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Abstract

During the past decades, the planet has undergone increased environmental pres-
sure. This has led to a clear momentum towards the creation of a more sustainable
world. In this context, the challenge to provide energy access for all in a fair and
sustainable way is an enormous task. The international agency of energy has esti-
mated that yearly investments of 55 billion USD are needed to reach set targets. To
optimize the limited resources, researchers have focused on the use of geograph-
ical information systems (GIS) to better capture the spatial dimension and define
least-cost pathways to universal energy access. The size of the deployment problem
imposes to model dispersed energy demands and isolated energy systems in a sim-
plified manner, which can lead to suboptimal solutions. In consequence, there is a
need to capture the diversity of conditions in which these systems are deployed.

The goal of this thesis is to contribute to the modeling of rural electrification pro-
cesses through tailored models and methods. These tools are integrated into a co-
herent modeling framework, covering the whole value chain between accurate char-
acterization of household demand to the macroscopic (national) planning of rural
electrification. The models related to each relevant scale are soft-linked by defining
common variables of interest. Then, methods to integrate the results of the more
detailed models into the higher-level model are introduced. This approach provides
additional technical insights and a better spatio-temporal optimum. The structure
of this thesis reflects this bottom-up approach. It is organized in three parts.

The first part deals with energy demand modeling in a rural context and presents
the Bolivian case study. It introduces two methods to create stochastic load profiles
depending on the available data (measurements or surveys). In addition, it explores
the components of an ideal rural community and frames appliance ownership ac-
cording to surveys in rural communities. Finally, demand curves at the household
and community level are generated using an ad-hoc stochastic bottom-up profile
generation model.

The second part presents and applies an optimal sizing and operation framework
for isolated energy systems in different contexts. The operational data from an exist-
ing microgrid in Bolivia is used as a benchmark and as a test case to test the model.
Different sizing methods and formulations are compared, leading to the conclusion
that a compromise must be found between system reliability and computational
tractability. Finally, the trade-off between cost and lost load probability in single
households equipped with a solar home system is analyzed.

The third part deals with the creation of surrogate models for microgrid design and
its use in GIS-based electrification models. The limitations of existing GIS tools
are discussed and surrogate models are proposed as a solution to increase accu-
racy without compromising the solving time of the model. A methodology to create
and validate surrogate models for rural electrification is introduced. Then, the On-
SSET model is adapted and improved to integrate this new formulation. Finally,
different electrification scenarios are computed for the case of Bolivia, where both
hybrid microgrids and solar home systems proved to be essential technologies for
the cost-optimal electrification of remote communities.





v

Acknowledgements
These past years have been characterized by learning, discovery and challenges.
This would not have been possible without the contributions of so many people that
I am afraid that I would forget to mention someone. This said, Hereunder I would
do a non-exhaustive list.

Certainly the biggest contributor to all the good things that have happened has been
my thesis supervisor Sylvain Quoilin. There are no words that I can say to thank
you for the support that you have given me. To Professor Vincent Lemort, it has
been a pleasure to be part of the Lab and I thank you for your good will and the
great atmosphere that you have created. To the rest of the PhD thesis jury, Prof.
Pierre Dewallef, Prof Bertrand Cornelusses, Prof Emanuela Colombo and Prof Pedro
Crespo del Grando, I thank you for accepting to revise and attend my PhD thesis
defense.

To all the colleagues that I have met, I thank you for your support and discussions.
Profs Torrico and Walter, thank you for your help and wise advice. Evelyn, Clau
and Rober you made my stages in Bolivia full of interesting conversations and fun.
Francesco, Nicolo and Gabriela thank you for your hard work, interesting ideas and
help during the course of this work. Certainly, my PhD thesis will look completely
different without your contributions.

To the members of the LaboThAp, These past years have been some of the best years
of my life. I want to thank especially Sam, Nico, Thibaut and Remi for their friend-
ship and support. Cami, thank you for allowing me to stay in your office, you are
certainly the best. Javier, thank you for all the good times and the support to play
games or do BBQ in random moments of the year.

In the extrange period COVID, certainly the people which you live makes the dif-
ference. To the people on Rue bassenge 13, thank you for everything. Oli, you are
a great friend and always with amazing ideas and the will to do them. Nats, thank
you for your friendship and kind words. Geoff, thank you for the advice and help
in random tasks during the last year. Cendric, all my conversations with you have
been more than interesting.

Certainly, the biggest asset for a successful PhD, it is friends. I am certain that I have
one of the best collections in the world. Gabriel and Gabriela, your conversations
and support either on the distance or face to face have been of big help during this
time. Ioannis, thank you for all the help, you are one of the best persons that I have
ever met. You are tied with Miguel, whom has help more than I can thank. Queralt,
Meli, Andres, Lizzet, Elena, Fabrizia, Pep your friendship has light my day even in
the darkness Liege times.

To my parents which have supported me during my whole life, in the good and
especially in the bad moments. Andrea and Karen, your kind words has been the
energy that has moved me in the most difficult times.





vii

List of Publications
Articles in peer-reviewed academic journals

1. Navia, M.; Orellana, R.; Zarate, S.; Villazon, M.; Balderrama, S.; Quoilin, S.
(2022) Energy Transition Planning with High Penetration of Variable Renew-
able Energy in Developing Countries: The Case of the Bolivian Interconnected
Power System. Energies, 15, 968.

2. Balderrama Subieta, S. L., Lombardi, F., Stevanato, N., Gabriela, P., Colombo,
E., & Quoilin, S. (2021). Surrogate models for rural energy planning: Applica-
tion to Bolivian lowlands isolated communities. Energy, 232.

3. Fernandez, M., Cardozo, E., Zambrana, J., Pena, G., Balderrama Subieta, S.
L., Sanchez, C., Soto, S., & Quoilin, S. (2021, June 01). Evaluacion del costo de
electrificacion rural en Bolivia para alcanzar el ODS 7. Journal Boliviano de
Ciencias.

4. Balderrama, G., Balderrama Subieta, S. L., Lombardi, F., Stevanato, N., Sahlberg,
A., Howells, M., Colombo, E., & Quoilin, S. (2020). Incorporating high-resolution
demand and techno-economic optimization to evaluate micro-grids into the
Open Source Spatial Electrification Tool (OnSSET). Energy for Sustainable De-
velopment, 56, 98 - 118.

5. Stevanato, N., Rinaldi, L., Pistolese, S., Balderrama Subieta, S. L., Quoilin,
S., & Colombo, E. (2020, October). Modeling of a Village-Scale Multi-Energy
System for the Integrated Supply of Electric and Thermal Energy. Applied
Sciences.

6. Stevanato, N., Lombardi, F., Guidicini, G., Rinaldi, L., Balderrama Subieta, S.
L., Pavicevic, M., Quoilin, S., & Colombo, E. (2020, July). Long-term sizing
of rural microgrids: Accounting for load evolution through multi-step invest-
ment plan and stochastic optimization. Energy for Sustainable Development.

7. Balderrama Subieta, S. L., Lombardi, F., Riva, F., Canedo, W., Colombo, E., &
Quoilin, S. (2019). A two-stage linear programming optimization framework
for isolated hybrid microgrids in a rural context: The case study of the "El
Espino" community. Energy, 188.

8. Rojas Candia, R., Balderrama Subieta, S. L., Adhemar Araoz Ramos, J., Vi-
cente Senosiain, M., Pena Balderrama, G., Jaldin Florero, H., & Quoilin, S.
(2019). Techno-economic assessment of high variable renewable energy pene-
tration in the Bolivian interconnected electric system. International Journal of
Sustainable Energy Planning and Management, 22.

9. Francesco, L., Balderrama Subieta, S. L., Quoilin, S., & Emanuela, C. (2019).
Generating high-resolution multi-energy load profiles for remote areas with an
open-source stochastic model. Energy, 177, 433-444.

Papers at international scientific conferences, published in full proceedings

1. Soto, A., Balderrama Subieta, S. L., Cardozo, E., Fernandez, M., Zambrana,
J., & Quoilin, S. (2021). Exploring the Tradeoff between Installed Capacity an-
dUnserved Energy in Rural Electrification. PROCEEDINGS OF ECOS 2021.



viii

2. Zarate, S., Villazon, M., Navia, M., Balderrama Subieta, S. L., & Quoilin, S.
(2021). Modeling hydropower to assess its contribution to flexibility services
in the Bolivian power system. Proceedings of the 16th SDEWES Conference.

3. Balderrama Subieta, S. L., Pena Blderrama, G. J., Lombardi, F., Stevanato, N.,
Sahlberg, A., Colombo, E., & Quoilin, S. (2019). Model-Based cost evaluation
of Microgrids systems for rural Electrification and energy planning purposes.
PROCEEDINGS OF Solar World Congress 2019.

4. Balderrama Subieta, S. L., Lombardi, F., Stevanato, N., Pena, G., Colombo, E.,
& Quoilin, S. (2019). Automated evaluation of levelized cost of energy of iso-
lated micro-grids for energy planning purposes in developing countries. PRO-
CEEDINGS OF ECOS 2019.

5. Lombardi, F., Balderrama Subieta, S. L., Nicolo, S., Pistolese, S., Colombo, E.,
& Quoilin, S. (2018). Modelling of a village-scale Multi-Energy System (MES)
for the integrated supply of electric and thermal energy. Proceedings of SSB
2018, 10th International Conference on System Simulation in Buildings.

6. Balderrama Subieta, S. L., Haderspock, F., Canedo, W., Renan, O., & Quoilin,
S. (2018). Techno-economic evaluation of rural electrification in Bolivia: lessons
learned from the ”El Espino” micro-grid. Proceedings of ECOS 2018 - the 31th
International Conference on Efficiency, Cost, Optimization, Simulation and En-
vironmental Impact of Energy Systems.

7. Antonio Rojas Candia, R., Adhemar Araoz Ramos, J., Luis Balderrama, S.,
Pena Balderrama, G., Alejo Espinoza, L., Senosiain, V., & Quoilin, S. (2018).
Techno-economic assessment of high renewable energy source penetration in
the Bolivian interconnected electric system. Proceedings of the 31st ECOS Con-
ference.

8. Balderrama Subieta, S. L., Canedo, W., Lemort, V., & Quoilin, S. (2017). Im-
pact of Diesel generator limitations in the robust sizing of isolated hybrid Mi-
crogrids including PV and batteries. Proceedings of ECOS 2016 - the 30th In-
ternational Conference on Efficiency, Cost, Optimization, Simulation and En-
vironmental Impact of Energy Systems.

9. Balderrama, S., Canedo, W., Lemort, V., & Quoilin, S. (2016). Techno-economic
optimization of isolate micro-grids including PV and Li-Ion Batteries in the Bo-
livian context. Proceedings of ECOS 2016 - the 29th International Conference
on Efficiency, Cost, Optimization, Simulation and Environmental Impact of
Energy Systems.



ix

Contents

Abstract iii

Acknowledgements v

List of Publications vii

Introduction and contributions 3

1 Introduction 3
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Model-based energy planning in developing countries . . . . . . . . . 4
1.3 Aim and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Novelties & contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 The importance of open data and software . . . . . . . . . . . . . . . . 7
1.6 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I Rural energy demand 11

2 Rural energy demand characteristics and modeling methods 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Modeling the electric demands . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Top-down stochastic demand energy modeling . . . . . . . . . 16
2.2.2 Bottom-up demand modeling . . . . . . . . . . . . . . . . . . . . 17

Core stochastic algorithm . . . . . . . . . . . . . . . . . . . . . . 19
Optional stochastic attributes . . . . . . . . . . . . . . . . . . . . 21
Modular duty-cycles and cooking cycles . . . . . . . . . . . . . 21
Frequency of use . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Thermal appliances and random power regulation . . . . . . . 23

2.3 The composition of rural communities . . . . . . . . . . . . . . . . . . . 23
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 The Bolivian case study 27
3.1 The Bolivian Energy System . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Interconnected electric system of Bolivia . . . . . . . . . . . . . 28
3.1.2 Isolated systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.3 Solar potential in Bolivia . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Bolivian rural electricity demand . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Rural Bolivian communities without access to electricity . . . . 31
3.2.2 Energy demand in Bolivian rural communities . . . . . . . . . . 33
3.2.3 Residential sector . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.4 Community services sector . . . . . . . . . . . . . . . . . . . . . 34



x

3.2.5 IGA sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.6 Plausible Demand scenarios . . . . . . . . . . . . . . . . . . . . . 35

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Demand curves at the household level . . . . . . . . . . . . . . . 37
3.3.2 Demand curves at the community level . . . . . . . . . . . . . . 38

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

II Optimal isolated energy sizing and operation for rural electrifica-
tion purposes 43

4 Sizing and operations of Microgrids 45
4.1 Recent challenges in isolated microgrids modeling . . . . . . . . . . . . 46

4.1.1 Parametric uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.2 Structural uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.3 Techniques for optimization under uncertainty . . . . . . . . . . 47

4.2 Two-stage MILP problem . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.1 Renewable non-dispatchable energy modeling . . . . . . . . . . 49
4.2.2 Battery bank modeling . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.3 Diesel generator modeling . . . . . . . . . . . . . . . . . . . . . . 50

LP generator model . . . . . . . . . . . . . . . . . . . . . . . . . 50
MILP generator model . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.4 Energy constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.5 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Case Study: The "El Espino" microgrid 57
5.1 The "El Espino" hybrid system . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Energy Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.2 Diesel genset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.3 Battery Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.4 PV array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

PV modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.5 Microgrid analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Optimal dispatch for the "El Espino" hybrid MicroGrid . . . . . . . . . 69
5.4 Optimal sizing of the microgrid . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.1 Energy demand scenarios . . . . . . . . . . . . . . . . . . . . . . 71
5.4.2 Additional PV energy scenario . . . . . . . . . . . . . . . . . . . 71

5.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.1 Baseline simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.2 Effect of renewable and storage capacity targets . . . . . . . . . 75
5.5.3 Renewable baseline scenario with older technology and costs . 76
5.5.4 Impact of model formulation . . . . . . . . . . . . . . . . . . . . 77

Deterministic vs. Probabilistic formulation . . . . . . . . . . . . 77
Linear programming vs mixed integer linear programming for-

mulation . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



xi

6 A bi-objective optimization approach for rural solar home system sizing 81
6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1.1 Determining the knee point . . . . . . . . . . . . . . . . . . . . . 83
6.2 Application to the Bolivian case . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 PV time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.2 Demand time series . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

III Optimal deployment of isolated energy systems 91

7 Rural energy planning using Geographical information systems 93
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2 The OnSSET electrification algorithm . . . . . . . . . . . . . . . . . . . . 94

7.2.1 Grid extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2.2 Microgrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2.3 Standalone systems . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.2.4 LCOE Calculation in the original OnSSET algorithm . . . . . . 96

7.3 Limitations of GIS electrification tools . . . . . . . . . . . . . . . . . . . 98
7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8 Surrogate model creation and validation 101
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.3 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.3.1 Mutable techno-economic parameters . . . . . . . . . . . . . . . 103
8.3.2 Machine learning regression methods . . . . . . . . . . . . . . . 104

Multi-variable linear regression . . . . . . . . . . . . . . . . . . . 105
Gaussian process regression . . . . . . . . . . . . . . . . . . . . . 105

8.3.3 Optimization process implementation . . . . . . . . . . . . . . . 106
8.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.4.1 Optimization results . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.4.2 Surrogate models . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9 The Bolivian pathway to 100 % electrification 115
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
9.2 OnSSET adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.3 The Bolivian Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.5 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

IV Conclusions and future work 123

10 Conclusions and future work 125
10.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A Data and Script online repository 131



xii

B Survey for households with access to electricity, el espino 133
B.1 General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
B.2 Habit Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
B.3 Income . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
B.4 Electricity use and supply . . . . . . . . . . . . . . . . . . . . . . . . . . 136
B.5 Candles use and supply . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
B.6 Cooking (for cooking fuel supply see the table above) . . . . . . . . . . 139
B.7 Heating & Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
B.8 Spatial Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

C Cuestionario Acceso Energético del Pueblo Atacameño de Toconao 141
C.1 Información General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
C.2 Uso y Suministro de Electricidad . . . . . . . . . . . . . . . . . . . . . . 141
C.3 Cocina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
C.4 Calentamiento de Espacios . . . . . . . . . . . . . . . . . . . . . . . . . . 144
C.5 calentamieto de agua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
C.6 Provisión de Combustibles . . . . . . . . . . . . . . . . . . . . . . . . . . 145
C.7 Otras fuentes de energia . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
C.8 Producción de residuos domésticos . . . . . . . . . . . . . . . . . . . . . 146

D Ramp input data 149
D.1 Hospitals RAMP input data . . . . . . . . . . . . . . . . . . . . . . . . . 149
D.2 Schools RAMP input data . . . . . . . . . . . . . . . . . . . . . . . . . . 150
D.3 LowLands community RAMP input data . . . . . . . . . . . . . . . . . 151
D.4 Hihglands communities RAMP input data . . . . . . . . . . . . . . . . 152

E Analysis of the PV monitoring data 153

F OnSSET input data 155
F.1 Geospatial datasets and assumptions . . . . . . . . . . . . . . . . . . . . 155
F.2 Socio-economic parameters used in the electrification model for Bolivia 156
F.3 Techno-economic parameters related to the grid connected technologies156
F.4 Techno-economic characteristics for classic OnSSET off-grid technolo-

gies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Bibliography 159



xiii

List of Figures

1.1 Electrification rate per country, taken from [4]. . . . . . . . . . . . . . . 4
1.2 Electrification planning process, taken from [5]. . . . . . . . . . . . . . . 4
1.3 Features of developing countries not commonly included in energy

models, taken from [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Main contribution of this work . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Graphical description of energy sufficiency [31]. . . . . . . . . . . . . . 15
2.2 Energy modeling techniques, taken from [33]. . . . . . . . . . . . . . . . 15
2.3 Demand from a base scenario with 20 synthetic profiles. . . . . . . . . 17
2.4 RAMP model logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Energy modeling techniques, taken from [38]. . . . . . . . . . . . . . . . 19
2.6 Example of duty cycle modulation throughout the day for a fridge. . . 22
2.7 Example of two different randomization of a cooking cycle (in this

case rep-resenting a boiling task followed by a simmering period) . . . 22
2.8 Example of 7 different stochastic daily profiles for a single household

using iron with an average frequency of 3 days a week, modeled by
the "occasional-use" attribute. Some of the stochastic daily profiles (in
light green) include iron use, while others (in grey) do not. . . . . . . . 23

2.9 Example of multiple stochastic runs (10) for a thermal appliance, in
this case reproducing a "shower" task: the model variates not only
switch-on times and shower duration, but also the absorbed power
(i.e. hot water temperature).) . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Overview of the electrification status in communities of Bolivia. Note
that the size of the symbols is not representative of the area. a. Classi-
fication of population size in each community and high-voltage trans-
mission lines in 2018. Population extrapolated from National Census
2012. b. Electrification rate in communities of Bolivia in 2012. . . . . . 29

3.2 The SIN layout at 2016 and VRES projects planned up to 2021-2022
[59, 60]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Horizontal global solar radiation in Bolivia (annual average), taken
form [65, 66]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Population and grid connection status of Bolivian communities. . . . . 32
3.5 Bolivian high and low lands. . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Construction of demand scenarios. . . . . . . . . . . . . . . . . . . . . . 36
3.7 Simulated demand curves for a few households in the Highlands (a)

and Lowlands (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.8 Total energy consumption for scenarios S1, S4, S7, S 10 and S 13 for

different quantity of households for rural communities in the lowlands. 38



xiv

3.9 Demand profiles for the first days of March, Top Line: 50 % of low-
income households and Bottom Line: 90 %. a) Demand profiles for
communities of 50, 250 and 500 households. b) Dis-aggregated de-
mand profiles for a community of 50 households. . . . . . . . . . . . . 39

4.1 Proposed microgrid typology. . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Efficiency vs load for a genset with constant and realistic efficiencies. . 50
4.3 Unitary and fuel cost at a given power output for the LP and MILP

models (The section where the genset cannot operate is displayed
with a dashed line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Layout of the microgrid "El Espino". The numbers refer to the collec-
tion data points in Table 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Real Energy Flow for “El Espino" microgrid . . . . . . . . . . . . . . . . 61
5.3 Average daily and load duration curves for the period 01/01/2016 to

31/07/2017. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Load duration curve (LDC) and average power production of the genset

for the period 01/01/2016 to 31/07/2017. . . . . . . . . . . . . . . . . . 63
5.5 LDC and average power production of battery for the period 01/01/2016

to 31/07/2017. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.6 Average PV and solar irradiation for the period 01/01/2016 to 31/07/2017. 65
5.7 Measured PV efficiency as a function of the ambient temperature and

of the battery state of charge (SOC) . . . . . . . . . . . . . . . . . . . . . 66
5.8 Predicted PV efficiency as function of the ambient temperature and

solar irradiance for an air mass of 1.5 . . . . . . . . . . . . . . . . . . . . 67
5.9 Mean daily PV power measure and regression and irradiation in the

microgrid "El Espino". . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.10 Average daily energy flows. . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.11 Sankey diagram for the energy flow in the "El Espino" microgrid from

the 01/01/2017 to 30/06/2017. . . . . . . . . . . . . . . . . . . . . . . . 68
5.12 Optimal Energy Flow for “El Espino". . . . . . . . . . . . . . . . . . . . 69
5.13 Probability of occurrence for the analyses scenarios from “El Espino"

microgrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.14 Energy Flow for MILP renewable 18 instance . . . . . . . . . . . . . . . 76
5.15 Sankey diagram for the energy flow in the Renewable 18 instance. . . . 76

6.1 Pareto front with the knee point, taken from [108]. . . . . . . . . . . . . 82
6.2 Proposed methodology for sizing SHS for rural applications. . . . . . . 83
6.3 Pareto front with the results from the sizing method. . . . . . . . . . . . 84
6.4 MDM algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.5 Left; Nonlinear adjustment of the variation of NPC as a function of

LLP, graphical representation of MDM. . . . . . . . . . . . . . . . . . . 88
6.6 Energy dispatch for the knee point sizing in a HC households, in the

days with peak demand. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.7 Energy dispatch for the knee point sizing in a LC household, in the

days with peak demand. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1 Taxonomy of OnSSET electrification alternatives, adapted from [116]. . 95

8.1 Methodology for the creation of the surrogate models. . . . . . . . . . . 102
8.2 The methodology implemented for the training and validation of the

surrogate models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



xv

8.3 Algorithm for the dataset creation. . . . . . . . . . . . . . . . . . . . . . 108
8.4 Box plot for the NPC and LCOE. The box contains the lower to the

upper quartile of the data, they have a median line. The whiskers
shows the range of the data and the points consider outliers are plot
separately as circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.5 Installed capacities in each simulated case. The values are ordered
according to renewable penetration. . . . . . . . . . . . . . . . . . . . . 110

8.6 Predicted vs computed plots with 5-folds cross validation results. . . . 111
8.7 Computed vs predicted values for the chosen target variables . . . . . 112

9.1 Cost-scenario components. Reference scenario and other four scenar-
ios with combinations of diesel price and capital investment costs de-
scribed in table 9.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.2 Cost-optimal deployment of electrification technologies for the refer-
ence scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.3 Cost-optimal deployment of electrification technologies for the OnS-
SET classic scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.4 Summary of the sensitivity analysis results for selected communities.
a. LCOE. b. NPC. c. PV installed capacity. . . . . . . . . . . . . . . . . . 121

E.1 Matrix of scatter plots for each variable . . . . . . . . . . . . . . . . . . 154
E.2 Covariance matrix between the PV variables . . . . . . . . . . . . . . . 154





xvii

List of Tables

1.1 Summary of novelties and where they can be found in this dissertation. 8

2.1 Summary of the input data required by the RAMP model. . . . . . . . 20
2.2 Sectors that need to meet their energy needs. . . . . . . . . . . . . . . . 25

3.1 Installed microgrids in Bolivia until 2020, taken from [63]. . . . . . . . 30
3.2 Appliance ownership in rural communities for the highlands and low-

lands of Bolivia. The complete information of all appliance and sec-
tors can be found in annex D. . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Summary of the household demands in the lowlands and highlands. . 38

5.1 “El Espino" microgrid: Technical information. . . . . . . . . . . . . . . . 59
5.2 Data collection points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Performance data for the period 01/01/2017 to 30/06/2017 . . . . . . 62
5.4 Obtained regression coefficients. . . . . . . . . . . . . . . . . . . . . . . 66
5.5 Techno-economic parameters for the optimal dispatch . . . . . . . . . . 70
5.6 Results of the optimal dispatch model. . . . . . . . . . . . . . . . . . . . 70
5.7 Techno-economic parameters for the MILP optimization. . . . . . . . . 72
5.8 Instance characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.9 Lower and higher bounds for the variables in the MILP optimizations. 73
5.10 Results of the MILP optimizations. . . . . . . . . . . . . . . . . . . . . . 75
5.11 Updated Techno-economic parameters for the Renewable 12 instance. 77
5.12 Results of the LP optimizations. . . . . . . . . . . . . . . . . . . . . . . . 78

6.1 Techno-economic parameters for the MILP optimization. . . . . . . . . 87
6.2 Results of the sizing process. . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.1 Calculation of the main costs components for each considered tech-
nology in the original OnSSET algorithm . . . . . . . . . . . . . . . . . 97

7.2 Example calculation for the "El Espino" Community and the original
OnSSET algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.1 Unmutable model parameters . . . . . . . . . . . . . . . . . . . . . . . . 104
8.2 Mutable parameters for the sizing process. . . . . . . . . . . . . . . . . 105
8.3 Optimization results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.4 Input and output parameters for the surrogate model. . . . . . . . . . . 110
8.5 Surrogate model indicators. . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.1 Onsset technology characteristics . . . . . . . . . . . . . . . . . . . . . . 117
9.2 Specific values used in the cost scenarios. . . . . . . . . . . . . . . . . . 118
9.3 Results of the base scenario of the optimal electrification process. . . . 118
9.4 Results of the classic OnSSET for the optimal electrification process. . . 121

B.1 Household composition and general activities . . . . . . . . . . . . . . 133



xviii

B.2 Household members daily activities. . . . . . . . . . . . . . . . . . . . . 134
B.3 Household appliances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
B.4 Household appliances before electrification. . . . . . . . . . . . . . . . . 138
B.5 Other energy sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
B.6 The spatial network for appliances. . . . . . . . . . . . . . . . . . . . . . 140

C.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
C.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
C.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
C.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
C.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
C.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
C.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
C.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
C.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

D.1 Ramp input data for Hospitals. . . . . . . . . . . . . . . . . . . . . . . . 149
D.2 Ramp input data for Schools. . . . . . . . . . . . . . . . . . . . . . . . . 150
D.3 Ramp input data for lowlands communities. . . . . . . . . . . . . . . . 151
D.4 Ramp input data for highlands communities. . . . . . . . . . . . . . . . 152

F.1 Open-source GIS data used in the model. . . . . . . . . . . . . . . . . . 155
F.2 Socio-economic parameters used in the electrification model for Bolivia.156
F.3 Techno-economic parameters related to the grid connected technologies.156
F.4 Techno-economic parameters related to off-grid technologies for On-

SSET classic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
F.5 Capital cost for SHS for OnSSET classic. . . . . . . . . . . . . . . . . . . 157



1

Introduction and contributions





3

Chapter 1

Introduction

1.1 Context

During the past decades, the planet has undergone increased environmental pres-
sure, which has led to more awareness and a clear momentum towards a more sus-
tainable world for all. This momentum has been translated, for example, into a
worldwide agreement to mitigate and adapt to the impacts of climate change [1]. At
the same time, it is acknowledged that reduction of poverty, inequality and wildlife
conservation are also key issues to be tackled. To that aim, 17 different sustainable
development goals (SDGs) have been defined. These objectives range from gender
equality to the appropriate use of terrestrial ecosystems. In particular, SDG 7 is de-
fined as "Ensure access to affordable, reliable, sustainable and modern energy for
all". This objective involves that, in the next 10 years, the majority of the 800 million
(10 % of the total world population) without access to electricity and the 2 billion
people without access to clean fuels (e.g. for cooking) will have to gain access to
them [2].

SDG 7 must be achieved in such a way that the share of renewable energy is in-
creased, energy efficiency is improved and the final prices for the consumer are
maintained accessible. All these points have several implications at the economi-
cal, political, environmental and social levels, and the fulfillment of these ambitious
targets will involve significant planning efforts and project implementation capaci-
ties in the years to come.

The challenge to provide energy access to all in a fair and sustainable way is an
enormous task. The international agency of energy (IEA) has estimated that yearly
investments of 55 billion USD each year are needed to reach the set targets [3]. This
endeavor becomes more challenging when the locations of these people are taken
into account. As shown in Figure 1.1, most people lacking access to modern forms
of energy are located in rural locations of developing countries. This means that the
information, the available economical resources, the infrastructure, etc. are substan-
tially reduced compared with urban zones in developed economies.

Proper energy planning tools are required to achieve the above challenges. In par-
ticular, the planning activities for rural electrification in a specific territory involve
locating underserved regions or villages, analyzing their expected demand, calculat-
ing the cost of different electrification technologies, or simulating the most suitable
deployment pathways (Figure 1.2).
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FIGURE 1.1: Electrification rate per country, taken from [4].

FIGURE 1.2: Electrification planning process, taken from [5].

1.2 Model-based energy planning in developing countries

Energy planning is a complex decision problem, highly relevant in both developed
and developing countries. In industrialized countries, investment decisions have
typically been informed using quantitative planning models, and researchers have
used modeling to explore policy questions for decades. The scientific literature in-
cludes a rich collection of models that address a variety of energy policy concerns for
developed countries. Modeling tools for Energy systems are generally distinguished
in terms of their sector of interest, spatio-temporal resolution, level of technical de-
tail or simulation horizon. Despite the wide variety of modeling approaches, two
categories have emerged for energy systems modeling at the country level (a more
comprehensive review is proposed in Collins et al [6]:

• Operational power system models, which optimize the operation of the power
system but do not consider investment. These are typically unit commitment
and optimal dispatch (UCED) models, which describe the constraints of the
power system with high level of accuracy and have the capacity to model rapid
variations in renewable generation, forecast errors or reserve markets.

• Long-term planning energy system optimization models (ESOM), which are
used to generate scenarios for the long-term evolution of the energy system.
These models include investments and optimize the system over multiple years.
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They are generally not restricted to the power sector (i.e. they have an endoge-
nous representation of all the sectors in the energy systems) and can cover
large geographical areas.

Both types of models are optimization models, often based on linear programming
(LP) or mixed-integer linear programming (MILP). These models are well adapted to
industrialized countries, usually characterized by high electrification rates, modern
forms of energy and high consumption densities. Traditional modeling tools how-
ever present significant limitations for energy planning in developing countries. In
Figure 1.3, Lenai (2013) summarizes the specific characteristics of these regions, in-
sufficiently captured by state-of-the-art optimization models [7].

FIGURE 1.3: Features of developing countries not commonly in-
cluded in energy models, taken from [7]

In this thesis, two important aspects are identified as key limitations of state-of-the-
art energy planning tools in developing countries:

1. The spatial dimension. Addressing decentralized capacity expansion such
as microgrids or solar home systems is a challenge for start-of-the art power
system models. The models are typically designed for a well interconnected
system and assume 100% electrification rate, which is not representative of the
situation in many developing countries. Previous works demonstrate that grid
expansion is not necessarily the least-cost solution, especially in countries char-
acterized by a low consumption density and unfavorable geographical condi-
tions [8]. In order to address these issues, models with a high level of spatial
disaggregation (e.g. GIS-based models) are required. OnSSET is an example
of such a model, but cannot address the overall problem since no detailed con-
sideration of the power system or of the long-term trends are considered [9].

2. Multidisciplinarity. The representation of cross-sectoral and cross-disciplinary
interactions is insufficiently addressed in current energy models. In this the-
sis, "sectors" are understood in a broad sense, i.e. not limited to energy-only
sectors. Sector coupling thereby encompasses interactions between, for exam-
ple, the power sector and the water sector (water-energy nexus) or interaction
between the bioenergy sector and the food sector (food-energy nexus). These
interactions are particularly relevant in the case of developing countries, po-
tentially characterized by water scarcity, resource depletion, deforestation or
local pollution [10]. The main difficulty when linking models originating from
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different research fields is the harmonization between model formulations and
input datasets. New methods therefore need to be devised to integrate e.g.
social sciences aspects into energy models. In a previous work [8], the part-
ners of this project proposed a tool to translate qualitative survey data into
quantitative demand levels and curves. The data was however only applied to
specific cases and was too partial to be considered into large-scale energy plan-
ning models. Translating modeling outputs into socially-tailored messages is
another challenge and requires close links with education, governance, social
participation, indigenous autonomous management, and others.

As an answer to these limitations, researchers have focused on the use of geograph-
ical information systems (GIS) to better capture the spatial dimension and define
least-cost pathways to universal energy access [5]. The analysis coming from these
tools have shown the potential of isolated energy systems for rural electrification
[8, 9]. In these approaches, the size of the optimization problem imposes to con-
sider dispersed energy demands and isolated energy systems in a simplified man-
ner (e.g. a single system configuration for the whole country) [11]. This can lead to
sub-optimal solutions and more work is therefore needed to capture the diversity of
the technical, geographical, socio-cultural, demographic conditions in which these
systems are deployed [8].

1.3 Aim and objectives

Under the circumstances described in previous sections, the following research ques-
tion arise:

How to capture the diversity of the technical, geographical, socio-cultural,
demographic conditions of rural communities and include them into GIS-based

electrification tools without impacting the computational tractability of the
problem?

This thesis suggests to tackles this challenge by including an intermediate step be-
tween the sizing process of microgrids and the use of rural electrification GIS tools
(Figure 1.4). This step resorts to the creation and validation of surrogate models,
able to estimate the optimal design parameters of off-grid electrification systems.

FIGURE 1.4: Main contribution of this work

To that aim, different contributions to the modeling of rural electrification processes
are proposed, relying on different specialized models and tools. Each of them cap-
tures a relevant scale of the problem. These tools are integrated into a coherent
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modeling framework, covering the whole value chain between accurate characteri-
zation of household energy demand to the macroscopic (national) planning of rural
electrification.

To that aim, it is first necessary to develop and calibrate relevant models for each
considered level of aggregation. This includes:

• The bottom-up modeling of demand curves at the household and community
levels.

• The optimization of isolated power generation systems adapted to the local
context, including individual solar home system and microgrids.

• The generation of optimal rural electrification pathways at the country level
through the deployment of the central grid and of decentralized technologies.

The models related to each relevant scale should then be soft-linked by carefully
defining common variables of interest, and by devising methods to integrate the
results of more detailed models into higher-level models, thus providing additional
insights and a better spatio-temporal optimum.

1.4 Novelties & contribution

The contributions of this thesis relate to the development and parametrization of the
individual models, but also to their integration into a coherent modeling framework.
At the household level, a methodology to translate survey and interview data into
highly detailed stochastic demand time series is proposed, together with proper ag-
gregation methods to model energy demands at the community level. This demand
data is then used as input for a stochastic microgrid sizing and operation tool. This
model is parametrized and tested using the monitoring data of a real microgrid in
Bolivia. It is then run for a wide range of possible settings and machine learning
methods are used to derive surrogate models predicting the cost and the optimal
configuration of the system. These surrogate models are finally integrated into a
GIS model to define optimal electrification pathways at the country level. These
specific contributions are summarized in Table 1.1.

A special emphasis has been put on the flexibility and adaptability of the presented
contribution. This is a key feature since the high uncertainty associated with the
energy resources, demands, and local constraints might require slight adjustments
in the methodology in such a way that it can be reused in other contexts or countries.

1.5 The importance of open data and software

At the present time, most state-of-the art energy system models are subject to licens-
ing or are not publicly released. This can constitute a barrier for practitioners to get
access to suitable design tools for microgrids and rural electrification in general, es-
pecially in the Global South. At the same time, in the past years, the open-source
community has grown significantly in importance in the energy field, and the free
and open models are now competing with the traditional closed-source commercial
software. A recent review of existing tools concludes that: "The result shows that
available open source tools (...) are mature enough based on a function comparison
with commercial or proprietary tools for serious use." [12].
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TABLE 1.1: Summary of novelties and where they can be found in
this dissertation.

Novelty Discussed in

A method to translate survey and interview data into highly
detailed stochastic demand time series

Chapters 2, and
3.

An optimization framework to size and control microgrids un-
der uncertainty

Chapter 4, 5, and
6.

An analytic method to account for the trade-off between lost
load probability and cost

Chapter 6

A method to create surrogate models for different microgrid
design variables

Chapter 7 and 8

The implementation of surrogate models into GIS-
electrification tools

Chapter 8 and 9

An optimal rural electrification pathway for the specific case of
Bolivia

Chapter 9

For the above reasons, all the developments, methods and models produced in this
PhD thesis are released as open-source together with ad-hoc online documentation
and the needed data to reproduce the results. They can therefore be freely down-
loaded, re-used, adapted or modified. This open-science approach is also selected to
increase the transparency and reproducibility of the proposed methods [13]. GitHub
is used by default to host source code, more information can be found in annex A.

1.6 Organization of the thesis

The thesis is organized into three main parts:

• The first part deals with energy demand modeling in a rural context and intro-
duces the Bolivian case study. Chapter 2 discusses different demand modeling
methodologies. It introduces two methods to create stochastic load profiles de-
pending on the available data: measurements or surveys. In addition to these,
it explores the components of an ideal rural community and frames appliance
ownership according to the energy sufficiency concept. Chapter 3 describes
the energy reality of Bolivia, divides the country into representative regions
and creates demand profiles for each of them.

• The second part presents and applies a new optimal sizing and operation
framework. In chapter 4, the mathematical model is presented and its pe-
culiarities are explored. Chapter 5 analyses data from an existing microgrid
in Bolivia and uses the sizing model in different contexts. Conclusions on the
advantages and disadvantages of applying different models are drawn in this
chapter. Finally, chapter 6 explores the trade-off between cost and energy not
served for a particular household using a Solar home system (SHS).

• The third part deals with the creation of surrogate models for microgrid design
and its use in GIS-electrification base models. In chapter 7, GIS-electrification
tools are presented, their limitations discussed and surrogate models are pro-
posed as solutions to increase accuracy without compromising the solving
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time. A methodology to create and validate such surrogate models is pre-
sented in chapter 8. The OnSSET model is adapted and improved in chapter 9
to account for the individual design parameters of isolated systems.
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Part I

Rural energy demand
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Chapter 2

Rural energy demand
characteristics and modeling
methods

This chapter is largely based on contributions from the two following publi-
cations:

Lombardi, F., Balderrama, S., Quoilin, S., & Colombo, E. (2019). Generating high-
resolution multi-energy load profiles for remote areas with an open-source stochastic
model. Energy, 177, 433-444.

Sanchez, C., Balderrama, S., Stevanato, N., ,Quoilin, S., (2021). Energy Sufficiency
for Rural Communities: The Case of The Bolivian Lowlands. Proceedings of the 16th
SDEWES Conference 2022, Dubrovnik.

2.1 Introduction

As acknowledged in the Agenda 2030 of the United Nations, sustainable develop-
ment is linked to the simultaneous accomplishment of interlinked objectives with
synergies between them. From all the Sustainable Development Goals (SDGs), ac-
cess to energy (SDG goal 7) [14] is particularly intertwined with other dimensions of
socio-economic development. Studies show a link between poverty reduction and
energy access [15]; likewise, electricity access is interconnected with income gener-
ating activities, household economy, health, education, habits, and social networks
[16]. The combination of electricity and heating systems can lead to higher energy
independence of rural communities in diverse contexts [17, 18]. Furthermore, the
link between energy, water and food is particularly relevant and is increasingly ex-
plored in the scientific literature [19, 20].

To foster these synergies, high levels of energy access and thus of energy generation
capability are needed. In rural settings, these conditions are rarely met, partly due
to the associated uncertainty in electricity demand evolution. In an Indian village
case study, Riva et al. [21] show that different scenarios of long-term demand can
considerably impact the final design of the off-grid power system. Inaccurate de-
mand projections can lead to unexpected situations, as showcased by Ulsrud et al.



14 Chapter 2. Rural energy demand characteristics and modeling methods

[22]. They report how the consumers of a solar mini-grid started to draw more elec-
tricity than initially forecast. A similar case is reported by Zhao et al. in a case-study
on the design and development of a real microgrid system in Dongfushan Island,
where a significant error in the prediction of energy consumption arose due to in-
tensive use of air conditioners [23]. Diaz et al. [24] report examples of microgrids
that were initially designed with PV only, but had to be changed due to higher en-
ergy consumption than forecast during nights. In the same study, a generator had
to be added to a hydro-diesel system due to the new connection of a village. Also,
Kobayakawa and Kandpal [25] analyzed microgrids struggling to meet the demand
due to unplanned connections of additional users to the system. Riva et al. [26] stress
the need to introduce an appropriate modeling framework for assessing long-term
projections of electricity demand within rural energy planning. In [16], the nexus
between evolution of electricity demand and local rural development is conceptual-
ized, suggesting system dynamics as an adequate approach to investigate this issue
from a quantitative point of view.

This mismatch between generation and demand has different origins, as highlighted
in [27], and there are several techniques to tackle this issue. In general, decision-
making with respect to renewable energy systems has been driven by two main
factors: technology development and investment [28]. Model-based scenarios from
a purely techno-economic point of view have thus received much attention recently,
to identify pathways towards achieving decarbonisation targets. However, there is
a "lack of attention to the actors, their decisions, interactions and learning processes,
and how these shape twisted transition pathways" [29].

As a first step to ensure electricity coverage in the rural communities of the global
south, a minimum energy access must be settled. To that aim, the concept of energy
sufficiency is introduced. In [30], the authors propose that energy sufficiency is a
state in which people’s basic needs for energy services are met equitably and ecolog-
ical limits are respected. The focus is on services that meet needs for shelter, health,
work, mobility and communication. As noted above, these needs vary according
to local conditions. For example, concepts in health, shelter, mobility and work are
being rethought along "sufficiency" lines and tested in different contexts. Ideally,
unelectrified communities should move from the current low energy consumption
state to a position where energy consumption is enough to ensure a continuous de-
velopment without jeopardizing the environment they live in.

In order to evaluate these aspects from a quantitative standpoint and to include them
into the proposed modeling framework of this thesis, the following specific objec-
tives are proposed:

1. To describe available demand modeling methods.

2. To define an ideal rural community composition.

3. To discuss possible appliance ownership of each member of a rural community.

2.2 Modeling the electric demands

As previously detailed, energy modeling for unelectrified rural communities is a
hard task due to the uncertain demand evolution pathways in these settings. Man-
delli et al [32] define energy consumption modeling as: "the domain of models able
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FIGURE 2.1: Graphical description of energy sufficiency [31].

to support energy-related policy decisions.". According to Swan et Ugursal, it can
be divided in two categories (Figure 2.2):

1. Top down approaches: These models focus time series analyses of aggregated
demand, they explore different variables such as gross domestic product per
capita, poverty level, ethnicity and their impact on the demand across the
years. Another application of these models is the creation of stochastic scenar-
ios based on statistical methods using measurements of the analyzed systems.

2. Bottom up approaches: These models focus on the analysis of the individual
components of the system. The data used can have different levels of granu-
larity, ranging from the analysis of the different sectors to the usage patterns of
all appliances in a household.

FIGURE 2.2: Energy modeling techniques, taken from [33].

Both approaches are valid depending on the needs and limitations encountered by
the practitioners in their specific projects. It is noteworthy that hybrid methods com-
bining both approaches are also possible, as explored by Lombardi et al [34]. In that
work, stochastic bottom-up generated loads were combined to the top-down Italian
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electricity demand to explore the impact of a transition from gas stoves to electrical
stoves on the energy mix.

In the present work, both approaches are implemented and tested depending on
the considered case study and on the availability of input data. The details of both
methods are detailed in the next sections.

2.2.1 Top-down stochastic demand energy modeling

Future scenarios of energy demand time series can usefully be deducted from his-
torical monitoring data. However, in many situations, historical data cannot account
for the uncertainty and the stochasticity of the load, and is therefore not suitable for
probabilistic models. In this thesis, a new methodology is proposed, in which his-
torical monitoring data is used to calibrate a stochastic model of the load variations
around its averaged daily profile.

The goal is to generate stochastic demand curves which are different from historical
data, but present similar characteristics in terms of peak load, load duration curve
and variability. Such a demand curve generator can the be used to define a high
number of realistic time series to be used in energy system optimization tools. The
proposed methodology consists of the following successive steps:

1. Average the historical data into average daily profiles for each month and for
each household.

2. Compute the logarithmic error between the data and the averaged values.

3. Generate stochastic time series calibrated with the characteristic of the log-
normal noise.

4. Apply this stochastic noise to the averages historical profiles to generate real-
istic yearly time series.

A log-normal distribution of the noise is selected because its skewness matches well
with that of the error between the load and the average curve in the data. The loga-
rithmic error is computed by:

LE = log
(

Loadhist

Loadmean

)
(2.1)

The purpose is to generate stochastic times series whose characteristics are close to
that of this monitored noise. One of the main characteristics to be conserved among
all the generated time series is the maximum load throughout the year because it
conditions the peak installed capacity of the power generation system.

To that aim, an algorithm adapted from the "Iterated Amplitude Adjusted Fourier
Transform (IAAFT)" [35, 36] has been implemented. This algorithm generates sam-
ples of a random process conforming to given auto-covariance and probability den-
sity function. The advantage of this approach is that it gives more insight into the
underlying process, it can take as input only the marginals and autocorrelations, and
it can generate time series of any length [37].

As a first step, a random realization of a given probability distribution function
(PDF) is created at the desired temporal sampling interval x0. Then an iterative
process starts, in which the realization is shuffled in order to match the given (two-
sided) power spectral density (PSD) (Sxx). The PDF is not affected by the temporal
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reordering. In every iteration the Fourier amplitudes of Sxx are compared with the
ones of x0. This procedure is summarized below [35]:

1. The phases of x0 are calculated.

2. A new signal x is created with the same phases but with the amplitudes of Sxx
via the IAAFT transformation.

3. x lost its marginal information (became gaussian). For that reason, a zero mean
nonlinear transformation is applied. In this procedure the values of the signal
with the correct distribution, xo, are shuffled to match the rank of x.

4. The act of shuffling the x alters the Fourier amplitudes and hence the PSD. The
above steps are iterated until the final step matches the rank from the previous
iteration.

The final result of this methodology is shown in Figure 2.3, where a base demand
scenario of 1 year was used to create 20 different scenarios. As it can been seen, they
maintain the principal characteristics of the main load (shape), at the same time as
exhibiting a stochastic behavior around it.

FIGURE 2.3: Demand from a base scenario with 20 synthetic profiles.

2.2.2 Bottom-up demand modeling

The second approach for demand prediction implemented in this thesis can be re-
ferred to as bottom-up. It is well adapted to situations in which no historical load
data is available (for example in the case of a non-yet electrified community), but in
which a detailed description of the users and of their appliances can be built.

In this work, the RAMP model is selected to generate stochastic bottom-up load
profiles [38] and the procedure proposed in Stevanato et al. [39] is followed for its
application in the context of a remote community. The RAMP model is based on
the definition of several User Classes, each of which is associated with a set of ap-
pliances. Each appliance (e.g. TVs, lights bulbs, phone chargers) is defined by a
nominal absorbed power, a total functioning time along the day, and possible time
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frames of use, in addition to some further optional features. Based on this informa-
tion, which is subject to stochastic variation between pre-defined ranges to account
for uncertainty and random users’ behaviour, the model allows computing the total
load curve of a village (Figure 2.4).

The advantage of this approach is the possibility to create synthetic village demand
curves in a bottom-up manner from limited information. The required data is ob-
tained through surveys and interviews within the community members and the
identification of possible services providers and of income generating activities. At
this point, a set of plausible scenarios can be generated stochastically. Non-existing
behaviours or appliances can also be introduced to the model for future scenarios to
explore the impact that future changes of the load curves would entail on the sizing
of energy systems [8].

FIGURE 2.4: RAMP model logic.

From a conceptual point of view, RAMP is based on three main layers of modelling,
namely: i) the User type; ii) the User; and iii) the Appliance layers (Figure 2.5). The
higher layer consists in the definition of a set of arbitrary User types (e.g. House-
hold, Commercial activities, Public offices, Hospitals, etc.), whose level of discretisa-
tion depends on the modeler’s needs; for instance, when more precise information is
available, a "Household" User type may be further subdivided by income classes or
building type. Each user type is subsequently characterized in terms of the number
of individual Users associated to that category (second layer) and in terms of Appli-
ances owned by each of those users (third layer). As shown in Figure 2.5, the three-
layer structure allows to independently model the behavior of each jik-th Appliance,
so that each individual ji-th User within a given i-th User type will have a unique
an independent load profile compared to the other Users of the same type. The ag-
gregation of all independent User profiles ultimately results in a total load profile,
which is uniquely generated at each model run. Multiple model runs generate dif-
ferent total load profiles, reproducing the inherent randomness and unpredictability
of users’ behavior and allowing to obtain a series of different daily profiles.

All the inputs required to run the model are summarised in Table 2.1, and consist of
information that can be obtained from common field surveys, in analogy with and
expanding those defined by Mandelli et al. [32].
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FIGURE 2.5: Energy modeling techniques, taken from [38].

Core stochastic algorithm

From a mathematical point of view, the stochastic algorithm that constitutes the core
of the model (without including the Appliances’ optional attributes mentioned in
Table 2.1) is articulated in the following steps:

1. Identify the expected peak time frame;

2. For each Usertypej, for each Usersij and for each Appliancejik, check if the ap-
pliance is used based on the weekly frequency of use ( f requencyjik). If not,
ignore the appliance; otherwise, compute:

(a) The randomized total time of use TotUsejik.

(b) The randomized vector of time frames in which the appliance can be on
UseFramesjik.

(c) Compute a random switch-on time (with random switch-on even dura-
tion tminjik) within the available use frames.

(d) Compute the randomized power required by the appliance for the switch-
on event under consideration Pijk.

(e) Compute the actual power absorbed by Appliancejik during the switch-on
event considering a random numerosity in the range: 0, mjik.

Repeat steps 2.c to 2.e until the sum of the durations of all the switch-on events
equals the randomised TotUsejik;

3. Aggregate all profiles in a total load profile.

The identification of a peak time frame allows differentiating between off- and on-
peak switch-on events, which are associated with different probability distributions
for the computation of the random numerosity. To this end, a theoretical peak time
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TABLE 2.1: Summary of the input data required by the RAMP model.

User type and Users

Usertypej
Name of the User type (e.g. "households", "commercial

activities", etc.)

n Number of Usersij (for i = 1 : n ) within Usertypej

Appliances

Appliancejik
Name of the k-th Appliance associated with the j-th User

type and the i-th User

mjik
Numerosity of Appliancejik (e.g. numerosity of "indoor

light bulbs")

Pjik (W)
Power absorbed by a single item of Appliancejik

(i.e. assuming numerosity = 1)

TotUsejik (min) Total time of use of the Appliancejik in a day

tminjik (min)
Minimum time that the Appliancejik is kept on after a

switch-on event

δtmin,jik (%) Percentage random variability applied to tminjik

UseFramesjik
Time frames in which a random switch-on of Appliancejik

can occur

δ f rames,jik (%) Percentage random variability applied to use f ramesjik

Appliances’ optional attributes

cyclejik Duty cycle of appliancejik (up to 3 per appliance)

δ f rames,jik (%)
Percentage random variability applied to the duration of the

segments composing cyclejik

CycleModjik Association between time frames and different duty cycles

f requencyjik (%)
Weekly frequency of use of Appliancejik (<100% for

"occasional-use" appliances)

FixedNumjik
Constraint for all the mjik appliances to always switch-on

simultaneously

δp,thermal (%)
Porcentage random variability applied to Pjik, conceived

for thermal appliances

frame is identified, as proposed in [32], as the time frame associated with the maxi-
mum load in a virtual total load profile resulting from the fictitious assumption that
each Appliance is always switched-on with maximum power and numerosity dur-
ing all of its potential time frames of use. Within such theoretical peak time frame,
a unique peak time (tpeak) is hence randomly sampled with uniform distribution.
Finally, an actual expected peak time frame is defined in equation 2.2.
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peaktime f rame = [tpeak − k, tpeak + k] (2.2)

where k is the product of a random sampling with normal distribution around tpeak
and standard deviation equal tpeak, δpeak. By default, δpeak is set to 15 % of tpeak, but
it represents a potential calibration parameter that allows to modulate the extension
of the peak time frame and may serve to simulate, for instance, a different social
behavior during holidays or weekends.

Peak-load periods correspond to periods in which a large share of Users is inter-
ested by intensive activity patterns and when, consequently, they are more likely to
switch-on multiple Appliances of the same kind (e.g. "Households" might be likely
to switch-on multiple indoor lights simultaneously in the evening, when they also
cook, watch TV, etc.). To this regard, the model acts on the modulation of the "coin-
cident numerosity" factor, defined by Equation 2.3.

f =
MON,ijk

Mijk
(2.3)

where mON;ijk represents the numerosity of appliances that are simultaneously switched
on during a switch-on event related to Applianceijk. Such factor can assume values
ranging from 1/mijk to 1 During off-peak periods, mON,ijk is randomly chosen based
on Equation 2.4, i.e. by relying on a uniform distribution. During peak-load periods,
conversely, mON,ijk is randomly chosen based on a Gaussian distribution (Equation
2.5).

o f f peak : mON,ijk = max[1, uni f (0, mijk)] (2.4)

onpeak : mON,ijk = max[1, norm(µ% ·mijk, σ% ·mijk)] (2.5)

where the parameters µ% and σ% are set by default in such a way to obtain, respec-
tively, a mean value of the on-peak distribution that is the average of 0 to mijk and a
standard deviation that reaches the extremes of the range. Indeed, µ% and σ% repre-
sent two further calibration parameters that can be manipulated by the modeler to
reproduce behavioral patterns that are typical of its context of application, as well
as to force the model towards the generation of "extreme" profiles, which may be
required by robust optimization tools [27].

Optional stochastic attributes

As shown in Table 2.1, RAMP offers the possibility to define several optional Appli-
ances’ attributes, which allow to further enhance the customisability and the stochas-
ticity of the model.

Modular duty-cycles and cooking cycles

Key optional attributes are those allowing to model predefined duty cycles and to
modulate (if needed) the behavior of such cycles throughout the day. For instance,
a predefined duty cycle maybe set to reproduce the behavior of a fridge; however,
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considering that actual fridge cycles are not fixed but rather dependent on the tem-
perature and on user’s activity patterns [40, 41], different duty cycles (e.g. standard,
intensive, etc.) can be modeled and associated with different time frames to follow
the variation of such parameters during the day (Figure 2.6). Alternatively, duty
cycles segments can be allowed to randomly vary within a user-defined range, to re-
produce the behavior of highly random and subjective tasks, such as cooking (Figure
2.7).

FIGURE 2.6: Example of duty cycle modulation throughout the day
for a fridge.

FIGURE 2.7: Example of two different randomization of a cooking cy-
cle (in this case rep-resenting a boiling task followed by a simmering

period)

Frequency of use

It is also possible to mark Appliances as "occasionally-used": in this case, the latter
will be included in the set of Appliances that the i-th User will switch on during the
day only conditionally to a random probability check (Equation 2.6), independently
evaluated for each User.
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i f f requencyijk > uni f (0, 1)→ ∃applianceijk (2.6)

As a result, on a given day (i.e. a single model run) some of the Users of a given type
may use them, while others may not; this functionality is conceived to reproduce
the real patterns of use of appliances such as irons or mixers, and strengthens the
unique random characterisation of each individual User. Figure 2.8 shows an exam-
ple of different daily load profiles for a single household owning iron and using it
with a frequency of 3 days a week over 7 days period; the appliance is used only oc-
casionally, and its relative weight on the weekly average profile is thus opportunely
represented.

FIGURE 2.8: Example of 7 different stochastic daily profiles for a sin-
gle household using iron with an average frequency of 3 days a week,
modeled by the "occasional-use" attribute. Some of the stochastic
daily profiles (in light green) include iron use, while others (in grey)

do not.

Thermal appliances and random power regulation

A special functionality is included in the model to better simulate the behavior of
thermal appliances. Those, in fact, are typically characterized by a high degree of
variability in terms of absorbed power, which is a function of subjective and random
preferences, for example in terms of hot tap water temperature. Such variability’s
embedded in the model by allowing to set a percentage random variability for ther-
mal appliances’ power (dP; thermal), which RAMP exploits to uniquely characterize
each switch-on event, as shown in the example in Figure 2.9. The possibility to ran-
domly variate appliances’ power is nonetheless useful for modeling any other kind
of appliance that allows for power regulation (e.g. electric heating stoves, ovens,
etc.) as already shown in Figure 2.7 for the cooking cycle example.

2.3 The composition of rural communities

In [42], the authors abstain from defining the minimum amount of energy needed to
meet basic needs, quantitatively. The reason is that basic needs are normative and
vary significantly geographically, depending on the climate, social customs, norms
and other factors inherent to the region and society. In fact, governments and policy
makers in some countries made efforts to define basic or lifeline energy entitlements
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FIGURE 2.9: Example of multiple stochastic runs (10) for a thermal
appliance, in this case reproducing a "shower" task: the model vari-
ates not only switch-on times and shower duration, but also the ab-

sorbed power (i.e. hot water temperature).)

for their poorest citizens to cover basic lighting, communications and entertainment
needs. However, the defined entitlements fall far below what is required for income
generating activities to empower local growth and development.

From the human rights perspective, the following has to be considered: 1) An ade-
quate standard of living, including access to food, clothing and housing and to the
continuous improvement in living condition, 2) the highest attainable standard of
physical and mental health, 3) work, 4) education, 5) a healthy environment to live
and access to basic public services [43].

In this context, [44] considers six categories to clearly identify the energy needs of ru-
ral communities in developing countries. These categories are: lighting in conjunc-
tion with information and communication technologies (ICT), refrigeration, cook-
ing, process power and water pumping. Clearly, these categories are in line with
the human rights perspective outlined above. Several studies defined sectors asso-
ciated in one way or another with the above-mentioned categories [26, 43, 44, 45].
Therefore, three sectors can be identified: 1) residential, 2) community and 3) income
generating activities.

Within the residential sector, several studies have been carried out to understand
the complexity of household electricity use. Nevertheless, the understanding of be-
havior and energy consumption patterns remains limited, specially in rural areas
and developing countries [46]. The determinants of household energy use can be
summarized into endogenous and exogenous factors, according [46]. The former
refers to economic and non-economic characteristics, as well as cultural and behav-
ioral characteristics. Exogenous factors comprise the physical environment, policies,
energy supply factors and the characteristics of energy appliances. Basically, they
are the characteristics of the household and conditions outside the household. The
public sector (community) is associated with services necessary to satisfy the popu-
lation’s right to education and good health, among others.

Energy holds the opportunity to contribute to the population economy. Not taking
into account the energy needs for income generating activities, can improve the risk
of energy peripheralization in rural communities [47]. There is evidence that ac-
cess to electricity for small enterprises has an impact on the economy, although it is
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small compared to the impact on village life due to the provision of new services and
products. However, it has been shown that, even after access to electricity, the major-
ity of economic activity remains in agriculture in these areas, so the transformation
processes of harvested products could represent an opportunity for growth and di-
versification of the community economy [48]. Table 2.2 summarizes the sectors that
are taken into account in this thesis with thier associated users and activities.

TABLE 2.2: Sectors that need to meet their energy needs.

SECTOR USER ACTIVITIES

1 Residential Household

Lighting

Cooking

Space heating

Space air-conditioning

Food preservation

Other

Studying/working

Water pumping

Communication

2
Community

(public institutions)

Medical centre

Lighting

Space heating

Space air-conditioning

Powering appliances

Water pumping

School
Lighting

Water pumping

Church
Lighting

Powering appliances

Sports field Lighting

Public infrastructure
Public lighting

Water pumping

3
Income Generating

Activities (IGA)

Agriculture Watering

Livestock Livestock watering

Industry/transformation

processes

Wool harvesting

Crop processing

Comerce (Small shops) Food refrigeration

Comerce (restaurants)
Cooking

Food refrigeration

Workshops Repair/construction
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While it is possible to define energy-intensive activities, for each sector, going into
more detail depends on specific contextual factors. For example, the adoption of
electrical appliances and patterns of appliance use are subject to several population
characteristics. Such factors can define the ’energy culture’ of a community [49].

2.4 Conclusions

The aim of the present chapter was to introduce the demand energy estimation
methods used as input to the further developments of this thesis. Two main paradigms
are identified. The first one makes use of aggregated historical data and reconsti-
tutes the stochastic variations around the mean (top down). It is well adapted to
the analysis of existing energy systems where it is possible to obtain the required
data. The second one focuses on the individual behavior of the entities composing
the system (bottom-up). It allows to analyze the impact of changes in its composi-
tion or changes in the usage of appliances. It allows the design of plausible demand
scenarios beyond the current trends in the communities.

The composition of a community is also explored as a significant feature of con-
sumption patterns. In general, three main user groups are distinguished. The resi-
dential one comprises all the households present in the community and can be char-
acterized by different factors (cultural, size, socio-economic, etc). The community
services group includes all institutions and services needed for the achievement of
a certain quality of life for the inhabitants of the village. They can be public or pri-
vate and can have different composition depending on the particular needs of the
community. Finally, income generating activities encompass the constituents that
generate local economic activity. Depending on their characteristics, they can repre-
sent an important part of the total demand of the system. It is important to highlight
the heterogeneity of these components: depending on the reality of each country,
they can have completely different appliances or use them in diverse ways.

Under the light of this classification, it is clear that for communities currently with-
out electricity, the most suitable approach is the bottom-up strategy. It allows to
create different plausible community compositions and explores the impacts of con-
trasting demand scenarios.
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Chapter 3

The Bolivian case study

This chapter is largely based on:
Peña, J., Balderrama, S., Lombardi, F., Stevanato, N., Sahlberg, A., Howells, M.,
Colombo, E., & Quoilin, S. (2020). Incorporating high-resolution demand and
techno-economic optimization to evaluate micro-grids into the Open Source Spatial
Electrification Tool (OnSSET). Energy for Sustainable Development, 56, 98-118.

Sanchez, C., Balderrama, S., Stevanato, N., ,Quoilin, S., (2021). Energy Sufficiency
for Rural Communities: The Case of The Bolivian Lowlands. In Proceedings of the
SDEWES Conference, Dubrovnik.

Bolivia is a landlocked country located in the center of the south American continent.
It is one of the poorest countries in the western hemisphere. Its territory covers an
area of 1,098,581 km2 of unique geography with contrasting climatic zones. Its main
altitudinal classification divides the territory in the highlands (up to 6500 m.a.s.l) and
the lowlands (< 800 m.a.s.l). Climatically, the lowlands of Bolivia are characterized
by a monsoon and tropical savanna climate; while the highlands experience large
variations, from warm humid subtropical to cold desert climate [50]. Bolivia has
currently a population of 11 million inhabitants, from which 67.3 % live in urban
areas and 32.7 % live in rural areas [51]. In less than two decades, the electrification
rate in Bolivia increased from 64 % in 2000 to 93 % in 2018 [52]. In the same period,
the electrification rate in urban areas increased from 85 % to 98 % and from 25 %
to 78 % in rural areas. The government of Bolivia has set a goal to reach universal
access to electricity by 2025, requiring a national strategy to guide investment needs
for grid-extension and off-grid solutions.

The political constitution of Bolivia establishes that every person has the right to
universal and equitable access to electricity, and it is the duty of the government to
provide all basic services through public, cooperatives or mixed entities [53]. Con-
sequently, due to the high levels of demand growth and low coverage in rural areas
[54], the Bolivian government planned to reach full coverage by the year 2025 [55].

However, rural electrification planning is a complex task, in particular because of the
difficulty to evaluate the demands, which are necessary inputs to all energy plan-
ning tools. The load time series are hard to obtain for multiple reasons: (1) some
communities are still unelectrified and have therefore no current load curves; (2) the
load can significantly evolve from one year to the next, as demonstrated later in this
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thesis; (3) Bolivian communities are very diverse in terms of size, location, socio-
economic characteristics and cultural context. In this thesis, to assess these demand
curves, the methodology described in Chatper 2 is applied to the specific case of
Bolivia. The objectives are:

1. To describe the components of the Bolivian energy system, with a particular
focus on the rural areas.

2. To propose typical village configuration depending on geographical and socio-
economic characteristics.

3. To propose appliance ownership and usage patterns base on on-site surveys.

4. To generate demand time series for Bolivian communities, directly usable by
other energy system models.

3.1 The Bolivian Energy System

Despite its great renewable energy potential, Bolivia mainly relies on natural gas
as its primary energy source. In 2000, natural gas represented 57 % of primary en-
ergy produced, and in 2010 this percentage rose up to 80 % as a consequence of
significant growth in natural gas exploitation. During the period 2000-2010, non-
renewable energy production increased by 208 % while renewable energy genera-
tion only increased by 21 % [56]. By 2016, the Bolivian primary energy production
structure was constituted mainly by natural gas (81.02 %), followed by condensed
oil and gasoline (13.15 %), traditional biomass (5.14 %), hydro-energy (0.68 %), and
alternative renewable sources (wind and solar) with 0.02 % [57, 58]. The Bolivian
electric system comprises the National Interconnected System (SIN, Sistema Inter-
conectado Nacional) which supplies the main cities and the isolated systems (SA,
Sistemas Aislados) that provide electricity to remote places.

Figure 3.1a and 3.1b illustrate the population size and electrification rate in the near
19 300 communities of Bolivia. The highest concentration of fully electrified com-
munities is closer to the capital cities and close to the high-voltage network, being
mostly dense populated areas. Small populations near and far away from the high-
voltage grid have the lowest electrification rates.

3.1.1 Interconnected electric system of Bolivia

The SIN consists of generation, transmission and distribution facilities operating co-
ordinately to supply the electricity consumption of eight departments representing
96 % of the national demand [59]. The Bolivian system is divided into four well-
defined areas as shown in Figure 3.2: North (La Paz and Beni), Oriental (Santa Cruz),
Central (Oruro and Cochabamba) and Sur (Potosi, Chuquisaca and Tarija). The high
voltage transmission system is part of the SIN and includes 230, 115 and 69 kV trans-
mission lines. The SIN generation fleet is composed of:

1. Hydroelectric power plants consisting of run-of-river units, reservoir plants
and a complex whose operation is link to water supply for the Kanata metropoli-
tan area.

2. Thermal units consist of open-cycle natural gas turbines, steam turbines that
operate with sugarcane bagasse, natural gas engines and Dual Fuel units that
use natural gas or diesel.
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FIGURE 3.1: Overview of the electrification status in communities of
Bolivia. Note that the size of the symbols is not representative of the
area. a. Classification of population size in each community and high-
voltage transmission lines in 2018. Population extrapolated from Na-
tional Census 2012. b. Electrification rate in communities of Bolivia

in 2012.

3. Combined cycle steam turbines that use the exhaust gases of natural gas tur-
bines.

4. Wind-onshore turbines are located in Qollpana.

5. From 2020, 2 PV power plants started operation and in 2021 it is expected that
3 new eolic parks will be connected to the SIN.

FIGURE 3.2: The SIN layout at 2016 and VRES projects planned up to
2021-2022 [59, 60].

The demand is divided into: Regulated consumers, mostly residential, who are
served by distribution companies, and non-Regulated large consumers which are
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large industrial enterprises that directly participate in the electrical market [59]. The
consumption is highest in the Oriental area with 37.8 %, followed by North with
24.3 %, Central with 21.4 % and South with 17.2 % [55]. The electric consumption
of the country is mainly residential. In 2014 this segment demanded 38 % of the
required energy, followed by industrial with 27 %, public services (street lighting,
hospitals, public institutions, etc.) with 24 % and mining sector with 11 % [61]. In re-
cent years, the demand has experienced a strong growth: In the period 2000-2006, an
average increase rate of 4 % was registered, reaching 4.4 TWh in 2006. In 2007-2012
the increase rate was 9 % with 6.6 TWh for 2012 [55]. In 2016 the total consumption
reached 8.4 TWh and for a demand of 12.4 TWh is foreseen in 2021 [59].

3.1.2 Isolated systems

In 2018, the isolated Systems supplied electricity to nearly 10 % of the total electri-
fied households (211 thousand households) and made the 6.8 % of the total installed
capacity. As isolated systems can vary largely in size (from kilowatts to megawatts),
a distinction between isolated systems and microgrids is made in this thesis. Mi-
crogrids refer in this study to smaller systems with small non-regulated distribution
networks. On the contrary, existing isolated systems in Bolivia have a size in the
order of megawatts with regulated distribution networks.

The current isolated system installed capacity is 180 MW, with an energy mix of 66 %
gas, 25 % diesel, 6 % hydropower and 4 % solar [62]. In recent years, several isolated
systems have been incorporated to the national grid, reducing their carbon footprint
by being dispatched as peak technologies [55]. Only a handful of microgrids have
been implemented in Bolivia, serving small communities. Table 3.1 summarizes the
installed microgrids until 2020.

TABLE 3.1: Installed microgrids in Bolivia until 2020, taken from [63].

Community
Installed

capacity (kW)
Households

El espino 60 125

El sena 2018 426

El remanso 166.5 175

Puerto villazon 156.4 95

3.1.3 Solar potential in Bolivia

The potential of renewable energy is distributed throughout the territory. Solar en-
ergy is feasible in all regions, but mainly in the Andean highlands sector. Wind
energy predominates in the departments of Santa Cruz, Cochabamba and in some
parts of the highlands. The geothermal sources are located southwest of the depart-
ment of Potosi. Finally, important biomass resources are available in the eastern and
northern part of the country [60]. PV and battery microgrids have been the most de-
ployed technologies to solve the electrification problem throughout the years [64].
This is explained in part by the high irradiation levels in the country.



3.2. Bolivian rural electricity demand 31

FIGURE 3.3: Horizontal global solar radiation in Bolivia (annual av-
erage), taken form [65, 66].

3.2 Bolivian rural electricity demand

Forecasting demand in a rural community is a complex task due to the high uncer-
tainty associated with the different features of energy consumption. In the present
work, this uncertainty is tackled by simulating a variety of expected demand scenar-
ios. To this end, a series of plausible villages configurations are proposed in the next
sections and the related demand curves are generated according to the methodolo-
gies proposed in Chapter 2.

One important source of information for this purpose is the geo-referenced data
from the latest National Census on Population and Households. The database con-
tains geo-referenced information of the number of households, electrification status,
electricity source (grid, mini-grid, PV panel, diesel generator) and exact geographic
location of Bolivian communities [67].

3.2.1 Rural Bolivian communities without access to electricity

In Bolivia, low electricity consumption has been witnessed as a characteristics of low
income households. To increase energy consumption, measures have been taken
by the government to increase the affordability of electricity access. One of these
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measures is the "dignity tariff", which was implemented in 2006 and provides an
average discount of 25 % to the electricity bill for households with consumption
levels lower than 70 kWh/month. For rural communities this value was decrease to
50 kWh/month due to the low consumption of these locations. It is worthwhile to
note that, when the tariff was implemented, 70 kWh only represented a little more
than a few light bulbs and a television working for a few hours. Nowadays, thanks
to the progresses in terms of energy efficiency, the same amount can power more
appliances, as shown later in this chapter.

A preliminary assessment of the Census database reveals that larger communities
are usually connected to the grid. Only 14 communities with > 550 un-electrified
households do not have any initial connection to the grid. On the contrary, small
communities usually present high shares of low-income households and exhibit de-
mand levels that are too small (as small as 1 MWh per settlement per year) to justify
grid-extension.

These characteristics have direct implications on the least-cost electrification solu-
tions. An initial connection to the grid and an accumulated high demand is antic-
ipated to make grid extension a relevant alternative. In contrast, low demand and
large distance (larger than 50 km) from the medium-voltage grid favors standalone
systems as most cost-effective solution. For communities characterized by high de-
mands and large distances from the grid, either isolated systems or grid extension
can be considered as suitable (an indicative calibration of these relations is given by
Fuso-Nerini et al. [68]).

FIGURE 3.4: Population and grid connection status of Bolivian com-
munities.
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The Census dataset reports communities with a wide range of sizes, from a handful
of households to a few thousands. In this work, the load curve generation method-
ology presented in Chapter 2 is restricted to communities with a minimum of 50
households and a maximum of 550 households. Below 50 households, the settle-
ments are usually very scattered and not suitable for community-based power gen-
eration facilities such as microgrids. Communities above 550 usually have an exist-
ing connection to the grid and should therefore be included into the analysis of the
SIN, which is outside the scope of this thesis. Figure 3.4 illustrates the location of the
communities with the selected population threshold.

3.2.2 Energy demand in Bolivian rural communities

Rural municipalities in Bolivia have been grouped into different groups, of which
two are distinguished for rural areas: extremely rural poor (ERP) and rural poor
(RP). The communities within these municipalities reach high levels of poverty,
which have been measured according to the degree of unsatisfied basic needs. The
percentages of unsatisfied basic needs (UBN) inthese groups reach 96%, and 90%,
respectively [69]. As detailed in the previous chapter, rural electricity demand evo-
lution is multifactorial. In this thesis, the following factors are taken in account:

1. Community composition (Residential, community services and IGA).

2. Appliance ownership for each member of the community.

3. Location of the community (High or low lands)

3.2.3 Residential sector

Bolivian rural communities are mainly composed of lower income inhabitants that
have agricultural activities as their main sustenance activity. They possess a minimal
quantity of appliances which in part explain their low consumption. In addition to
these ones, it is possible that a small fraction of high income households are present.
They will normally have small business or are public servants in the school or health
center. They will have more or higher power rate appliances, this will allow them to
have a more comfortable life.

In this context, the demand will normally be modeled with a large share of Low
income inhabitants. To analyse the impact of this strategy, two types of users are
defined for this sector: low-consumption households (LC) and high-consumption
households (HC). The latter reaches the "decent" consumption set by the govern-
ment (more than 70 KWh/month), which in this study, is considered as "enough".

As explained before, Generating bottom-up demand curves requires associating a
number of appliances with each user type. To that end, two field surveys from two
communities have been used: the villages of "El Espino" ( 19.22o S, 63.26o W) and "To-
conao" (23.24o S, 68.2o W). The two communities are representative of the lowlands
and the highlands in Bolivia respectively. The first survey (El Espino) was carried
out in the scope of this thesis in the region of Santa Cruz, Bolivia. The second survey
(Toconao) was available from another project carried out in Chile, in proximity to the
Bolivian border. Although from a different country, the socio-economic characteris-
tics of the Toconao community are deemed representative enough to characterize
appliance ownership in the Bolivian highlands (Figure 3.5).
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Besides collecting techno-economic information, the surveys focused on the social
and behavioural aspects of the villagers, including the energy-related habits and
time-of-use. Finally, the division between lowlands and highlands is considered rep-
resentative enough of the Bolivian rural population in terms of the cultural diversity,
climate conditions and geographical areas. The survey templates for the households
are provided in annexes B (El Espino ) and C (Toconao). Similar surveys where
taken to public institutions and generating activities. A total of 86 responses were
collected, 36 in El Espino and 50 in Toconao. The surveys were taken to a member
of each house or from the entity (public or income generator) .

FIGURE 3.5: Bolivian high and low lands.

The ownership of appliances for the different groups is shown in Table 3.2. HC
households have a significantly higher amount of appliances than LC. The main dif-
ference in terms of energy consumption is related to the presence of high power
appliances (fridge and iron) in the HC group. Although there is an important differ-
ence in quantity, the light bulbs represent a limited energy consumption because of
their low rated power. Interestingly, in all socio-economic levels and regions, enter-
tainment plays an important role in the community. All households have a TV to use
at different hours of the day, for entertainment, but also for information purposes.
It is also worthwhile to note that, in some communities the education of children is
complemented by radio or TV shows.

3.2.4 Community services sector

Public services (mainly education, health and religious service) are usually poorly
equipped in small Bolivian communities, but they are however characterized by a
minimum set of appliances to properly function. Specifically, an average of 3 fridges
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TABLE 3.2: Appliance ownership in rural communities for the high-
lands and lowlands of Bolivia. The complete information of all appli-

ance and sectors can be found in annex D.

Highlands Lowlands Health

center
School Church

HC LC HC LC

Indoor bulb (units) 7 5 6 2 12 8 10

Outdoor bulb (units) 1 1 2 1 1 6 7

TV (units) 2 1 2 1 0 1 0

Radio (units) 1 1 0 0 0 0 0

Phone charger (units) 4 2 5 2 8 5 0

Fridge 1 0 1 0 3 1 0

Laptop 1 0 0 0 0 0 0

Iron 1 1 0 0 0 0 0

DVD 0 0 1 1 0 1 0

Mixer 0 0 1 0 1 0 0

Antena 0 0 1 1 0 0 0

PC 0 0 0 0 2 18 0

Printer 0 0 0 0 0 1 0

Stereo 0 0 0 0 0 1 0

Speaker 0 0 0 0 0 0 1

are present in the health centers were for the storage of vaccines, medications, and
other heat-sensitive products. In addition, there is usually one or two desktop com-
puters for data collection and processing task. In the schools, the computational
equipment for similar purposes, but are also used to teach pupils the use of new
technologies. The church has an important role for the community but only requires
a few light bulbs and a speaker to conduct masses. Finally, public lighting is taken
in account for each community.

3.2.5 IGA sector

Income-generating activities are all agricultural or non-agricultural activities that
allow the inhabitants of a community to generate the necessary income for subsis-
tence. In this thesis are not taken in account as they depend on different factors that
are beyond the scope of this work.

3.2.6 Plausible Demand scenarios

Using these features, a series of plausible villages configurations are proposed and
simulated. Survey data is used to generate aggregated demand time series using
the open-source RAMP stochastic model, as proposed in Chapter 2. The synthetic
demand time series are calculated for a period of 1 year and 15 villages archetypes
are proposed. Each archetype describes a possible energy consumption pattern for
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Bolivian villages. Figure 3.6 shows the selected (combination of) configurations for
these settlements:

• The household socio-economic level is divided into two categories: LC and
HC.

• Five different villages composition are simulated: A1) 90%, A2) 80%, A3) 70 %,
A4) 60%, A5) 50% of LC households.

• Regarding public services, 3 situations are considered: B1) No public services,
B2) School and B3) School plus medical center.

• All scenarios include public lighting and a church.

• The number of households in the community is varied between 50 and 550
with a step of 50.

• No IGA are considered in the communities.

FIGURE 3.6: Construction of demand scenarios.
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3.3 Results

3.3.1 Demand curves at the household level

Results at a household level are shown in Table 3.3 and Figure 3.7. A higher energy
consumption is stated for HC households compared to LC households. This differ-
ence is mainly driven by the use of a fridge in higher socio-economic levels. Also,
there is an important difference between the high and low lands, especially for LC
households. This is explained by the presence of appliances such as an iron, which
are not present in the lowlands.

The total demand for HC households is slightly higher than the maximum subsi-
dized quantity of the dignity rate of 70 kWh. In contrast, LC family units exhibit a
considerably lower consumption. This is partly explained by the usage of high effi-
ciency electrical devices in the simulation, whereas the dignity tariff was designed
in a time where light bulbs were inefficient and consumed between 50 to 100 W. In
terms of life quality, the advantage of having a fringe cannot be minimized. As it al-
lows better conservation of food and the purchase of big quantities of products that
need cooling to maintain their properties. This led to an increase of several times the
total consumption.

FIGURE 3.7: Simulated demand curves for a few households in the
Highlands (a) and Lowlands (b)
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TABLE 3.3: Summary of the household demands in the lowlands and
highlands.

Highlands HC Highlands LC Lowlands HC Lowlands LC

mean (W) 131.4 20.5 112.1 10.0

std (W) 66.5 35.0 50.6 13.5

min (W) 4.6 0.0 4.6 0.0

max (W) 530.6 470.2 251.5 85.5

Total

Energy (kWh)
95.9 15.0 81.9 7.3

3.3.2 Demand curves at the community level

A total of 330 stochastic load profiles were generated, building upon interview-
based information from the two representative systems in the highlands and low-
lands of Bolivia. The substantial differences between individual curves result from
different appliance ownership and stochastic household activity patterns. In Fig-
ure 3.8, it can be appreciated the difference between including different levels of
LC penetration for communities with minimum services (church and public light-
ing). A mean underestimation of 44 % of the total energy demand and 66 % of peak
demand can happen if the comparison is made between S1 and S13 scenarios. In
general, an increase in the high-income population percentage leads to an important
growth in total demand and peak load. This is a consequence of the higher number
of appliances owned by this segment of the population.

FIGURE 3.8: Total energy consumption for scenarios S1, S4, S7, S 10
and S 13 for different quantity of households for rural communities

in the lowlands.
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Figure 3.9 illustrates the contributions of the different energy consumption compo-
nents in the case of a community with 50, 250 and 500 households with two different
levels of LC penetration (50 and 90 %). The share of the school and the hospital in
the total energy consumption decreases as the village size increases or with a higher
number of HC. In addition to this, their contribution to the peak demand is low in
all scenarios. Similar results are found for the highlands with the difference that
the total and peak demand are higher due to the higher consumption of households
with respect to the lowlands.

FIGURE 3.9: Demand profiles for the first days of March, Top Line:
50 % of low-income households and Bottom Line: 90 %. a) De-
mand profiles for communities of 50, 250 and 500 households. b) Dis-

aggregated demand profiles for a community of 50 households.

3.4 Discussion

If demand is evaluated base on current poverty levels or ownership of appliance,
there is a high probability of underestimating the demand or not be able to offer
reliable energy for all normal activities in a household (SDG 7). On the other hand, it
is possible that the highest energy scenarios are not met for different reasons. These
scenarios can be more difficult to cover with microgrids and specially SHS, without
increasing the LCOE. As explored in section 2.1, there are several situations where a
microgrid was unable to meet demand. It is possible to solve this issue by installing a
larger system but this can lead to higher LCOE. A trade-off therefore exists between
the installed capacity and the maximum power or energy that the system is able to
meet. This trade-off seems logical from an economical point of view, but there is a
need to ensure adequate access to energy to individual households in such a way to
ensure adequate conditions for individual development and minimum standards of
living.

Although income generation activities and consumption are key assets for human
development (cfr. section 2.3), they are not taken into account in the the present
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work due to the heterogeneity of Bolivian communities. Determining the likelihood
of the presence of specific businesses in different locations is not possible without
further research. Another important service not taken into account is water supply,
either for human or agricultural purposes.

Finally, it is important to note that the recent evolution of demand patterns at the
household level would deserve a specific analysis. In particular, the COVID-19 pan-
demic and the impossibility to gather people in closed spaces have entailed new
organizational and occupational challenges, for example in terms of education. At
the time of writing this thesis, online courses are still mandatory in Bolivia and it is
expected that some form of online education will continue, even after the pandemia.
This has and will have strong implications on the organization of rural life. Ensuring
sufficient energy to develop these activities will be key in the future since access to
education is classified as a human right [43].

Under this context, the concept of energy sufficiency (Figure 2.1) could be used as a
framework to identify minimal states of energy that the system must provide. These
amounts of energy will evolve during time (at household level), as the appliance
adoption reaches urban levels. Moreover, it can also guide a higher limit where
an increased supply of energy would not mean an equal boost of welfare in the
community. This path is the contrary to one household in a developed country,
where the objective is to decrease consumption. As a result of these trends, a position
in the middle can be found where the needs of a community are achieved while
maintaining an equilibrium with nature.

3.5 Conclusions

In this chapter, the energy context of Bolivia, and more specifically of its rural com-
munities, is presented. The country main source of electricity is natural gas, even
if recent efforts to promote renewable sources have been state in the past years a
special effort to push RE has been in line with the policies of countries around the
world. To accomplish this, the country has a plan to increase the installed capacity
and connect as many households as possible to it. Despite the impressive increase
of the electrification rate in Bolivia in the past years. It still has a relatively low 78 %
electrification rate in rural areas, the majority of these people being located in remote
areas hardly accessible via grid extension.

As the first step to calculate the cost to electrify Bolivia, plausible communities in
the country are constructed. This is done based on information gathered in surveys
from two villages located in the high and low lands of Bolivia. Each component of
the village is characterized based on the parameters described in 2.2.2. A total of 330
demand instances are constructed from this information, and are further aggregated
into community-centered load curves. The main driver of the obtained demand
time series is residential consumption and is highly sensitive to the proportion of
HC households in the total energy demand.

Finally, an analysis on the energy scenarios is proposed. The underlying idea is
that each village is provided with basic infrastructure and the amount of appliances
is based on surveyed communities. Although not all human needs are covered in
the proposed scenarios, they mark a minimum energy level to be supplied. The
obtained monthly quantity is in line with the current energy consumption in ru-
ral/poor electrified communities in Bolivia (around 70 kWh/month). In addition
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to this, the communities are assumed to be provided with infrastructure to ensure
health, education and security for the inhabitants.

The stochastic demand curves generated in this chapter will be re-used in the next
chapters as an input to size and operated isolated systems such as micro-grids or
individual solar home systems.
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Part II

Optimal isolated energy sizing and
operation for rural electrification

purposes
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Chapter 4

Sizing and operations of
Microgrids

This chapter is largely based on the following previous publication:

Balderrama, S., Lombardi, F., Riva, F., Canedo, W., Colombo, E., & Quoilin, S.
(2019). A two-stage linear programming optimization framework for isolated hybrid
microgrids in a rural context: The case study of the "El Espino" community. Energy,
188, 116073.

In rural electrification programs, when approaching 100 % of coverage, it gets in-
creasingly hard to connect the last percentiles of the population. These are usually
composed by remote, isolated communities, sometimes scattered and with low in-
come. This challenge is illustrated, e.g., in the work of Gomez et al. [70], in their
assessment of the Brazilian government efforts to provide electricity for all its cit-
izen. The study shows that the remaining people without access to electricity are
those with the highest distance from the grid and the lowest income in their respec-
tive regions.

In these critical areas, hybrid microgrid systems can offer reliable and potentially
clean electricity. They involve different renewable and non-renewable energy sources
and storage systems with complementary operational characteristics. The synergies
between components, when optimally exploited, can lead to efficient and environ-
mentally friendly systems, as shown by Diaz et al. [24] in the analysis of 28 isolated
microgrids.

Under the right conditions, hybrid microgrids can provide energy with lower costs
compared to traditional alternatives (grid extension, diesel-based microgrids and
solar home systems). For instance, Mentis et al. [71] applied GIS techniques to cal-
culate the cost of electrification in Nigeria, stressing how a higher cost of diesel can
significantly strengthen the profitability of hybrid solutions. In [72], Nerini et al.
expanded the cost model of the GIS approach and analyzed the impact of different
factors on the levelized cost of energy (LCOE) for each electrification option. The re-
sults show that microgrids are best suited for communities that are located far away
from the main grid.
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4.1 Recent challenges in isolated microgrids modeling

Despite the advantages of hybrid microgrids, their potential is not yet fully ex-
ploited. One of the reasons is that their planning and operation face several chal-
lenges linked to the following aspects:

• the high degree of uncertainty associated with renewable energy potential
forecasts

• the complex dynamics that governs current and future evolutions of electricity
consumption in rural contexts [73]

• the imperfect mathematical representation of components operation [74]

4.1.1 Parametric uncertainty

The first challenges are related to long-term demand and renewables projections.
The uncertainty associated with these parameters is typically referred to as "para-
metric uncertainty". Models are generally fed with these data in the form of exoge-
nous parameters [75]. As explained in section 2.1, energy demand is highly stochas-
tic. Depending on a variety of factors, the total energy demand, the peak load or the
shape of the consumption curve can change drastically depending on the selected
community or the geographical location, and can significantly evolve from one year
to the next. These changes impact the sizing process, as explored by Riva et al. [76].
In that study, the authors soft-link a bottom-up method to develop long term pro-
jections of appliances in a community with an energy demand model generator and
a sizing model. In addition, two other load curves are created (fixed demand and a
constant demand growth rate for the duration of the project) and the resultant opti-
mal designs are compared. The final conclusion is that if demand evolution of the
system is not taken into account, there could be important impacts in the installed
capacities and the viability of the project. In a posterior work, Riva et al. explore
the different diffusion methods for the connection of households to microgrids as
a function of time with similar conclusions regarding the impact of uncertainty on
electrification projects with microgrids [77].

As regards long-term forecast of renewable energy availability, Diaz et al. [24] show
that fuel consumption of a hybrid system can significantly vary from one year to
another depending on the renewable energy output in that period. In [78], a whole
micro wind turbine based electrification system had to be re-designed as a result of
the inability of the first configuration to meet the demand for some households. The
impact of mountains in the uniformity of wind resource was not considered, leading
to a lower energy production than initially forecast.

4.1.2 Structural uncertainty

Another open issue relates to the mathematical formulation adopted for the sizing
and architecture of microgrids, which necessarily requires a compromise between
real-life relevance and computational efficiency and accuracy. In fact, microgrids
components are often modeled in a simplified manner using constant efficiencies or
neglecting technological constraints, either due to a lack of data or to ensure com-
putational tractability. Altogether, this increases what is commonly referred to as
“structural uncertainty" [75]. Diesel generator models, for example, often neglect de-
creased part-load efficiencies or minimum load constraints. As demonstrated in the
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next chapters, this can lead to significantly overestimated performance and therefore
biased planning of the system.

In order to handle non-linear formulations within a reasonable computational time,
Mandelli et al. [79] and Orosz et al. [80] adopted a heuristic enumerative opti-
mization, that consists in testing all the possible combinations inside sets of nominal
capacities from the analyzed technologies. The HOMER® software is another ex-
ample of such approach and is widely used in practical project implementation, as
highlighted by Neves et al. [81] within their review of hybrid microgrids in micro-
communities. Nonetheless, enumerative approaches can be computationally inten-
sive and only guarantee a local optimum. In order to reduce the time needed to
solve the non-linear optimization problem, meta-heuristics techniques inspired by
natural phenomena have been tested with success, e.g. by Sigarchian et al. [82] or
Altes et al. [83].

Alternatively, the use of linear programming (LP) is very common in the scientific
literature [26], since it allows to obtain the global optimum of very large problems
in a computationally-efficient manner. However, their main disadvantage is the im-
possibility to model non-linear or discontinuous component characteristics. The use
of mixed-integer linear programming (MILP) offers the chance to keep the main ad-
vantages of LP whilst offering a satisfying approximation of non-linear behaviour, at
the expense of a lower computational efficiency [74]. Nonetheless, an accurate MILP
characterization of components such as diesel generators requires high-quality data
in terms of their real-life and site-specific operation, preferably based on real mea-
surements.

4.1.3 Techniques for optimization under uncertainty

A first step for considering demand and resource uncertainties consists in perform-
ing sensitivity analyses on the uncertain parameters, as proposed by Brivio et al.
[84]. The impact of the uncertainty of demand and energy generation can also be
assessed using robust optimization, as explored by Khodaei et al. [85]. In this case,
the microgrid components are still sized to meet the requirements of one scenario
with a given demand and renewable energy time series.

Two-stage stochastic optimization is another way to solve problems under uncer-
tainty. The generic formulation of the problem aims to optimize an objective function
subjected to a set of constraints. This is done by determining the optimum value of
the first-stage variables under the uncertainty generated by stochastic parameters on
the second stage scenarios. The second-stage variables are the actions taken in each
scenario to deal with the uncertainty. The two-stage stochastic framework is excel-
lent to deal with the uncertainty in a microgrid, as shown by Zhou et al. [86] where
a two-stage optimization problem is formulated to size a multi-energy distributed
system. In their work, in addition to electricity, thermal and cooling demand are also
met by different technologies. A meta-heuristic algorithm is used to iterate between
various combinations of generator capacities, which are finally compared using an
economic indicator. A MILP dispatch model is used for each scenario.

A multi-objective two-stage stochastic approach is presented by Gou et al. [87], with
the objective to minimize the net present cost (NPC) and the pollutants emission us-
ing chance-constrained programming and a genetic algorithm as optimization tech-
niques. A microgrid for an isolated island considering PV, wind turbines, batteries
and diesel generators is sized. Under these conditions, the model also highlights the
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necessary tradeoff between the pollutant’s emissions and economic objective func-
tions. Lee et al. [88] explored how to implement a multi-stage stochastic optimiza-
tion for energy systems and recommend approximate dynamic programming as one
of the few methodologies that can deal with the high computational effort. More re-
cently, stochastic optimization was adopted for the analysis of a multi-energy micro-
grid for the supply of both electricity and thermal energy [89]. The authors adopted a
mixed-integer quadratic two-stage stochastic programming model to minimize the
investment and operation costs of the system. A MILP two-stage stochastic pro-
gramming model is used in [90] to design a distributed energy system and shows
that uncertainty in demand impacts the sizing, while energy prices or renewable
energy production have a lower effect. As an extension of the stochastic problem,
Narayan et al. [91] modified the objective function to take in account the risk asso-
ciated to the microgrid. They use the Markovitz method which consider variance of
cost as an indicative of risk. The resulting model formulation is a non-linear opti-
mization problem that takes in account the variance of cost in the objective function.
More recently, Fioriti et al. [92] determined the nominal capacities for a microgrid
using a similar approach than [86] but they did not use a unit commitment and dis-
patch model to calculate the optimal flows of energy. Instead, load-following (LF)
and a rolling horizon (RH) dispatch strategies were used to calculate the operation
costs of the system. Results shows that using RH or LF leads to similar nominal
capacities of PV, batteries and inverters; however, RH strategy seems to halve the
genset nominal capacity and decrease the total cost.

Research in two-stage optimization for sizing microgrids mainly considers the un-
certainty in the demand and in the renewable generation. The main concern is to
ensure that the proposed systems can operate under a variety of energy profiles.
These profiles are typically generated in the form of time-series by means of statis-
tical methods and historical data. The parametric uncertainty linked to this input
data is particularly high in the case of remote regions, since no monitoring can be
performed before the actual electrification. In addition, despite reports claiming
that off-grid systems will be one of the major rural electrification options by 2030
[93], the use of two-stage stochastic approaches for sizing microgrids in an isolated
rural context is not the focus on most of the literature. The lack of research in this
field is reflected on systems that cannot handle the uncertainty associated with mi-
crogrids. These problems are clearly explained by Pansera [64] in his analysis of
renewable energy in Bolivian rural areas. According to the author, Bolivian innova-
tion in renewable energy lacks coordination between actors at different levels and
an inadequate education system to foster research in this topic.

The main goal of this chapter is to describe different sizing techniques. In particular,
the specific objectives are the following:

1. To provide the equations describing a generic microgrid for rural electrifica-
tion.

2. To develop a framework for optimal sizing in a rural context. The proposed
model should include state-of-the-art best practices in two-stage stochastic op-
timization and in microgrid optimal design and operation.

3. To ensure that models and constraints at the component level reproduce a
close-to-reality microgrid operational behavior.

4. To test various components formulations with increasing computational com-
plexity to capture the required tradeoffs between accuracy and tractability.
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5. To include all models within an easy-to-reuse open-source library, thus en-
suring reproducibility and transparency and facilitating its linking with other
tools.

4.2 Two-stage MILP problem

The considered system comprises an electrical load supplied by renewable sources,
an inverter, a battery bank and backup generators (Figure 4.1). The main optimiza-
tion variables are divided into first-stage variables (rated capacities of each energy
source) and second-stage variables (energy flows from the different components,
on/off status of the generators). The optimization is implemented in Python using
the Pyomo Library [94] and the CPLEX solver.

FIGURE 4.1: Proposed microgrid typology.

4.2.1 Renewable non-dispatchable energy modeling

The energy supplied by the renewable source (Ere) is calculated through equation
4.1, where ηre is the efficiency associated to the renewable source inverter, Ere,u is the
energy yield by one unit of the renewable source, Nre is the number of renewable
units installed in the microgrid, s is the scenario being analyzed, r is the renewable
source, and t is the time step.

Ere
s,r,t = ηre

r · Ere,u
s,r,t · Nre

r (4.1)

4.2.2 Battery bank modeling

The battery bank is the storage system of the microgrid. Its state of charge (SOC)
is computed in equation 4.2, where the energy coming into the battery is Ebat,ch and
the energy coming out of the battery is Ebat,dis. The charge and discharge efficiencies
are denoted by ηch and ηdis, respectively. In order to maintain an acceptable battery
lifetime, an upper and lower limit in the quantity of energy that can be stored is
enforced with equation 4.3, where Cbat is the nominal capacity of the battery and
DOD is the maximum depth of discharge. Equations 4.4 to 4.7 are used to limit
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the energy flows, where Pbat,ch and Pbat,dis are the maximum charge and discharge
power. ∆tbat,ch and ∆tbat,dis are the times required to fully charge or discharge the
battery bank and ∆t is the time step.

SOCs,t = SOCs,t−1 + Ebat,ch
s,t · ηch − Ebat,dis

s,t /ηdis (4.2)

Cbat · DOD ≤ SOCs,t ≤ Cbat (4.3)

Pbat,ch = Cbat/∆tbat,ch (4.4)

Pbat,dis = Cbat/∆tbat,dis (4.5)

Ebat,ch
s,t ≤ Pbat,ch · ∆t (4.6)

Ebat,dis
s,t ≤ Pbat,dis · ∆t (4.7)

4.2.3 Diesel generator modeling

Diesel generators are designed to operate at their highest efficiency at nominal ca-
pacity (Figure 4.2). Part-load operation usually leads to lower efficiencies, which
cannot be adequately modeled in a purely linear framework. This can however be
done by adding integer variables to the problem, at the expense of a higher compu-
tational effort. In this work, and for the sake of comparison, both the LP and MILP
formulations have been implemented to model the diesel generator.

FIGURE 4.2: Efficiency vs load for a genset with constant and realistic
efficiencies.

LP generator model

In an LP formulation, the generator can freely vary its output between 0 and 100 %
without any penalty in partial load. The only limitation is therefore the maximum
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capacity of the unit. Equation 4.8 is used to limit the energy production of each
generator (Ege), where Cge is the nominal capacity of the generator.

Ege
s,g,t ≤ Cge

g · ∆t (4.8)

In this LP model, the total cost of supplying energy with the gensets (CoFuel
s ) is calcu-

lated from equation 4.9. bLP is the unitary cost of the energy produced by the genset
and is calculated with in equation 4.10. U f uel is the unitary cost of the fuel; ηge is
the genset efficiency and LHV is the lower heating value of the fuel used by each
generator.

CoFuel
s =

G

∑
g=1

T

∑
t=1

bLP
g · E

ge
s,g,t (4.9)

bLP
g = U f uel

g /(ηge
g · LHVg) (4.10)

MILP generator model

Some of the inherent characteristics of gensets cannot be accurately modeled in an
LP framework but can be approximated using an MILP formulation. Microgrid op-
erators normally limit the minimum energy output of the gensets (Ige) to maintain
acceptable average efficiencies during long periods of time. To approximate this be-
havior, the fuel costs of a generator are computed by summing a fixed cost when the
generator is committed and a variable cost, proportional to the generated energy.
This results in an efficiency curve similar to the one in Figure 4.2, with 0% efficiency
when idling (zero load) and the a nominal efficiency which is only reached at full
load.

Furthermore, for the sake of computational tractability, a clustered formulation is
adopted, following [95]. It assumed that all Nge generators have the same capacity
and efficiency curve and are turned on one by one, up to their maximum capacity,
to cover the demand at time t.

This, and a maximum energy output, are enforced in the model through equation
4.11, where Nge

s,g,t is the number of gensets of type g working at time t and in scenario
s. Finally, the number of gensets (Nge,int) in the system is limited by equation 4.12.
With these set of constraints, the dispatch of gensets is coordinated in such a way
that one generator is at full capacity before the next generator can be turned on.

Cge
g · I

ge
g + Cge

g · (Nge
s,g,t − 1) ≤ Ege

s,g,t ≤ Cge
g · N

ge
s,g,t (4.11)

Ege
s,g,t ≤ Nge,int

g · Cge
g (4.12)

The fuel cost in each period (Coge) is calculated in equation 4.13, allowing to simu-
late efficiency drops, as described in [96, 97]. To calculate the interceptor (age) and
slope (bge), equations 4.14 and 4.15 are used, where ICost is the percentage of cost
at nominal capacity from the LP model (used to transform the constant efficiency
formulation into a variable one). With this approach, the MILP genset has higher
unitary cost than its LP counterpart. The difference decreases with an increase of the
power output and equalizes at nominal capacity (Figure 4.3). It is worthwhile to note
that the total costs are also equal at nominal capacity. Finally, CoFuel

s is calculated in
equation 4.16.

Coge
s,g,t = Nge

s,g,t · a
ge
g + bge

g · E
ge
s,g,t (4.13)
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age
g = bLP

g · C
ge
g · ICost (4.14)

bge
g = (bLP

g · C
ge
g − age

g )/Cge
g (4.15)

CoFuel
s =

G

∑
g=1

T

∑
t=1

Coge
s,g,t (4.16)

FIGURE 4.3: Unitary and fuel cost at a given power output for the
LP and MILP models (The section where the genset cannot operate is

displayed with a dashed line).

4.2.4 Energy constraints

The energy balance of the system is ensured with equation 4.17, where D is the
energy demand of the system, ELL is the energy that cannot be met by the system
(LL refers to “Lost Load”) and the energy that cannot be consumed or stored in the
system is referred to as “Curtailment” (ECurtailment).

Ds,t =
R

∑
r=1

Ere
s,r,t +

G

∑
g=1

Ege
s,g,t − Ebat,ch

s,t + Ebat,dis
s,t + ELL

s,t − ECurtailment
s,t (4.17)

The lost load probability (LLP) is imposed by equation 4.18, where Ioccurrence is the
probability of occurrence attributed to each scenario.

S

∑
s=1

(
∑T

t=1 ELL
s,t

∑T
t=1 Ds,t

· Ioccurrence
s

)
≤ LLP (4.18)

Finally, two constraints are added to the model to allow imposing a minimum per-
centage of energy to be produced by non-dispatchable energy sources (equation
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4.19) and to ensure a minimum amount of energy independence thanks to the bat-
tery in case of outage of other generators (equation 4.20). Ire is the minimum per-
centage of renewable energy in the system and Nbat is the number of consumption
days that can be covered by the battery.

S

∑
s=1

(
R

∑
r=1

T

∑
t=1

Ere
s,r,t · Ioccurrence

s

)
· (1− Ire) ≥

S

∑
s=1

(
G

∑
g=1

T

∑
t=1

Ege
s,g,t · Ioccurrence

s

)
· Ire (4.19)

Cbat ≥
S

∑
s=1

(
∑T

t=1 Ds,t

365
· Ioccurrence

s

)
· Nbat

(1− DOD)
(4.20)

4.2.5 Objective function

The objective function of the sizing model is the expected net present cost of the
project, as stated in equations 4.21 and 4.23. Inv is the total investment, as calculated
in equation 4.24, YC is the yearly cost of supplying the demand, e is the discount
rate and y is the total duration of the project.

Inv +
S

∑
s=1

(
YCs

CRF
· Ioccurrence

s

)
(4.21)

CRF =
e · (1 + e)y

(1 + e)y − 1
(4.22)

s

∑
s=1

Ioccurrence
s = 1 (4.23)

Inv is calculated in equation 4.24, where Cre is the nominal capacity of one unit
of a renewable source. Ure, Ubat and Uge are the unitary purchasing cost for the
renewable units, battery and generator. In the LP version of the model, Nge,int is
equal to 1.

Inv =
R

∑
r=1

Ure
r · Nre

r · Cre
r + Fixre

r + Ubat · Cbat + Fixbat +
G

∑
g=1

Uge
g · N

ge,int
g · Cge

g (4.24)

In order to capture the economies of scale for microgrids of different sizes, fixed
costs Fixre and Fixbat are added to the cost function. These values are calculated in
equations 4.25 and 4.26. The constant value encompass all the expenses that must be
executed regardless of the project size, such as feasibility studies, pre-engineering,
permitting, data recollection or environmental assessments. Nre, f ix and Nbat, f ix cor-
respond to the binary decision variables of whether to invest in the technology or
not..

Fixre =
R

∑
r=1

Ure, f ix
r · Nre, f ix

r (4.25)

Fixbat = Ubat, f ix · Nbat, f ix (4.26)
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Equations 4.27 and 4.28 are added to the model to allow the deployment of each
technology only if the binary decision variables Nre, f ix and Nbat, f ix are True. M is
defined as a large positive number. If the binary variables are False (i.e. equal to
zero), equations 4.27 or 4.28 impose the installed capacity of the technology to 0 and
the corresponding costs in equations 4.25 or 4.26 are also zero.

Nre
r ≤ Nre, f ix

r ·M (4.27)

Cbat ≤ Nbat, f ix ·M (4.28)

Since the fixed cost feature relies on binary variables, it is not compatible with the
LP formulation. Equations 4.25, 4.26, 4.27 and 4.28 are therefore only activated in
the MILP formulation of the model.

The yearly cost YC is calculated in equation 4.29, where CoOM, CoFuel , Corep and
CoLL are the cost for operation and maintenance, the fuel costs, the cost of battery
replacement and the cost of lost load, respectively.

YCs = CoOM
s + CoFuel

s + Corep
s + CoLL

s (4.29)

CoOM is calculated in equation 4.30, where Ire,OM, IBat,OM and Ige,OM are the percent-
ages of the total investment cost spent each year in maintenance and operation.

CoOM
s =

R

∑
r=1

Ure
r · Nre

r · Cre
r · Ire,OM

r + Ubat · CBat · IBat,OM +
G

∑
g=1

Uge
g · N

ge,int
g · Cge

g · I
ge,OM
g

(4.30)

Another important element to incorporate in the model is battery ageing. In this
work, it is assumed that the battery lifetime has an inverse relation with the number
of charging/discharging cycles performed by the battery. The maximum number of
equivalent full discharge cycles (Cybat) is provided the battery manufacturer and is
considered as an exogenous input to the model.

To calculate the replacement costs of the battery (Corep) linked to ageing, equation
4.31 is used. Urep is the unitary battery replacement cost, expressed in USD/kWh,
and is calculated in equation 4.32. It is assumed that power electronics is not subject
to ageing. The replacement cost is therefore given by the difference between total
battery cost (Ubat, in USD/kWh) and the cost for the power electronics (Uelec, in
USD/kWh) divided by the total number of equivalent full cycles.

Corep
s =

1
2
·

T

∑
t=1

Ebat,ch
s,t ·Urep +

1
2
·

T

∑
t=1

Ebat,dis
s,t ·Urep (4.31)

Urep =
Ubat −Uelec

Cybat · (1− DOD)
(4.32)

Finally, Equation 4.33 is used to calculate CoLL, where ULL is the value of lost load,
defined as an exogenous input to the model.



4.3. Conclusions 55

CoLL
s =

T

∑
t=1

ELL
s,t ·ULL (4.33)

4.3 Conclusions

In this chapter, a two-stage stochastic optimization framework for isolated micro-
grids in a rural context is presented. The problem is formulated as an LP/MILP
optimization that allows sizing the components of the microgrid under uncertainty.
It allows integrating the uncertain parameters and the particular context in which
each project is carried out, which is key in rural electrification planning.

In the following chapters, this modeling framework will be declined and adapted for
different situations, ranging from the optimization of individual solar home systems
to the simulation of many microgrid topologies across the country.
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Chapter 5

Case Study: The "El Espino"
microgrid

A preliminary version of this chapter was published in:

Balderrama, S., Haderspock, F., Canedo, W., Orellana, R., & Quoilin, S. (2018).
Techno-economic evaluation of rural electrification in Bolivia: lessons learned from
the "El Espino" micro-grid. In ECOS 2018-Proceedings of the 31st International
Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact
of Energy Systems (pp. 164-164). ECOS Association.

Balderrama, S., Lombardi, F., Riva, F., Canedo, W., Colombo, E., & Quoilin, S.
(2019). A two-stage linear programming optimization framework for isolated hybrid
microgrids in a rural context: The case study of the "El Espino" community. Energy,
188, 116073.

For the last ten years, Bolivia has gone through a period of economic growth and
political stability without precedent in its 200 hundreds years of history. Under this
context, the government has established an agenda to improve the infrastructure of
the country. One of the most ambitious objectives is reaching 100 % of rural electrifi-
cation coverage by 2025. This plan counts with the support of different international
and national organizations. Furthermore, it has a comprehensive approach with
solutions varying between grid extension, grid densification, the use of PV home
systems and the use of hybrid systems for the electrification of rural isolated com-
munities.

Hybrid microgrids are one of the most promising technologies for electrification of
isolated rural communities in a reliable and efficient way. The use of renewable
energy reduces the environmental impact and increases the village resilience to ex-
ternal conditions [17]. Despite its numerous advantages, this technology has never
been used in Bolivia for rural electrification prior to 2015. For this reason, the Bo-
livian government has established a pilot plant in a rural community to assess its
viability.

The community of "El Espino" was selected as beneficiary for the unit. The system
design was led by a private entity with several years of experience in isolated sys-
tems. One of the main objectives of the sizing process was to ensure between 60 and
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70 % renewable energy penetration and a battery capacity providing one day of au-
tonomy. In this chapter, an ex-post analysis of the hybrid system is performed. The
main objectives are the following:

1. To provide and describe historical monitoring data for an existing microgrid
system in Bolivia.

2. To derive suitable component models from the data.

3. To propose an optimal dispatch strategy and compare it with the current one.

4. To apply a two-stage stochastic optimization which considers the main de-
mand and resource uncertainties.

5. To test different approaches to deal with uncertainties and establish best prac-
tice guidelines.

6. To illustrate typical errors at the moment of sizing and operating an isolated
system.

The monitoring data covers the time period from January, 1st 2016 to July 31st, 2017
with a time step of 5 minutes. The model presented in chapter 4 is used to analyze
the system and compare it to an ideal case with optimal sizing and control.

5.1 The "El Espino" hybrid system

The first hybrid isolated microgrid for rural electrification in Bolivia is located in
the rural community of “El Espino" (-19.13,-63.20) and it is part of the comprehen-
sive plan to reach a 100% of rural electrification by the year 2025. It is installed in
the southeast part of the country, 207 km away from the city of Santa Cruz de la
Sierra by car. One of the purposes of the microgrid is to act as a proof-of-concept
before engaging in more ambitious projects. The system was designed following
the modus operandis of relying on foreign know-how [64] and built by a national
Bolivian company.

"El Espino" is a rural Guarani community composed of 124 households, it comprises
a small clinic, administrative offices and a school. There are no important productive
activities [38], although there is a long-standing plan for the construction of a poultry
farm.

Due to the remote location and its rural conditions, the average family income is
low, with approximately 1 USD per day. Most of the community relies on agricul-
tural activities to generate this income. There are however some public servants
(teachers and medical staff) with higher income. Prior to the installation of the hy-
brid microgrid, "El Espino" was equipped with a diesel-only microgrid with a 14
kVA genset. The old generator was used for 3 hours every night to cover domestic
demands but the service was discontinued in 2008 due to high operation and main-
tenance costs. The system was managed by a community committee, with a fixed fee
of 7.2 USD/month per user. This amount was paid regardless the energy consumed
or peak demand of the different consumers.

The new project involves the participation of several key players throughout its life-
time. The project planning and supervision was carried out by the Inter-American
Bank of Development; the system design was established by an international expert;
the Santa Cruz departmental government and the central government provided the
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financing; the construction of the hybrid system was handled by a national com-
pany and, finally, the operation and maintenance is performed by a local company
("Cooperativa Rural de Electrificacion").

During the project assessment phase, the expected energy demand of the system
was 90 MWh/year for the first year and a peak demand close to 40 kW. By the end
of the project, the expected demand was 248 MWh/year with the a peak load close
to 66 kW and 235 connected households.

5.1.1 System Description

The microgrid consists of a PV array connected to an inverter, a battery bank con-
nected to a bi-directional inverter and a diesel generator. The nominal capacities
are detailed in Table 5.1 and the layout of the system is shown in Figure 5.1. The
microgrid started operation in September 2015, but the available data used in this
study covers the period from 01/01/2016 to 31/07/2017. The time resolution of the
measurement is one hour, except for the diesel consumption, which is collected once
every day. A summary of the measured variables is provided in Table 5.2

FIGURE 5.1: Layout of the microgrid "El Espino". The numbers refer
to the collection data points in Table 5.2.

TABLE 5.1: “El Espino" microgrid: Technical information.

Equipment Total capacity manufacturer model

PV 60 kW Yingli Solar YL250P-29b

Battery 464 kWh BAE Secura 24 OPzS 3000

Genset 58 kW Cummins C80 D5

Bi-directional inverter 99 kW SMA Sunny Island 8H

Solar inverter 51 kW SMA
SUNNY TRIPOWER

17000TL

The next sections of this chapter are organized as follows: section 5.2 analyzes the
energy flows and efficiency of the microgrid, section 5.3 proposes an optimal dis-
patch strategy and section 5.4 analyzes different sizing models based on this case
study.
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TABLE 5.2: Data collection points.

Recollection Point Data collected

PV array (1) Module temperature (oC)

Solar inverter (2) PV power (W)

Bi-directional inverter (3)
Battery power (W)

Genset power (W)

Genset (4) Diesel (l)

Meteorological station
Ambient temperature(oC)

Radiation (W/m2)

5.2 Data Analysis

Although the system regulation strategy is not known, a careful analysis of the his-
torical data allows to infer the following rule-based control strategy for the diesel
generator and the charge/discharge of the batteries:

• Priority is given to solar energy.

• If there is PV energy surplus, it is used to charge the battery.

• If solar cannot meet the demand, the battery is discharged until it reaches 50 %
of DOD.

• When both the battery and solar energy cannot meet the demand, the genset
is used for sometime.

• In order to ensure an acceptable efficiency of the generator, the minimum en-
ergy output is set to 80 %.

• The genset can charge the batteries if the demand is lower than its minimum
power output.

This control strategy is visible in Figure 5.2, showing the historical energy flows for
a week of December 2016. It appears that the peak power of the diesel generator is
well above the peak load, which limits its utilization to a few hours per day. This
oversizing is explained by the fact that the Bolivian government subsidizes diesel
fuel costs for isolated microgrids, at the condition that the genset has a high effi-
ciency and that it can supply 100 % of the energy demand. The sizing has therefore
been carried for an expected worst case scenario, which did not realize in practice.

With the above control strategy, the genset starts operating around 3 am and is
mainly used to fill the battery due to the low demand at this time of the day. This
leads to a half-full battery when the PV array starts to produce energy, obliging to
curtail PV generation when the battery is full.

5.2.1 Energy Demand

As indicated in Figure 5.1, the measured load curve can be evaluated as a sum of
the measurement points 2, 3 and 4. This is done in equation 5.1, where PDe is the
demand, PPV is the PV power and Pge is the generator power. Pbat is the power of
the battery and is positive if it is discharging and negative when charging.
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FIGURE 5.2: Real Energy Flow for “El Espino" microgrid

The load duration curve (LDC) and average daily demand are shown in Figure 5.3.
During the design phase of the microgrid, a first-year peak demand of 41.8 kW and
a last-year peak demand of 66.3 kW were forecast. After more than one year of
operation, the maximum measured demand is 25.3 kW, indicating a clear an overes-
timation of the demand.

The energy consumption starts to rise at 8 a.m., and this trend continues until a
period (2 p.m. to 5 p.m.) of relatively stable demand, after which the consumption
experiences an abrupt increase until 20 p.m. From this point on, the energy supplied
to the village decreases until 7 a.m. of the next day. The energy consumption for the
2016 year was 84.4 MWh, which is in line with the expected demand in the initial
forecast.

PDe
t = PPV

t + Pge
t ± Pbat

t (5.1)

5.2.2 Diesel genset

The diesel generator is the backup energy source of the isolated system. It is used
at times when the PV array and the batteries cannot meet the energy demand. This
happens 10.4 % of the time, as shown in Figure 5.4. In order to maintain an ac-
ceptable efficiency, the diesel generator does not operate below 80 % of its nominal
capacity. The genset normally operates between 7 pm to 9 am, with the highest op-
eration at 5 am. To calculate the efficiency of the diesel generator, the daily diesel
consumption data from 01/01/2017 to 30/06/2017 is used. With this information
and the energy produced by the genset during this period, an average efficiency
of 31.1 % is calculated (Table 5.3). As the southern hemisphere winter solstice ap-
proaches and the PV radiation drops, a higher usage of the genset is stated to meet
the demand.

5.2.3 Battery Bank

A lead-acid battery bank is installed as storage technology for the "El Espino" micro-
grid. According to the measurements, it is charging 42.6 % of the time, discharging
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FIGURE 5.3: Average daily and load duration curves for the period
01/01/2016 to 31/07/2017.

TABLE 5.3: Performance data for the period 01/01/2017 to
30/06/2017

Month Energy (kWh)
Diesel

Comsuption (l)
Efficency

(%)
January 1667 688 24.5

February 2223 740 30.3
March 3395 1129 30.4
April 3853 1150 33.8
May 5107 1518 34
June 4538 1359 33.7

57 % of the time and it is unused 0.4 % of the time. On average, the battery starts to
charge at 3 am until 5 pm. At this moment the discharge phase starts (Figure 5.5 ).
The state of charge (SOC) cannot go below 50 %; this value is set by the grid operator
to avoid excessive ageing. The maximum SOC is around 3 pm and the minimum at
3am (Figure 5.5). Finally, the calculated average round trip efficiency of the battery
is 74.2 %.

5.2.4 PV array

The PV array with batteries has an average power output of 13.8 kW, the maximum
power reached is 51 kW and there is energy production 48.8 % of the time. If the
average energy output of the PV array is compared with the average solar irradiation
profile, there is a mismatch in the peaks of both profiles (Figure 5.6). This mismatch
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FIGURE 5.4: Load duration curve (LDC) and average power produc-
tion of the genset for the period 01/01/2016 to 31/07/2017.

happens when the PV power output is larger than the demand and the SOC of the
battery bank is close to 100 %. In that case, the MPPT trackers moves away from the
point of maximum PV generation and therefore curtails the excess PV generation.

The curtailment of energy is also illustrated in Figure 5.2: until the state of charge of
the battery reaches 92 % the PV production is higher than the demand, but from this
point it decreases suddenly and equalizes with the demand.

The five-minute historical efficiency data (calculated according to equation 5.2) is
displayed in Figure 5.7 as a function of the state of charge of the battery and of the
ambient temperature. It appears clearly that there is a lot of scattering in the data,
which is due to the variations of the other parameters. Curtailment also appears
very clearly in this figure: for some SOC values, the efficiency drops significantly
until reaching zero.

ηPV =
PPV

Iglo · APV · NPV (5.2)

Equation 5.2 is applied to the whole historical data set. PPV is the power of PV array
in a given moment, Iglo is the global incident irradiation on the tilted PV array, NPV

is the number of panels and APV is the surface of one PV.

PV modeling

In this section, the historical PV data is used to fit a realistic data-based efficiency
curve as a function of the main boundary conditions of the PV array. The monitoring
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FIGURE 5.5: LDC and average power production of battery for the
period 01/01/2016 to 31/07/2017.

data reveals that there are significant amounts of PV power curtailment in the system
(Figure 5.7). This data should therefore be discarded to avoid biasing the fitting
process. In order to select the most reliable data points, the following filtering rules
are applied:

• The data points corresponding to high state of charge of the battery and there-
fore to a high probability of curtailment are discarded. A threshold of 85% is
selected after a visual analysis of Figure 5.7

• The data points with unrealistically high efficiency (higher than 16%) are con-
sidered as outliers and discarded

• The data points corresponding to a low solar irradiation (< 250 W/m2) are
filtered out since the uncertainty on the calculated efficiency linked to mea-
surement errors is high.

The selected observations are used to perform a non-linear regression with the effi-
ciency as the dependent variable (target), and radiation, air mass and ambient tem-
perature as the independent variables (features). In total, 18805 data points are used
as training set.

A preliminary analysis of the data is performed using the covariance matrix and the
scatter plot matrix (both provided in Annex E). The analysis reveals that the rele-
vant variables to predict the PV efficiency are the solar irradiation, the pv module
temperature, the ambient temperature and the hour of the day. The PV module tem-
perature is not a variable which is directly available for the prediction of the system
performance in random conditions since it itself depends on the irradiation and on
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FIGURE 5.6: Average PV and solar irradiation for the period
01/01/2016 to 31/07/2017.

the ambient temperature. It is therefore removed from the input space. Furthermore
the hour of the day only has an indirect influence on the PV performance: it influ-
ences the air mass and solar angles, which in turn have a direct influence on the PV
efficiency. As a consequence, the hour of the day is not directly used as an input
variable, but it is replaced by the air mass, which depends on the location (latitude,
longitude), on the position of the sun and on the day of the year. It is calculated
using the open-source pvlib Python library, which integrates the appropriate equa-
tions for calculation of the relevant solar angles, of the declination angle and of the
equation of time [98].

The final formulation of the the efficiency curve should therefore have the generic
form: ηPV = f (G, T, AM), where G is the solar irradiation, T is the ambient temper-
ature and AM is the air mass. In order to ensure a realistic shape of the efficiency
curve, in line with previous experimental works on real systems, the following gen-
eral efficiency equations adapted from [99] and used in this work:

ηPV = p ·
[

q · G
G0

+

(
G
G0

)m]
·
[

1 + r · T − T0

T0
+ s · AM

AM0
+

(
AM
AM0

)u]
(5.3)

where the nominal irradiance G0 = 1000W/m2, the nominal temperature (in Kelvin)
T0 = 298K, and the reference air mass AM0 = 1.5. p, q, m, r, s, u are the parameters
of the equation to be fitted with the historical data.

Equation 5.3 allows ensuring a realistic behavior of the efficiency curve, even in the
regions of the multidimensional input space where no reliable data was available
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FIGURE 5.7: Measured PV efficiency as a function of the ambient tem-
perature and of the battery state of charge (SOC)

for the regression process. This is especially true for the region of low solar irradi-
ation, in which excessive scattering was stated in the data and which was therefore
removed.

The non-linear regression is achieved solving the nonlinear least-squares problem
on the training dataset. The scipy Python library is used to perform the regression
and the obtained parameters are provided in Table 5.4.

TABLE 5.4: Obtained regression coefficients.

p q r m s u
0.1496 -0.2688 0.0162 -0.4003 -1.0161 1.0043

The final efficiency curve is 3-dimensional. It is provided in Figure 5.8 by fixing the
air mass to 1.5 and varying the two remaining features. The adverse effect of the
temperature on the PV efficiency clearly appears, with a loss of about 1% efficiency
point with a temperature increase of 30 K.

Applying the resulting fitted model to the whole dataset, it is possible to calculate
the PV array power output in optimal operating conditions. The measured daily
average PV power curve of "El espino" has its peak at 10 am and decreases faster
after the peak in comparison to the fitted curve, which has a peak around midday
and closely follows the solar irradiation. The mismatch between irradiation and
measured data is caused by the energy curtailed after 10 am. The energy produced
by the PV array is 93.3 MWh whereas the energy calculated with the regression is
126.1 MWh. In other words, the generated power from the PV array is 26 % lower
than the power that would be generated if it was always operating at its maximum
efficiency (Figure 5.9).
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FIGURE 5.8: Predicted PV efficiency as function of the ambient tem-
perature and solar irradiance for an air mass of 1.5

FIGURE 5.9: Mean daily PV power measure and regression and irra-
diation in the microgrid "El Espino".

5.2.5 Microgrid analysis

Once the demand and each of the components of the microgrid have been analyzed,
their interactions within the whole system can be considered. Figure 5.10 shows
the average daily energy flows during the analyzed period. Most of the day, the PV
array produces enough energy to meet the demand and the surplus is used to charge
the batteries. Batteries start their main discharge phase around 4 pm when the PV
energy is insufficient to supply the demand. The energy stored in the battery bank
is sufficient to meet the demand until 1 am. The genset works primarily during the
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night when the battery bank has reached its minimum state of charge. Interestingly,
most of the genset power is used to charge the batteries, and only a small fraction is
used to cover the demand (which is low at that time of the day) as shown in Figure
5.11. This has the consequence of partially filling the battery during the night which
leads to PV energy curtailment during the day. This also has the effect of decreasing
the total available energy, due to the low round trip efficiency of the battery.

From the total energy produced by the system, 57 % comes from the PV array and the
rest from the genset. This value is below the objective of 70 % renewable penetration,
in part due to the PV energy curtailment (26 % of the total energy produced). The
PV energy that goes directly to the consumers is 32 % and 42 % to the battery. It is
noteworthy that the analyzed values correspond to the first operations years of the
system. With the expected increase in electricity demand in future years, it is likely
that renewable penetration will decrease.

FIGURE 5.10: Average daily energy flows.

FIGURE 5.11: Sankey diagram for the energy flow in the "El Espino"
microgrid from the 01/01/2017 to 30/06/2017.
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5.3 Optimal dispatch for the "El Espino" hybrid MicroGrid

To assess the efficiency of the actual control strategy of the microgrid, the current
dispatch of energy is compared to an ideal (optimal) case.

For that purpose, the objective function of the optimization model (4.21) is modified
to take into account the variable operation cost only, as described in equation 5.4.
This optimization uses the historical demand and PV (without curtailment) time
series (from 01/01/2017 to 30/06/2017). The nominal capacities of the battery and
genset are imposed to their nominal values in the actual microgrid.

Techno-economic data is summarized in Table 5.5. The operational cost of the battery
is set to a small value to avoid unintended storage cycling, which can be seen as
an additional curtailment of energy, as described in [100]. Although most isolated
system in Bolivia benefit from a fixed, subsidized prices for diesel, in this work, a
more representative price from the Bolivian market (0.53 USD/l) is adopted, plus
0.17 USD/l for the transportation of fuel to the village. The efficiency curve of the
genset is taken from the manufacturer data sheet.

CoFuel
s + Corep

s + CoLL
s (5.4)

The optimization results indicate that the main change between the actual and opti-
mal strategy is the operation time period of the genset, which is shifted to the hours
of high demand, as shown in Figure 5.12. This avoids overcharging the battery in
the morning and therefore results in lower curtailment.

The optimal dispatch saves 40 % of the diesel cost compared to the historical data,
which is explained by a better exploitation of the solar resources. In some particular
cases, the optimization even leads to curtailing energy from the genset rather than
charging the battery. This is the result of a combination of the operation characteris-
tics of the genset (in particular the 80% minimum load) and a limited battery round
trip efficiency. Globally, because of a better timing of the generator operation, cur-
tailment is significantly decreased, which indicates a clear margin for improvement
in the current control strategy.

FIGURE 5.12: Optimal Energy Flow for “El Espino".
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TABLE 5.5: Techno-economic parameters for the optimal dispatch

Parameter Unit Value

Periods (t) hours 4344

δt hours 1
LLP % 0

ULL USD 0

ηbat,dis % 86

ηbat,ch % 86

δtbat,dis % 4

δtbat,ch % 4

DOD % 50

Cybat cycles 1200

Cbat kWh 464

ηre % 100

U f uel USD/l 0.7

ηge % 39.1

LHV kWh/l 9.9

Imin,ge % 80

Icost % 10

Nge,int
g Units 1

Cge
g kW 58

TABLE 5.6: Results of the optimal dispatch model.

Variable
Optimal Dispatch

58 kW

Fuel Cost (USD) 2755

Curtailment (%) 0.7

Renewable Penetration (%) 85.3

Battery Usage (%) 58.5

5.4 Optimal sizing of the microgrid

As detailed in Chapter 4, there is an inherent uncertainty in the energy output of re-
newable sources and demand in rural villages. This thesis proposes a sizing frame-
work optimization that takes this uncertainty into account and can be adapted to
the needs of practitioners around the world. To illustrate its abilities, the "El Espino"
microgrid is re-sized using the optimization model and then compared to the actual
values, in an attempt to formulate best practice guidelines at the moment of sizing
microgrids.
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To remain as close to the real system as possible, the genset data from the manufac-
turer is used. The PV output is computed using the regression presented in section
5.2.4. The other techno-economic parameters required for the MILP sizing model are
reported in Table 5.7. Table 5.8 summarizes the characteristics of each instanciation
of the sizing model and assigns them an identifier.

In this optimization and in the further development of this thesis, unless it is ex-
plicitly written, equations 4.19 (Renewable energy penetration) and 4.20 (Battery
autonomy) are not considered as constraints in the optimization.

For the sake of computational efficiency, the MILP formulation is tightened by bound-
ing the variables in a way that only feasible results are considered. This is done by
setting lower and higher values of the most relevant variables, as shown in Table 5.9.
The maximum MILP gap is set to 0.8% and the maximum running time is set to 300
000 (s).

Finally, variations of the optimization problem are defined to assess their sensitivity
on the sizing results. The parameters distinguishing the simulations are the follow-
ing:

• LP/MILP formulation.

• Number of considered scenarios.

• Economic and technical conditions (2012 or 2018).

• Presence or not of exogenous constraints on the renewable penetration and on
the battery size.

These differences can be recognized in the identifiers of the instances (Table 5.8),
where the first word (MILP, LP) indicates the formulation, the word ”Renewable”
indicates the presence of renewable penetration target, the word ”deterministic” in-
dicates a formulation with one single scenario and the number (18 or 12) indicate the
reference year for the cost parameters.

5.4.1 Energy demand scenarios

The selected period of the demand goes from the 2016-03-21 to 2017-03-20. From
this information, 10 synthetic yearly profiles profiles are generated with a 1-hour
time resolution using the methodology described in Chapter 2.2.1. In addition to
the shape of the demand profile, an additional stochastic parameter is considered:
the absolute value of the yearly electricity demand. The latter and its yearly growth
indeed significantly impact the design process, as demonstrated by Rivas et al. [77].
To that aim, the times series are scaled by a factor whose probability distribution is
averaged based on a survey sent to three local experts in rural electrification. The
probabilities for the scaling factor values evaluated by these experts are reported in
Figure 5.13. At the light of the latter, even among experts on the subject, there are
wide uncertainties regarding the most likely demand evolution of a rural village.

5.4.2 Additional PV energy scenario

In order to consider more than one PV generation profile in the simulations, a second
dataset from a meteorological station (located 29 km southeast of the microgrid)
from the 2013 year is used. The timeseries cover the period from 2013-03-21 to 2013-
31-12, follow by the period of 2013-01-01 to 2013-03-20. This is done to have a similar
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TABLE 5.7: Techno-economic parameters for the MILP optimization.

Parameter Unit Value

Periods (t) hours 8760

Project life time (y) years 20

∆t hours 1

e % 12
LLP % 0

ULL USD/kWh 0

Ubat USD/kWh 550

Uelec USD/kWh 220

IBat,OM % 2

ηdis % 95

ηch % 95

∆tbat,dis hours 4

∆tbat,ch hours 4

DOD % 20

Cybat cycles 5500

Cre kW 0.25

ηre % 100

Ure USD/kW 1500

Ire,OM % 2

Uge USD/kW 1480

Ige,OM % 2

U f uel USD/l 0.7

ηge % 39.1

LHV kWh/l 9.9

Ige % 50

Icost % 10

Ure, f ix
r USD 0

Ubat, f ix USD 0

Cge
1 kW 15

Cge
2 kW 30

temporal coverage with respect to the available measurement in "El Espino". In
these time-series, the collected information is the direct and diffuse irradiation on a
horizontal surface and the ambient temperature. An isotropic sky model is then used
to derive the value of the total radiation on a tilted surface [98]. The radiation and
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TABLE 5.8: Instance characteristics.

Tecno-economic
charatecteristic

Type of
optimization

Number
of stochastic

scenarios

Renewable
penetration
and battery
autonomy
equations

Name of
the instance

18 MILP 10 No
MILP

18

18 MILP 10 Yes
MILP

Renewable
18

18 MILP 1 No
MILP

Deterministic 18

18 MILP 1 Yes
MILP

Deterministic
Renewable 18

18 LP 10 No
LP
18

18 LP 10 Yes
LP

Renewable
18

12 MILP 10 Yes
MILP

Renewable
12

TABLE 5.9: Lower and higher bounds for the variables in the MILP
optimizations.

Variable lower bound upper bound

Nge,int
g (15 kW) 0 3

Nge
s,g,t (15 kW) 0 3

Nge,int
g (30 kW) 0 2

Nge
s,g,t (30 kW) 0 2

Nre
r 0 1000

Cbat 0 1000

Ebat,ch
s,t 0 1000

Ebat,dis
s,t 0 1000

Pbat,ch 0 1000

Pbat,dis 0 1000

ECurtailment
s,t 0 500

PV temperature are used in conjunction with the fitted model developed in section
5.2.4 to calculate the PV energy output under these meteorological conditions.
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FIGURE 5.13: Probability of occurrence for the analyses scenarios
from “El Espino" microgrid

5.5 Results and Discussion

The two PV energy outputs time series are combined with the 10 stochastic demands
to create 10 plausible scenarios. In order to ensure computational tractability, and as
suggested by Klotz and Newman [101], a partial solution (warm start) is provided to
the solver. For scenarios without the renewable constraint the partial solution passed
to the solver comprises 2 gensets of 15 kW and none of 30 kW. For the instances with
the renewable constraint, the values passed to the solver are one genset of 15 kW
and none of 30 kW.

5.5.1 Baseline simulation

In the baseline simulation, referred to as MILP 18 in Table 5.8, two possible genera-
tors nominal capacities are selected (15 and 30 kW) and their final number is left to
the optimizer. The rest of the techno-economic parameters are those defined in Table
5.7. Li-Ion batteries are selected as the storage technology for these simulations since
they have become one of the most relevant storage technologies in the recent years.
Their advantages compared to the lead acid batteries installed in the current system
include, among others high cycling capabilities, deep discharge and a recent sharp
decrease in price.

Results for all MILP optimizations are shown in Table 5.10. For MILP 18, there is
a renewable energy penetration of 22.2 % of the total demand in the village. Two
gensets of 15 kW cover most of power demand in the system but cannot, however,
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cover the peak load in some scenarios. In these cases, the capacity deficit is covered
by the batteries. These batteries supply 4.7 % of the demand.

TABLE 5.10: Results of the MILP optimizations.

Variable
MILP

18

MILP
Renewable

18

MILP
Deterministic

18

MILP
Deterministic

Renewable
18

MILP
Renewable

12

PV rate
(kW)

17 56.5 22.5 56.3 56.2

Battery
rate (kWh)

44.4 357 42.8 357 571

15 kW
genset

number
2 1 1 1 1

30 kW
genset

number
0 0 0 0 0

NPC
(Thousand USD)

225 417 200 414 585

LCOE
(USD/kWh)

0.29 0.54 0.26 0.53 0.75

Curtailment
(%)

0 0.9 0 0 0.8

Renewable
penetration (%)

22.2 70.4 29.2 70.8 70

Battery
Usage (%)

4.7 38.8 8 38 38.4

MILP
gap(%)

1.2 0.3 0.8 0.2 0.7

Solving
Time (s)

300 169 5 007 10 784 115 3 074

5.5.2 Effect of renewable and storage capacity targets

The microgrid of "El Espino" was designed to meet two objectives; to reach a battery
storage capacity for one day of autonomy and a renewable energy penetration of 70
%. To enforce these objectives in the model, equations 4.19 and 4.20 are added to the
optimization. In that case (MILP Renewable 18), the new optimal system heavily
invests in PV and Batteries and only one genset of 15 kW is installed. The generator
is undersized compared to the peak demand thanks to the possibility to cover most
of it with the PV and storage.

The dispatch strategy in this scenario is shown in Figure 5.14. During the day, so-
lar energy can meet most of the energy needs of the village and charges the battery
when there is energy surplus. During the night, a combination of diesel generator
and battery are used to meet the demand. The LCOE of the system increases signif-
icantly as a consequence of the two hard constraints added to the optimization. As
shown in Figure 5.15, the system benefits from a better dispatch strategy. This can be
seen by a lower flow from the genset to the Battery and smaller curtailment of solar
energy, leading to a more efficient system overall.
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FIGURE 5.14: Energy Flow for MILP renewable 18 instance

FIGURE 5.15: Sankey diagram for the energy flow in the Renewable
18 instance.

5.5.3 Renewable baseline scenario with older technology and costs

In 2012, when the real system was designed, the chosen technology was lead-acid
batteries, as Li-Ion ones were not a mature technology. In comparison to Li-Ion,
lead-acid batteries have lower cycling capacity and cannot perform deep discharge.

To ensure a fair comparison between the original design and the optimal sizing pro-
posed in this thesis, an additional simulation is defined to analyze the impact of
recent developments in battery technology. Technical and economic data are up-
dated as shown in Table 5.11. Additionally, the PV investment is adapted to reflect
the higher costs in 2012. Using the actualized data, the optimal system corresponds
to a similar PV nominal capacity than the MILP Renewable 18 instance as the pen-
etration constraint has to be respected. The lower technical capacities of the old
storage technology leads to a higher capacity in 60 %. The higher operation cost of
the Lead-acid technology and higher PV price generate an important increase in the
LCOE and NPC.
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When comparing the installed capacities of the PV and Batteries, it appears that
the sizing model is quite close to the real values (Table 5.1). The main difference is
the installed capacity of the diesel generator, where the two-stage stochastic model
demonstrated that a lower rated power is able to better match the demand profiles
while using the batteries to cover the peaks in high-demand scenarios. This, coupled
with a more adaptive strategy, leads to a significantly smaller energy curtailment
than the rule-based dispatch approach used by the grid operator.

TABLE 5.11: Updated Techno-economic parameters for the Renew-
able 12 instance.

Parameter Unit Value

DOD % 50

Cybat cycles 1200

Ubat USD/kWh 440

Ure USD/kW 1700

5.5.4 Impact of model formulation

The intensive computational effort needed to solve two-stage MILP problem can
become a prohibitive constraint at the moment of sizing isolated systems. This is
especially true in developing countries, where practitioners may not have the com-
putational or technical resources to solve these complex problems. For this rea-
son, in the following sections, we relax the two-stage MILP model to explore less
computationally-intensive alternative formulations and evaluate their impact on the
adequacy of the system.

Deterministic vs. Probabilistic formulation

Sizing the microgrid system in a deterministic framework involves calculating the
expected demand and solar energy output of the system and solving the sizing prob-
lem with the number of scenarios set to one. The expected demand (Dexp) and re-
newable energy (Ere,exp) time series are calculated using equations 5.5 and 5.6. The
sizing results (Table 5.10) show that only one genset is chosen instead of two. This
is explained by the fact that extreme events are more easily overlooked with a single
scenario. The optimal sizing in this case leads to a lower NPC, but also to a less
robust system because of the impossibility to cover the peaks in high demand sce-
narios. In particular, the additional cost associated with a more robust system is 11
% of the base scenario cost. In the instance with high renewable penetration, the
under-sizing is mitigated by the battery and PV size constraints. The decrease in
NPC and LCOE remains limited in this latter case (0.6 %).

Dexp
t =

S

∑
s=1

Ds,t · Ioccurrence
s (5.5)

Ere,exp
r,t =

S

∑
s=1

Ere,u
s,r,t · Ioccurrence

s (5.6)
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Linear programming vs mixed integer linear programming formulation

As stated before, generators’ operational limitations have an impact on the sizing of
the microgrid. To account for this, the model is formulated as MILP, which leads to
a higher computational effort than solving the equivalent LP version of the problem.
To assess the impact of these constraints, the same model is solved in its LP formu-
lation, and the results are provided in Table 5.12. For the instance LP 18, there is a
lower participation of renewable energy due to an decrease in installed PV capacity
(- 37.9 %). Battery storage is not installed and its contribution to supply the demand
drops from 4.7 % to 0 %. These effects are explained by the increased flexibility of
the genset, which is now able to operate at lower power output and has a slightly
larger installed capacity than the MILP formulation. For the LP renewable 18 in-
stance, similar values are found if it is compared to the MILP renewable 18 instance.
This is explained by the higher share of PV and battery capacity, and thus by the
decreased importance of the generator in these simulations.

TABLE 5.12: Results of the LP optimizations.

Variable
LP
18

LP Renewable
18

PV rate (kW) 10.6 56.1
Battery rate (kWh) 0 357

Generator rate (kW) 41.1 13
NPC (Thousand USD) 210 412

LCOE (USD/kWh) 0.27 0.53
Curtailment (%) 0.1 0.8

Renewable
penetration (%)

13.8 70

Battery
Usage (%)

0 38.6

Solving
Time (s)

142 144

5.6 Conclusions

In this chapter, historical operation data from the first isolated microgrid for rural
electrification in Bolivia (“El Espino") is analyzed. A suboptimal microgrid design
and un-flexible control strategy have led the system to curtail 26 % of the total solar
energy available. Furthermore, the surveys to the experts on rural electrification
show a high degree of uncertainty when forecasting the energy demand on rural
microgrids.

An evaluation of and optimization of the control strategy and the energy dispatch
is performed to assess the progress margin in terms of control strategy. Because of
a non-optimal control in the actual system, the generator is forced to start at times
of low demand, which leads to significant energy curtailment during daytime. This
situation could be easily solved with the implementation of a more advanced control
strategy.

To evaluate the capabilities of the model presented in Chapter 4, a new sizing of
the existing system is realized with different objectives, technological parameters
and methodologies. Overall, the optimal design results from a compromise between
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NPC, peak installed capacity and flexibility (to balance variable generation). In low-
demand scenarios, the microgrid mostly relies on renewable energy and batteries to
cover the energy consumption of the village. In high-demand scenarios, gensets are
used more intensively and the battery bank provides the needed flexibility to the
microgrid. Using the original cost data, the optimal sizing leads to similar installed
capacities for PV and batteries than in the real system. However, the installed gener-
ator appears to be significantly oversized for the demand. One or two lower-capacity
units would lead to improved part-load efficiencies and increased microgrid flexi-
bility.

Different approaches to size isolated microgrids are tested, with the conclusion that
methods accounting for the uncertainty in the demand and renewable generation
lead to a more robust configuration and also impact on the final levelized cost of
electricity. The results also indicate that model formulation plays a key role, e.g.
by overestimating the flexibility of diesel gensets in an LP framework, and that the
limitations of all simplifying hypotheses should be well understood when sizing
such a system.

Finally, the following lessons learned can be extracted:

1. MILP-based stochastic optimization models generate the most robust system
configuration.

2. LP models provide good estimates of the cost of the system, but tend to overes-
timate the flexibility of generators, leading to lower installed capacities of PV
and batteries. This effect can be minimized if the system is designed for high
renewable penetration.

3. Deterministic system design consumes less computational resources than its
probabilistic counterpart, but provides less reliable system designs. It also un-
derestimates the costs since the expected demand does not have high power
peaks as the higher energy consumption scenarios.

4. In all cases, the genset nominal capacity should be lower than the peak de-
mand.

Rural electrification planning is a challenging task due to the uncertain parameters
and to the particular context in which each project is carried out. For this reason, this
work proposes a methodology to size the system using only the available, partial
and uncertain data at hand. This data is deemed representative of the available
information from practitioners around the world, as they usually only have access
to limited demand time series and rely on their own knowledge of the context of the
location.
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Chapter 6

A bi-objective optimization
approach for rural solar home
system sizing

The content of this chapter is based on the following publication:

Soto, A., Balderrama, S., Cardozo, E., Miguel, F., Jaime, Z., & Qouilin, S.
(2021). Exploring the Trade-off between Installed Capacity and Unserved En-
ergy in Rural Electrification. In ECOS 2021-Proceedings of the 34st Interna-
tional Conference on Efficiency, Cost, Optimization, Simulation and Environ-
mental Impact of Energy Systems (pp. 164-164). ECOS Association

In the scientific literature, multiple case studies can be found that consider solar
home systems (SHS) covering almost 100 % of the total energy demand. This typ-
ically leads to a high LCOE due to the required oversizing of the batteries to cover
worst-case periods of low solar irradiation throughout the year [102]. On the other
hand, the energy non-served can have a significant impact on the household ac-
tivities [103, 104] depending on its frequency and duration, thus jeopardizing the
objective of universal access to energy [105].

Lost load probability (LLP) and LCOE are two antagonist objectives: reducing the
former requires larger investments and therefore reduces the latter. The trade-off
between LLP and LCOE of the system can be generalized as a multi-objective opti-
mization problem. It can be visualized as a pareto front, where the trade-off between
variables is clear. The selection of the final design point does not have a formal def-
inition and often relies on subjective or non-analytical methods [106]. While this
holds true, it seems reasonable to select a point close to the bulge of the curve (knee
point) [107], as indicated in Figure 6.1. The target design point corresponds to a
region in where the change of one target does not yield excessive changes on the
other.

This chapter exposes the relationship between economic indicators (LCOE) and the
Loss of Load Probability (LLP) at the moment of sizing a SHS for rural electrification.
A method to choose a design point from the pareto front (LCOE vs LLP) is presented
and will be re-used in the next chapters when comparing competing technologies in
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FIGURE 6.1: Pareto front with the knee point, taken from [108].

rural electrification applications. The implications of the chosen system for rural
households are finally briefly discussed.

6.1 Methodology

The proposed methodology (Figure 6.2) considers the influence of the non-served
energy in relation to the activities of each household. To that aim, socio-economic
information is first gathered through different channels. This information is used
to create energy demand time series for households, following the approach pre-
sented in chapter 3. Other important inputs include PV generation time series and
the techno-economic data of each component present in the SHS.

The sizing optimization framework presented in Chapter 4 is then used to deter-
mine the PV/battery capacities that minimize the total cost of the system. Because
individual systems are simpler than community-scale microgrids, the following sim-
plifications with respect to the original framework are considered:

• The use of diesel is prohibited by enforcing a 100 % renewable system using
equation 4.19.
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FIGURE 6.2: Proposed methodology for sizing SHS for rural applica-
tions.

• The two-stage stochastic LP version of the model is selected.

In that case, the main energy balance constraint (Eq. 4.17) for scenario s simplifies
into:

Ds,t = Epv
s,t − Ebat,ch

s,t + Ebat,dis
s,t + ELL

s,t − ECurtailment
s,t (6.1)

Since there are no fuel costs and no operation costs are considered, the objective
function is the total investment cost (Eq. 4.24), which simplifies into:

Inv = UPV · CPV + Fixpv + Ubat · Cbat + Fixbats (6.2)

As mentioned before, the problem to be solved can be seen as bi-objective: the first
objective is the quality of the provided energy service is computed through LLP; the
second objective is the cost for the electricity supply and is computed through the
LCOE. To highlight the trade-off between these two competing objectives, a pareto
front is built by running the optimization multiple times under different LLP tar-
gets (Figure 6.3). It appears that providing highly reliable energy services (LLP=0)
results in prohibitively high LCOE, which would prevent the system from being de-
ployed. As a consequence, a non-negligible amount of non-served energy should be
allowed in such such systems, and will most likely be higher than those encountered
in microgrid systems or in the central grid.

Determining an acceptable ratio of energy not served (or its counterpart, the lost
load probability) is not trivial and almost inevitable involves arbitrary decisions. In
this work, in order to minimize the level of arbitrariness, a methodology is proposed
to define a trade-off point between cost indicators and LLP through the Maximum
Distances Method (MDM) [109], described in the next section. The trade-off point is
further referred to as ”Knee Point”.

6.1.1 Determining the knee point

The MDM method objective is to choose the longest segment of the possible per-
pendiculars to a line given by two points of the sizing process (LLP1, LCOE1 and
LLP2, LCOE2). The length of the line is limited by the fitted pareto curve and the line
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FIGURE 6.3: Pareto front with the results from the sizing method.

formed by the chosen points. Figure 6.4 describes the algorithm implemented for
this approach.

First, the variability of the economic indicator (LCOE) from the sizing model as a
function of the LLP is analyzed by fitting (Equation 6.3 to the pareto-optimal design
points. The quality of the regression is quantified using the coefficient of determina-
tion (R2), defined in equation 6.4. In that equation, f (x) corresponds to the predic-
tion and y is the real target value, N is the number of sizing data points and ȳ is the
average value of the independent variable.

LCOE =
a

(LLP + d)b + c (6.3)

R2 = 1− ∑N
i=1 (yi − f (xi))

2

∑N
i=1 (yi − ȳ)2

(6.4)

The extreme points of the pareto front (LLPa, LCOEa and LLPb, LCOEb), are chosen
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FIGURE 6.4: MDM algorithm.

to define a line (equation 6.5) whose slope (bs) is calculated in equation 6.6. The
offset as is then solved in equation 6.7 in terms of LLP1 and LCOE1.

LCOE = as + bs · LLP (6.5)

bs =
LCOEa − LCOEb

LLPa − LLPb
(6.6)

as = LCOEa − LLPa · bs (6.7)
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A family of lines, represented by equation 6.8, can be drawn perpendicular to equa-
tion 6.5. The slopes (bp) of these lines are constant and they are reciprocal negative
values (equation 6.9) of bs. With this information, an iterative process is defined to
calculate the length of each segment circumscribed by equations 6.3 and 6.8. A step
value (step) is defined, LLPi = LLPa is set and the following steps are is carry out
iteratively:

LCOE = ai + bp · LLP (6.8)

bp = − 1
bs

(6.9)

• The interceptor of the perpendicular line is calculated by combining 6.5 and
6.8 as shown by equation 6.10.

• The value of LCOEi where the equation 6.5 and 6.8 intersect is found by using
LLPi in either equation.

• The point (LLPii,LCOEii) where equation 6.3 and 6.8 intersect is found through
a numerical approach as implemented in [110].

• The segment length is found using equation 6.11.

• LCOEi is updated by using equation 6.12.

ap = bs + (bs − bp) · LLPi (6.10)

dj =

√
(LCOEi − LCOEii)

2 + (LLPi − LLPii)
2 (6.11)

LCOEi = LCOEi + step (6.12)

The process is carried out until LCOEi > LCOEb. At this point, the whole space has
been explored and a system configuration can be selected. The LLPi corresponding
to the longest segment is chosen and it is used in the sizing model to calculate the
final installed capacities and energy flows.

6.2 Application to the Bolivian case

A large-scale electrification program faces several logistic problems, including the
purchase, assembly and transport of thousands of SHS. This plus the Bolivian het-
erogeneous cultural and geography characteristics, makes it impossible to size an
optimal system for each household, community or region of Bolivia. Under these
circumstances, the LP two-stage stochastic sizing model is used to design a generic
system capable of meeting different demands under variable PV energy outputs and
LLP scenarios. The final capacities are defined as the knee point obtained from the
stochastically-generated LCOE/LLP curve (Section 6.1).

6.2.1 PV time series

The solar energy yield is highly dependent on the location since it is a result of the
latitude, cloud cover and other climatic or geographic characteristics in the region.
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For this reason, different time series are extracted from Renewable.ninja for the coor-
dinates of the considered Bolivian village [111]. The selected year is 2012 and the tilt
angle is set equal to the latitude. The conversion from solar irradiation to power is
simulated by assuming a commercial PV model available over the whole territory
(YL250P-29b) and applying a five parameters model as implemented in [98].

6.2.2 Demand time series

The demands were defined in chapter 3, with a total of 4 load curves of HI and
LI population of each region in Bolivia. They are paired with 16 PV energy time
series randomly chosen from Bolivian communities locations. The techno-economic
parameters are shown in table 6.1 and the LLP is varied in steps 0.05 % from 0 to 5
% and steps of 10% from 10 % to 100 %.

TABLE 6.1: Techno-economic parameters for the MILP optimization.

Parameter Unit Value

Periods (t) hours 8760

Project life time (y) years 20

∆t hours 1

e % 12

ULL USD/kWh 0

Ubat USD/kWh 550

Uelec USD/kWh 220

IBat,OM % 2

ηdis % 95

ηch % 95

∆tbat,dis hours 4

∆tbat,ch hours 4

DOD % 20

Cybat cycles 5500

Cre kW 0.25

ηre % 95

Ure USD/W 1500

Ire,OM % 2

Ubat, f ix
r USD 0

Ubat, f ix
r USD 0

6.2.3 Results

Once the different instances of the SHS have been defined, the sizing model can be
run. The results are presented in Figure 6.5 and table 6.2.
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The regression of the pareto front describing the functional relationship between
LCOE and the probability of the system not being able to supply a fraction of the
required energy (LLP) is achieved with a determination coefficient higher than 0.99.
Figure 6.5 then shows the selection of the knee points for the proposed scenario. The
points LPP = 0% and LLP = 100% are chosen to parameterize equation 6.5. The
iteration step for the maximum length search is set to 0.1 %.

FIGURE 6.5: Left; Nonlinear adjustment of the variation of NPC as a
function of LLP, graphical representation of MDM.

Table 6.2 provides the LLP at which the SHS covers the largest fraction of demand
without compromising investment in system capacity. In this case a PV of 0.46 kW
and a battery capacity of 1.16 kWh are part of the optimal system for households in
Bolivia. It is important to note that, although the LCOE is high in comparison to the
ones calculated in chapter 5, this system does not provide energy to all the activities
in the household or for public services. The difference in price can be explained
by the presence of the genset in microgrids, which allows smaller PV and Batteries
installed capacities.

With the critical point obtained in the previous section, the SHS is considered to be
sized at the point where the amount of energy supplied does not significantly affect
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TABLE 6.2: Results of the sizing process.

NPC
(USD)

LCOE
(USD/kWh)

Battery
Capacity (kWh)

PV
Capacity (kW)

Mean 1814 0.40 1.39 0.48
Standard
deviation

1453 0.32 1.13 0.39

Max 5361 1.19 3.93 1.57
Min 0 0 0 0

Knee point 1633 0.36 1.16 0.46

the LCOE of the system. It is then relevant to analyze which appliances might be
affected by the inability of SHS to supply the total of required demand.

Figure 6.6 shows the locations of the energy non served in a high consumption sce-
nario and demonstrates that the latter is significant during night time. In contrast,
most of the energy for LI households are met with this configuration as shown in
Figure 6.7. From all the present appliances (Table 3.2), the refrigerator is the most
critical with respect to the security of supply. Energy not served can lead to prob-
lems on the safety, quality and organoleptic properties of the store food. At the same
time, the thermal inertia of the equipment can ensure that the temperature range
stays in the limits for a certain period. A detailed analysis of these thermal effects is
out of the scope of the present work, but would deserve specific attention in future
works.

FIGURE 6.6: Energy dispatch for the knee point sizing in a HC house-
holds, in the days with peak demand.

6.3 Conclusion

In this chapter, a methodology to size a SHS for the remote population of a devel-
oping country taking into account the trade-off between non-served demand and
the LCOE of the system is presented. For this purpose, electrical appliances avail-
able in rural households are considered through 16 stochastic scenarios. Through
a non-linear regression, the relationship between the LCOE of the SHS and LLP is
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FIGURE 6.7: Energy dispatch for the knee point sizing in a LC house-
hold, in the days with peak demand.

determined after running multiple instances of the optimal sizing problem. Using
geometric and numerical techniques, the knee point of the curve is determined and
a SHS optimal design for rural electrification in Bolivia is proposed.

For the analyzed case study, it was found that the relationship between LCOE of
the SHS and LLP has a general form that can easily be fitted by a first-order inverse
function. This is verifiable by a coefficient of determination greater than 0.99. In or-
der to make an acceptable trade-off between the energy cost and the energy supply,
this final system is designed with the capability to provide an average of 86.3 % of
the expected demand of rural households in Bolivia, under different conditions.

The practical implications of these findings demonstrate how difficult it is to reach
energy sufficiency without backup sources such as diesel gensets. In contrast, it
is clear that SHS allow to reach a minimal access for Bolivians living in the more
isolated areas in the country. Although the real usage of these energy might diverge
from the optimal dispatch calculated by the solver, these systems can arguably cover
a significant share of the household demand and therefore cover most of the basic
needs.
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Part III

Optimal deployment of isolated
energy systems
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Chapter 7

Rural energy planning using
Geographical information systems

This chapter content is largely based on the following publication:

Peña, J., Balderrama, S., Lombardi, F., Stevanato, N., Sahlberg, A., Howells, M.,
Colombo, E., & Quoilin, S. (2020). Incorporating high-resolution demand and
techno-economic optimization to evaluate micro-grids into the Open Source Spatial
Electrification Tool (OnSSET). Energy for Sustainable Development, 56, 98-118.

7.1 Introduction

Closing the electrification gap in developing countries while addressing the climate
change goals is a complex task. The lack of information, high upfront investment
costs, social challenges and planning capacities, between others, makes this a formidable
challenge. Under this paradigm, Energy systems optimization models are typically
adopted to support policy decisions, and their usage underwent a rapid increase in
the past years [112].

However, as noted by Pfenninger et al. [113], several research gaps need to be
addressed for energy modelling to provide effective support to meet global objec-
tives. A key issue is the high complexity required by accurate and comprehen-
sive representations of future energy systems, combined with the need to ensure
computational tractability. Such trade-off between technical detail and computa-
tional tractability particularly emerges when evaluating multiple smaller-scale sys-
tems, such as micro-grids or stand-alone PV systems, within the broader picture of
a country-wide power system. From the pool of available mitigation technologies,
hybrid microgrids, either connected or disconnected to the main grid, offer an alter-
native to reduce GHG by harnessing locally-available renewable resources. This, in
addition to their modularity and capacity to adapt to a specific context [27], makes
them a key technology for the energy transition. Yet, despite their multiple advan-
tages, their exact role is still to be clearly assessed and quantified. In the framework
of rural electrification, their cost-competitiveness against grid-extension depends on
a range of factors, such as the degree of energy access to be achieved, population
density, local grid characteristics and local resources availability [68]. Different tools
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have been developed to determine, for a given country, the optimal mix of technolo-
gies to achieve full electrification, deciding between PV home systems, microgrids
and grid extension. Such tools typically combine geospatial data and power system
modelling to find the least-cost technology solutions to achieve universal access to
electricity.

For instance, Ellman [114] developed an optimization tool (REM) with high spatial
granularity that allows the evaluation of household consumption levels based on
geospatial data. The resulting model is computationally-expensive since the grid ex-
tension is performed at household level, instead of a community level. This leads to
an important increse in the quantity of individual calculations performed. OnSSET
(the OpeN Source Spatial Electrification Toolkit) [9] is another electrification plan-
ning tool which finds the least-cost path to country-scale full electrification based on
a limited, easy-to-gather set of input information. More precisely, the tool estimates
plausible demand figures for each location relying on proxies such as night lights,
road proximity and other GIS data. It compares and chooses the least-cost electrifi-
cation alternative (between standalone systems, microgrids and grid extension) for
each community, based on simplified cost functions for each category. Unlike REM,
OnSSET focuses on solutions at a community level with a strong focus on limiting
the CPU times. Cader et al. [115], in the context of the NESP project (Rural elec-
trification modelling in the framework of the Nigerian Energy Support Program),
developed a tool that includes the possibility to model hybrid microgrids at hourly
resolution throughout an entire year. This approach optimizes each community in-
dividually and therefore leads to high computational resource usage when used for
rural electrification planning.

From the available GIS-based tools for simulating the total cost of electrification in a
developing country, OnSSET was selected in this work for its openness and adapt-
ability [9]. The open-source license allows the implementation of new features in
the source code, in an efficient and transparent manner. This chapter describes some
aspects of the OnSSET electrification algorithm together with the implementation of
new features aiming at improving the representation of isolated microgrids.

7.2 The OnSSET electrification algorithm

The OnSSET algorithm minimizes the cost of reaching 100 % of electrical coverage
in a country. To that aim, it considers both the extension of the main grid and the off-
grid solutions, i.e. microgrids and individual solar home systems (Figure 7.1). The
fuel costs (most likely diesel) are first calculated in each community, taking in ac-
count the distance from the supply location. Then, the Levelized Costs of Electricity
(LCOE) for all off-grid solutions are computed from the annual load, the peak load
and the capacity factor of the analyzed technology. The LCOE of the grid densifica-
tion and extension are further computed by summing the cost of extending the low,
medium and high voltages lines. Finally, the lowest-LCOE technology is selected
for each community and relevant outputs are computed, such as as the installed
capacities or the total investment per community.

The above-mentioned technology options are economically efficient in different set-
tings. Grid extension is advisable in areas close to existing transmission infrastruc-
ture, where electricity demand makes economic sense. Microgrids are often cost-
effective in settlements outside the reach of the grid, with a sufficient density and
diversity of users that is more cost-effective to connect together than supplying each
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FIGURE 7.1: Taxonomy of OnSSET electrification alternatives,
adapted from [116].

user with standalone systems. Lastly, standalone systems are the most cost-effective
electrification solution for remote and low populated areas offering limited but life-
changing electricity service. The economics of a technology option in a given set-
tlement depend on site-specific characteristics such as demand, distance to the grid,
renewable potential and added transportation costs to diesel price. This information
together with other technology-specific data can be used to determine the LCOE of
implementing various electrification options to supply identified electricity needs.
The least-cost alternative that provides desired attributes on peak capacity and reli-
ability is advised for investment.

7.2.1 Grid extension

The LCOE for grid-extension comprise the cost of electricity generation from the
grid-connected power plants and the marginal cost of extending transmission and
distribution lines [117]. The algorithm examines where it is less costly to extend
the grid by medium voltage (MV) lines comparing to deploying off-grid technolo-
gies for each un-electrified settlement located within 50 km from the existing and
planned high voltage (HV) network [117]. This iterative process determines if the
connection of one settlement may lead to the cost-effective connection of neighbor-
ing settlements (all within a 50 km limit from HV lines) [117]. Extensions by MV
lines for distances longer than 50 km may be limited by techno-economical aspects
that are not considered in this model [118]. A comprehensive description of the siz-
ing algorithms for HV and MV transmission lines, transformers and connections of
the substations is provided in [118].

7.2.2 Microgrids

OnSSET evaluates demand on a yearly basis for specified household consumption
levels, but it does not differentiate demands from small and large populations, which
often present substantial differences in the load demand profiles. Contrary to stand-
alone technologies, microgrids include a distribution network in the settlement. The
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length of the distribution network is determined with the settlement area, electricity
demand and peak power demand [119]. Only single-source technologies are mod-
eled, i.e. solar PV-battery and diesel-only microgrids. Microgrids are sized with a
simple energy balance to meet an average peak demand using annual data on de-
mand and renewable resources availability.

As previously mentioned, since no detailed reliability considerations are included in
the sizing algorithms, intra-day and intra-seasonal effects are not captured. For PV-
battery microgrids, OnSSET estimates the generation capacity required (PV panel)
but does not explicitly calculate the size of the battery. Investment costs include the
battery cost, assumed proportional to the generation capacity. Compared to diesel-
only, solar-only microgrids require large batteries to supply electricity with compa-
rable reliability.

7.2.3 Standalone systems

For small domestic consumers, standalone solar PV and diesel generators are often
the most cost-effective solution in terms of total investment. These electrification
technologies provide a few hours of essential electricity service to power small ap-
pliances. However, standalone systems cannot provide electricity with comparable
reliability to micro-grid and grid-connected systems. In OnSSET, associated costs
for non-served energy are not assessed in standalone systems. The LCOE of PV-
standalone and diesel-standalone use location-specific data on annual solar irradia-
tion and diesel costs, respectively.

7.2.4 LCOE Calculation in the original OnSSET algorithm

OnSSET has three distinct families of electrification technologies (standalone, mi-
crogrid, grid extention) and the difference in cost between them can be explained
with the presented equations and the particularities of each technology (Figure 7.1).
All the technologies operate almost in the same way: by ensuring that the installed
capacity meets the peak demand and assuming the system can meet all the energy
required in a year.

The classical OnSSET algorithm calculates the LCOE of each community by calcu-
lating a net present cost (NPC) and a levelized cost of electricity (LCOE) as stated
in equation 7.3. Depending on the technology, this value includes different compo-
nents (Figure 7.1). The most important characteristics are summarized in Table 7.1
for the four originally-considered technologies.

In Table 7.1, CHV , CMV , CLV are the investment costs for the high, medium and low
voltage grids, including the sub-stations and transformers. Dmax is the peak load,
Dtot is the total annual energy demand, dgrid is the shortest distance to the existing
electric grid, Nhh is the number of households in the community, A is the area of the
considered zone, CF is the capacity factor of the considered technology, loc is the
location (latitude and longitude), Capgen is the installed capacity of the considered
technology (in MW), Cgen is the investment cost, Pf uel is the fuel price in USD/MWh
(the retail price of electricity in case of grid extension), Cinv is the total investment
cost (Cinv = CHV + CMV + CLV + Cgen − Csalvage), Csalvage is the discounted value of
the salvage cost after the project lifetime, C f uel is the annual fuel cost and CO&M is
the annual operation & maintenance cost. Tproject and Ttech are the lifetimes of the
project and of the installed technology, respectively.
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TABLE 7.1: Calculation of the main costs components for each con-
sidered technology in the original OnSSET algorithm

SHS Diesel Microgrid PV Microgrid Grid extension
CHV 0 0 0 f (Dmax, dgrid)
CMV 0 f (Dtot, Dmax, A) f (Dtot, Dmax, A) f (Dtot, Dmax, A, dgrid)
CLV 0 f (Nhh, Dtot, Dmax, A) f (Nhh, Dtot, Dmax, A) f (Nhh, Dtot, Dmax, A)

Capgen
Dmax
CFPV

Dmax
CFf uel

Dmax
CFPV

0
CF f (loc) Cste f (loc) Cste

Cgen f (Capgen) f (Capgen) f (Capgen) 0
Pf uel 0 f (Pre f , ttravel , Ctruck) 0 Cste
C f uel 0 Dtot · Pf uel 0 Dtot · Pf uel
CO&M α · Cinv α · Cinv α · Cinv α · Cinv
Csalvage 0 0 0 f (Tproject, Ttech)

The total investment Cinv has two components: the power generation technology
and the grid costs. Depending on the technology life expectancy, (re-)investment
can occur several times during the electrification process lifetime. The Capital in-
vestment is calculated in equation 7.1 in function of the yearly peak load and of the
capacity factor of each technology. The installed generation capacity is calculated ac-
cording to Table 7.1, where Dmax, the peak load, is calculated according to Equation
7.2. The investment in the grid depends on different factors described in 7.2.1. The
operation and maintenance is a yearly cost, calculated as a percentage of the total
investment cost.

Cgen = Capgen · CapCostgen =
Dmax

CF
· CapCostgen (7.1)

Dmax =
Dtot · (1− ξdist)

rbase,peak
(7.2)

where ξdist is the distribution losses factor and rbase,peak is the base to peak load ratio.

The LCOE for each technology is finally computed by:

LCOE =
Cinv + ∑n

y=0(CO&M + C f uel)/DFy

Dtot · Tproject
(7.3)

where DFy = (1 + d)y.

To exemplify the above calculation, the computed values with the original OnSSET
algorithm are provided for the particular case of "El Espino", described in Section 5,
and assuming that no microgrid has been installed yet. The values correspond to the
expected values for 2025, with the following main characteristics:

• Number of households: Nhh = 142

• Population: 455

• Peak Load: Dmax = 9.2kW

• Yearly demand: Dtot = 42809kWh

• Project lifetime: Tproject = 15years
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• Traveling time to the community (for diesel costs): Timetravel = 3h

community comprises Nhh = 142 household, with a maximu

Table 7.2 displays the breakdown of the cost calculations. Due to the relative prox-
imity of the community to the main grid, it appears that no new high voltage lines
are required. This results in low investment costs for the grid extension and there-
fore gives a clear advantage to this technology compared to solar home systems or
to microgrids. Grid extension will therefore be selected a the preferred technology
for the "El Espino" community.

TABLE 7.2: Example calculation for the "El Espino" Community and
the original OnSSET algorithm

SHS Diesel PV Grid
Microgrid Microgrid Extension

CHV(USD) 0 0 0 0
CMV(USD) 0 0 0 10000
CLV(USD) 0 92561 92561 92561

Capgen(kW) 45.1 13.2 45.1 0
CF(−) 20.4% 90% 20.4% 0.9

Cgen(USD) 228652 19494 157846 0
Pf uel(USD/kWhe) 0 0.61 0 0.1223

C f uel(USD/y) 0 26031 0 5235
CO&M(USD/y) 4573 2241 5008 2051

Ttech(years) 15 20 20 30
Csalvage(USD) 0 8988 20085 13319

LCOE(USD/kWh) 0.92 1.03 0.91 0.49

7.3 Limitations of GIS electrification tools

Although GIS-based electrification planning tools have grown in popularity in the
last years, several research gaps remain [5]. Many of them are related to the represen-
tation of microgrids, whose diversity is not properly accounted for, owing to the in-
creased computational burden of simulating/optimizing each system individually.
The main challenges for isolated energy systems can be summarized as follows:

1. Existing sizing algorithms that perform detailed optimization can only cope
with a limited number of technologies. In the case of the OnSSET algorithm,
microgrid technologies include PV-only or diesel-only systems, but do not con-
sider hybrid microgrids in which the relative share of PV and diesel can vary
according to the local conditions.

2. Because of the dimensions of the problem, the sizing of each individual system
is very simple, as indicated in Table 7.1

3. Most GIS-based tools do not consider the evolution of the system or scenar-
ios that include a hybrid solution in which a microgrid first operates as stan-
dalone, and is then connected to the main grid.

4. Many methodologies do not consider uncertainty in the evaluation of future
demand levels, weather conditions or other technical parameters.
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The Challenges mentioned above are tightly linked to the computational tractabil-
ity of co-optimizing multiple technologies in a large number of microgrids and for
multiple realizations of stochastic scenarios. As shown in chapter 5, even simple
optimization models (LP 12) can consume significant CPU time. If there is a need of
solving more complex models, more advanced strategies must be devised.

One way of improving the tractability of the problem without compromising the
model complexity is to apply machine learning techniques (MLT) to approximate
the optimization results. MLT have been successfully used to forecast or simulate
different phenomena in energy systems (Mosavi et al. [120]). They can also be used
to accurately predict energy consumption, as proven by Yildiz et al. [121].

The use of MLT in the long-term planning of microgrids has historically focused on
the forecast of demand and renewable energy time series. However, in recent years,
it has also been used to automate decision making and reduce computational effort
by creating surrogate models from the results of a high number of optimizations.
These surrogate models aim to estimate the value of a particular optimization out-
come (e.g. total cost of the project, nominal capacities of the technologies) using the
input conditions, as shown by Perera et al. [122]. In the latter study, an artificial
neural network (ANN) surrogate model is trained to calculate the net present cost
(NPC), grid interaction and unmet load fraction of an energy hub comprising var-
ious renewable energy sources, storage devices and internal combustion engines.
The surrogate model is then used together with a heuristic optimization method to
calculate the optimal nominal capacity of each technology. In another study [123],
an ANN is trained on a database created from an operation and planning model at
a national scale. The model takes multiple input parameters and returns the nom-
inal capacities of the technologies and other crucial operation variables. The most
promising aspect of this methodology is the possibility to change one of the assump-
tions of the optimization and obtain the new output variables with a low computa-
tional cost.

An alternative approach is proposed by Ciller et al. [124], in which a lookup table
is constructed with the optimal costs for different communities sizes. Instead of re-
sorting to a regression, each particular values is interpolated from the table. Lookup
tables are however cumbersome and require large datasets in multi-dimensional en-
vironments. This limitation can possibly be tackled by using MLT methods, trained
over a limited number of data samples in the multi-dimentional input space. As an
example, Gaussian processes regression (GPR) has been used to estimate the perfor-
mance of various thermal systems as a function of many input variables (features)
with a higher accuracy than physical models. It further allows to perform feature
selection and outlier detection, as shown by Quoilin & Schrouff [125]. In a previous
work [126], it was shown that GPR are well suited to estimate the Levelized cost of
electricity (LCOE) for isolated microgrids in a rural context. Up to 11 hypothetical
villages sizes were created based on surveys and on a stochastic load profile gen-
erator. In total, 1100 optimizations were performed by varying the capital costs of
the different technologies, the diesel cost, the village size and the PV energy output.
Peña et al. [116] applied multi-variable linear regressions to calculate the NPC and
LCOE for only diesel, PV/battery and hybrid microgrids in a large-scale geospatial
electrification planning tool (OnSSET). The study revealed an important increase in
the cost-competitiveness of micro-grids compared to previous analyses using sim-
plified micro-grid sizing algorithms.
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7.4 Conclusions

In this chapter, a brief description of existing tools and models for rural electrifica-
tion planning is proposed. The problem is contextualized in regards of the current
modeling capabilities, where GIS tools have proven to be a viable methodology to
find cost efficient solutions to the problem. The limitations of these tools are also
presented and mainly relate to the accurate representation and optimization of many
dispersed systems without compromising the tractability of the problem.

Finally, the creation of surrogate models for microgrid sizing is suggested as a viable
solution to decrease the computational time of the planning tools while maintaining
a high accuracy in the estimations of the needed design parameters. This option will
be explored in the next chapters.
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Chapter 8

Surrogate model creation and
validation

This chapter is largely based on the following publication:

Balderrama, S., Lombardi, F., Stevanato, N., Peña, G., Colombo, E., & Quoilin, S.
(2021). Surrogate models for rural energy planning: Application to Bolivian low-
lands isolated communities. Energy, 121108.

8.1 Introduction

As seen in previous chapters, sizing energy systems may require high computa-
tional resources depending on the objective of the process and on the available data.
For this reason, there a trade-off must be found between technical detail and com-
putational tractability when evaluating multiple smaller-scale systems within the
broader picture of the planning process at the country level. This chapter builds
upon the idea of training machine learning models to improve computational tractabil-
ity by directly predicting the optimal design of isolated energy systems. The specific
objectives can be summarized as:

1. To propose a standard training methodology for surrogate models capable of
predicting the optimal microgrid design and cost as a function of multiple
boundary conditions.

2. The inclusion of technical parameters (e.g. PV and battery capacities) as ex-
planatory variables of the predicted LCOE.

3. A comparison of the performance of different MLTs over the same dataset.

8.2 Methodology

To develop and validate surrogate models for energy planning in a rural context, the
studied system should first be defined. In this work, an isolated microgrid system is
considered, composed by a PV array, a solar inverter, a battery bank, a bi-directional
inverter and a diesel Genset. The system is designed to cover the whole electric-
ity demand of a given community. In case of energy surplus, the batteries can be
charged by the PV array or the Genset. Although the proposed system is relatively
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basic, it is important to mention that the proposed methodology can be applied to
more complex systems with multiple renewable sources, combustion generators,
connected or not to the main grid.

In Figure 8.1, the information flows and the most important tools implemented to
create the surrogate models are shown. The demand of the village, the energy yield
of the PV array and the techno-economic information constitute one optimization
instance. The sizing method is used to determine the nominal capacities of the en-
ergy sources and different costs of the system for each instance. The results of each
optimization are the dependent variables for the regression model. Using these in-
put variables (features) and the selected dependent variables (targets), the regression
process is carried out by tuning the hyper-parameters of the MLT model and com-
puting some numerical performance indicators.

The surrogate models developed with this methodology will further be integrated
into other energy models in the next chapter, with the objective to answer broader
questions related to energy planning at a regional, national or trans-national level.

FIGURE 8.1: Methodology for the creation of the surrogate models.

Machine learning methods are divided into classification methods, which focus on
dividing a data set into groups; and regression methods, which aim at creating the
mapping function between one or more input variables (features) and a output vari-
ables (targets). In our specific case, the goal is to predict the optimal value of the
different variables that minimize the NPC for a given set of features. In this work,
the targets include both the objective function of the optimization process and some
optimization variables such as nominal capacities, lost load in the system, etc.

The machine learning regression (MLR) is applied after running many optimizations
over the full range of the input space. The overall process is shown in Figure 8.2 and
can be subdivided in three main steps:

1. To ensure a random sampling of the test cases within the dataset, a shuffle
technique is applied: the individual optimizations are first run in ascending
order of the size of the community; the dataset is then shuffled and divided in
folds for the cross validation.

2. For each dependent variable, a surrogate model is fitted using the MLR and
the relevant independent variables.



8.3. Case study 103

3. The quality of the model is evaluated by computing numerical indicators over
the testing set (which differs from the training set).

The first performance metrics is the mean absolute error (MAE), defined as the mean
difference between the predicted target f (x) and the real value (y), as presented in
equation 8.1, where N is the number of inputs used in the MLR. The second is the
coefficient of determination (R2), computed in equation 6.4. The last indicator is the
root mean square error (RMSE) and is defined in equation 8.2. In addition to the
ability to predict the target values inside the training set, the model should be able
to do it outside of the sampled data. In order to ensure this generalization ability
and to avoid overfitting, a K-fold cross-validation method is selected. To that aim,
the shuffled data set is divided into K sub-sets (folds) and the training is carried out
K times. Each time, one fold is removed from the training set and is used as test set to
compute the performance metrics. The MAE, R2 and RMSE are finally averaged over
all folds and reflect the capacity of the model to predict the independent variable
for an unseen sample. In this study, different types of MLR are tested, and their
hyperparameters are tuned to improve the quality of the regression.

FIGURE 8.2: The methodology implemented for the training and val-
idation of the surrogate models.

MAE =
1
N
·

N

∑
i=1
|yi − f (xi)| (8.1)

RMSE =

√√√√ 1
N
·

N

∑
i=1

(yi − f (xi)) (8.2)

8.3 Case study

In this chapter, the model parameters are divided into two sets: unmutable and mu-
table. The first set contains the ones that do not vary between the different optimiza-
tions. These are the techno-economic parameters defined in Table 8.1. The other set
can take different values in each instance and relates to some other techno-economic
parameters or to the selection of the demand and PV time series. The generation of
these stochastic time series is described in chapter 3.

8.3.1 Mutable techno-economic parameters

The challenge of providing clean, sustainable and affordable energy to isolated com-
munities involves selecting the most suitable technology solutions for each situation.
This means that, depending on the context, a lead-acid battery can be chosen over
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TABLE 8.1: Unmutable model parameters

Parameter Unit Value

Periods in a year hours 8760

Project life time years 20

Time step hours 1

Discount rate % 12

Lost load probability % 0

Unitary battery electronic cost USD/kWh 222

Battery operation and maintenance cost % 2

Battery charge efficiency % 0.95

Battery discharge efficiency % 0.95

Battery full discharge time hours 4

Battery full charge time hours 4

PV nominal capacity W 250

PV inverter efficiency % 97

PV operation and maintenance cost % 2

Genset operation and maintenance cost % 2

Minimum genset power output % 50

Genset penalty cost for part load % 9

Fixed cost PV/Battery USD 15 000

lithium-ion or a bio-gas micro-turbine over a diesel unit. The ability to compare dif-
ferent solutions in a fast and reliable way is key for practitioners around the world.
In this work, it is proposed to achieve this through surrogate models trained over
a large range of usual boundary conditions. For that purpose, the parameters pro-
vided in Table 8.2 are varied, combined, and a optimization is run for each selected
combination. To avoid intractable computational times, a Latin hypercube sampling
(with 150 samples) is applied, covering the whole input space on which the opti-
mization model is run. The variation ranges of each input are detailed in Table 8.2.
As it is highly hazardous to perform an estimation of the peak demand due to the
high uncertainty in the energy evolution of rural systems [127], the nominal capacity
of the genset is set to a percentage of the higher demand in the dataset. Finally, the
battery capacity/power output relationship is set to 4 hours.

8.3.2 Machine learning regression methods

The python library scikit-learn is selected to build and train the surrogate models
[128]. It allows easily defining the optimization problem and includes different state-
of-the-art built-in algorithms, which also allows to compare them. For this work,
GPR and multi-variable linear regression (MVLR) are chosen to showcase the capa-
bilities of the proposed methodology.
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TABLE 8.2: Mutable parameters for the sizing process.

Parameter Unit Range

PV investment cost USD/kW 1000 - 2000

Battery investment cost USD/kWh 800 - 222

Depth of discharge % 0 - 50

Battery Cycles Cycles 1000 - 7000

Generator investment cost USD/kW 1000 - 2000

Generator efficiency % 10 - 40 %

Lower heating value kWh/l 7 - 11

Fuel cost USD/l 0.18 - 2

Generator Nominal capacity kW 75 % of the peak demand

Energy Demand kW

PV unit energy production kW

Multi-variable linear regression

The MVLR is one of the simplest MLR methods to map the function (f) of a output
variable (y) based on a set of input parameters (x). It can be described as follows:

f (x) = xᵀ · w (8.3)

y = f (x) + ε (8.4)

where w ∈ Rm is a vector of weights or parameters of the model. To differentiate
the observed values (y) from the target values ( f (x)) an error term (ε) is introduced
with an independent identically distributed Gaussian distribution with zero mean
and variance σ2

n (equation 8.5).

ε ∼ N(0, σ2
n) (8.5)

The interceptor of the linear equation can be included in w by adding a column of
1 in the input vector x. The values of w that minimizes the sum of the squared
residuals are determined using the ordinary least squares method.

Gaussian process regression

Gaussian processes is a general-purpose machine learning algorithm that can be
applied to regression or classification problems. It is constructed from a Bayesian
analysis of the standard linear model (equations 8.3 and 8.4). The matrix that con-
catenates the n sample data points is defined as X ∈ Rnxm and its respective target
vector is y ∈ Rn. To calculate the probability density function, the Bayesian theorem
is applied:
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p(w|y, X) =
p(y|X, w)p(w)

p(y|X)
(8.6)

In this framework, a prior probability distribution is defined according to the previ-
ous knowledge of the system. A prior with zero mean and a covariance matrix of
Σp is used: w ∼ N(0, Σp). Finally, The prediction function f∗ of a test case x∗ can
be found by averaging the outputs of all possible linear models with respect to the
Gaussian posterior:

p( f∗|x∗, X, y) =
∫

p( f∗|x∗, w)p(w|X, y)dw (8.7)

The Bayesian analysis of the linear model suffers from limited expressiveness. In or-
der to overcome this, a projection to a higher dimensional space is achieved through
a group of basis functions (φ(x)) applied to the inputs. When applying the Bayesian
analysis to this new formulation and using x and x’ as input vectors from two dif-
ferent target sets. It is possible to define the kernel (covariance) function:

k(x, x′) = φ(x)ᵀΣpφ(x′) (8.8)

The Gaussian process is defined by its mean function (µ(x)) and kernel function. It
is a collection of random variables, as shown in equation 8.9. In this work, a Radial-
basis function (RBF) kernel is selected (Equation 8.10). The RBF has the peculiarity
to assign one hyperparameter called lengthscale (li) to each independent variable.
These hyperparameters are optimized to maximize the marginal likelihood, using
the âĂŸL-BGFS-BâĂŹ algorithm, as implemented in [128]. One set of lengsthscales
are found for each feature that needs to be estimated.

f (x) = GP(µ(x), k(x, x′)) (8.9)

k(xi, xj) = exp
(
−1

2
d(xi/l, xj/l)2

)
(8.10)

For the sake of conciseness, the above equations only briefly describe Gaussian Pro-
cesses regressions. The interested reader can refer to [129] for a more comprehensive
explanation.

8.3.3 Optimization process implementation

To create a dataset of optimal microgrid configurations, many MILP sizing problems
are solved. To this end, the algorithm shown in Figure 8.3 is proposed. It is divided
into a MILP creation phase, a main loop and an inner loop. Each step is computed
in the following manner:

• In the first phase, the abstract model of the optimization is created. Then, the
unmutable parameters are incorporated into the MILP model. The mutable
parameters are defined by their lower and upper bounds.
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• The main loop is run for each village size (from Nmin = 50 to Nmax = 550 house-
holds, with a step of 50). In each case, a Latin hyper-cube is initialized, defining
the sampling of the other mutable parameters.

• Inside the above loop, the demand and renewable generation profiles are gen-
erated for each of the 150 (Noptimizations) instances. All mutable parameters be-
ing set, the system is optimized and the process is repeated for each element
of the Latin hypercube.

8.4 Results and Discussion

The eleven different village sizes (chapter 3) together with the 150 elements of the
Latin hypercube result in 1650 different instances of the problem. The termination
criteria for the optimization is a gap for the MILP problem of less than 1 % or a
maximum solving time of 30 min. The optimizations were performed in 175 hours,
with an average resolution time of 381 seconds per instance on a computer with 16
GB RAM and an Intel® Core™i7-8850H CPU @ 2.60GHz x 12. The time spent to
optimize all instances shows the limitations of a per case approach, since, only in the
lowlands of Bolivia, there are more than 3000 un-electrified villages and 903 of those
are between 50 and 550 households without access to energy.

8.4.1 Optimization results

A summary of the optimization results is shown in Table 8.3. It is worthwhile to
note that the considered search space of the techno-economic parameters is large,
leading to exploring extreme situations where some of the technologies are heavily
penalized or rewarded (Figure 8.4). Taking this into account, the average NPC for
all optimization is 490 thousands of USD per village, which covers all electricity-
related expenses for 20 years. The average LCOE is relatively high because of the
penalization of the extreme cases (where grid extension or solar home systems will
most likely be preferred to microgrids). Finally, the box plot of the LCOE (Figure
8.4) shows the importance of the economy of scale. Larger communities are charac-
terized by a lower LCOE.

TABLE 8.3: Optimization results.

Variable Average Max Min Std deviation

NPC (thousands USD) 490 1 690 39 303

LCOE (USD/kWh) 0.44 1.18 0.1 0.16

PV nominal capacity (kW) 59 256 0 57

Battery nominal capacity (kWh) 186 1123 8 229

Renewable energy penetration (%) 54 99 0 35

Battery usage (%) 27 65 4 26

Energy curtailed (%) 9 36.7 0 8

Time (s) 381 2185 37 573

The nominal capacities of the different technologies are constrained during the opti-
mization process. As mentioned before, the nominal capacity of the Genset is 75 % of
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FIGURE 8.3: Algorithm for the dataset creation.
.
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the maximum demand and it is always deployed to ensure a minimal quality of ser-
vice. This forces the system to install a sufficient battery capacity to cover the peak
demand. In general, it is possible to differentiate three main system configurations:

• The first one corresponds to a high battery and PV capacity, in which a large
share of the consumption is covered by solar generation.

• The second one consists in using the battery to reach the peak demand and
cover rapid changes in the load and in the PV generation. It corresponds to a
low battery usage (equation 8.12), and low installed battery and PV capacities.

• The last configuration corresponds to the intensive use of the diesel genera-
tor and of batteries to cover the peaks. No PV is installed and the renewable
penetration is thus null.

The transition between these three groups is clearly visible in Figure 8.5: the left
of the plot corresponds to the systems with high PV and battery capacities, and
therefore high renewable penetration (equation 8.11). The middle zone corresponds
to limited PV capacity and the the right part corresponds to the case without PV
generation and zero renewable penetration.

Renewable Penetration =
∑T

t=1 Ere
t

∑T
t=1 Ere

t + ∑T
t=1 Ege

t
(8.11)

Battery Usage = ∑T
t=1 Ebat,dis

t

∑T
t=1 Dt

(8.12)

FIGURE 8.4: Box plot for the NPC and LCOE. The box contains the
lower to the upper quartile of the data, they have a median line. The
whiskers shows the range of the data and the points consider outliers

are plot separately as circles.
.
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FIGURE 8.5: Installed capacities in each simulated case. The values
are ordered according to renewable penetration.

TABLE 8.4: Input and output parameters for the surrogate model.

Input parameters Output parameters
PV invesment cost NPC

Battery invesment cost LCOE
Depth of discharge PV installed capacity

Battery Cycles Battery installed capacity
Generator investment cost

Generator efficiency
Low heating valuer

Fuel cost
Toto demand in the year

Total PV production from one unit

It is finally worthwhile to note that the highest renewable penetration reached dur-
ing the optimization process is 99 %. These instances also corresponds to the highest
NPC and LCOE due to the necessity to oversize the PV and batteries. Although
in those cases a diesel generator is still installed as a back-up to ensure the system
reliability.

8.4.2 Surrogate models

The amount of information generated while solving each instance is important and
includes, among others, the system architectures, the optimal component sizes, the
dispatch strategy or the cost information. To showcase the proposed methodology,
only a subset of the model outputs have been selected as dependent variables for
the surrogate models: the NPC, LCOE, battery and PV installed capacity. These
variables are deemed as the most relevant for the purpose of the GIS analysis, but
other variables could easily be added by following the same methodology. Table 8.4
summarizes the input and output variables used for the creation of the surrogate
models.
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The regression results are shown in Table 8.5. In the case of the NPC, a high corre-
lation and a relatively small MAE are achieved. Figure 8.6 shows that MVLR has
significant lower performance if compared to GPR. Although it can approximate ad-
equately values that are close to the average NPC, its performance is inferior in the
low-NPC range. Some negative results are obtained for some cases, which is not
acceptable. The LCOE surrogate model has a similar R2 value, but presents lower
variability (and thus no negative values), which make it a more reliable indicator for
the purpose of this work. It is finally important to highlight that the highest model
errors are obtained for the extreme values (i.e. the boundaries of the simulation
space), which have a lower probability of occurrence.

TABLE 8.5: Surrogate model indicators.

NPC LCOE PV Battery

Type of MLT GPR MVLR GPR MVLR GPR MVLR GPR MVLR

r2 0.99 0.86 0.98 0.81 0.92 0.76 0.86 0.58

MAE 22 82 0.015 0.05 11 22 52 115

RMSE 36 111 0.022 0.07 16 27 85 148

FIGURE 8.6: Predicted vs computed plots with 5-folds cross valida-
tion results.

These results indicate that GPR is a powerful tool to predict the NPC and the LCOE
for a rural isolated microgrid without the need of a computationally intensive op-
timization for each specific case. On the other hand, it exhibits lower performance
when estimating the nominal capacities of the Battery and PV systems.

These effects are further explored by means of a one-dimensional analysis: all the
techno-economic parameters are kept constant except the diesel price. The fixed
values correspond to the typical case of a Lithium-ion battery (battery cycles of 5500,
Depth of discharge of 20 % and Unitary investment cost of 550 USD/kWh), average
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PV price (1500 USD/kW) and typical diesel Genset characteristics (efficiency of 31
%, lower heating value of 9.9 kWh/l and 1480 USD/kW of investment cost). The
quantity of Households is set to 300 and the fuel price changes from 0.18 to 2 USD/l.

As shown in Figure 8.7, and in agreement with the previous results, there is a good
match between the computed NPC and LCOE points with the GPR functions. MVLR
can predict outside the search space of the optimization process while the GPR
rapidly loses its prediction capacity outside the search space. The error in the predic-
tion of the installed capacities clearly appear in the 1-D analysis of the PV capacity
regression: the rapid non-linear transitions between typical system configurations
are smoothed out by the GPR surrogate models, which significantly increases the
error around these points (Figure 8.7).

In the figure with different households sizes, the estimation for the PV is good as
long as it does not enter in the zone with high renewable energy penetration. The
quality of the GPR surrogate model could possibly be improved with more obser-
vations (i.e. optimizations), with a more limited number of independent variables
or with a more advanced kernel functions or regression methods. The compromise
between model accuracy and complexity is however deemed acceptable for the pur-
pose of this work, which, considered the scale of the analysis (country or regional
level), is only marginally affected by the smoothing of fast individual transitions.

FIGURE 8.7: Computed vs predicted values for the chosen target vari-
ables

8.5 Conclusions

A methodology to derive surrogate models for energy planning purposes based on
MLT is proposed in this chapter. To accomplish this, data concerning the lowlands
communities in Bolivia is used to create plausible demand scenarios and a MILP
sizing model is used to create a dataset of optimal size microgrids systems under
different techno-economic conditions. MLR techniques are applied to train and val-
idate surrogate models to predict the outcomes of the optimal sizing problem.
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Throughout the 1650 different optimizations, hybrid microgrids proved to be a cost-
optimal technology in many cases. PV was part of the optimal choice in more than
80 % of the cases, even when the price of the technology was high. This leads to a
large penetration of renewable energy, which supplies it mainly during the day. Bat-
teries are mostly used to cover peaks and day/night transitions, when the Genset
is not able to provide energy due to operational constraints. The LCOE of hybrid
microgrids is competitive in the rural energy market in Bolivia, ranging from 0.07
to 0.21 USD/kWh which is competitive with diesel-only microgrids. This competi-
tiveness is achieved despite an important subsidy of diesel in Bolivia, which caps its
price to 0.18 USD/l (international diesel markets are around 1 USD/l).

Overall, the surrogate models show a good capacity to predict the NPC and LCOE
values of the optimized system, with a high R2, and a low MAE and RSME. PV and
battery installed capacities are less accurate because of the difficulty to replicate step-
wise transitions from one typical system configuration to the other. These transitions
are smoothed out, which makes the regression model unsuitable for the detailed siz-
ing of a particular microgrid which is deemed acceptable for macroscopic analyses.
The main advantage of this methodology is its adaptation capability, since it can be
applied to a wide range of technologies and the continuous variation of their in-
stalled capacity. The following conclusions and lessons learned can be extracted for
the surrogate model creation process:

1. The bottom-up demand profile generation described in the previous chapters
is a very flexible tool and constitutes a powerful method to model not-yet elec-
trified communities from limited socio-economic data.

2. Surrogate models are an excellent way of exploring the most cost-efficient so-
lutions from a set of viable technologies. This is especially true when planning
at a national scale where there can be thousands of decentralized systems to
consider simultaneously.

3. The creation of the dataset is a computationally-expensive process. In the case
of a low number analyzed systems, individual optimizations might remain the
best solution.

4. The search space must be carefully defined and a high density of data samples
must be ensured in the regions where is more likely that the surrogate models
will be used.

5. The GPR model performed significantly better than the MVLR.

6. To deal with the observed clusters of typical system configuration, the regres-
sion could be complemented by a classification machine learning algorithm,
assigning the considered setup to a typical configuration.

The proposed surrogate models proved to bring significant improvement for energy
planning purposes: instead of a single simplistic configuration (characterized by a
fixed LCOE and a rigid microgrid design), they allow to adapt the microgrid con-
figuration to the specific boundary conditions of each community (diesel price, size,
demand peculiarities, etc.) and thereby significantly refine the macroscopic analy-
sis. Surrogate models offer an excellent solution to explore such multidimensional
optimal deployment problems at the country level.
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Chapter 9

The Bolivian pathway to 100 %
electrification

Preliminary versions of the analysis proposed in this chapter have been pro-
posed in:

Peña, J., Balderrama, S., Lombardi, F., Stevanato, N., Sahlberg, A., Howells, M.,
Colombo, E., & Quoilin, S. (2020). Incorporating high-resolution demand and
techno-economic optimization to evaluate micro-grids into the Open Source Spatial
Electrification Tool (OnSSET). Energy for Sustainable Development, 56, 98-118.

Balderrama, S., Lombardi, F., Stevanato, N., Peña, G., Colombo, E., & Quoilin, S.
(2021). Surrogate models for rural energy planning: Application to Bolivian low-
lands isolated communities. Energy, 121108.

9.1 Introduction

With pressing priorities in the development agenda, policy makers in developing
countries are in the difficult situation of prioritizing policy actions. Limited govern-
ment and utility budgets need cost effective solutions to bring the desired develop-
ment benefits of electrification, health, education and food security, among others.
Energy access is a pre-requisite for economic activity and for human development
and interacts in synergy with other development needs. In this context, the usage
of modeling tools can inform decision making at different levels of the planning
strategy. In this chapter, the methods developed throughout the wholed thesis are
applied to a answer practical question: What is the most cost-effective manner to
grant access to electricity to the Bolivian population? This is answered by tackling
the following sub-objectives:

1. To adapt and harmonize OnSSET for the use of surrogate models.

2. To Propose a baseline scenario for the electrification of Bolivia.

3. To analyze the impact of the subsidy on diesel price in the electrification strat-
egy in Bolivia.
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9.2 OnSSET adaptation

The principal aim of this thesis is to propose a methodology that sizes and simulates
many decentralized rural electrification systems at the country level in a computa-
tionally tractable manner. In the particular case of Bolivia, there are 8761 commu-
nities without access to the main grid. Since there are multiple solutions to achieve
this, a system design has to be optimized for each of them. However, finding the eco-
nomical optimum is a demanding task from a computational point of view: solving
an optimization for each community could last days in a computer with standard
capabilities. The OnSSET algorithm was therefore modified to allow the use of sur-
rogate models based on the methodology described in the previous chapter.

To that aim, the following improvements and adaptations to the model have been
implemented:

1. Adapt OnSSET to allow for a variable number of considered technologies in-
stead of the pre-defined, hard-coded original technologies. In particular, the
hybrid PV technology should be introduced instead of the diesel-only or PV-
only technologies.

2. Adapt OnSSET to accept surrogate models to assess the demands based on dif-
ferent parameters. This allows taking into account the individual specificities
of each community.

3. Include the possibility of using surrogate models for the prediction of the
LCOE in the planning algorithm.

4. Include surrogate models to calculate installed PV, Batteries and genset capac-
ity for each community.

These adaptations allow to use more advanced costs functions for microgrid sys-
tems in place of the original fixed LCOE hypothesis based on the peak demand and
the capacity factor of the technology (cfr. section 7.2.4). This flexibility allows to
consider hybrid microgrids tailored for the particular case of a community instead
of a fixed and non-optimal design for all communities. The new sizing model also
optimizes the energy flows, leading to a more accurate NPC and LCOE. This is an
important feature when analyzing energy systems with different energy sources, as
an un-optimal dispatch strategy could lead to a higher operation cost or energy cur-
tailment of the renewable sources. [27].

9.3 The Bolivian Case Study

To test the proposed methodology, the cost of electrification for Bolivian commu-
nities without access to electricity is investigated. The selected technologies are
grid extension, hybrid microgrids (communities from 50 to 550 households) , and
PV/battery home systems (communities from 0 to 50 households). The most rel-
evant techno-economic parameters to perform the calculations are shown in table
9.1.

To account for the steady improvements in renewable technology costs and uncer-
tainty on the continuity of fossil fuels subsidies in microgrid deployment, various
cost scenarios (fuel and capital costs) are defined. Two existing subsidy schemes in
the Bolivian electricity sector are included as scenarios together with international



9.3. The Bolivian Case Study 117

TABLE 9.1: Onsset technology characteristics

Parameter Unit Value

Lifetime of the grid years 30

Discount rate % 12

load moment (50 mm aluminium) kW m 9643

Power factor grid 0.9

Grid losses % 18.3

Distribution losses % 0

MV max distance reach km 50

MV line cost (33 kV) USD/km 9000

LV line cost (0.24 kV) USD/km 5000

Transformers (50 kVA) USD 3500

Max nodes per transformers nodes 300

Substation (400 kVA) USD 10 000

Substation (1000 kVA) USD 25 000

Additional conection cost to the grid/microgrid USD 125

Operation and maintenance of distribution lines % 2

Grid capacity investment cost USD 1722

Grid electricity generation cost USD/kWh 0.13

Diesel truck consumption l/hour 33.7

Diesel truck volume l 15000

diesel prices. Figure 9.1 illustrates the modeled instances and Table 9.2 describes the
values used in each of them.

FIGURE 9.1: Cost-scenario components. Reference scenario and other
four scenarios with combinations of diesel price and capital invest-

ment costs described in table 9.2
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TABLE 9.2: Specific values used in the cost scenarios.

Parameter Unit Reference Scenarios

Diesel cost USD/l 0.8
Diesel grid-subsidy: 0.53

Diesel off-grid subsidy: 0.18

Battery invesment cost USD/Wh 550
Minimun = 350

Maximun = 750

PV invesment cost USD/kW 1500
Minimun = 1100

Maximun = 1900

Diesel genset investment cost USD/kW 1480
Minimun = 1100

Maximun = 1900

9.4 Results

The OnSSET tools provides an algorithm to determine the initial electrification sta-
tus for a given scenario. However, this was not used in the present work since the
baseline electrification status can be obtained from the census database described in
section 3.2. The location, size and electrification status of each Bolivian comunity is
shown in Figure 3.1.

Additional models to calculate the LCOE, NPC, investment,PV and battery installed
capacity for the highlands were created in addition to those presented in Chapter 8
(restricted to the lowland regions). The performance metrics for these new surrogate
models were similar to those in Table 8.5.

TABLE 9.3: Results of the base scenario of the optimal electrification
process.

Newly electrified

people

NPC

(millons USD)

New

Capacity

Average

Capital

investment

per household

(USD/hh)

Grid

Extension
3 308 928 1 635 279.8 1 811

Hybrid

microgrids
53 140 44 2.8 2 413

Solar home

systems
493 225 236 66.4 1 326

Total 3 855 293 1 915 349 1 636

The investment cost per household varies largely depending on the electrification
technology. For households electrified through grid extension, the investment cost
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FIGURE 9.2: Cost-optimal deployment of electrification technologies
for the reference scenario

increases with increasing distance to the transmission lines and decreases with in-
creasing population density. The average cost of connecting a household with the
grid amounts to 1811 USD. Table 9.3 summarizes the number of new connections per
technology type, investment cost estimates and new capacity when using the OnS-
SET for microgrids. Through 2025, Bolivia will need to increase the grid capacity by
280 MW and the off-grid capacity by 69.2 MW (PV and gensets) in order to meet the
increased residential demand and electrification targets indicated in our reference
scenario. In order to meet the SDG, this additional generating capacity would have
to come from renewable technologies.

The investment cost necessary for a 100 % electrification is divided into two main
components (Table 9.3). Around USD 1.6 billons for the extension of the network.
Without a new planning of high voltage lines, the number of people reachable through
grid extension in the near future remains fairly limited. The second part of these
costs are the investments necessary to reach isolated populations, the amount needed
is more than 280 million dollars. The total cost is high, but it is in line with that cal-
culated by the Vice Ministry of Electricity and Alternative Energies of around 1.99
billions of USD [52].
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Figure 9.3 shows the obtained results if OnSSET classic representation of isolated
energy systems is used. The techno-economic data for SHS, Diesel and PV micro-
grids are detailed in annex F.4. The results shown are similar to the REF scenario
(Table 9.4), in part due to the high penetration of the grid. The main difference can
be seen in the capability of the surrogate models to model hybrid microgrids as part
of the solution pool. This makes a significant difference, since this is the optimal
configuration for all the deployed microgrids, as shown in Figure 9.4.

FIGURE 9.3: Cost-optimal deployment of electrification technologies
for the OnSSET classic scenario.

9.5 Sensitivity analysis

Figure 9.4 compares the results for microgrids under different cost scenarios in terms
of LCOE, NPC and PV installed capacity. Although the number of microgrid com-
munities in the REF scenarios is low (221), it is in line with the Bolivian capacity to
deploy them in a 5 years time span. The main impact of the cost variations on the
number of electrified communities is the following: The lower investment cost of
SC1 only adds 38 communities, on the other hand the higher cost of SC2 changes
58 microgrids to grid connections. The number of communities with a microgrid
increases with the decrease of diesel price to 345 (SC3) and 701 (SC4) communities.
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TABLE 9.4: Results of the classic OnSSET for the optimal electrifica-
tion process.

Newly electrified

people

NPC

(millons USD)

Grid Extension 3 306 338 1 628

PV microgrids 36 340 26

Diesel microgrids 44 014 31

Solar home system 468 601 281

Total 3 855 293 1 966

Although more communities are electrified with microgrids in the case of lower
diesel prices, in SC4, all microgrids are diesel only. In SC3, the installed capaci-
ties are lower than in the REF scenario. This can have an important impact on the
accomplishment of SDGs for Bolivian rural communities. It is also worthwhile to
note that the change in investment cost for microgrids does not have an important
impact on NPC or LCOE, but it has on the installed renewable capacity. This differ-
ent considerations should be taken into account at the moment of creating subsidies
for rural communities in Bolivia.

FIGURE 9.4: Summary of the sensitivity analysis results for selected
communities. a. LCOE. b. NPC. c. PV installed capacity.

9.6 Conclusions

Achieving 100 % electrification involves significant investments in economic and hu-
man resources for the Bolivian state. A significant part has already been achieved,
reaching almost 90 % of the population. Despite this, there are more than 7400 com-
munities that will need a isolated solution to gain access to electricity, representing
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159 798 households. Today, the investment of around 280 millions of USD to provide
electricity to these communities is an affordable amount for a country like Bolivia.
This is true, if its taken in account that the electric plan until the year 2025 assings 859
millons of USD to rural electrification projects for the the period 2021-2025. Among
those without access to electricity, the most vulnerable population are 144 256 iso-
lated rural families, which undoubtedly have individual photovoltaic systems as the
best technical-economic option.

The most significant barrier is Bolivia’s ability to carry out the number of projects
necessary to close the gap. It is important to continue with the training of technical
and administrative personnel capable of designing and executing this type of project
with great urgency. Likewise, it is necessary to form strategic alliances between
different organizations and strengthen the institutional framework, considering that
the energy issue for the isolated population constitutes a technical-economic and
management challenge, radically different from conventional systems, in terms of
density, structure and regulation and management practices.

Results from our cost-scenario analysis reveal how sensitive the electrification re-
sults are to diesel prices. The continuation of diesel subsidies strongly reduces the
economic competitiveness of local renewable energy resources. Fossil fuel subsidies
are remarkably widespread in developing countries for several socioeconomic fac-
tors [130]. For a small economy, a meaningful change in subsidy schemes would con-
sequently produce large macroeconomic impacts through economy-wide changes in
sectoral relative prices and demands [131]. Therefore, it may be counterintuitive to
remove fossil fuels as a measure to foster energy access. Yet, in the same way fossil
fuels subsidies are used to promote affordable energy, renewable energy subsidies
could be considered to compensate for this market distortion [132].

As electrification planning diversifies with the inclusion of decentralized alterna-
tives, different affordability and financing concerns emerge. Further enabling actors
should be considered by electricity planners and policymakers to address the entire
range of affordability concerns for both grid and off-grid rural consumers. More im-
portantly, better coordination among national stakeholders is needed to develop a
local renewable energy industry able to mobilize public finance towards sustainable
rural electrification projects.
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Part IV

Conclusions and future work
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Chapter 10

Conclusions and future work

Humanity has entered a crucial stage in their presence on the planet earth, as the
efforts to stop climate change and generate sustainable development are synthesized
in an agenda of 17 goals. From this set of objectives, SDG number 7 is related to
the access to affordable and clean energy for all. It stands out from the rest for its
transversality to other goals. It is for example impossible to reach quality education
(SGD 4) without access to the internet, light to study at night, or computers to learn
the latest technological trends in the world. Other areas that are widely affected by
the availability or affordability of energy include the water sector (SDG 6) or the
food sector (SDG 2).

Although no meaningful sustainable development can be achieved without access to
energy, there are still more than 800 millions of people on the planet do not have ac-
cess to electricity. Furthermore, as electrification rates come closer to 100 %, the grid
extension stops to be a feasible technology due to economic, social or environmen-
tal constraints. Recent research suggests that decentralized systems (microgrids or
SHS) have reached the needed maturity to supply reliable, clean and affordable en-
ergy to rural isolated communities. However, the potential role of these technologies
is not clearly quantified, as the electrification planning involves comparing different
technologies at a macro scale. This can easily lead to computational tractability prob-
lems, forcing researchers and practitioners to resort to over-simplified hypotheses to
solve this complex energy planning task.

Under these circumstances, the aim of this thesis was to propose a comprehensive
methodology to plan and evaluate the cost of electrification in remote rural areas. It
applies a bottom-up approach, ranging from the problem or demand generation to
the siting and optimal sizing of isolated systems in conjunction with a grid exten-
sion strategy to reach 100% rural electrification. It accounts for the uncertainty in
demand and renewable generation through the consideration of multiple stochastic
scenarios.

The structure of the thesis reflects this bottom-up approach: the first chapters are
dedicated to the household-level demand assessment, followed by chapters relative
to the optimal sizing of community energy systems, while the last chapters focus on
country-scale optimal rural electrification strategies.

In particular, chapter 2 focuses on demand modeling techniques, with two main
approaches. The first one is a top-down analysis with aggregated information and
statistical trends. The second one analyses the contributions of individual system
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components, with a high level of detail covering different economic sectors and ap-
pliance usages. It was concluded that the bottom-up approach is the most appropri-
ate way to estimate future energy consumption for un-electrified rural villages.

In the third chapter, the Bolivian context is introduced. Although the country has
a plan to increase its renewable share and its electrification rate, both have experi-
enced relatively low progress in recent years. They have stalled as the grid stops
to be a viable solution to reach the most isolated rural communities. The tremen-
dous Bolivian renewable energy potential has barely been taken advantage of, at
the exception of few deployed microgrids in the last years. As a first step to unlock
the deployment of such decentralized systems, low consumption demand profiles
typical of rural households were created for the highlands and lowlands of Bolivia.
The expected consumption defines a minimum energy demand for different human
activities. It does not, however, include productive uses of electricity such as elec-
tricity for agriculture and manufacture. Since they do not always occur immediately
after electrification [16], these new potential demands require careful assessment as
they could further increase the system load. This is considered to be beyond the
scope of the present thesis which focuses on universal access for inhabitants, but it
constitutes an important research track for future works.

The fourth chapter presents a sizing framework for isolated systems under uncer-
tainty, it gathers the best practices in energy modeling to create a tool that can be
adapted to practitioners needs, as proven throughout the course of this thesis. It
proposes different variations of the model, which can be stochastic or deterministic
and can be formulated as an LP or MILP problem. Furthermore, it puts a special
focus on the detailed representation of the different technologies, taking profit of the
available field monitoring data.

In order to assess the capabilities of microgrids to supply energy in the Bolivian con-
text, operational data from the "EL Espino" microgrid is analyzed in chapter 5. It
was found that the microgrid control strategy is largely sub-optimal and leads to
a high curtailment of renewable energy. An improved dispatch strategy that min-
imizes the curtailed energy is proposed; it consists of using the genset during the
demand peaks. In addition, a new sizing of the microgrid is performed. In general,
the battery and PV capacities were correctly sized but the system could benefit from
a smaller genset that can better adapt to the actual load. Furthermore, the different
sizing methods were compared, leading to the conclusion that there is a trade-off be-
tween system reliability and computational tractability. Although the difference on
the NPC is small, there is an important variation in the size of the components and
in the operation of the system when optimizing with various levels of complexity.

Current literature indicates that SHS is a feasible solution to electrified households
in a rural context. However, as shown in chapter 6, supplying the total household
demand results in unrealistically oversized systems with a high LCOE. On the other
hand, allowing a significant lost load probability can affect the feasibility daily activ-
ities. To balance this trade-off, a methodology to analytically determine the permis-
sible LLP of the system is proposed. The results show that the pareto front between
system cost and LLP has a recognizable form and that a "knee point" can be defined
as an acceptable compromise between these two antagonist objectives.

The state of the art in the modeling of isolated systems with GIS-based electrifica-
tion tools is presented in chapter 7 together with its main limitations. In a nutshell,
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current methodologies either simplify the sizing process or resort to individual opti-
mizations that are too computationally-intensive for the simultaneous optimization
of all communities in a country. It is concluded that surrogate models based on ma-
chine learning techniques to estimate the design parameters of a given microgrid
can be a solution to the tractability problem of GIS electrification tools.

A methodology to create and validate surrogate models is then presented in chap-
ter 8. To accomplish this, the demand time series generated in chapter 3 and the
sizing tool described in chapter 4 are combined with different solar PV outputs and
techno-economic parameters. An input and output dataset is created and fed to
different machine learning algorithms to create surrogate models. The validation
process shows that, among the tested algorithms, Gaussian Processes is the most
suitable technique to estimate the different design variables of a microgrid.

In chapter 9, the work done in this thesis is condensed by integrating the surrogate
models into OnSSET. The GIS-based model is adapted to calculate different design
parameters based on the new methodology and with a high level of technical detail.
The enhanced version of OnSSET is run to calculate the total cost of electrification in
Bolivia. The results show the importance of isolated systems to close the gap of un-
electrified households in the country. An important conclusion from the sensitivity
analysis is the impact of diesel price on the SDG 7: low prices ensure the affordability
of the energy but negatively affect the environmental impact of rural electrification.

Throughout the different optimizations, hybrid microgrids proved to be a cost-optimal
technology in many cases. PV is part of the optimal choice in more than 80 % of the
cases, even when the price of the technology is high. This leads to a large penetration
of renewable energy, which supplies energy mainly during the day. The batteries
are mostly used to cover peaks and day/night transitions, when the diesel genset
is limited by operational constraints. The LCOE of hybrid microgrids can be com-
petitive with diesel-only microgrids (0.09 to 0.16 USD/kW). This competitiveness is
achieved despite an important subsidy for diesel in Bolivia, which caps its price to
0.18 USD/l, while international diesel market prices can reach more than 1 USD/l.
On the other hand, combustion engines cannot be discarded in microgrids as they
increase the quality of the service. In this context, green fuels should be developed
to mitigate negative impacts.

The first step to start to close the electrification gap in Bolivia is to find the commu-
nities that, if electrified would extend the access to health and education service to
more families. This is in part due to the limited capabilities to construct microgrids
in a short time. This strategy will increase the impact of the microgrids, as more peo-
ple will see their life quality improve. After this, all the other communities that meet
the requirements for a hybrid microgrid could be built according to a previously
agreed plan.

From the chapter 9 results, it is clear that SHS will supply energy to most of the non-
electrified households in Bolivia. They should be able to provide as much energy as
possible without compromising the economical viability of the whole electrification
project. In order to improve the quality of service for SHS, it is possible to design
appliances that take advantage of solar energy, although this was not considered in
this thesis.

The amount of SHS and hybrid microgrids deployed to reach 100% electrification is
significant. Bolivia counts with one of the biggest reservoirs of Lithium and it has
made important efforts to develop its own industry of batteries. Under this context,
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the continuation of these endeavors could create a virtuous circle in which the high
demand of batteries creates the needed money to improve them. This could lead to
lower cost of energy for the final user, an a unique opportunity for the country to
develop and grow its high-tech industry.

Finally, it is clear that the accomplishment of SDG7 will impose several trade-offs in
which a decision must be made between antagonistic objectives such as cost, qual-
ity of service and environmental impact. Under these circumstances, the long term
sustainability of the planet should be the maximum priority, without forgetting that
the decision made will have a large impact in the quality of life of many generations
of people living in some of the most remote locations in the world.

10.1 Future work

The thesis proposes a first of its kind methodology to tackle the problem of optimal
rural electrification under uncertainty with a high level of details for decentralized
systems. Due to the comprehensive scope of the methods developed during this
thesis, several new research paths could be pursued to improve the obtained results.
In the following lines, possible future works that could enhance the approach are
discussed.

The difficulty to reach universal energy access in different contexts is clearly high-
lighted throughout this thesis. From a technical perspective, the most suitable tech-
nology for this objective is the extension of the current grid. However, economic or
environmental constraints prohibit the full grid extension over the whole territory
of a developing country. In this context, understanding and defining the concept of
”energy sufficiency” for a particular household or community has a special impor-
tance. As seen in several chapters, isolated solutions are not necessarily capable to
cover high peak demands, or prolonged periods of low solar irradiation, thus result-
ing in a lower quality of service than the grid. At the same time, an imperfect access
to electricity is more valuable than no access at all and might be sufficient to cover
some, if not all, basic needs.

The concept of energy sufficiency was introduced by [31]. The authors define it as a
state in which people’s basic needs for energy services are met equitably while eco-
logical limits are respected. The focus is on energy needs for shelter, health, work,
mobility and communication. It is important to note that these needs vary according
to local conditions and cannot be defined in a rigid manner. According to the defini-
tion presented above, the "sufficiency" line coincides with the minimum amount of
energy required by people to live a dignified life. However, this concept has mostly
been conceived and explored in the Global North (with the aim of reducing con-
sumption). It is a challenge to apply it in developing countries, where it is necessary
to look for ways to increase provision and consumption in less favored rural areas.

Under this context, it seems very interesting to adapt and use the concept of energy
sufficiency in future works, as a framework to identify minimal states of energy that
the system must provide. It should however be clearly defined in relation to other
concepts such as ”basic needs” or ”energy justice”. It is also important to take the
time evolution of the energy needs into account since appliance adoption is char-
acterized by a diffusion time and high disparities between urban and rural areas.
Finally, the concept can also usefully inform energy planning when considering the
trade-off between cost and non-served energy highlighted in chapter 6.
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Although this thesis focuses on SDG 7, a more comprehensive assessment should
be proposed focusing on the design resilient energy systems that help to meet other
SDGs instead of limiting their accomplishment. There are limitations for each tech-
nology (environmental, service quality, etc) that cannot be evaluated properly with a
cost-based comparison and would required to endogenize other SDGs in the model.
This, however, should be performed with a high level of spatial granularity: there is
the need to divide the Bolivian territory to represent the cultural richness of indige-
nous nations and its relation with the access to electricity.

The nexus between energy, water and food should be explored to create synergies
inside rural communities. A coordinated system can lower the operation cost of a
microgrid, for example by coordinating the use of irrigation pumps with the solar
availability. New generation sources could also be integrated to the model, to max-
imize these synergies. Demand side management at the consumer level is another
powerful tool to lower the energy cost, and is closely related to the tariff structures
and business models. As shown in chapter 5, the real-time optimal control of such
systems have the potential to transform the traditional microgrid into a "smart rural
community".

The Design of isolated microgrids/SHS is not a trivial task because of the inher-
ent uncertainty in the multiple model inputs and parameters. The two-stage op-
timization framework developed in chapter 4 covers different types of parametric
uncertainties such as demand and renewable output. However, other sources of un-
certainty should be taken into account at the design stage, including fuel prices and
demand growth throughout the lifetime of the project. As seen in chapter 5, the
methods to deal with this are computationally intensive, and more advanced math-
ematical formulations (i.e benders decomposition) might be required to decrease the
solving times.

The power of surrogate models for rural energy electrification is still largely un-
tapped. Beyond the preliminary approach proposed in chapter 9, their use should
be extended to other aspects of the planning process, e.g. for the accurate evaluation
of installed PV capacities. This requires improving the machine learning models to
better account for the sharp transitions between typical system configurations.

In the electrification algorithm (OnSSET), communities are currently well differenti-
ated. There is a need to enable microgrids covering more than one community, thus
creating clusters that take advantage of the economies of scale. Similarly, the algo-
rithm should be coupled with long-term planning tools at the grid level to evaluate
the pathway towards 100% electrification at different points in time .

Finally, special attention should be given to communities where it is not feasible to
build microgrids. These will most likely depend on SHS, which suffer from a limited
capacity to cover the overall energy demand. In this context, the high curtailment
levels stated in some simulation open the possibility to create rural energy com-
munities. In this arrangement, households could share electricity between them to
meet unexpected energy consumption or peaks. If designed correctly, this bottom-
up approach can allow to power community services in a decentralized way and
dramatically improves the quality of service [133].
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Appendix A

Data and Script online repository

Open science has become pivotal to ensure transparency and reproducibility of re-
search works. For this reason, a preference for tools and databases with an open
license were given. In the case that this was not possible, software with free license
to academics were chosen. Under these constraints, most of the work was done in
the programming language Python. The large collection of libraries and one of the
biggest communities in the world makes the use, modification or creation of research
tools an easier task.

The scripts and most of the data used through the course of this thesis is uploaded to
the following repository: https://github.com/Slbalderrama/Phd_Thesis_Repository.
In the repository it is possible to find a detailed description on how to use each script.
The scripts should be run without modifying them, the most important results are
printed in the console. In the main page of the repository, a README file can be
found, with all the information on how to set up the python environment. Each
chapter has its own folders except chapters 1 and 10. From a general point of view,
it is possible to find the following information on each folder:

• A README explaining the peculiarities of each folder, with a particular em-
phasis on the explanation on where to find the results and plots of the thesis.

• The inputs for the different scripts.

• The main scripts, they are the ones to be run in order to reproduce the results
of this thesis.

• Additional scripts to pre-process the inputs.

https://github.com/Slbalderrama/Phd_Thesis_Repository
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Appendix B

Survey for households with access
to electricity, el espino

B.1 General Information

Date: / /

Location:

Number of user:

Interviewed information:

Name:
Age:
Role:
Sex:
Education:
Work:
Coordinates:

1) Fill table B.1 with the following questions:

a. How many members of this segment live in this household ?.

b. which are their activities?.

c. When/where they do each activity?.

TABLE B.1: Household composition and general activities

Gender/Age Number Activity When/Where

Children 0-5

Children 5-17

Women over 17

Men 17-59

Men over 59

2) Fill table B.2 with the following questions, for each segment of the family:
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a. What time do each segment wake up?

b. Which is the activities time?

c. When do they return home?

d. When do they go to sleep?

e. How seasonality affects the activities?

TABLE B.2: Household members daily activities.

Hour Children 0-5 Children 5-14 Women over 14 Men 15-59 Men over 59

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

3) Do you have some change of the time schedule of the day in the weekend? In the
different seasons?

4) How many rooms there are in your household?
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B.2 Habit Changes

5) How the electrification has affected your habits?

a. Wake up / go to sleep time

b. Work / School time

c. Lunch / Dinner time

d. Free activities time

B.3 Income

6) Which activity do you do as job?

a. Agriculture:

i Land extension, kind of cultivation, production (self consumption/selling/trade),
months

-

-

-

-

b. Cattle breeding:

i Quantity, kind, production (self consumption/selling/trade), months

-

-

-

-

c. Seasonal work, months:

-

-

d. Self-employment (shop):

i . Which activity, months

-

-

e. Receive help from family
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f. Receive subsidies

g. ..............

7) How many times do you go to shop monthly/weekly? How much do you spend?

8) Which goods do you buy?

9) How often do you pay your electricity bill ?

- Daily

- Weekly

- Monthly

- Bimonthly

- Threemonthly

- Other (please specify)...............................

10) How much do you pay the bill on average every time? Bs

11) Which is the monthly average electricity consumption of your household? (Do
you have a meter? Do you check consumption?)

12) Do you have any comments about the electricity supply?

B.4 Electricity use and supply

13) Which are the devices using electricity in the house? For each appliance, answer
the following questions and fill Table B.3.

a. Which is the nominal power of the appliance Pij?

b. How many appliances of these type do you have?

c. How much time do you use it in a day?

d. In which part of the day do you use it? [i.e. 8:00 to 10:00 & 18:00 to 21:00]

e. How much time this appliance is ON at least? (minimum time)

f. Does the seasonality affect this time schedule?

g. When do you buy it?
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TABLE B.3: Household appliances.

appliance

i

Nominal

Power

Pij

[ W ]

Number

Nij

Average

daily use

hij

[ h ]

Functioning

window

W_{f,ij}

(seasonality)

Min

time

D_{ij}

[min]

Season-

ality

When

did

you

buy

it?

In

lights

Out

lights

radio

Cellular

fridge

freezer

Mixer

hot plate

kettle

fan

AC

TV

14) Which are the devices using electricity in the house before the electrification? For
each appliance, answer the following questions and fill Table B.4.

a. Which is the nominal power of the appliance Pij?

b. How many appliances of these type do you have?

c. How much time do you use it in a day?

d. In which part of the day do you use it? [i.e. 8:00 to 10:00 & 18:00 to 21:00]

e. How much time this appliance is ON at least? (minimum time)

f. Does the seasonality affect this time schedule?
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TABLE B.4: Household appliances before electrification.

appliance

i

Nominal

Power

Pij

[ W ]

Number

Nij

Average

daily use

hij

[ h ]

Functioning

window

W_{f,ij}

(seasonality)

Min

time

D_{ij}

[min]

Season-

ality

When

did

you

buy

it?

In

lights

Out

lights

radio

Cellular

fridge

freezer

Mixer

hot plate

kettle

fan

AC

TV

15) Can you put in a priority and utility order the electric appliances? (appliances of
the table before) How much are you willing to pay for these appliances?

-
-
-
-

16) Answer the following questions for each energy source and fill Table C.1.

a. Do you use this source?

b. Which are the purpose? (more than one answer is allowed)

c. Where did you get it?
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d. How much does it cost?

e. How much do you get it?

f. How many times do you get it in a week?

g. How do you transport it?

h. How much time do you need to transport it?

TABLE B.5: Other energy sources.

Used Purpose Supply Price Quantity Frequency Transport Time

Biomass

Diesel

Gasoline

GLP

Kerosene

Charcoal

B.5 Candles use and supply

17) Do you use candles at home? Yes No

18) How many candles do you buy? How much do the candles cost?

19) Where do you buy it? How much time do you need for purchasing it?

B.6 Cooking (for cooking fuel supply see the table above)

20) Is cooking done indoors, outdoors, both?

21) With which frequency?

B.7 Heating & Cooling

22) Do you have cold during the year?

23) Which appliance do you use for heating?

24) Do you have hot during the year?

25) Which appliance do you use for cooling?

26) Which is the material of house?
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B.8 Spatial Network

27) Answer the following questions for each energy source and fill Table B.6.

a. Do you have it?

b. Will you buy it?

c. How many owners of this appliance did you know when you bought it? (1)

d. How many owners of this appliance do you know? (2)

e. Why? (2, no)

TABLE B.6: The spatial network for appliances.

Appliances i
Question:

a

Question:

b

Question:

c

Question:

d

Question:

e

in. lights

out. lights

radio

Cellphone

fridge

freezer

Mixer

hot plate

kettle

fan

air conditioner

TV-dvd

Other (please specifiy)
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Cuestionario Acceso Energético del
Pueblo Atacameño de Toconao

C.1 Información General

Direcciónn:.............................................................................

Fecha:......./ ......./ .......

Sexo: M F

Edad:.......

1) Posición en la familia:

a. Cabeza de Familia

b. De la familia

c. Otro (especificar )

2) Información de los miembros del hogar (Table C.1).

TABLE C.1

Miembro familia Sexo Edad Ocupación

1

2

3

4

5

6

7

C.2 Uso y Suministro de Electricidad

3) Está su casa conectada a la red eléctrica local (CESPA)? SI NO



142Appendix C. Cuestionario Acceso Energético del Pueblo Atacameño de Toconao

4) Tiene un medidor de corriente instalado en su casa? SI NO

5) Cuál es la potencia de su medidor? kW

6) Cuáles son los dispositivos que utilizan electricidad en la casa? (Table C.2)

TABLE C.2

Artículos Número

Uso

diario

promedio

Edad Ocupación

TV

Radio

Celular

Luces interior

Luces exteriores

Refrigerador

Notebook

Plancha eléctrica

Hervidor

7) Cuál es el consumo promedio por mes? kWh

8) Cuál es la factura promedia del hogar? CLP

9) Cuantas horas de servicio eléctrico tienes al día? y después del atardecer?

10) Podrías estimar cuantos cortes de luz ocurren por mes? (Table C.3)

TABLE C.3

No de cortes por mes

Menos 10 minutos

10 minutos a 1 hora

1 hora a 2 horas

Mas 2 horas
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11) Alguna vez ha tenido algún dispositivo dañado o roto debído a las fluctuaciones
de voltaje de la red eléctrica?

12) Como paga su factura?

13) Alguna vez ha tenido accidentes con electricidad en su hogar?

14) Tienes algún comentario sobre el suministro de electricidad?

C.3 Cocina

15) Leña para cocinar:

a. Cuáles son los sistemas de cocción a leña utilizados?

- Fuego con piedras

- Estufa de leña

- Estufa avanzada

- Otros (Especificar .......................... )

b. Dónde se coloca la cocina a leña en su casa?

- Dentro de la casa

- Fuera de la casa

- Cocina común con otros hogares

c. Sobre una base semanal, cuántas comidas cocinas usando leña?

d. Cuánto tiempo se necesita para que el equipo esté listo para cocinar?

e. Alguna vez ha tenido accidentes con leña en su hogar?

16) Gas para cocinar:
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a. Sobre una base semanal, cuántas comidas cocinas usando gas?

b. Alguna vez ha tenido accidentes con gas en su hogar?

C.4 Calentamiento de Espacios

17) Con que frecuencia utiliza estos combustibles para calefacción? (Table C.4)

TABLE C.4

Gas Leña

Diariamente

Semanalmente

Mensualmente

Anualmente

18) Calidad de calefacción (Table C.5)

TABLE C.5

Gas Leña

Cuantas habitaciones de la casa son calentadas?

Por cuanto tiempo tienes la calefacción que necesitas?

Por cuanto tiempo tienes una temperatura agradable?

En el último año tuvo accidentes en su uso

C.5 calentamieto de agua

19) Con qué frecuencia calienta el agua sanitaria de esta manera? (Table C.6)

TABLE C.6

Gas Leña Colector solar

Diariamente

Semanalmente

Mensualmente

Anualmente
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C.6 Provisión de Combustibles

20) De dónde saca la leña?

a. Dentro del Pueblo, gratis

b. Dentro del Pueblo comprándola,

c. fuera del pueblo de manera gratuita

d. Fuera del Pueblo comprándola

e. Otros (Especificar).................

21) Cómo se transporta la leña a su hogar?

a. A mano

b. Con moto

c. Con auto

d. Con camioneta

e. Con camión

f. Otros (Especificar) ..............................

22) Cuánto tiempo se necesita para adquirir y preparar la leña?

23) Cuánto compras? (Use el medio de transporte arriba como unidad de medida)

24) Cuánto pagas por la leña? .............. CLP

26) Qué tipo de botella de gas tiene (Tamaño y Marca)?

27) Con qué frecuencia lo vuelve a llenar en promedio? Cada .................

28) Cuánto pagas? ......CLP

C.7 Otras fuentes de energia

29) Utiliza otras fuentes de energia? (Table C.7)
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TABLE C.7

si/no
Proposito

principal

En que

cantidad

Cual es

el costo

Carbon

Kerosene

Velas

Otros .........................

C.8 Producción de residuos domésticos

30) Tiene una granja? Si No

31) Qué tipo de cultivos tiene? (Table D.4)

TABLE C.8

si/no
Cual es la extension

aproximada?

Choclo

Porotos

Cereales

Papas

Pasto

Vegetales

Otros árboles frutales

32) Consume los productos de su granja?

a. Sí, consumimos todos los productos

b. Sólo se consume parte, se vende el resto

c. Todo se vende

33) Qué animales tiene usted (si los hay)? (Table C.9)
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TABLE C.9

Numero Como los alimentas ?

Cerdos

Cabras

Vacas

Conejos

Llamas

Aves de corral

Otros árboles frutales
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Appendix D

Ramp input data

D.1 Hospitals RAMP input data

TABLE D.1: Ramp input data for Hospitals.

Appliance n
P

[W]

Cycle

[min]

Tot Use

[min]

Start

W1

End

W1

Start

W2

End

W2

Indoor

Bulb**
12 7 10 690 08:00 12:00 14:30 24:00

Outdoor

Bulb**
1 13 10 690 00:00 05:30 17:30 24:00

Cellphone charger 8 2 5 300 08:00 12:00 15:00 24:00

Fridge* 3 150 30 1440 00:00 24:00 - -

PC 2 50 10 300 08:00 12:00 17:30 24:00

Mixer 1 50 1 60 08:00 12:00 17:30 24:00
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D.2 Schools RAMP input data

TABLE D.2: Ramp input data for Schools.

Appliance n
P

[W]

Cycle

[min]

Tot

Use

[min]

Start

W1

End

W1

Start

W2

End

W2

Indoor Bulb** 8 7 10 60 17:00 18:00 - -

Outdoor Bulb** 6 13 10 60 17:00 18:00 - -

Phone Charger 5 2 5 180 08:30 12:30 13:30 18:00

PC 18 50 10 210 08:30 12:30 13:30 18:00

Printer 1 20 5 30 08:30 12:30 13:30 18:00

Fridge* 1 200 30 1440 00:00 24:00 - -

TV 1 60 5 120 08:30 12:30 13:30 18:00

DVD 1 8 5 120 08:30 12:30 13:30 18:00

Stereo 1 150 5 90 08:30 12:30 13:30 18:00
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D.3 LowLands community RAMP input data

TABLE D.3: Ramp input data for lowlands communities.

User

Class
Appliance n

P

[W]

Cycle

[min]

Tot

Use

[min]

Start

W1

End

W1

Start

W2

End

W2

HC

Indoor

Bulb**
6 7 10 120 19:30 24:00 00:00 00:30

Outdoor

Bulb**
2 13 10 600 19:30 24:00 00:00 05:30

TV 2 60 5 180 12:00 15:00 19:30 01:00

DVD 1 8 5 60 12:00 15:00 19:30 01:00

Antenna 1 8 5 120 12:00 15:00 19:30 01:00

Cellphone 5 2 5 300 18:30 24:00 00:00 00:30

Fridge* 1 200 30 1440 00:00 24:00 - -

Mixer 1 50 1 30 07:00 08:00 11:00 12:30

LC

Indoor

Bulb**
2 7 10 120 19:30 24:00 00:00 00:30

Outdoor

Bulb**
1 13 10 600 19:30 24:00 00:00 05:30

TV 1 60 5 90 12:30 14:00 19:30 00:30

DVD 1 8 5 30 12:30 14:00 19:30 00:30

Antenna 1 8 5 60 12:30 14:00 19:30 00:30

Cellphone 2 2 5 300 18:00 24:00 - -

Church

Indoor

Bulb**
10 26 60 210 20:00 24:00 - -

Outdoor

Bulb**
7 26 60 240 20:00 24:00 - -

Speaker 1 100 60 240 20:00 22:30 - -

Public

Lighting
Lights** *** 150 300 600 19:00 24:00 00:00 06:00
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D.4 Hihglands communities RAMP input data

TABLE D.4: Ramp input data for highlands communities.

User

Class
Appliance n

P

[W]

Cycle

[min]

Tot

Use

[min]

Start

W1

End

W1

Start

W2

End

W2

HC

Indoor

Bulb**
7 7 10 300 18:00 24:00 00:00 00:30

Outdoor

Bulb**
1 13 30 300 20:00 24:00 00:00 07:00

TV 2 60 30 360 09:00 13:00 18:00 24:00

Radio 1 7 30 240 08:00 12:00 18:00 23:00

Cellphone 4 5 10 360 20:00 24:00 00:00 07:00

Fridge* 1 250 30 1440 00:00 24:00 - -

Laptop 1 70 30 90 16:00 24:00 - -

Iron 1 700 1 30 10:00 20:00 - -

LC

Indoor

Bulb**
5 7 10 300 18:00 24:00 00:00 00:30

Outdoor

Bulb**
1 13 30 60 20:00 24:00 00:00 07:00

TV 1 60 30 240 09:00 13:00 18:00 24:00

Radio 1 7 30 240 08:00 12:00 18:00 23:00

Cellphone 2 5 10 360 20:00 24:00 00:00 07:00

Iron 1 700 1 30 10:00 20:00 - -

Church

Indoor

Bulb**
10 26 60 210 20:00 24:00 - -

Outdoor

Bulb**
7 26 60 240 20:00 24:00 - -

Speaker 1 100 60 240 20:00 22:30 - -

Public

lighting
Lights** *** 150 300 600 19:00 24:00 00:00 06:00

* Fridge follow a specific ad-hoc cycle, is not functioning full power for 24h
** Total duration and functioning windows depending on seasonal sunrise and sun-
set times
*** Depending on population size
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Appendix E

Analysis of the PV monitoring data

In order to determine the relevant features for the prediction of the PV performance
from the monitoring data, a matrix of scatter plots (Figure E.1) and a covariance ma-
trix (Figure E.2) are plotted. From these, it appears that the module temperature
(PV temperature 2), the ambient temperature, the hour of the day and the solar irra-
diation should be taken into account when predicting the performance of the solar
array.



154 Appendix E. Analysis of the PV monitoring data

FIGURE E.1: Matrix of scatter plots for each variable

FIGURE E.2: Covariance matrix between the PV variables
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Appendix F

OnSSET input data

F.1 Geospatial datasets and assumptions

TABLE F.1: Open-source GIS data used in the model.

Dataset Description Type Source

Population

and

electrification

Census

Information of each

Bolivian community.

Point

vector
[134]

Administrative

boundaries

Delineates the

boundaries

of the analysis.

Line

vector
[135]

Existing grid

network

Used to estimate the

costs of grid extension.

Line

vector
[136, 137]

Substations
Used to specify grid

extension suitability.

Point

vector
[138]

Roads
Used to specify grid extension

suitability.

Line

vector
[139]

Planned

grid network

Planned extension of the

national electric grid.

Line

vector
[140, 141]

Travel time
Travel time to the closest

town (>50 000 people).
Raster [142]

Digital Elevation

Map

Altitude in meters

above sea level.
Raster [143]

Land Cover Land cover maps. Raster [144]

Poverty

socio-economic

information of the

population .

Polygon

vector
[145]
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F.2 Socio-economic parameters used in the electrification model
for Bolivia

TABLE F.2: Socio-economic parameters used in the electrification
model for Bolivia.

Parameter Metric Value 2012 Value 2025

Population total Million persons 10 351 118 12454178

Urban population Percent of total population 67.71% 72.80%

Electricity access Percent of total population 82.08% 100%

Urban household size People per household 3.84 3.84

Rural household size People per household 3.41 3.41

F.3 Techno-economic parameters related to the grid connected
technologies

TABLE F.3: Techno-economic parameters related to the grid con-
nected technologies.

Technology type Expected capacity in 2025, MW % share Investment costs, $/kW

Hydropower 2393 43% 2100

Gas combined cycle 2698 47% 1140

Solar power 160 3% 1400

Wind power 180 3% 1320

Biomass thermal 62 1% 2200

Geothermal 110 1% 590

Diesel 35 2% 5218
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F.4 Techno-economic characteristics for classic OnSSET off-
grid technologies

TABLE F.4: Techno-economic parameters related to off-grid technolo-
gies for OnSSET classic.

SHS PV microgrid Diesel Microgrid

O&M of tramission lines (%) 0 0.02 0.02

Connection per household (USD) 0 125 125

Base to peak ratio 0.9 0.9 0.529

Teach life (years) 15 20 20

O&M costs (%) 0.02 0.02 0.02

Capital cost (USD/kW) 3500 1480

TABLE F.5: Capital cost for SHS for OnSSET classic.

Capacity (kW) Capital Cost (USD/kW)

0.02 20000

0.05 11050

0.1 7660

0.2 5780

Others 5070
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