \mapsto y$ on $\left[2^{j}, 2^{j+1}\right]$.
We can construct $\phi \in \mathcal{B}$ by setting

Constructing a regular Boyd function from an admissible sequence

It gives rise to

$$
Y(y)=\tau^{(j)}\left(g\left(\xi^{(j)}(X(x))\right)\right)
$$

on the original Euclidean plane.
Let $\eta_{j}^{(\alpha)}$ be the function $x \mapsto y$ on $\left[2^{j}, 2^{j+1}\right]$.
We can construct $\phi \in \mathcal{B}$ by setting

$$
\phi(t)= \begin{cases}\eta_{j}^{(\alpha)}(t) & \text { if } t \in\left[2^{j}, 2^{j+1}\right), j \in \mathbb{N}_{0} \\ \frac{1}{\phi(1 / t)} & \text { if } t \in(0,1)\end{cases}
$$

Constructing a regular Boyd function from an admissible sequence

For $\alpha=0$, we explicitly get

$$
\eta_{j}^{(0)}(t)=\sigma_{j}+\frac{\sigma_{j+1}-\sigma_{j}}{1+\left(\frac{t-2^{j+1}}{t-2^{j}}\right)^{2}}
$$

Figure: The function $\eta^{(\alpha)}$ (left panel) and its derivative (right panel) for $\alpha=0$ and σ such that $\sigma_{1}=2, \sigma_{2}=4, \sigma_{3}=20$ and $\sigma_{4}=22$.

Constructing a regular Boyd function from an admissible sequence

If $\alpha>0$ is small enough, we get a function $\eta_{j}^{(\alpha)}$ whose explicit form is far more complicated.

Figure: The function $\eta^{(\alpha)}$ (left panel) and its derivative (right panel) for $\alpha=0.1$ and σ such that $\sigma_{1}=2, \sigma_{2}=4, \sigma_{3}=20$ and $\sigma_{4}=22$.

Constructing a regular Boyd function from an admissible sequence

Let \mathcal{B}^{\prime} denote the set of functions $f: I \rightarrow I$ that belong to $C^{1}(I)$ with $f(1)=1$ and satisfy

$$
0<\inf _{t>0} t \frac{\left|f^{\prime}(t)\right|}{f(t)} \leq \sup _{t>0} t \frac{\left|f^{\prime}(t)\right|}{f(t)}<\infty
$$

One can show that \mathcal{B}^{\prime} is a subset of \mathcal{B}. If $\phi \in \mathcal{B}$ with $\underline{b}(\phi)>0$ (resp. $\bar{b}(\phi)<0$), then there exists a non-decreasing bijection (resp. a non-increasing bijection) $\psi \in \mathcal{B}^{\prime}$ such that $\phi \sim \psi$ and $\psi^{-1} \in \mathcal{B}^{\prime}$

Constructing a regular Boyd function from an admissible sequence

Proposition

If σ is an admissible sequence such that either $\underline{s}(\sigma)>0$ or $\bar{s}(\sigma)<0$, then there exists $\xi \in \mathcal{B}^{\prime} \cap C^{\infty}(I)$ such that $\left(\xi\left(2^{j}\right)\right)_{j} \sim \sigma$.

Proposition
If $\phi \in \mathcal{B}$ is such that $\underline{b}(\phi)>0$ or $\bar{b}(\phi)<0$, then there exists

Constructing a regular Boyd function from an admissible sequence

Proposition

If σ is an admissible sequence such that either $\underline{s}(\sigma)>0$ or $\bar{s}(\sigma)<0$, then there exists $\xi \in \mathcal{B}^{\prime} \cap C^{\infty}(I)$ such that $\left(\xi\left(2^{j}\right)\right)_{j} \sim \sigma$.

Proposition

If $\phi \in \mathcal{B}$ is such that $\underline{b}(\phi)>0$ or $\bar{b}(\phi)<0$, then there exists $\xi \in \mathcal{B}^{\prime} \cap C^{\infty}(I)$ such that $\xi \sim \phi$.

Applications to interpolation spaces

We consider two normed vector spaces A_{0} and A_{1} which are continuously embedded in a Hausdorff topological vector space H. Therefore, the spaces $A_{0} \cap A_{1}$ and $A_{0}+A_{1}$ are also normed vector spaces. The K-operator of interpolation is defined for $t>0$ and $a \in A_{0}+A_{1}$ by

$$
K(t, a)=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+t\left\|a_{1}\right\|_{A_{1}}: a=a_{0}+a_{1}\right\}
$$

If $\theta \in(0,1)$ and $q \in[1, \infty]$, then a belongs to the interpolation space $\left[A_{0}, A_{1}\right]_{\theta, q}$ if $a \in A_{0}+A_{1}$ and

$$
\left(2^{-\theta j} K\left(2^{j}, a\right)\right)_{j \in \mathbb{Z}} \in I^{q}(\mathbb{Z}) .
$$

This last condition is equivalent to $t \mapsto t^{-\theta} K(t, a) \in L_{*}^{q}$.

Applications to interpolation spaces

We consider two normed vector spaces A_{0} and A_{1} which are continuously embedded in a Hausdorff topological vector space H. Therefore, the spaces $A_{0} \cap A_{1}$ and $A_{0}+A_{1}$ are also normed vector spaces. The K-operator of interpolation is defined for $t>0$ and $a \in A_{0}+A_{1}$ by

$$
K(t, a)=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+t\left\|a_{1}\right\|_{A_{1}}: a=a_{0}+a_{1}\right\}
$$

If $\theta \in(0,1)$ and $q \in[1, \infty]$, then a belongs to the interpolation space $\left[A_{0}, A_{1}\right]_{\theta, q}$ if $a \in A_{0}+A_{1}$ and

$$
\left(2^{-\theta j} K\left(2^{j}, a\right)\right)_{j \in \mathbb{Z}} \in I^{q}(\mathbb{Z}) .
$$

This last condition is equivalent to $t \mapsto t^{-\theta} K(t, a) \in L_{*}^{q}$.
For example, $B_{p, q}^{s}=\left[H_{p}^{t}, H_{p}^{u}\right]_{\alpha, q}$ for $s=(1-\alpha) t+\alpha u$.

Applications to interpolation spaces

Given $\phi, \gamma \in \mathcal{B}$ and $q \in[1, \infty]$, a belongs to the generalized interpolation space $\left[A_{0}, A_{1}\right]_{\phi, q}^{\gamma}$ if $a \in A_{0}+A_{1}$ and

$$
\|a\|_{\left[A_{0}, A_{1}\right]_{\phi, q}^{\gamma}}:=\left\|\phi(t)^{-1} K(\gamma(t), a)\right\|_{L_{*}^{q}}<\infty .
$$

If γ is the identity, $\left[A_{0}, A_{1}\right]_{\phi, q}$ will stand for the space $\left[A_{0}, A_{1}\right]_{\phi, q}^{\gamma}$. Under some assumptions on the Boyd indices, one has

Applications to interpolation spaces

Given $\phi, \gamma \in \mathcal{B}$ and $q \in[1, \infty]$, a belongs to the generalized interpolation space $\left[A_{0}, A_{1}\right]_{\phi, q}^{\gamma}$ if $a \in A_{0}+A_{1}$ and

$$
\|a\|_{\left[A_{0}, A_{1}\right]_{\phi, q}^{\gamma}}:=\left\|\phi(t)^{-1} K(\gamma(t), a)\right\|_{L_{*}^{q}}<\infty .
$$

If γ is the identity, $\left[A_{0}, A_{1}\right]_{\phi, q}$ will stand for the space $\left[A_{0}, A_{1}\right]_{\phi, q}^{\gamma}$. Under some assumptions on the Boyd indices, one has

$$
\left[H_{p}^{\phi_{0}}, H_{p}^{\phi_{1}}\right]_{\gamma, q}=B_{p, q}^{\psi} .
$$

Applications to interpolation spaces

Lemma

If $\phi, \gamma \in \mathcal{B}$ and $q \in[1, \infty]$, then a belongs to $\left[A_{0}, A_{1}\right]_{\phi, q}^{\gamma}$ if and only if $\sum_{j \in \mathbb{Z}}\left(\frac{1}{\phi\left(2^{j}\right)} K\left(\gamma\left(2^{j}\right), a\right)\right)^{q}<\infty$.

Lemma

Let $\phi, \gamma \in \mathcal{B}$ and $q \in[1, \infty]$; if $\underline{b}(\gamma)>0$, then there exists $\xi \in \mathcal{B}_{+}^{\prime}$ such that $\xi \sim \gamma$ and

Applications to interpolation spaces

Lemma

If $\phi, \gamma \in \mathcal{B}$ and $q \in[1, \infty]$, then a belongs to $\left[A_{0}, A_{1}\right]_{\phi, q}^{\gamma}$ if and only if $\sum_{j \in \mathbb{Z}}\left(\frac{1}{\phi\left(2^{j}\right)} K\left(\gamma\left(2^{j}\right), a\right)\right)^{q}<\infty$.

Lemma

Let $\phi, \gamma \in \mathcal{B}$ and $q \in[1, \infty]$; if $\underline{b}(\gamma)>0$, then there exists $\xi \in \mathcal{B}_{+}^{\prime}$ such that $\xi \sim \gamma$ and

$$
\left[A_{0}, A_{1}\right]_{\phi, q}^{\gamma}=\left[A_{0}, A_{1}\right]_{\phi \circ \xi-1, q} .
$$

Applications to interpolation spaces

Let σ be an admissible sequence and $q \in[1, \infty]$; a belongs to the upper generalized interpolation space $\left[A_{0}, A_{1}\right]_{\sigma, q}^{\wedge}$ if $a \in A_{0}+A_{1}$ and

$$
\|a\|_{\left[A_{0}, A_{1}\right] \hat{\sigma}_{\sigma} q}:=\sum_{j=1}^{\infty} \frac{1}{\sigma_{j}} K\left(2^{j}, a\right)<\infty .
$$

In the same way, a belongs to the lower generalized interpolation space $\left[A_{0}, A_{1}\right]_{\sigma, q}^{\vee}$ if $a \in A_{0}+A_{1}$ and

$$
\|a\|_{\left[A_{0}, A_{1}\right]_{K, \sigma, q}^{\vee}}^{\vee}:=\sum_{j=1}^{\infty} \sigma_{j} K\left(2^{-j}, a\right)<\infty
$$

Proposition

Applications to interpolation spaces

Let σ be an admissible sequence and $q \in[1, \infty]$; a belongs to the upper generalized interpolation space $\left[A_{0}, A_{1}\right]_{\sigma, q}^{\wedge}$ if $a \in A_{0}+A_{1}$ and

$$
\|a\|_{\left[A_{0}, A_{1}\right] \hat{\sigma}_{, q}}:=\sum_{j=1}^{\infty} \frac{1}{\sigma_{j}} K\left(2^{j}, a\right)<\infty .
$$

In the same way, a belongs to the lower generalized interpolation space $\left[A_{0}, A_{1}\right]_{\sigma, q}^{\vee}$ if $a \in A_{0}+A_{1}$ and

$$
\|a\|_{\left[A_{0}, A_{1}\right]_{K, \sigma, q}^{\vee}}^{\vee}:=\sum_{j=1}^{\infty} \sigma_{j} K\left(2^{-j}, a\right)<\infty
$$

Proposition

If $\phi \in \mathcal{B}, \sigma_{j}=\phi\left(2^{j}\right)$ and $\theta_{j}=1 / \phi\left(2^{-j}\right)$ then

$$
\left[A_{0}, A_{1}\right]_{\phi, q}=\left[A_{0}, A_{1}\right]_{\delta, q}^{\vee} \cap\left[A_{0}, A_{1}\right]_{\sigma, q}^{\wedge} .
$$

Thank you for your attention!

