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The storage of binary information requires a system that has two
phases with different properties that create a contrast, optical, or
electrical. Phase-change materials (PCMs) are compounds of
group IV, V, and VI elements, with possibly some additional
minor elements, that switch reversibly between a resistive amor-
phous phase (bit 0) and a conducting crystalline phase (bit 1).[1–4]

Tellurium and antimony are key materials in PCM. Antimony
is considered as a single element PCM.[5] Ge2 Sb2Te5 is a refer-
ence composition, in addition to GeTe, historically the first.[1]

The structure and function of PCMs have been discussed in
recent decades, and various models have been suggested over
the years: umbrella flipping,[6] resonant bonding,[7] metavalent
bonding,[3,4] and Peierls distortion.[8,9] The resonant bond theory
is historically important, it dates back to Linus Pauling who

introduced, in 1936, the quantum theory
in the description of the chemical bond
of complex molecules. He suggested that
the wavefunctions of the two Kekulé (actu-
ally unstable) isomers of benzene with
alternating double and single bonds and
a threefold symmetry be combined in a lin-
ear combination—specific to the quantum
theory—with (observed) sixfold symmetry.
As with the hydrogen molecule, the reso-
nance energy is the difference between
the energy of the unstable Kekulé structure
and the bonding linear combination of the
two isomers.

The aim herein is to apply the theory of
molecular orbitals of Hund and Mulliken in
its simplest form (tight binding) to PCMs
and analyze to what extent it may describe
the original properties of the PCM.

Indeed, PCMs have special features
such as two (metastable) structures with
different electrical conductivities, a high

dielectric constant ϵ∞, and a high Born effective charge Z�.
An important characteristic of PCM is their very large
Grüneisen parameter for optical modes, indicating a large anhar-
monicity which considerably reduces the thermal conductivity of
the lattice.[10,11]

Structure: Most PCMs are alloys of columns IV, V, or VI ele-
ments. Their number of s and p valence electrons per atom Nsp is
in between 4.5 and 5.5. With this number of sp electrons, the
structure is p bonded with octahedral coordination, possibly
deformed, whereas for smaller values (Nsp ≤ 4.5), it is sp3

bonded and 4-coordinated. In the competition between tetrahe-
dral and octahedral coordination, the latter is favored when
Nsp > 5� εp � εs

2βsp3
, εp and εs are, respectively, the energies of the

p and s levels and βsp3 is the resonance integral.[8] Throughout
this article, we assume that all atoms have octahedral coordina-
tion, whether ideal or distorted, in the crystalline or amorphous
structure. Sb is a reference element[5] as well as its isoelectronic
compound GeTe.

As the three p orbitals are mutually orthogonal, in a simple
cubic or NaCl structure, the problem is decoupled in three 1D
problems. Peierls has shown that a 1D lattice with a half-filled
band is unstable and leads to a dimerization of the structure,
i.e., alternating short and long covalent bonds.[12–14] Indeed,
an electronic energy is gained by opening a gap at the Fermi level.
The total energy is higher (in absolute value) provided that the
repulsive energy does not prevent it. If the repulsion is moderate
(see further on) in 3D, the cubic structure is unstable and a
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Phase-change material (PCMs) store data using the contrast (electrical or optical)
between two phases: a conductive crystalline phase and a weakly conductive
amorphous phase. Most PCMs have a distorted octahedral structure. The
contrast comes mainly from the electronic structure. In PCMs, a spontaneous
symmetry breaking mechanism, the Peierls distortion, transforms the metallic
crystalline structure into a lower-density semiconducting structure. In a simple
tight-binding model of the covalent bond, the parameters that control this dis-
tortion, characterized by a parameter η, are analyzed. The effective interatomic
potential E(η) is developed in a Landau-type series in η : E(η)¼ E0þ E2η2þ E4η4.
The PCMs with the largest contrast are those for which the effective potential E(η)
of the crystalline phase has a disappearing harmonic contribution (E2 ¼ 0) and a
vanishing electronic gap. This is called as an “incipient Peierls distortion.” It
coincides with the so-called “incipient metal”. The hardness of the repulsive
potential and the number of electrons per atom play an important role. The
vibrational properties and the anomalous Grüneisen parameter, specific to PCMs,
are also studied.
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spontaneous breaking of the symmetry occurs. This was first
observed in bismuth.[15] Figure 1 shows how the structure
depends on the number of electrons. We discuss the condition
of appearance of this distortion in the next section.

Peierls and the Octet Rule: In a PCM, the mechanism that trans-
forms a metal into a semiconductor is the Peierls distortion,[12,13]

a spontaneous symmetry breaking mechanism that makes the
material more insulating by opening a gap around the Fermi
energy. It is the solid-state analogue of the Jahn–Teller effect.[14]

By opening a gap, the highest occupied levels, just below the
Fermi energy, are pushed down toward more binding energies
with a gain of electronic energy.[16] In fact, it is sufficient to create
a depression of the density of states around the Fermi level to
produce an energy gain as the cohesive energy is an integral
of the electronic density of states nðEÞ.[8] In disordered materials
(liquid, amorphous), generally, a hollow appears instead of a true
gap. The Peierls distortion depends on the volume: by decreasing
the volume, the distortion is reduced or even suppressed.
Conversely, an increase in volume increases the distortion. As
amorphous structures have a larger atomic volume than
(ordered) crystalline structures, the Peierls distortion is larger
in the amorphous phase, which creates contrast. In addition,
Coulombic interactions may play some role in the stabilization
of the distortion,[17] even a moderate excess charge of trigonal Se
or Te closes the gap and the crystal goes back to a metallic state.[18]

The octet rule Z ¼ 8� Nsp is a direct consequence of the
Peierls distortion.[19] Z, Nsp, and Np are, respectively, the

coordination number, the number of sp, and p electrons. The
octet rule can be alternatively written Z ¼ 6� Np. Starting from
a hexacoordinated structure (simple cubic or NaCl), the Peierls
distortion splits the coordination of 6 in 6� Np short (strongly
covalent) bonds and Np long (weakly covalent) bonds
(see Figure 1). For example, the coordination of arsenic is 3(þ3),
of tellurium 2(þ4), of iodine 1(þ5) (Table 1).

Let us start with a 1D Peierls distorted structure
(Figure 2) which is the [010] row of atoms of group 15 elements
(Figure 1).

The average distance r̄ and the dimensionless amplitude of the
Peierls distortion parameter η are given by

r̄ ¼ 1
2
ðrS þ rLÞ (1)

η ¼ rL � rS
rL þ rS

ð0 ≤ η ≤ 1Þ (2)

Figure 1. Peierls distortion for the columns V (group 15)–VII (group 17) elements of the periodic table. The short distances (rS) are in bold and the long
distances (rL) are dotted. Along the<100> directions, the sequence is SLSLSL… (dimerization) in group 15 giving corrugated planes parallel to the (11̄ 1̄)
plane. For group 16, one has a sequence SLLSLL… (trimerization) and helical chains with a (1̄,1,1) axis. In group 17, the three directions are no longer
equivalent; the structure is made of (001) planes of diatomic molecules.

Table 1. Coordination numbers of p-bonded structures with octahedral
environment as a function of the number of p electrons per atom.

Peierls Nondistorted Distorted

Coordination Z 6

Coordination (short) Z 6� Np

Coordination (long) Np
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The local order parameter η varies continuously from 0 to 0.25
or higher, e.g., see Table 4. The PCM have rather low values of η:
0.06 for GeTe and 0.07 for Sb.

η ¼ 0 corresponds to a periodic linear chain in 1D or a simple
cubic structure in 3D.

Let us remark that two opposite behaviors occur regarding the
octet rule in alloys (see Table 2).

The lightest elements satisfy the octet rule individually: the
coordination number satisfies the octet rule for each atom
with its number of p electrons (e.g., in SiO2, ZSi ¼ 4 and
ZO ¼ 2). In this case, the bonding mechanism, possibly with
spn hybridization, and the local order are similar in crystalline
and amorphous materials and the electrical contrast is close to
zero. For example, in IV–VI compounds, SiO2 has the same tet-
rahedral local order in the crystalline and amorphous phases, and
therefore, similar electrical and optical properties with vanishing
contrast: SiO2 cannot be used as a memory device.

On the contrary, the heavier elements share their electrons
and behave as “average atoms,” i.e., every atom acts as if it
has the average number of electrons of the compound and
the different components have identical coordination numbers.
The covalent bonding is of ppσ nature with an octahedral coor-
dination, possibly distorted so that the octet rule is satisfied for
the average number of electrons. For example, GeTe has a coor-
dination 3(þ3) for each type of atom. GeTe behaves as if the
atoms were Sb. The amplitude η of the Peierls distortion
decreases with the atomic number of the elements: the heavier
the atoms, the weaker the Peierls distortion. The two opposite
behaviors (atomic or global octet rule) are shown in Table 2;
the PCMs are close to the diagonal (e.g., GeTe). Finally, for
the heaviest elements with a strong repulsion, the distortion dis-
appears and the structure is either of NaCl type (e.g., SnTe, PbSe,
PbTe) or simple cubic (Po), the octet rule is no longer observed.
This rich behavior is at the origin of the PCM properties.
A usable contrast can be produced between amorphous and
the crystalline states which have different amplitudes of the
Peierls distortion. The variation of the Peierls distortion is the
key parameter of PCM efficiency.

In summary, from the top to the bottom of the periodic table,
one has the sequence: individual octet rule, octet rule in average
and undistorted octahedral structure (see Table 2).

Let us finally stress that the respect or not for the octet rule is a
difficult question that has no clear-cut answer. Indeed, it relies on
the (arbitrary) definition of a cut-off distance. One has to define
when two neighboring atoms are bonded (or not) by a covalent
bond. A similar difficulty arises in the study of disordered sys-
tems (amorphous or liquid) for which the number of nearest
neighbors depends on the cut-off distance. As the PCM are
weakly Peierls distorted, the discussion on the fulfillment or
not of the octet rule is still more difficult as their ratios rL=rS vary
continuously in the range [1,1.2] without any gap (Table 4).

One of the consequences of the weak distortion is the
displacive rhombohedral-to-rocksalt transition around 700 K for
GeTe,[20] at 140 K for SnTe,[21] and presumably at 2 K for PbTe.

Energetic Model: The cohesive properties of covalent materials,
including the symmetry breaking mechanism, can be accounted
for qualitatively in a simple tight binding[22,23] or extended
Hückel[14] description of the covalent bond.

The total energy is the sum of two terms.
1) An attractive (quantum mechanical) energy due to the reso-

nance between p orbitals (ppσ bonding). The ppσ resonance
widens the p levels into a p band of density npðEÞ. As the p band
is partially filled, an energy gain is obtained: this is nothing but
ordinary covalence. We assume that the resonance integrals βðrÞ
decay as the q-th inverse power of the interatomic separation.
Following Harrison,[24] βðrÞ ¼ β0=rq with q ¼ 2.

The electronic energy is calculated from the second moment
μ2 (variance) of the density of states npðEÞ. For a partially filled
band, the electronic energy is related to the bandwidth which is
proportional to the square root of second moment μ2 of npðEÞ.[25]
As μ2 is the sum of the squares of the resonance integrals, one
gets Equation (3).

2) A repulsive term that is more complex (electrostatic, kinetic,
and Pauli contributions). It is approximated by an effective
empirical pair interaction. Following Ducastelle[23] and
Pettifor,[25] the repulsive term is approximated by a pairwise
additive term. ErepðrÞ ¼ V0=rp, p (> q) is a parameter that
qualifies the strength of the repulsion. The larger the number
of inner closed shells, the larger the hardness of the repulsion,
the larger the p value. Consequently, p increases when going
down in the periodic table.

Notice that an exponential decay could also be a valid choice
for both terms. The relevant parameters are the dimensionless
logarithmic derivatives of the functions decreasing with distance.

We neglect angular variations. The cohesive energy takes the
form, in one dimension[8]

E ¼ V0

2

�
1
rpS

þ 1
rpL

�
� β0ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r2qS
þ 1

r2qL

s
(3)

where V0 and β0 are coupling constants of the repulsive and
attractive contributions, respectively. This equation is written
for a half-filled p band, with an alternation of short rS and long
bonds rL (Figure 2). The interaction energy (3), involving three
atoms is more complex than a sum of pairwise additiive contri-
butions. It differs from a harmonic potential with two force

Figure 2. A dimerized linear chain.

Table 2. Stoichiometric compositions of the IV–VI compounds. One
observes that above the main diagonal (from SiTe to PbO), the octet
rule is fulfilled for the individual atoms with a stoichiometry AB2 in
black. Below the diagonal, in green, the compounds have the
stoichiometry AB. The incipient metals lie closest to the diagonal
dividing line.[34]

Si Ge Sn Pb

O SiO2 GeO2 SnO2 PbO2, PbO

S SiS2 GeS2 SnS2 PbS

Se SiSe2 GeSe2, GeSe SnSe2, SnSe PbSe

Te SiTe2, SiTe GeTe SnTe PbTe
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constants. Strong anharmonicities may occur as we will see fur-
ther on. The two distances rL and rS are correlated and the
dynamical matrix has cross terms. This has important conse-
quences that explains the special properties of PCMs.

If the two interatomic separations rS and rL are equal,
Equation (3) reduces to the classical Mie potential but when
the distances are different the energy is no longer pair additive
in its attractive part, because of its quantum mechanical nature.
The model could be supplemented by an additional ionic contri-
bution, but in PCM, the charge transfer is rather modest and is
neglected at this stage.

For a different band filling, the distorted structure is different,
as shown in Figure 1; Equation (3) is easily adapted.[19]

Figure 3 shows typical energy landscapes.
Figure 3a corresponds to the situation where p > 2q, the min-

imum is on the diagonal (rS ¼ rL) the stable structure is a linear
chain of equally spaced atoms. In that case, the strong repulsive
potential prevents dimerisation (e.g., Po, PbTe).

Figure 3b with p ¼ 2q corresponds to the incipient metal, the
middle atom is free to move at zero energy cost between its neigh-
bors along the red central curve because the force constant is zero
to first order. It corresponds to the green curve in Figure 5.

In Figure 3c, p < 2q, i.e., a soft repulsion, a spontaneous sym-
metry breaking appears. The stable configurations are shown by
the first red curves, the two distances rS and rL (or vice versa) are
different (e.g., Sb and GeTe at low T ).

In summary, Figure 3a corresponds to a metal, Figure 3b to an
incipient metal, and Figure 3c to a semiconductor. In the three
cases, the bonding is covalent.

In this model, the parameter characterizing the Peierls distor-
tion is the p=q ratio, i.e., the relative decay rate of the attractive
and repulsive terms. The—quantum chemical—attractive term
favors the Peierls distortion, whereas the —classical—repulsive
term decreases or suppresses it. In 3D, a half-filled p band is sub-
ject to dimerization in the three (x, y, z) equivalent directions in
space (Figure 1). Sb is a semimetal in the crystalline A7 phase
(R3̄m) and a semiconductor in the amorphous phase, giving birth
to an appreciable contrast in resistivity.[5] GeTe is isoelectronic to
Sb with similar properties.

Despite its relative simplicity, formula (3) accounts for many
properties of covalent systems and it generates rich behaviors.[8]

It is interesting to note that Peierls had some doubts on the occur-
rence and usefulness of the mechanism bearing his name.[13]

For a given value of r̄, the cohesive energy E (Equation (3)) is
expanded in power series of η. As the energy is symmetrical in η,
only even powers occur in the series expansion, limited to fourth
order in η in a Landau-like expansion.

Eðr̄, ηÞ ¼ E0ðr̄Þ þ αðr̄Þη2 þ γðr̄Þη4 ¼ E0ðr̄Þ þ ΔEP (4)

where ΔEP is the Peierls energy, i.e., the energy gained by the
distortion when α < 0

αðr̄Þ ¼ 1
2

�
V0

r̄p
pðpþ 1Þ � β0

r̄q
qð2qþ 1Þ

�
(5)

and

γðr̄Þ ¼ 1
12

�
V0

r̄p
pðpþ 1Þðpþ 2Þðpþ 3Þ

� 1
2
β0
r̄q

qð2qþ 1Þð6þ 7q� 2q2Þ
� (6)

Figure 4 shows the behavior of E0ðrÞ, αðrÞ ¼ E2, and γðrÞ ¼ E4

as a function of the distance r. In this case, αðrÞ is negative at the
equilibrium distance (minimum of E0ðrÞ ) so that the structure is
deformed. γðrÞ is positive on a large domain of r.

The curves of Figure 5 are the isochoric sections of Figure 3
(dashed line in Figure 3c). Polonium is the only element with a
simple cubic structure at room temperature; it corresponds to the
black curve of Figure 5. The coefficient αðr̄Þ determines whether
a distortion occurs (α < 0) or not (α > 0). The quartic term γðr̄Þ
defines, in addition to αðr̄Þ, the position and amplitude of the
distortion. The softer the repulsive potential, the stronger the
distortion. The distortion amplitude is obtained from the struc-
tural data.[26,27] The relation between η and rL=rS is obtained
from Equation (2). The p=q ratio is deduced from the implicit
relation (7) (here q ¼ 2[24]). The amplitude of the distortion

Figure 3. a–c) Energy landscapes EðrS, rLÞ. From left to right : a) undistorted, b) incipient metal, and c) Peierls distorted. The lowest energy configuration
corresponds to the first red curve. In the incipient metal (elongated red curve in (b), the reference point rattles because the force constants vanish to first
order. The parameters are chosen such that rS ¼ rL ¼ 1 for the undistorted case.
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parameter η at its minimum and the Peierls distortion (PD)
energy (see Figure 5) are deduced from (4).

η¼
ffiffiffiffiffiffiffi�α

2γ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð2q� pÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððpþ 1Þðpþ 2Þðpþ 3Þ� 0.5ð2qþ 1Þð6þ 7q� 2q2Þ

p
Þ

(7)

ΔEP ¼ �α2

4γ
(8)

The distortion parameter α is mainly driven by the p=q ratio.
Indeed at the equilibrium distance re, one has

αðreÞ ¼
1
2
pV0

rpeq
ðp� 2qÞ ¼ EcohðreÞ

pqðp� 2qÞ
2ðp� qÞ (9)

More generally, starting from (5), for any covalently bonded
structure, i.e., for any value of p=q, there is critical distance

rα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðpþ1ÞV0
qð2qþ1Þβ0

p�q
q

¼
ffiffiffiffiffiffiffiffi
pþ1
2qþ1

p�q
q

re below which the structure is undis-

torted and metallic and above which the structure is Peierls dis-
torted and semiconducting. By varying the volume, one can tune

the electrical resistivity. The amorphous phase having a larger
volume than the crystalline phase, its conductivity is lower.
Inversely pressure increases conductivity: at a sufficiently high
pressure all systems should become metallic (even hydrogen).
The transition pressure is strongly dependent on the amplitude
of the distortion. The higher the amplitude, the higher the critical
pressure. For example, for arsenic, the transition pressure is
25 GPa, 8.5 GPa for antimony, and 2.5 GPa for bismuth. This
is quite consistent with the systematic hardening of the repulsive
term when going down the periodic table (Table 3).

The relative value of the Peierls distortion energy depends only
on the parameters p and q and is highly η dependent.

ΔEP

Ecoh
¼ pq

�ðpþ 1Þðpþ 2Þðpþ 3Þ � 1
2 ð2qþ 1Þð6þ 7q� 2q2Þ�

3ðp� qÞ η4

¼ c4η4

(10)

The order of magnitude of the factor c4 can be estimated as
follows: if q ¼ 2, p ¼ 4, then c4 ≃240. This value is relatively
independent of the parametrization. For GeTe, the long/short
ratio is rL=rS ¼ 1.12 with η ¼ 0.057 and ΔEP=Ecoh ¼ 0.0025,
and finally ΔEP ≃ 210 K as Ecoh ≃ 7 eV. The order of magnitude
is quite compatible with the displacive transition of GeTe from
R3̄m to Fm3̄m around 700 K.[20]

The relation between the Peierls distortion ratio η and the p/q
ratio can obtained from the implicit equation (Equation (7)) if the
structure is distorted. If not, the calculation of p and q is much
more complex and has to be determined from energy, the inter-
atomic distance and the elastic constants obtained from (3).

The amorphous phase, disordered, is less dense than its crys-
talline counterpart. To our knowledge, the measures of the den-
sities are rather rare. We estimate a 6 % reduction in density
during amorphization,[28] i.e., a 2% reduction over the average
distances. Our conclusions are insensitive to this arbitrary value.

A closely related effect is the negative thermal expansion
(NTE). The temperature weakens or destroys the Peierls distor-
tion and transforms a semiconducting structure into a metallic
structure with a density decrease in a temperature domain of
about 200 K around the transition temperature[8] (Table 4).

Contrast: The contrast (optical or electrical) between the two
phases is the basis of PCM. The contrast comes mainly from
the electronic properties. In addition, it has been shown that
the optical contrast is raised by the optical matrix elements that
are enhanced in the crystal by aligned rows of resonantly bonded
p orbitals.[29,30] As a contrast parameter, we simply take the dif-
ference of the electronic gap width EG between the crystalline
phase and the amorphous phase. The electronic gap is sensitive
to the average atomic volume, e.g., in GeSe by comparing the

Figure 5. Evolution of the Peierls distortion energy ΔEP as a function of η
for different values of the p=q ratio (increasing from bottom to top).
The green curve (incipient metal) corresponds to the cancellation of
the harmonic term in Equation (4) (E2 ¼ 0) and p¼ 2q. Alternatively,
the curves correspond to decreasing volumes (or increasing pressures)
from bottom to top.

Figure 4. Functions E0ðrÞ, αðrÞ, and γðrÞ.

Table 3. Summary of the different cases in the absence of charge transfer.

Repulsion Distortion Conductivity Potential EðηÞ
p > 2q Hard No distortion Metal Harmonic

p ¼ 2q Intermediate Vanishing distortion Incipient metal Zero-harmonic

q < p < 2q Soft Distortion Semiconductor Double well
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different crystalline structures calculated at equilibrium, one
finds dEG=dvat ¼ 0.059 eV=ðu:a:Þ3.[17]

Within our model, the gap width and the contrast are given by

EG ¼ 2jβðrSÞ � βðrLÞj
Contrast ¼ Eamorphous

G � Ecrystal
G

(11)

where βðrÞ is the resonance integral between p orbitals. Indeed,
in a dimerised linear chain, with two distances rS and rL, the band
edges are �βðrSÞ � βðrLÞ, �βðrSÞ þ βðrLÞ, βðrSÞ � βðrLÞ, and
βðrSÞ þ βðrLÞ.

The contrast parameter is shown in Figure 6 as a function
of the p=q ratio for a 2% distance extension upon amorphization.
The highest contrast is achieved when the system shows a
vanishing Peierls distortion, i.e., when p=q ¼ 2. At this value,
the electronic gap is just vanishing hence the suggestive name
“incipient metal.”[31] During amorphization, the volume expan-
sion opens up a gap and creates contrast. In Figure 6, the position
of the sharp maximum is at p=q ¼ 2, independently of all other
parameters, the width of the curve at half height is roughly pro-
portional to the square of the distance expansion.

Simultaneously, the restoring force in the η parameter
vanishes, the vibration mode softens (Figure 5, green curve)
and the corresponding Grüneisen parameter becomes anoma-
lously large.

This simple theoretical model shows the triple correlation:
incipient metal, vanishing Peierls distortion, and anomalous
Grüneisen parameter which is characteristic of the PCM. The
system is at the borderline between two behaviors: metallic
and semiconducting and the switch between them produces
the contrast.

The ideal situation for the PCM is a material that achieves the
ratio p=q ¼ 2 in the crystalline state (Figure 6) with a vanishing
Peierls distortion and a zero gap. Then the system becomes
Peierls distorted in the amorphous state (Figure 7) because of
its volume expansion. This maximizes the contrast. In this case,
the potential is strongly anharmonic in η. The thermal conduc-
tivity of PCMs is very low, even in their crystalline phase, because
of the anharmonicity (and also the possible disorder).[10,32]

As and Te are PCM candidates in view of their Peierls distor-
tion amplitude but it is difficult to get them amorphous. The bor-
derline case corresponds to a ratio rL=rS ¼ 1.12 (upper limit),
this is the case of GeTe.[31]

Table 4. Distortion amplitudes, η parameter, and p=q ratio for various
elements and compounds. The distortion amplitude is obtained from
the structural data.[26,27] The relation between η and rL=rS is obtained
from Equation (2). The p=q ratio is deduced from the implicit relation
(7) (here q ¼ 2[24]). For nondistorted structures, only a lower bound of
the p=q ratio can be given.

rL=rS η p=q

As Crystal 1.24 0.11 1.70

Sb Crystal 1.15 0.07 1.86

Bi Crystal 1.15 0.07 1.86

S Crystal 1.62 0.24 1.35

Se Crystal 1.49 0.20 1.45

Te Crystal 1.23 0.10 1.78

GeTe Crystal 1.12 0.06 1.75

GeTe Amorphous 1.20 0.09 id.

GeSe Crystal 1.34 0.14 1.62

GeS Crystal 1.45 0.18 1.57

SnS Crystal 1.28 0.12 1.70

SnSe Crystal 1.26 0.11 1.72

Sb2Te Crystal 1.16 0.07 1.86

Ge2Sb2Te5 Crystal 1.20 0.09 1.80

SnTe Crystal 1 0 ≥2

PbS Crystal 1 0 ≥ 2

PbSe Crystal 1 0 ≥2

PbTe Crystal 1 0 ≥2

Figure 6. Contrast parameter (a. u.) between the crystalline and the expanded amorphous phases as a function of the p=q ratio. A linear expansion of 2%
is assumed upon amorphization. Sketch of the crystalline (C left) and amorphous (A right) potentials E(η). The PCMs occupy the region above the
horizontal green line, along the green thick line. The best PCM corresponds to p=q¼ 2, i.e., zero-harmonicity or incipient metal.
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Grüneisen Parameter: Effect of Pressure: One of the most rele-
vant fingerprints of the PCM is the anomalous behavior of
the Grüneisen parameter under pressure, very different from tet-
ravalent structures.[3] Usually, the dimensionless Grüneisen
parameter (Equation (12)) is of the order of unity and varies slowly
with pressure. We now consider the variable η̃ ¼ rL � rS ¼ ηr̄,
the absolute amplitude (length) of the Peierls distortion instead
of the relative amplitude η defined by (2).

For the η̃ mode in 1D, the Grüneisen parameter is defined by

γη̃ ¼ � r
ωη̃

∂ωη̃

∂r
(12)

The vibrational frequency of the η̃ mode is ωη̃ ¼
ffiffiffi
kη̃
m

q
where

kη̃ is the force constant, related to the curvature of the energy
curve in Figure 5 at the minimum.

In the absence of distortion (η ¼ 0) at zero pressure, in 3D[33]

γ ¼ pþ q
6

þ 1
6

(13)

and for p¼ 4 and q¼ 2, γ ¼ 1.17.
In PCM, the Grüneisen parameter γη̃ varies strongly, it

diverges and changes sign at the critical transition pressure
Pc, as shown in the inset of Figure 8.

At the equilibrium, the force constant is shown in Table 5.
rc is the distance at which αðrÞ ¼ 0, achieved at some critical

pressure Pc. It can be shown that γη̃ varies as

γη̃ ¼
C

P � Pc
(14)

in the vicinity of Pc. Figure 8, shows the anomalous behavior of
the Grüneisen parameter of the η̃mode, in qualitative agreement
with the DFT data.[3] The divergence of γη̃ at the critical pressure
results from the vanishing frequency ωη̃ consequence of the dis-
appearance of the harmonic term. Could this be related to the

anomalous behavior of the transverse optical phonon mode
ωLO that are shown in the inset of Figure 8. The DFT calculations
using the ABINIT software with the Perdew–Burke–Ernzerhof
functional and norm-conserving pseudopotentials, have been
done at 0 K in the harmonic approximation:[3] only the second
derivatives of the energy enter the calculations. The analogy is
only apparent. The real situation is more complex and cannot
be simply discussed in term of phonons because the phonons
are, by definition, related to a harmonic potential, no longer pres-
ent here at the strict position of an incipient metal (see Figure 5,
red curve). In other words, the force is no longer proportional to
the displacement, both spring constants (left and right) of an
atom vary with the displacement and vanish for the incipient
metal. The atom is free to move between its nearest neighbors.
As the Grüneisen parameter diverges at Pc in the model, the ther-
mal conductivity κ vanishes as it varies as γ�2.[11] In conclusion,
the large Grüneisen parameter and the low value of the thermal
conductivity have their origin in the characteristics of the inter-
action potential (3).

Generally, in 3D solids, the Grüneisen parameter decreases
with pressure, to the first approximation like the inverse of
the density. Here, pressure decreases the amplitude of the
Peierls distortion that vanishes at a given critical pressure Pc

or volume V c where the Grüneisen parameter diverges.
Conclusion: In summary, the major characteristics of PCMs—

their contrast and their anomalous Grüneisen parameter—are
explained by a simple covalent model of an octahedrally coordi-
nated structure with a Peierls distortion.

Table 5. Force constant kη� for the various distortion states.

kη� Structure r̄

�4α=r2 Distorted <rc

0 0-Harmonic ¼rc

2α=r2 Undistorted >rc

Figure 7. Plot of p/q and η versus rL=rS, from Equation (2) and (10).
The full circles (left) correspond to the incipient metal with a vanishing
electronic gap, the open circles correspond to GeTe.

Figure 8. Grüneisen parameter γ as a function of pressure (a. u.). Pc is the
transition pressure from distorted to undistorted structure. Inset:
Grüneisen parameter of GeTe of the transverse optical mode (adapted
from ref. [3]).
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A simple tight-bindingmodel of the ppσ bond with an effective
repulsive potential describes the main features of the PCM
mechanism.

In conclusion, to obtain an efficient PCM, two necessary con-
ditions must be met: 1. The structure must be octahedral with
ppσ bonding. This is achieved by compounds of elements of
groups IV, V, and VI with fairly large atomic mass when the
number of sp valence electrons per atom is in the range
[4.5, 5.5]. 2. The crystalline structure must have a vanishing
(or very small) electronic gap, i.e., it is an incipient metal char-
acterized by a weakly or vanishingly harmonic term E2 in the
energy EðηÞ. It corresponds to a very weak Peierls distorted struc-
ture and, in our model, to a ratio p=q ≃ 2. It is called “incipient
metal” and could also be named “incipient Peierls distortion.”

Of course, these conditions are not sufficient to obtain an
operational PCM as other aspects have to be considered, that
are outside this model: amorphizability, kinetics of the reversible
transformation from the crystalline to the amorphous phase,
cyclability.
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