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Abstract

The stability of a piezoelectric structure controlled by a digital vibration absorber emulating a shunt circuit is investigated

in this work. The formalism of feedback control theory is used to demonstrate that systems with a low electromechanical

coupling are prone to delay-induced instabilities entailed by the sampling procedure of the digital unit. An explicit relation

is derived between the effective electromechanical coupling factor and the maximum sampling period guaranteeing a

stable controlled system. Since this sampling period may be impractically small, a simple modification procedure of the

emulated admittance of the shunt circuit is proposed in order to counteract the effect of delays by anticipation. The

theoretical developments are experimentally validated on a clamped-free piezoelectric beam.
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Introduction

Engineering structures from various disciplines tend to be
lighter or more slender, which usually goes along with
smaller structural damping and increased susceptibility
to vibrations, threatening structural integrity. Piezoelectric
shunt damping is often considered as one potential solution
to this issue. It was originally proposed by Forward (1979),
and formalized by Hagood and von Flotow (1991). The
working principle of piezoelectric shunt damping is based
on the capability of piezoelectric transducers to convert
a part of their mechanical energy into electrical energy.
The latter can be dissipated by connecting a shunt circuit
to the electrodes of the transducer. Shunts of resistive or
resonant types (composed of a resistor and an inductor,
arranged either in series or in parallel) are commonly used.
When properly tuned, the latter exhibits better performance
in terms of vibration reduction than the former. Negative
capacitances can also be used to improve performance,
but the introduction of such a component in the circuit
requires a careful stability analysis (Berardengo et al. 2018).
The realization of resonant shunts may be challenging
for several reasons. First, the required inductance may
be impractically large. Second, the performance of the
piezoelectric shunt is highly sensitive to the values of
the electrical components. Any misevaluation or time

variation of the system characteristics will result in sub-
optimal performance, rectified by time-consuming manual
modifications of the electrical parameters.

Fleming et al. (2000); Fleming (2004) introduced the
concept of synthetic impedance as an alternative solution.
The combination of a digital signal processor with a current
source makes the realization of an arbitrary impedance
possible. The synthetic impedance is an attractive option to
realize shunt damping circuits owing to its versatility. This
nonetheless comes at the expense of the need for powering
the digital unit and its associated electronics. Since it was
proposed, the application of piezoelectric shunt damping
with a digital vibration absorber (DVA) was used in several
works. Fleming and Moheimani (2002) and Plı́va et al.
(2007) developed architectures using pulse width modulation
in order to simplify the driving electronics. Niederberger
et al. (2004) implemented an adaptive impedance with a DVA
in order to improve the robustness of the control system.
Giorgio et al. (2009) and Rosi (2010) used digital controllers
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to validate their theoretical developments on piezoelectric
damping with electrical networks. Matten et al. (2014),
Nečásek et al. (2016, 2017) and Silva (2018) investigated
various electronic architectures to implement a DVA, and
discussed how to set up its analog and digital parts. Dal Bo
et al. (2019) configured a digital unit to realize vibration
absorbers with swept and switched characteristics. Recently,
this concept was applied to metamaterials by Sugino et al.
(2018, 2020) and Yi et al. (2020), and to nonlinear shunt
damping (Raze et al. 2020).

In the active control terminology, the DVA is equivalent
to a control system with a self-sensing actuator, and
it implements a passive control law. From a theoretical
standpoint, a passive control law features unconditional
stability of the controlled system (Moheimani et al. 2003).
If the problem is cast into a feedback control one, the system
exhibits an infinite gain margin but a finite phase margin.
Because a digital unit needs to sample the signals it is
working with, unavoidable delays occur in the control loop.
These delays introduce a phase lag which may destabilize
the controlled system if they are too large. Nečásek et al.
(2016) and Sugino et al. (2018) pinpointed the fact that in
some cases a DVA needs to have a sampling frequency much
higher than the typical frequencies of interest. The authors
also noted that delay-induced instabilities may arise when
using a DVA for surprisingly small sampling periods, in spite
of the passivity of the control law (Raze et al. 2019). It
was shown in previous works that increasing the values of
resistive elements helps stabilizing the system (Sugino et al.
2020). However, to the authors’ knowledge, no explanation
exists on the reason for the onset of such instabilities, and no
systematic method was proposed to counteract them.

In this work, novel and ready-to-use formulas are provided
to determine whether delay-induced instabilities can be an
issue, and how to solve this issue if need be. Specifically, the
purpose of this paper is to evidence 1. why a DVA may need
a high sampling frequency for stability, 2. how delay-induced
instabilities may arise and 3. how to counteract them. After
reviewing the basics of piezoelectric shunt damping with a
DVA, the possibility for instabilities of the control system
is investigated. The problem is cast as a feedback control
one, and a relation between the effective electromechanical
coupling factor and the phase margin is derived. Values
of the maximum sampling period under which the system
remains stable are then deduced. A procedure to stabilize
the controlled system is proposed. Upon applying this
procedure, larger sampling periods may be used for the
digital unit without jeopardizing stability, which is generally
advantageous. The findings are experimentally validated

with a piezoelectric clamped-free beam. The conclusions
of this work are finally reported. In comparison to the
conference paper (Raze et al. 2019), this works performs an
in-depth investigation of the controlled system’s dynamics,
links the delay-induced instabilities to the electromechanical
coupling and improves the stabilization procedure proposed
therein.

Piezoelectric shunt damping with a digital
vibration absorber

A single-degree-of-freedom structure to which a piezoelec-
tric transducer is bonded is considered. The structure is
excited by an external force f and responds with a displace-
ment x. V and q̇ (where an upper dot denotes time derivation)
are the voltage across the electrodes of the transducer and the
current flowing through them, respectively. The governing
equations of the piezoelectric structure read mẍ+ kocx− θpq = f

V = θpx−
1

Cεp
q

, (1)

where m and koc are the mass and stiffness of the structure
when the transducer is open-circuited, respectively, θp is a
piezoelectric coupling coefficient and Cεp is the piezoelectric
capacitance at constant strain. The resonance frequency of
the structure when the transducer is open-circuited (q = 0) is
given by

ωoc =

√
koc
m
, (2)

and when the transducer is short-circuited (V = 0), the
stiffness of the structure changes to ksc, and the short-circuit
resonance frequency can be found as

ωsc =

√
ksc
m

=

√
koc − θ2pCεp

m
. (3)

The electromechanical coupling between the transducer and
the structure can be assessed from these two frequencies with
the effective electromechanical coupling factor (EEMCF)
Kc, defined by

K2
c =

ω2
oc − ω2

sc

ω2
sc

. (4)

The dynamics of multiple-degree-of-freedom structures are
also amenable to a form similar to Eq. (1) if the influence
of non-resonant modes is approximately accounted for with
flexibility and inertia corrections (Høgsberg and Krenk
2017), provided the frequencies of these modes are not too
close to that of the targeted mode.
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Upon connecting a series RL shunt to the transducer, the
equations of the system become mẍ+ kocx− θpq = f

Lq̈ +Rq̇ +
1

Cεp
q − θpx = 0

, (5)

where L and R are the inductance and resistance of the
shunt, respectively. They can be optimized to minimize the
maximum vibratory amplitude of the structure (Soltani et al.
2014; Ikegame et al. 2019). Introducing an intermediate
parameter

r =

√
64− 16K2

c − 26K4
c −K2

c

8
, (6)

the optimal electrical frequency and damping ratios are given
by

δ(Kc) =

√
3K2

c − 4r + 8

4K2
c + 4

(7)

and

ζ(Kc) =

√
27K4

c +K2
c (80− 48r)− 64(r − 1)√
2 (5K2

c + 8)
, (8)

respectively. The optimal inductance and resistance are then

L =
1

δ2(Kc)ω2
ocC

ε
p

(9)

and
R =

2ζ(Kc)

δ(Kc)ωocCεp
, (10)

q̇

f

Piezoelectric structure
V

x

Digital vibration absorber

Voltage
sensorMCUCurrent

injector

Figure 1. General working principle of the DVA.

Delay-induced instabilities

The purpose of this section is to study the stability of a
system composed of a piezoelectric structure controlled by
a DVA. Using the theory of feedback control (Franklin et al.
2015), it is demonstrated that the system can be sensitive to
delays induced by the sampling made by the digital unit.

Delays induced by the sampling procedure

Fig. 2 depicts a schematic representation of the process
undergone by an input signal u(t) (typically, the piezo-
electric voltage) to be transformed into an output signal
y(t) (typically, the piezoelectric current) by a digital unit
(Franklin et al. 1998).

A sample-and-hold circuit holds the input signal u(t)

constant at specific times, multiples of the sampling period
τ . The signal is then quantized, and the MCU operates
on it to emulate the desired admittance. This signal being
discrete, a discrete input-output transfer function must thus
be employed. Tustin’s method (Tustin 1947) is used to
discretize the continuous transfer function to be emulated. If
the latter is given by Ys(s), a discrete z-transform Ys,d(z) is
obtained by substituting the s variable by a bilinear function
of the complex variable z as

Ys,d(z) = Ys(s)|s= 2
τ
z−1
z+1

. (11)

This transfer function can then readily be translated into
a recurrence equation (Franklin et al. 1998). The resulting
output signal is also a discrete signal. It is applied to the
continuous system by holding its value constant for the
sample interval by a zero-order hold (ZOH), which keeps the
output signal constant over a whole sampling interval.

If the MCU operates at a high enough clock frequency
relative to the sampling frequency, it may be considered
that the digitization of the input signal and computation of
the output signal occur instantaneously at each sampling
time, i.e., latency is neglected. The differences between
the continuous transfer function and the digital one then
principally comes from the delay brought by the ZOH,
as well as the frequency warping stemming from the
discretization of the transfer function.

An example relating the input and output signals when the
MCU implements a simple unity gain (Ys = 1) is featured in
Fig. 3. In this case, a continuous average of this output signal
looks identical to the input signal but delayed by τ/2.

Open-loop analysis

Open-loop transfer function The stability of the nominal
controlled system (i.e., without delays) is conditioned upon
that of the unforced system (f = 0). In this case, the
Laplace transform of Eq. (1) gives a relation between the
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Figure 2. Block diagram representation of the input/output relation in a digital system.
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Figure 3. Signals in the MCU when it operates as a simple
unity gain: input signal ( ), output signal ( ) and continuous
average of the output signal ( ).

piezoelectric voltage and charge (using Eqs. (2) and (3))

q

V
= −Cεp

(
1− Cεpθ

2
p

ms2 + koc

)−1

= −Cεp
(

1− ω2
oc − ω2

sc

s2 + ω2
oc

)−1
= −Cεp

s2 + ω2
oc

s2 + ω2
sc

. (12)

This transfer function is usually called the dynamic
capacitance (Preumont 2011). Moreover, connecting an
admittance Ys(s) to the electrodes of the transducer imposes
the relation

sq = Ys(s)V =
1

Ls+R
V (13)

in the case of a series RL shunt. This suggests that
the dynamics of the unforced controlled system may be
represented with the feedback diagram depicted in Fig. 4(a).

Using Eqs. (12) and (13), one may form the open-loop
transfer function H associated with this feedback loop

H(s) = − V (s)

sq(s)
Ys(s) =

1

Cεp

s2 + ω2
sc

s2 + ω2
oc

1

Ls2 +Rs
(14)

such that the poles of the closed-loop system may be found
by solving the characteristic equation

1 +H(s) = 0. (15)

0 sq V (s)

sq(s)

V

Ys(s)

+
+

(a)
0 sq V (s)

sq(s)

V

Ys(s)HZOH(s; τ)

+
+

(b)

Figure 4. Block diagram representation of the nominal (a) and
delayed (b) controlled systems.

By normalizing the Laplace variable with the short-circuit
resonance frequency

s =
s

ωsc
(16)

and using Eqs. (4), (9), (10) and (14),

H(s) = H (ωscs)

=
s2 + 1

s2 + 1 +K2
c

1

1

(1 +K2
c ) δ2(Kc)

s2 +
2ζ(Kc)

δ(Kc)
√

1 +K2
c

s

,

(17)

the coefficients of the open-loop transfer function depend
only on the EEMCF (since δ and ζ are sole functions of it).
This parameter is thus expected to play an important role in
stability.

Fig. 5(a) features Bode plots of the open-loop transfer
function given in Eq. (17) for various values ofKc around the
short- and open-circuit resonance frequencies. The system
has an infinite gain margin because the phase never crosses
-180◦. There are three gain crossover frequencies, and the
phase margin is calculated at the highest one (which also
corresponds to the lowest phase margin). The phase margin
decreases withKc. This trend is also highlighted in Fig. 5(b).

Destabilization mechanism In order to intuitively under-
stand why delays can cause instabilities, a simple model is
now introduced. As seen previously, the delays imparted by
the sampling procedure can be modeled as a pure time delay
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Figure 5. Bode plot of the open-loop transfer function (a):
Kc = 0.01 ( ), Kc = 0.05 ( ), Kc = 0.1 ( ) and Kc = 0.2
( ) ; phase margin as a function of Kc (b).

τ/2 (Franklin et al. 1998). In the case of a series RL shunt,
the piezoelectric charge and voltage are thus linked by

Lq̈(t) +Rq̇(t) = V
(
t− τ

2

)
. (18)

Taking the Laplace transform of this equation yields

q =
e−

sτ
2

Ls2 +Rs
V =

e−
sτ
2

s
Ys(s) =

1

s
Yd(s), (19)

where Ys is the nominal shunt admittance and Yd is an
equivalent delayed admittance. In order to see how these two
quantities differ with a simple exposition, the formulas from
Thomas et al. (2012) (which are a linearization of Eqs. (9)
and (10) with respect to Kc) are used to tune the inductance
and the resistance.

L =
1

Cεpω
2
oc

, R =

√
3

2

Kc

ωocCεp
. (20)

The admittance of the shunt evaluated at ωoc is thus

Ys(jωoc) =
1

jωocL+R
=

Cεpωoc

j +

√
3

2
Kc

=
Cεpωoc

1 +
3

2
K2
c

(√
3

2
Kc − j

)
. (21)

An important feature of this admittance is that it has a
positive real part. Indeed, the average power dissipated
across an admittance Y is

P =
1

2
<{V ∗I} =

1

2
<{V ∗Y V } =

1

2
<{Y } |V |2 (22)

and must be positive for a passive circuit, because it
dissipates true power (< denotes the operator giving the real
part of a complex number and superscript ∗ denotes complex
conjugate). Another important feature is that since Kc � 1,
this real part is much lower than the absolute value of the
imaginary part.

={Y (jωoc)}

< {Y (jωoc)}

Ys(jωoc)Yd(jωoc)

ωocτ

2

Figure 6. Representation of the admittance in the complex
plane.

More quantitatively, using Eqs. (19) and (21), the delayed
admittance is given by

Yd(jωoc)

=
Cεpωoc

1 +
3

2
K2
c

[√
3

2
Kc cos

(ωocτ
2

)
− sin

(ωocτ
2

)

−j
(

cos
(ωocτ

2

)
+

√
3

2
Kc sin

(ωocτ
2

))]
, (23)

whose real part becomes negative when

τ =
2

ωoc
arctan

(√
3

2
Kc

)

=
1

ωoc

(√
6Kc +O(K3

c )
)

=
1

ωsc

(√
6Kc +O(K3

c )
)
.

(24)
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Closed-loop analysis

Characteristic equation The closed-loop system when the
structure is controlled by a DVA is represented in Fig. 4(b).
Delays are introduced in the system by the ZOH.

Assuming the output of the ZOH is dominated by the
fundamental harmonic of the frequency it is subject to, an
equivalent continuous transfer function can be shown to be
(Franklin et al. 1998)

HZOH(s; τ) =
1− e−τs

τs
. (25)

Based on Fig. 4(b), the characteristic equation is then

1− V (s)

sq(s)
Ys(s)HZOH(s; τ) = 1 +H(s)

1− e−τs
τs

= 0.

(26)
where H is given by Eq. (14) and is the open-loop transfer
function of the system without delays, i.e., for τ = 0. The
roots of Eq. (26) are the poles of the closed-loop system,
and all of them must have a negative real part to guarantee
the stability of this system (Walton and Marshall 1987). An
inherent difficulty introduced by the presence of delays is
that this characteristic equation is now transcendental. For
nonzero τ , the system possesses an infinity of poles which
cannot be found in closed-form.

Root loci Eq. (26) can be solved numerically using
homotopy: from the known solution at τ = 0 (where the
characteristic equation is a polynomial), the root locus can
progressively be computed. At each step, starting from a
known solution for a given τ , τ is incremented by ∆τ and
Eq. (26) is solved with MATLAB’s routine fsolve using
as the initial guess the solution for the previous value of τ .
The procedure is then repeated until τ reaches a prescribed
final value.

Fig. 7 shows root loci of the controlled system with delays
for two values of Kc. The maximum value for τ is the
maximum sampling period satisfying the Nyquist-Shannon
sampling theorem if the system was forced at its resonant
frequency ωsc, π/ωsc.

In all of these cases, the poles initially move to the right
of the complex plane with increasing delays, and for large
enough τ the highest-frequency poles cross the imaginary
axis, which makes the closed-loop system unstable. As
expected, the value of τ for which this instability occurs
grows with Kc.

Fig. 7 does not feature all the poles of the delayed system,
except for τ = 0. As soon as τ > 0, a countable infinite set
of poles emanate from −∞, but these poles are not causing
instabilities, unlike those featured in Fig. 7.

Critical delays Of particular interest is the value of τ

for which the poles of the closed-loop system cross the
imaginary axis, signalling the onset of instability. An
inconvenient feature of Eq. (26) is that this value can only
be obtained by solving a transcendental equation. However,
the following approximation can be made at frequencies
comparatively low to the sampling frequency:

HZOH(s; τ) =
1− e−τs

τs
= e−

τs
2
e
τs
2 − e− τs2
τs

= e−
τs
2

+∞∑
k=0

(τs
2

)k
−

+∞∑
k=0

(
−τs

2

)k
τs

= e−
τs
2

+∞∑
k=0

(τs
2

)2k
≈ e− τs2 , (27)

i.e., the ZOH is nearly equivalent to a pure delay of τ/2.
With a pure delay model, the method of Walton and Marshall
(1987) can be used to compute the characteristics roots of
interest. Eq. (26) is rewritten as

1 +H(s)e−
τs
2 = 0, (28)

The time delay resulting in purely imaginary characteristic
roots is noted τc. At this delay, a pair of complex conjugate
poles or a single real pole cross the imaginary axis, possibly
changing the stability of the system. Thus, s = jωc and
s = −jωc satisfy the characteristic equation{

1 +H(jωc)e
− jωcτc2 = 0

1 +H(−jωc)e
jωcτc

2 = 0
. (29)

Multiplication of these two equations yield

H(jωc)H(−jωc) = 1. (30)

This equation is a polynomial of ωsc; hence, there is a finite
set of frequencies at which the poles of the closed-loop
system cross the imaginary axis (Walton and Marshall 1987).
The corresponding time delay τc can then be found using
either line of Eq. (29) as

τc =
2

ωc
[∠−H(jωc) + 2kπ] , k ∈ Z, (31)

where ∠ is an operator giving the phase of a complex
number.

Series approximations Using Eq. (14), it can be shown
that Eq. (30) is a quartic polynomial of ω2

c . A closed-form
solution can thus be obtained, but is impractically long. A
more convenient form was obtained through Maclaurin series
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Figure 7. Root loci (parametrized by τ ) of the closed-loop system with delays (×: poles for τ = 0, •: τ = 0.01/ωsc, •:
τ = 0.1/ωsc, •: τ = 1/ωsc, ×: τ = π/ωsc): Kc = 0.01 (a) and Kc = 0.1 (b).

expansion in powers of Kc of the analytical solution using
Wolfram Mathematica. This provides an approximation
of the critical frequencies. Among them, the one which
corresponds to the minimum critical delay is given by

ωc = ωsc

(
1 +Kc +

5

8
K2
c +

73

128
K3
c +O(K4

c )

)
. (32)

Inserting this critical frequency into Eq. (31) and expanding
the result in power series of Kc gives the corresponding
critical delay

τc =
1

ωsc

(
√

6
(
Kc −K2

c

)
+

19

32

√
3

2
K3
c +O(K4

c )

)
.

(33)
τc corresponds to the largest admissible value of sampling
time for a stable closed-loop system. It may also be noted
that the first-order coefficient in Kc obtained in Eq. (33) for
τc corresponds to that of the linearized value of τ leading to
a non-passive delayed admittance (Eq. (24)).

Eq. (33) indicates that the critical sampling period is
governed by the EEMCF of the system, whose value is
typically small (Kc . 0.1). Hence, the associated critical
sampling frequency may be orders of magnitude larger than
the characteristic frequencies of the system. Although such
a trend has been exhibited for other types of vibration
absorbers before (Olgac and Elmali 2000), it is an important
fact that needs to be accounted for when the DVA is used to
emulate a passive shunt.

The analytical approximations were compared with a
direct numerical resolution of Eqs. (26) and (28) with s =

jωc(Kc), solved with the fsolve routine from MATLAB
using a homotopy on Kc. Fig. 8 compares the obtained
critical delays. For small EEMCFs, the three models agree

almost perfectly. Incidentally, this is also the range where the
instabilities can be a compelling problem.

0 0.1 0.2 0.3 0.4 0.5

K
c
 (-)

0

0.2

0.4

0.6

0.8

s
c

c
 (

-)

Figure 8. Critical delays τc: ZOH model ( ), pure delay model
( ) and series approximation ( ).

FRF of the controlled system Fig. 9 shows representative
FRFs of the controlled system including the ZOH (using
Eq. (25)). All the numerical FRFs and frequencies featured
in this work are normalized with ksc and ωsc, respectively.
Small sampling periods (τ ≤ 0.1τc) have an imperceptible
effect on the FRF compared to the nominal case. Conversely,
a strong effect can be observed for large delays, especially on
the rightmost peak whose amplitude grows with the delay.
At τ = τc, the poles that lie on the imaginary axis create
an undamped resonance in the FRF, signaling the onset of
instability. The changes induced by sampling delays on the
FRFs are qualitatively similar for both cases, but it should
be noted that the critical sampling periods are different,
and delay-induced instabilities arise for a sampling period
approximately ten times smaller for Kc = 0.01 than for
Kc = 0.1.
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(a) (b)

Figure 9. FRF of the controlled system with a delayed admittance, Kc = 0.01 (a) and Kc = 0.1 (b): τ = 0.01τc ( ), τ = 0.1τc
( ), τ = 0.5τc ( ), τ = 0.8τc ( ) and τ = τc ( ).

The analytical approximations were also verified by time
simulations of the systems’ responses to a unit-amplitude
swept-sine forcing under various sampling frequencies. The
simulation of the system represented as a block diagram
in Fig. 10 was carried out with Simulink. In addition to
the sampling delay, this simulation accounts for the time-
varying character of the system caused by sampling, as well
as the effect of the discretization of the transfer function with
Tustin’s method. Fig. 11 shows the envelopes of the systems’
responses. The fact that the FRF is nearly not affected for
τ ≤ 0.1τc is verified, and so is the progressive degradation,
up to the onset of instability for τ ≈ τc.

sq
Piezoelectric structure

V

τ
Yd(z)ZOH

f x

Figure 10. Block diagram representation of the controlled
system used for time simulations.

According to the foregoing discussion, a rule of thumb is
thus to choose the sampling period lower than or equal to
one tenth of the critical delay. Besides, the sampling time
must also be small enough so as to respect the Nyquist
condition. Typical sampling frequencies of ten to thirty times
the highest frequency of interest are often recommended
(Franklin et al. 1998). The sampling time should therefore

satisfy

τ ≤ 1

ωsc
min

{
2π

30
,

√
6

10

(
Kc −K2

c

)
+

19

320

√
3

2
K3
c

}
.

(34)

Stabilization of delay-induced instabilities

Discussion

The delay-induced instabilities are clearly defeating the
purpose of the DVA and should therefore be avoided. If the
closed-loop system is prone to these instabilities, there are
two possible options:

1. Choose a high enough sampling frequency.
2. Modify the implemented admittance in anticipation of

the delays.

The first option is the most obvious and straightforward, but
not always the most desirable one for two main reasons.

One reason is that a given digital unit’s power
consumption is a growing function of its clock frequency,
which must be high enough to handle data at a given
sampling frequency. The power consumption of the MCU
can be estimated by (Cardoso et al. 2017)

PMCU = PMCU,Static + PMCU,Dynamic

= VCC,MCUICC,MCU + βMCUCLV
2
CC,MCUfCPU (35)

where VCC,MCU is the supply voltage, ICC,MCU the
quiescent current, βMCU is the activity factor, CL is the load
capacitance and fCPU is the clock frequency at which the
digital unit is operating. Increasing the sampling frequency
will increase βMCU and/or fCPU , leading to a higher power
consumption. Moreover, if fCPU is increased, VCC,MCU

Prepared using sagej.cls



Raze et al. 9

(a) (b)

Figure 11. Simulated envelope of the response of the controlled system with a delayed admittance to a unit-amplitude swept sine,
Kc = 0.01 (a) and Kc = 0.1 (b): τ = 0.01τc ( ), τ = 0.1τc ( ), τ = 0.5τc ( ), τ = 0.8τc ( ), τ = τc ( ) and τ = 1.01τc ( ).

will also have to be increased, which leads to an actual power
consumption proportional to f3CPU (Cardoso et al. 2017).

The second reason is that the required sampling frequency
to make the delays effect negligible or let alone to have a
stable closed-loop system may be very large. This would
require high-frequency specialized equipments, whose cost
may become prohibitively large.

Stabilization procedure

The principles of the proposed stabilization procedure are
very similar to a pole placement approach: it is sought to
place the poles of a modified delayed system as close as
possible to those of the nominal system by modifying the
parameters of the shunt admittance.

Pole placement via transfer function modification The
admittance of a shunt can be expressed as

Ys(s) =

∑M
m=0 bms

m∑N
n=0 ans

n
(36)

According to Eq. (15), the poles of the nominal closed-loop
system pk (k = 1, · · · ,K) satisfy

1− V (pk)

pkq(pk)
Ys(pk) = 0. (37)

In order to anticipate the delays, a modified admittance is
introduced as

Ỹs(s) =

∑M
m=0 bm(1 + δbm)sm∑N
n=0 an(1 + δan)sn

, (38)

where δan and δbm are modification factors and are unknown
for now. The poles of the modified delayed closed-loop

system would be the solutions of Eq. (26):

1− V (s)

sq(s)

1− e−τs
τs

Ỹs(s) = 0. (39)

By comparing Eqs. (37) and (39), in order for pk to be a
pole of the modified delayed system, the modified delayed
admittance must be equal to the nominal one at s = pk:

1− e−τpk
τpk

Ỹs(pk) =
1− e−τpk

τpk

∑M
m=0 bm(1 + δbm)pmk∑N
n=0 an(1 + δan)pnk

=

∑M
m=0 bmp

m
k∑N

n=1 anp
n
k

= Ys(pk). (40)

Rearranging this equation, the following relation is obtained

1− e−τpk
τpk

∑M
m=0 bmδbmp

m
k∑M

m=0 bmp
m
k

−
∑N
n=0 anδanp

n
k∑N

n=0 anp
n
k

= 1− 1− e−τpk
τpk

, (41)

which, when imposed for k = 1, · · · ,K, defines a linear
system that can be put in a matrix form as

[
B A

]


δb0
...

δbM
δa0

...
δaN


=


1− 1− e−τp1

τp1
...

1− 1− e−τpK
τpK

 , (42)
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where

B

=



1− e−τp1
τp1

b0
M∑
m=0

bmp
m
1

· · · 1− e−τp1
τp1

bMp
M
1

M∑
m=0

bmp
m
1

...
...

1− e−τpK
τpK

b0
M∑
m=0

bmp
m
K

· · · 1− e−τpK
τpK

bMp
M
K

M∑
m=0

bmp
m
K


(43)

and

A =



− a0
N∑
n=0

anp
n
1

· · · − aNp
N
1

N∑
n=0

anp
n
1

...
...

− a0
N∑
n=0

anp
n
K

· · · − aNp
N
K

N∑
n=0

anp
n
K


. (44)

In short, Eq. (42) can be rewritten

Pδ = d. (45)

This system has a trivial solution δ = [−1, · · · ,−1]T . This
makes all the coefficients of the modified admittance equal to
zero, which clearly is not an acceptable solution. To resolve
this, one of the modification factor can be imposed to an
arbitrary value, for instance 0. For this particular choice,
the column associated with this modification coefficient may
simply be removed from P. Thus, the number of unknowns
is reduced to M +N + 1. Since this number may not be
equal to K, the system may not be square. To solve it, the
pseudoinverse (denoted by a superscript †) is used.

δ = P†d. (46)

It should be noted that the procedure only requires the
knowledge of the sampling period τ in addition to what is
already known for tuning the shunt. This parameter is set by
the user and is thus well-known and well-controlled.

Analytical approximations for the series RL shunt

Accurate approximate analytical solutions can be obtained
for the case of a delayed series RL shunt. In this case, b0 = 1,
a0 = R and a1 = L. To have a well-posed system, δb0 = 0

is imposed, while the modifications δa0 = δR and δa1 = δL

on the resistance and inductance, respectively, are sought to

stabilize the system. The matrix A from Eq. (42) reads

A =


− R

Lp1 +R
− Lp1
Lp1 +R

...
...

− R

Lp4 +R
− Lp4
Lp4 +R

 , (47)

where the poles p1 to p4 can in principle be found in closed-
form, since the characteristic polynomial is of fourth order.
Premultiplication of Eq. (42) by AH (where superscript H
denotes Hermitian transposition) yields

AHAδ = AHd. (48)

This system of two unknowns is solvable in closed-
form, but the resulting expressions are impractically long.
Alternatively, an approximate solution can be obtained by
expanding A and d in power series of Kc, and solving
Eq. (48) using truncated Laurent series for δ. The software
Wolfram Mathematica was once more used to solve Eq. (48)
up to O(K2

c ), yielding the series

δL =
sin (τωsc)

τωsc
− 1

+

√
6

8

4 cos (ωscτ) + τωsc sin (ωscτ)− 4

τωsc
Kc

+
16τωsc cos (τωsc)− 16 sin (τωsc)− τ2ω2

sc sin (τωsc)

32τωsc
K2
c

+O(K3
c ) (49)

and

δR =

√
6

3

1− cos (τωsc)

τωsc

1

Kc

+
5 sin (τωsc)− τωsc cos (τωsc)− 4τωsc

4τωsc
+O(Kc).

(50)

Fig. 12 compares the analytical solution given by Eqs. (49)
and (50) to the direct numerical solution of the least-squares
problem (Eq. (46)). This analytical approximation fits well
the numerical solution, even for a fairly large EEMCF. It
can also be observed that large increases are necessary
for the resistance in case the electromechanical coupling is
small, whereas those on the inductance remain moderate for
small values of τ . This comes from the term in K−1c in
Eq. (50). Intuitively, this increase in resistance is necessary
to compensate for the negative damping effect of the delays
highlighted in Figs. 6 and 9. It is also in agreement with
what was previously proposed in the literature to stabilize
the system (Sugino et al. 2020).
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Figure 12. Modification coefficients for the inductance (a) and the resistance (b) ( : numerical solution, : series approximation):
Kc = 0.01 ( ), Kc = 0.1 ( ) and Kc = 0.5 ( ).

(a) (b)

Figure 13. FRF of the controlled system with a modified delayed admittance, Kc = 0.01 (a) and Kc = 0.1 (b): τ = 0.01/ωsc ( ),
τ = 0.1/ωsc ( ), τ = 0.5/ωsc ( ), τ = 1/ωsc ( ) and τ = π/ωsc ( ).

Numerical verification

τ ≤ 2π

30ωsc
(51)

to ensure the stability of the closed-loop system with a
modified admittance with some margin.

Experimental validation

Table 1. Parameters of the clamped-free piezoelectric beam
with a thin lamina.

l b t ll bl tl

700 mm 14 mm 14 mm 40 mm 14 mm 0.5 mm

To identify the system, the FRFs of the beam whith short-
circuited and open-circuited patches were measured. Fitting
these FRFs gave an estimation of the short- and open-
circuit resonance frequencies. The piezoelectric capacitance

Table 2. Parameters of the piezoelectric patches of the
clamped-free piezoelectric beam with a thin lamina.

lp bp tp x0 ∆xp

67 mm 14 mm 2 mm 1 mm 3 mm

was then measured with a multimeter (FLUKE 177). From
these parameters, the optimal inductance and resistance of
a series RL shunt were computed using Eqs. (9) and (10),
respectively. All these parameters are reported in Table 3.
The DVA shown in Fig. 15(b) was powered with ±25V , and
the MCU was programmed in order to mimic the admittance
of the series RL shunt.

To experimentally validate the developments about
delay-induced instabilities, FRFs were measured under
progressively decreasing sampling frequencies. As testified
by Fig. 17(a), the destabilization effect of the sampling
frequency is clearly observable. The results featured in this
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(a) (b)

Figure 14. Simulated envelope of the response of the controlled system with a delayed, modified admittance to a unit-amplitude
swept sine, Kc = 0.01 (a) and Kc = 0.1 (b): τ = 0.01/ωsc ( ), τ = 0.1/ωsc ( ), τ = 0.5/ωsc ( ) and τ = 1/ωsc ( ).

Shaker

Impedance head Power supply

Beam Digital vibration absorber

(a)

Connection to the
power supply

Microcontroller
(Arduino Due)

Printed circuit
board

Connections to the
patches

(b)

Figure 15. Picture of the experimental setup (a) and close-up on the DVA (b).

Table 3. Parameters of the experimental setup.

Parameter fsc foc Kc Cε
p R L

Value 31.08 Hz 31.29 Hz 0.116 245 nF 2,961 Ω 105.7 H

figure are close to those of Fig. 9(b) (the coupling factor
of the experimental setup is 0.116, which is close to the
EEMCF of 0.1 used therein), which validates the model used
to describe sampling delays. From Eq. (33), the stability limit
of the unmodified system should theoretically be reached

at τ = 1.3× 10−3s. The experimental system is still stable
but very lightly damped. This small discrepancy can be
explained by the presence of structural damping in the host,
as well as by experimental uncertainties.
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Figure 16. Schematic representation of the clamped-free piezoelectric beam with a thin lamina: overall view (a) and close-up on
the patches close to the clamped end (b).

The stabilization procedure recovers the performance of
a case without delays, as shown in Fig. 17(b). Namely,
all the curves are virtually superimposed up to τ = τc,
which validates the proposed stabilization method. Fourfold
a sampling period leads to a system with modified admittance
where the effects of sampling are observable, more than in
the numerical model featured in Fig. 13(b), but similarly
to the time simulation in Fig. 14(b). Nevertheless, a case
with such a high sampling period when the admittance is
unmodified is not disclosed here, as it leads to an unstable
closed-loop system.

Conclusion

A DVA used for piezoelectric shunt damping is an attractive
solution but it may be hindered by delay-induced instabilities
incurred by the sampling procedure in the digital unit. After
reviewing the basics of piezoelectric shunt damping with
a DVA, this work used concepts from feedback control
theory to highlight the small phase margin exhibited by
piezoelectric systems with small EEMCFs. This makes
them susceptible to delay-induced instabilities when a DVA
is used, despite the passive character of the control law.
An approximate explicit relation was derived between the
maximum sampling period guaranteeing stability and the
EEMCF, and it was shown that this period tends to zero
concurrently with the EEMCF.

The developments were experimentally validated on a
piezoelectric beam controlled by a DVA. Namely, it was
shown that the expression for the maximum sampling period
for stability is accurate, and that the stabilization procedure
leads to a controlled system which behaves similarly to a
piezoelectric structure with a shunt.
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