
A Consistency Analysis of Phase-Locked-Loop

Testing and Control-Based Continuation for a

Geometrically Nonlinear Frictional System

G. Abeloos∗a, F. Müllerb, E. Ferhatogluc, M. Scheelb, C. Collettea,
G. Kerschena, M.R.W. Braked, P. Tisoe, L. Rensonf, and

M. Krackb

aDepartment of Aerospace and Mechanical Engineering, University of Liège, Belgium
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Abstract

Two of the most popular vibration testing methods for nonlinear struc-
tures are control-based continuation and phase-locked-loop testing. In this
paper, they are directly compared on the same benchmark system, for the
first time, to demonstrate their general capabilities and to discuss practi-
cal implementation aspects. The considered system, which is specifically
designed for this study, is a slightly arched beam clamped at both ends via
bolted joints. It exhibits a pronounced softening-hardening behavior as
well as an increasing damping characteristic due to the frictional clamp-
ing. Both methods are implemented to identify periodic responses at
steady-state constituting the phase-resonant backbone curve and nonlin-
ear frequency response curves. To ensure coherent results, the repetition
variability is thoroughly assessed via an uncertainty analysis. It is con-
cluded that the methods are in excellent agreement, taking into account
the inherent repetition variability of the system.
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Abbreviations

CBC Control-Based Continuation
FRC Frequency Response Curve
LP filter Low-pass filter
NNM Nonlinear Normal Mode
P Proportional
PD Proportional and Differential
PID Proportional, Integral and Differential
PLL Phase-Locked Loop
RCT Response-controlled stepped-sine testing
SSI Shaker-Structure Interaction

Mathematical symbols

v Velocity at the measurement point
f Force applied on the structure, also called excitation
u Voltage sent to the shaker’s amplifier
N Number of harmonics considered
α̂x,n nth sine Fourier coefficient of the signal x

β̂x,n nth cosine Fourier coefficient of the signal x
θ Instantaneous phase of the voltage
Ω Excitation frequency
ω Nonlinear natural frequency
ω0 Linear natural frequency
φv Phase lag between the excitation and the first harmonic of v
Xn Amplitude of the nth harmonic of a multiharmonic signal x
h Thickness of the beam

1 Introduction

Experimental characterization of structures is essential to calibrate and validate
theoretical models [1] even though laboratory conditions rarely capture oper-
ational conditions. Dynamic testing techniques for linear systems can now be
considered mature and straightforward, as they have been widely studied in
the structural dynamics community over the last decades [2, 3, 4] and are now
routinely used in the industry [5]. Experimental techniques are set to play a
key role in the development and validation of nonlinear models because of the
immense variety in the sources of nonlinear behavior (joints, material, geome-
try, etc.) and in the nonlinear behaviors themselves. In some circumstances,
conventional testing methods can be adequate to test nonlinear structures and
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extract some of their dynamic features. For instance, nonlinear frequency re-
sponses can be accurately obtained by exploiting successive frequency sweeps
performed with an increasing and a decreasing order [6, 7]. The time-domain
Hilbert transform [8] applied to structures in free decay is another example.
Methods relying on free decay necessitates finding and temporarily maintaining
the structure at resonance, which can be difficult to do. The free decay can then
follow a non-trivial path through different resonant branches separated by tran-
sient jumps [9]. For more complex nonlinear behavior, model-based methods
are powerful but strongly depend on the modelling assumptions. For instance,
a frequency-domain nonlinear subspace identification can be exploited to iden-
tify the parameters of a nonlinear model after exciting the system with random
excitation at different constant RMS force levels [10]. The frequency response
is subsequently computed from the model using for instance the harmonic bal-
ance method [11]. The wide range of nonlinear sources and the potentially high
number of parameters render model-based methods difficult to scale to more
complex systems, and random excitation might not trigger high-amplitude non-
linear effects.

Consequently, there is a strong need to develop methods to generally and
reliably characterize structures with a wide range of complex nonlinear behavior
without the need for a model. Some of these behaviors are presented using a
single-degree-of-freedom oscillator describing a mode of the physical experiment
described in Section 2 with higher damping for readability. The equation of this
oscillator is

ẍ(t) + 2ξω0ẋ(t) + ω2
0x(t) + k2x

2(t) + k3x
3(t) = p sin(Ωt), (1)

where ξ = 0.8%, ω0 = 2178, k2 = 1.9 × 1010, k3 = 4.1 × 1013, and where the
right-hand side term represents a harmonic excitation with amplitude p and
frequency Ω. The purpose of this model is not to predict experimental results
quantitatively but merely to illustrate the concepts presented in this article.
Fig. 1 shows the periodic responses of the oscillator for a range of excitation
frequencies and amplitudes computed using the harmonic balance method [11]
with one harmonic. The response is represented by the amplitude X1 and phase
φx of its fundamental harmonic component. Responses other than periodic are
outside the scope of the present study.

The collection of periodic responses obtained at a constant excitation ampli-
tude defines one of the frequency response curves (FRC) of the system (blue in
Fig. 1). Although FRCs usually depict the total response amplitude, this article
studies systems that respond primarily through the first harmonic, i.e. that are
excited close to a primary resonance without modal interaction. The FRCs in
this article therefore depict the relation between the excitation frequency and
the first harmonic amplitude. The periodic response with maximum amplitude
along a FRC is called the amplitude resonance. In general, it must be distin-
guished from the phase resonance where the response and excitation satisfy a
phase quadrature condition. However, both types of resonances coincide well
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(a)

(b)

Figure 1: Response surface representing the periodic responses of the exam-
ple model (1) by (a) amplitude or (b) phase lag of the fundamental harmonic
for varying excitation frequencies and amplitudes, with highlighted FRC (blue
curve), S-curve (yellow curve), backbone curve (dash-dot orange curve), and
constant-response FRF (dashed purple curve) and unstable responses in lighter
grey
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for systems with well-separated natural frequencies and light damping, as it is
the case in this study. In Fig. 1b, phase-resonant responses are represented
by a dash-dot orange curve and have a phase φx equal to −π/2. In Fig. 1a,
phase-resonant responses form the so-called backbone curve of the system. The
backbone curve is the frequency-amplitude relation of a nonlinear normal mode
(NNM) [12], and has been used for nonlinear model updating and parameter
estimation [13, 14].

The FRC and the backbone curve shown in Fig. 1a highlight some of the
key challenges in the experimental characterization of nonlinear structures using
testing methods for linear systems.

1. The resonance frequency of nonlinear systems is amplitude-dependent.
Here, the example model (1) has a softening-hardening nonlinearity which
results in a backbone curve that first decreases in frequency with the re-
sponse amplitude and then increases after a turning point, as shown in
Fig. 1a. As the amplitude-dependent resonance frequency cannot be pre-
dicted using linear modal analysis, reaching the resonance of this system
using linear techniques would typically require to tune manually the exci-
tation frequency at every excitation amplitude.

2. For a single choice of excitation parameters p and Ω, Fig. 1 shows that the
system can exhibit different responses. As a consequence, a slight pertur-
bation on the system can trigger the so-called jump phenomenon during
which the response suddenly changes from one steady state response to
another. Jumps in an experiment can result in an incomplete character-
ization of the dynamics, repeatability issues, and even damages to the
testing equipment.

3. Some periodic responses are unstable and cannot be identified experimen-
tally without control. The regions where unstable responses exist are
enclosed by curves of saddle-node bifurcations and highlighted in light
grey in Fig. 1. Fig. 1 also shows that the backbone curve is usually very
close to the instability boundary, rendering its identification potentially
difficult with traditional methods.

4. When unstable responses cannot be measured, curves of stable responses
are disconnected from each other. As such, it might be unclear how they
are meant to connect with each other and if any additional feature is
present between the curves. For instance, the example model (1) exhibit
FRCs whose maximum amplitude may be reached neither by forward nor
backward frequency stepping or sweeping. Indeed, both directions en-
counter a bifurcation point leading to a jump towards a lower amplitude
branch, as illustrated in Fig. 2.

An emerging practice to address the challenges introduced by nonlinearity
without requiring building a model is to implement feedback control in the ex-
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Figure 2: One FRC of the example model (1) exhibiting a stable branch (black
arrow) that could be left unidentified when performing a frequency sweep up
(yellow arrows) or down (orange arrows) due to meeting bifurcation points (cir-
cles)

periment. This ensures more systematic and robust tests [15, 16] because transi-
tions between different regimes of motion can be controlled by the experimenter.
The use of feedback control enables the identification of responses around fold
bifurcations [17] and responses difficult to reach with classical methods [18],
to observe unstable responses [19] and to characterise bifurcations experimen-
tally [20]. Unstable responses and bifurcations are important features of the
dynamics. For instance, unstable responses separate the phase space, i.e. they
are the boundaries between different types of behavior, and can be used to deter-
mine the perturbation size leading to jump between solutions. With control, the
complete nonlinear response of the system can be captured directly and with-
out requiring models during the experiments. When using classical experimental
techniques, this is only possible through post-processing [8]. Three methods for
feedback-controlled testing of nonlinear structures are control-based continua-
tion, phase-locked loop testing, and response-controlled stepped-sine testing.

Control-based continuation (CBC) is a means to apply the principles of nu-
merical continuation directly to a physical system [16]. CBC is a general tech-
nique that has been used in many experiments to steer and maintain the dynam-
ics of a physical system around a periodic but otherwise arbitrary prescribed
target response using feedback control [21, 22, 23, 24, 25]. To guarantee that the
responses measured with CBC are identical to the open-loop responses measured
with a single-harmonic voltage input to the shaker, a so-called non-invasiveness
condition resulting in the cancellation of the higher-harmonics in the control
signal has to be satisfied [24, 26]. CBC has been applied to cantilever beams
with magnetic or geometric nonlinearities exhibiting bifurcation points and mul-
tiple branches of responses. It has been used to identify FRCs [22, 20], back-
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bone curves [25] and bifurcation curve [27]. As FRCs cannot be parametrized
uniquely by the response amplitude or frequency, their identification using CBC
necessitates continuation algorithms such as the pseudo-arclength method [22].
An easier alternative is to find a parametrization of the response surface that
does not require such algorithms. Exploiting the fact that CBC uses a response-
based feedback controller, the response surface can be easily characterised by
collecting responses at constant forcing frequency Ω (yellow curve in Fig. 1a).
These curves, called S-curves due to their usual shape, are characterized by
a monotonous evolution of the response amplitude and can be interpolated to
extract FRCs [24, 18].

Another experimental method relies on feedback control using a phase-locked
loop (PLL) to impose the phase lag between excitation and response of nonlinear
systems [28, 29]. Fig. 1b shows that the phase lag and excitation amplitude fully
parametrize the surface, rendering unnecessary the use of complicated continu-
ation methods to identify FRCs. FRCs at constant excitation amplitude can be
identified straightforwardly by imposing the phase lag [28, 30]. Backbone curves
can also be identified by imposing phase quadrature, linking directly the method
to the identification of NNMs. PLL testing has been successfully applied for
the characterization of NNMs in many experiments including a blade [31] and a
joint [32] with frictional nonlinearities, a circular plate [19] exhibiting hardening
and modal interaction, and a cantilever beam with magnetic nonlinearity [33].

Response-controlled stepped-sine testing (RCT) is similar in principle to
CBC as the control law is used to impose a particular response to the system,
permitting the identification of constant-response FRFs [34], shown in a dashed
purple curve in Fig. 1a. By imposing a constant response amplitude rather
than a constant excitation amplitude, constant-response FRFs do not exhibit
bifurcation points, even if the FRCs exhibit one or multiple turning points. A
collection of constant-response FRFs can be identified to interpolate the surface
and extract FRCs. RCT has been used, notably on a satellite structure [34], on
a T-beam, on a guided missile and its control fin [35, 36].

These control-based methods measure directly the features of interest: Iden-
tifying the frequency response of the structure or the backbone of a nonlinear
mode is invaluable in the industry e.g. for rapid prototyping. Such a character-
ization of nonlinear systems can be used for system stabilization [37] or vibra-
tion mitigation through nonlinear control [38]. For some systems, physics-driven
modelling is still not predictive enough e.g. frictional systems with uncertain-
ties or bolted joints [39]. Data-driven modelling is an attractive and attainable
alternative.

The objective of this article is to present and compare control-based testing
techniques in a theoretical and practical point of view, and to apply them on
the same structure for the first time. The control laws used for RCT have not
been disclosed (e.g. proprietary software was used in [35]). For this reason,
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this article focuses specifically on PLL testing and CBC. The test rig and its
design are presented in Section 2. Section 3 explains the two methods and
discusses their main differences. Experimental data obtained successively with
PLL testing and CBC is presented in Section 4. A detailed comparison between
FRCs and backbone curves obtained with both methods is made. Conclusions
are presented in Section 5.

2 Design and linear modal analysis of the test
rig

The main structure of the experimental campaign consists of a thin arched
beam whose both ends are clamped via bolted joints to a frame. The beam
is specifically designed with a slight curvature in order to observe a softening-
hardening behavior in the experiments. Unlike the flat beams, the stiffness of
curved structures first decreases while the onset of buckling approaches, then
it starts to increase after a certain point due to large deformations resulting
in axial-bending stretches [40]. The difference between the dynamics of flat
and curved beams is experimentally shown with a comparison study in [41].
Moreover, arched beams have also sophisticated characteristics that increase
the complexity of the systems [42, 43]. All of these phenomena challenge the
methods for the identification of the beam’s dynamic features and enable a
thorough comparison with their positive and negative aspects on a difficult
system.

The beam’s shape is defined as a circular arc with radius of curvature R and
constant thickness h, see Fig. 3. The objective of the design was to select a
combination of R and h such that the beam’s first bending mode exhibits a pro-
nounced softening-hardening behavior qualitatively similar to the one exhibited
by system (1) without snap-through phenomenon (to avoid chaotic motions) nor
internal resonances in the amplitude range of interest. To this end, we performed
a preliminary parameter study of a finite element model of the ideally clamped
arc with respect to R and h. More specifically, a reduced order model (ROM)
of the finite element model was created to confirm that the system follows the
desired dynamics using the implicit condensation procedure (see e.g. [44] for de-
tails about the method) and is used as the introductory example (1). The ROM
was exposed independently to both static point load at center as well as dynamic
excitation. In the latter case, the clamping points were moved harmonically in
the vertical direction where both nonlinear normal modes (NNMs) and FRCs
corresponding to the lowest frequency bending mode were computed using the
free tool NLvib [45]. The nominal numeric values for R and h resulting from
this study are given in Fig. 3.

The arched beam was manufactured by wire electrical discharge machining
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Figure 3: Test rig consisting in a thin arched beam with both ends clamped to
a frame which is connected to an electrodynamic shaker

using spring steel 1.8159 (density 7.7-8.03 × 1000 kg/m3, Poisson’s ratio 0.27-
0.30, Young’s modulus 190-210 GPa). To ensure the clamped-clamped bound-
ary conditions, a stiff support frame and two identical clamping blocks were
designed and manufactured from the same steel as the beam to avoid stresses
as a consequence of temperature change. On both sides (left and right), the
beam’s ends are laid between the frame and a block, after which the block is
clamped via two screws toward the frame. The outer screws (#2 and #4) are
fitting screws ISO 7379 which are tightened by hand and have the function to
uniquely define the longitudinal position of the blocks. On the right-hand side,
#2 also positions the beam longitudinally, whereas on the left-hand side the
bore through the beam’s end has a bigger diameter than the fitting screw such
that axial prestress in the beam are avoided. #1 and #3 are M5x25 hexagon
socket screws with the function to generate a contact pressure large enough to
avoid macroslip of the beam’s ends in the joints during vibration tests. There-
fore they are fixed by a defined torque of 6 Nm. To avoid as much variation as
possible in the axial prestress caused by the bolts, the order of tightening the
screws is defined by #1→#2→#3→#4. The resulting curvature of the beam
in its clamped-clamped configuration may differ from the nominal shape as a
consequence of imperfections of manufacturing and assembly processes. The
actual surface profile of the beam in its clamped configuration is measured by
means of the height of the top surface using a laser scanner (Keyence LK-H052),
see Fig. 4. The height increases significantly and in a symmetrical manner from
left and right sides toward center as intended. The rectangles with increased
height close to the left clamping point and at center are reflection tapes which
were glued at these positions. The final geometry is very close to the nominal
profile.
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Figure 4: Top: height surface profile of the beam’s top face, reflective tape
highlighted in red; bottom: mid-width profile (plain blue curve) and nominal
profile (dashed orange curve)

The frame supporting the curved beam is connected to an electrodynamic
shaker (B&K type 4809 driven by amplifier type 2718). An impedance head
(PCB 288D01) is placed between the shaker’s armature and the frame to mea-
sure both excitation force and acceleration of the frame at the drive point. The
beam’s response is measured by a laser Doppler vibrometer (Polytec OFV-5000
with OFV-552-2 laser head) 20 mm away from the left clamping. The measure-
ment location was chosen close to clamping to avoid instabilities in feedback
loops emanating from the measurement and driving points being non-collocated.

The velocity v measured by the laser vibrometer constitutes the beam’s
response and the force f measured by the impedance head constitutes the ex-
citation. When a harmonic voltage of the form u(t) = U sin(Ωt) is sent to the
electrodynamic shaker, it generates the force f(t). If the response is periodic,
it can be approximated by a truncated Fourier series of N harmonics

v(t) =

N∑
n=1

α̂v,n sin(nΩt) + β̂v,n cos(nΩt). (2)

In practice, only a limited number of harmonics is considered. Subharmonic
components of the form

α̂v,n/ν sin
(n
ν

Ωt
)

+ β̂v,n/ν cos
(n
ν

Ωt
)
,

n

ν
/∈ N (3)

are not taken into account in this study because their amplitudes was negligible
in the experiments described in the rest of the article. The fundamental ampli-

tude of the response is defined as V1 =
√
α̂2
v,1 + β̂2

v,1 and the fundamental phase

lag φv = atan2(β̂v,1, α̂v,1). The phase lag defined on the velocity causes the
the periodic responses to be in phase quadrature—or in phase resonance—when
φv = 0 rad.

At low forcing amplitudes, the beam is assumed to behave linearly. There-
fore, the modal properties corresponding to the lowest frequency bending mode
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of the underlying linear system are determined using a hardware platform for
linear modal analysis (m+p VibRunner). A random voltage signal was sent
to the shaker’s amplifier with an amplitude of 0.03 V and a frequency range
between 10 and 3200 Hz. The natural frequency has been measured to be
ω0 = 1988 rad/s, and the damping ratio δ0 = 0.026%. The mode shape of the
experiment is not to be confused with the beam’s (continuous) deflection shape.
Rather, it is defined by the relationship between the acceleration of the base
and the velocity of the beam at the measurement point. To realize the control
loops of PLL testing and CBC (see Sect. 3.1 and 3.2 for details), the sensors
and the amplifier are connected to a rapid control prototyping system (dSPACE
MicroLabBox, sampling frequency: 10,000 Hz).

3 Methods

Phase-locked loop (PLL) testing and control-based continuation (CBC) are in-
troduced in Sections 3.1 and 3.2 respectively. Continuation algorithms to iden-
tify backbone curves and FRCs are developed in Sections 3.3 and 3.4 respec-
tively. Section 3.5 focuses on a method to compensate for shaker-structure
interaction and recover a single-harmonic input force. PLL testing and CBC
are compared from a theoretical point of view in Section 3.7. A comparison
based on experimental results will be given in Section 4.

3.1 Phase-Locked Loop testing

The basic working principle of PLL testing is illustrated in Fig. 5. A sine signal

u(t) = U sin(θ(t)) = U sin

(∫ t

0

Ω(τ) dτ

)
, (4)

with instantaneous phase θ(t) and time-varying excitation frequency Ω(t) is pro-
vided as voltage input to the experimental set-up. The excitation frequency Ω
is calculated by a PID control law,

Ω(t) = ω0 + kp(φref − φv(t)) + ki

∫ t

0

(φref − φv(τ)) dτ − kd
dφv
dt

(t), (5)

aiming at reaching a reference phase lag φref between the fundamental harmonic
of the excitation f and response x [28]. When the controller has settled, i.e.
when the excitation frequency remains constant, the voltage signal is monohar-
monic.

A key task within PLL testing is to evaluate the phase lag φv online, i.e.
at each time sample of the experiment. One method to perform this is the
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Figure 5: (a) Phase-Locked Loop and (b) synchronous demodulation [46]

synchronous demodulation shown in Fig. 5b that consists in an online Fourier
decomposition using linear low-pass (LP) filters. It has been successfully ap-
plied in other PLL tests [29, 33, 30, 19] and is used in this work. A promising
alternative is the use of adaptive filters [26] to perform the online Fourier de-
composition.

PLL has been shown capable of stabilizing unstable orbits depending on the
gains of its controller [19]. The tuning of the gains is discussed in Section 3.6.
The time constant of the low-pass filter used for phase demodulation is 0.4 s.
This values was selected to compromise between convergence time and filtering
capacity.

3.2 Control-Based Continuation

The general formulation of CBC, as presented in [16], separates the excitation
from the control signal that can be applied along the excitation by the same
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actuator or by a separate actuator. The present article exploits a simplified
implementation of CBC [24] shown in Fig. 6, in which the excitation is provided
by the controller.

The voltage signal u is generated by a PD controller whose input is the
difference between a reference signal y and the velocity v measured by the laser
vibrometer:

u(t) = kp(y(t)− v(t)) + kd
d

dt
(y(t)− v(t)). (6)

The PD controller modifies how the system responds to perturbation and can
stabilize unstable orbits [47]. The tuning of the control gains are discussed in
Section 3.6. Note that CBC does not require a specific type of controller such
that other control law could have been used.

The multi-harmonic response of the system generally leads to a multi-harmonic
control signal. At steady state, the response (Eq. (2)) and the input voltage
signal can be approximated with truncated Fourier series of N harmonics:

u(t) =

N∑
n=1

α̂u,n sin(nΩt) + β̂u,n cos(nΩt). (7)

There exist multiple methods to perform the Fourier decomposition. Offline
methods need to gather data during one or more periods before computing the
coefficients, as such they work at a frequency lower than the controller. Online
methods update the coefficients at every sample time or at the same frequency
than the controller. Both are compatible with CBC [26]. In this article, the
decomposition is performed offline by integrating one period of the signal fol-
lowing Fig. 6b. The reference signal is constructed to be multi-harmonic with
its fundamental component

yf(t) = α̂y,1 sin(Ωt) + β̂y,1 cos(Ωt) (8)

and non-fundamental component

ynf(t) =

N∑
n=2

α̂y,n sin(nΩt) + β̂y,v cos(nΩt). (9)

To compare CBC with PLL testing or even standard open-loop testing meth-
ods such as stepped sines, it is necessary to recover a monoharmonic input
voltage signal, i.e. (α̂u,n, β̂u,n)Nn=2 = 0. This can be achieved by adequately
choosing the higher-harmonics of the reference signal. Eq. (6) shows directly
that u is monoharmonic when

(α̂y,n, β̂y,n)Nn=2 = (α̂v,n, β̂v,n)Nn=2. (10)

Eq 10 is a zero problem that can be solved using standard root-finding methods
while the physical experiment is running. The solver can operate at a frequency
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Table 1: Parameters for Algorithm 1

Yinit in m/s twait in s N tol in V
0.01 1 3 0.05

that is different or identical to the real-time controller, making iterations offline
or online [26] respectively. In this article, the algorithm runs offline and consists
in derivative-free Picard-iterations [24]. It is presented in Algorithm 1 and its
parameters are shown in Table 1. For the rest of the article, the left arrow
operator (· ← ·) signifies a value assignment.

Algorithm 1 Algorithm to make the voltage monoharmonic during CBC

1: (α̂y,1, β̂y,1)← (Yinit, 0)
2: repeat
3: Wait a duration twait for steady state
4: Record time series u and v during one period
5: Perform Fourier decomposition on u and v
6: (α̂y,n, β̂y,n)Nn=2 ← (α̂v,n, β̂v,n)Nn=2

7: until max
n

(
(|α̂u,n|, |β̂u,n|)Nn=2

)
< tol

The phase of the reference signal can be constrained by setting β̂y,1 = 0. The
only two adjustable parameters of the experiment are the frequency of excitation
Ω and the fundamental reference amplitude Y = α̂y,1. The excitation ampli-
tude F is not defined by the user but depends on the response v and reference
amplitude Y . Furthermore and contrarily to PLL, measuring the excitation f
is not necessary for the method but is only an output of the experiment.

3.3 Identification of backbone curves

Phase quadrature is directly imposed by the PLL to identify responses of the
backbone curve. A sequential continuation (i.e. a parameter stepping) shown
in Algorithm 2 is followed to step through different amplitude levels. Its pa-
rameters are shown in Table 2. For the rest of the article, simple loops are used
in algorithms to signify that the interruption is at the user’s discretion. For the
identification of backbones, it is practical to start at low amplitude and use the
corresponding natural frequency ω0 of the underlying linear system as initial
condition for the resonance frequency ω [32].

Keeping the reference amplitude Y constant during CBC and varying the
excitation frequency Ω allows the continuation of periodic responses with an
indirect constraint on the response amplitude under which a single periodic re-
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Algorithm 2 Algorithm to identify backbone curves during PLL testing

1: φref ← 0
2: U ← Uinit

3: loop
4: Wait for convergence of Ω
5: Save response
6: U ← U + ∆U
7: end loop

Table 2: Parameters for Algorithm 2

Uinit in V ∆U in V
0.006 0.006

sponse is in phase resonance (similar to constant-response FRFs). CBC there-
fore enables the identification of backbone curves by performing a sequential
continuation on Y and solving φv(Ω) = 0 at every step using the bisection
method, as was done in [25]. Both are implemented in Algorithm 3 with pa-
rameters shown in Table 3.

Algorithm 3 Algorithm to identify backbone curves during CBC

1: Y ← Yinit

2: Ω← ω0

3: loop
4: ∆Ω← ∆Ωinit

5: Make voltage monoharmonic following Algorithm 1
6: Evaluate φv
7: while |φv| > tolφ and |∆Ω| > tolΩ do
8: if sign(φv ∆Ω) < 0 then
9: ∆Ω← −∆Ω/2

10: end if
11: Ω← Ω + ∆Ω
12: Make voltage monoharmonic following Algorithm 1
13: Evaluate φv
14: end while
15: Save response
16: Y ← Y + ∆Y
17: end loop

In summary, the same phase quadrature can be attained by different means
during PLL testing and CBC. On the one hand, PLL testing is an online method
in that the phase lag converges continuously towards quadrature thanks to the
PID controller acting on the excitation frequency. On the other hand, CBC is
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Table 3: Parameters for Algorithm 3

Yinit in m/s ∆Ωinit in rad/s tolφ in rad tolΩ in rad/s ∆Y in m/s
0.01 1 0.05 0.01 0.02

an offline method, i.e. successive periodic responses are identified and an algo-
rithm is used to iterate automatically the excitation frequency until quadrature
is found up to tolerance. More operations are made online during PLL testing
(numerical integration, synchronous demodulation) while CBC’s offline contin-
uation algorithm possesses more steps. The amplitude of the periodic responses
are determined by the voltage signal U , defined directly during PLL testing or
indirectly through the reference amplitude Y during CBC.

Limitations of the algorithms presented in this section arise when confronted
to internal resonance. In such a case, both the excitation amplitude and the
fundamental response amplitude are expected to locally decrease along the back-
bone curve [48]. Given that Algorithm 2 increases the excitation amplitude se-
quentially and that Algorithm 3 increases the fundamental reference amplitude
sequentially, such drop would result in a jump in the backbone curve. More com-
plex continuation algorithms using, for instance, pseudo-arclength continuation
would be required to characterize fully such systems.

3.4 Identification of FRCs

The identification of FRCs requires a constant-amplitude, usually single-harmonic
excitation. To reach a constant excitation amplitude F at the fundamental ex-
citation frequency, the feedback loop shown in Fig. 7 is introduced on top of
the controlled experiment. This loop contains a synchronous demodulation to
measure F online and a PID controller that adjusts the amplitude U of the volt-
age signal to reach the forcing amplitude Fref. The force applied to a nonlinear
structure also contains higher harmonics, which typically result from shaker-
structure interactions and the lack of linearity between the voltage sent to the
shaker’s amplifier and the force applied by the shaker. A method to compensate
for these higher harmonics and cancel them is presented in Section 3.5.

The algorithm to identify FRCs using PLL testing is shown in Algorithm 4.
It performs a sequential continuation on the phase lag in the vicinity of the
resonance [30]. For lightly damped structures, the ratio ∂Ω/∂φ is small at
resonance but large away from it. To avoid divergence of the controller after a
phase step (e.g. towards another mode) and to obtain reasonably spaced data
points in the amplitude frequency plane, smaller steps of the reference phase
are chosen away from resonance as shown in Fig. 8.

Although CBC can be used for the direct identification of FRCs, more
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Algorithm 4 Algorithm to identify FRCs during PLL testing

1: Fref defined by user
2: φref ← φinit

3: loop
4: Wait for convergence of U and Ω
5: Save response
6: φref ← φref + ∆φ
7: end loop

Figure 8: Time profile of φref for Algorithm 4
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Table 4: Parameters for Algorithm 5

Yinit in m/s Ωinit in rad/s ∆Y in m/s ∆Ω in rad/s
0.01 1967 0.01 3.14

complicated continuation procedures are required to go around fold bifurca-
tions [22, 20, 49]. It is usually easier to identify S-curves and extract FRCs
through post-processing as in [25]. Keeping the excitation frequency Ω constant
and varying Y enables the continuation of S-curves following Algorithm 5, with
its parameters shown in Table 4. In the absence of internal resonance, S-curves
vary monotonically with Y and a sequential continuation procedure is applica-
ble. Identifying a collection of S-curves at different frequencies and defining a
suitable interpolation allows to identify the full (continuous) response surface.
Regression techniques can then be exploited to approximate FRCs at constant
excitation amplitude F . This indirect identification removes therefore the need
for the feedback loop applied to the fundamental excitation amplitude shown in
Fig. 7 and used during PLL testing.

Algorithm 5 Algorithm to identify a collection of S-curves during CBC in
order to approximate FRCs from the dynamic response surface

1: Y ← Yinit

2: Ω← Ωinit

3: loop
4: loop
5: Make voltage monoharmonic following Algorithm 1
6: Save response
7: Y ← Y + ∆Y
8: end loop
9: Y ← Yinit

10: Ω← Ω + ∆Ω
11: end loop

In summary, the same periodic responses can be identified during PLL test-
ing and CBC. In the former, an arbitrary phase lag is imposed thanks to the
PLL. However, it is necessary to add an additional control loop during PLL test-
ing in order to impose a desired excitation amplitude F and identify FRCs. CBC
can identify FRCs directly and would, in that case, also require such a control
loop on the excitation. Alternatively, S-curves can be identified sequentially and
interpolated into a continuous response surface in post-processing, providing an
approximation of the FRCs of interest. As discussed in Section 3.5, the two
methods require an additional control loop to cancel higher harmonics present
in the applied excitation (if desired).
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3.5 Compensation of the shaker-structure interaction

Shaker-structure interaction (SSI) can result in multiple phenomena including
resonance force drop, jumps, internal resonance, or subharmonic resonance [50].
Although these phenomena were not observed in the experiments of this arti-
cle, higher harmonics in the applied force were. As the excitation is directly
measured at the application point by an impedance head, it can be directly
validated: If the force signal is close to a sine wave at the desired amplitude,
the system’s response is accepted.

Without additional control, a monoharmonic voltage u can lead to a multi-
harmonic excitation f [32]. The excitation f can be approximated by a trun-
cated Fourier series of N harmonics:

f(t) =

N∑
n=1

α̂f,n sin(nΩt) + β̂f,n cos(nΩt). (11)

The amplitude and phase of harmonic n are expressed as Fn =
√
α̂2
f,n + β̂2

f,n

and φf,n = atan2(β̂f,n, α̂f,n), respectively. Once the voltage u is monoharmonic
during CBC or PLL testing, a correction is computed from its instantaneous
voltage phase θ by a proportional controller:

unf,n = −kpFn cos (nθ(t)− φf,n) (12)

shown in Fig. 9. In this paper, this correction was done for only n = 2 and 3
as the higher harmonics were not significant in the experiments. The controller
gain is discussed in Section 3.6.

This method makes the assumption that the shaker is phase-neutral, i.e. the
phase-lag between the voltage and the force is zero. At high amplitudes, when
the SSI is most significant, the shaker indeed approaches phase-neutrality and
the higher harmonics are reduced by the feedback loop. At low amplitudes,
the phase-lag added by the shaker approaches 90◦ between the voltage and the
force. The violation of the assumption is considered acceptable due to the low
amplitude of higher harmonics in this case. The limitations of the method are
considered out of this article’s scope. Until more analytical work is done, the
method is to be considered ad-hoc and not generally applicable.

Fig. 10 shows the amplitude of the first four harmonics of the excitation
signal f for resonant periodic responses experimentally measured at different
response amplitudes. Without SSI compensation, the excitation signal is clearly
multiharmonic. After closing the SSI compensation control loop, the higher har-
monics are significantly reduced. Interestingly, a slight variation in fundamental
excitation amplitude is noted as well, showing the influence of higher excitation
harmonics on the periodic response.
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Figure 10: Frequency content of the resonant force signal at amplitudes (a)
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3.6 Controller gains

There is currently no general method to construct a control law for control-
based methods to reach their control objectives—e.g. the stabilization of unsta-
ble responses—without knowing some characteristics of the system. However,
control-based methods are meant to be applicable without the need to identify
a model beforehand. There is some promising but very early proposals for such
tuning methods, for instance using control Lyapunov-Razumikhin functions [51]
or adaptive control design [52]. In the meantime, control gains are tuned heuris-
tically, i.e. by trial and error. The scope of this article is not to derive formally
the influence and effect of each control gain on the dynamics of general systems.
Rather, this Section presents guides to tune the controllers for PLL testing and
CBC.

The controller used during PLL testing has a conventional purpose: A mea-
sured value must converge towards a setpoint. Specifically for PLL testing,
the phase lag φv between the beam’s velocity and the force detected by syn-
chronous demodulation must converge towards the reference phase lag φref . One
can therefore use manual tuning for PID controllers, as proposed for instance
in [53], showing that the time needed to converge towards the target depends
heavily on the controller gains. The PID gains found in this way are shown in
the first column in Table 5. A similar methodology is used for tuning the PID
controller used to impose a constant force amplitude. The gains are shown in
the third column of Table 5.

The feedback control used in the simplified CBC method steers the response
of the system towards a setpoint but it is not meant to reach it. The main pur-
pose of the controller is to stabilise the unstable response of the uncontrolled
system. Velocity feedback modifies the effective damping of the structure while
displacement feedback modifies its effective stiffness [54]. Adding or removing
effective damping reduces or increases the transient time respectively. In this
article, the signal fed back is directly the velocity. The PD controller includes a
proportional gain adjusting the velocity feedback and a differential gain adjust-
ing the acceleration feedback (analog to a displacement feedback). Practically, a
frequency at which the structure exhibits unstable responses at the force levels
of interest is chosen. Successive S-curves are identified using CBC, increas-
ing progressively the controller gains until all of the S-curve is stabilized. The
corresponding gains of the PD controller are shown in the second column of
Table 5.

3.7 Comparison of the methods

To summarize the previous sections, a general comparison of the working prin-
ciples behind phase-locked loop (PLL) testing and control-based continuation
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Table 5: Gains of the controllers used in PLL testing and in CBC (∗ backbone
identification, † FRC identification)

PLL Ampl. control (PLL) CBC SSI control
kp 150 s−1 120† 20 Ns/m 12∗,40†

ki 50 s−2 40† s−1 – –
kd 40∗, 10† 0.04† s 0.4 Ns2/m –

(CBC) is summarized below.
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Control PLL testing includes a controller designed to reach a
phase lag target. It is usually a PI controller [29], the
proportional gain providing stability and the integral gain
leading to a zero set point error. The control and excita-
tion are applied via the same actuator.
CBC includes a controller designed to stabilize the sys-
tem’s response by comparing it to a reference signal. The
actuator used to apply the control can be identical or dif-
ferent to the one used to apply the system excitation.
With the simplified CBC method, the controller is not
required to reach the reference signal. Examples of con-
trollers include PD controllers [16] and controllers de-
signed by pole-placement techniques [18].

Identified
features

PLL testing controls the phase lag: It is naturally suited
to identify backbone curves [29] and FRCs [28, 30].
CBC controls the response signal: It can identify
FRCs [24, 22, 20] and backbone curves [25] but can also
reach a broader range of responses that might not be well
parametrized by the phase [27].

Harmonic
excitation

PLL testing is designed to send a monoharmonic voltage
to the exciter once the PLL has converged, such that mea-
sured responses are directly comparable with responses
obtained with open-loop methods such as stepped sines.
With CBC, the voltage provided to the exciter is a priori
multi-harmonic such that a specific reference signal must
be found to recover results comparable with open-loop
tests.
Both methods require additional control loops to cancel
higher harmonics present in the applied force.

Online/offline
variants

PLL testing is an online method, i.e. the method runs
in real time. The Fourier decomposition must be online
as the phase lag is fed to the controller.
CBC comprises in general an offline algorithm running in
parallel to the experiment and performing the continua-
tion procedure. Online variants are possible [26].

Additionally, here is a comparison of more practical aspects focusing on the
continuation algorithms to identify FRCs and backbone curves, the features of
interest in this article.
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Identification
of backbone
curves

With PLL testing, backbone curves are identified by
keeping the phase lag constantly at quadrature and per-
forming a sequential continuation on the voltage ampli-
tude.
With CBC, backbone curves are identified by performing
a sequential continuation on the voltage amplitude and
finding phase quadrature at each step by iterating on the
excitation frequency.

Identification
of FRCs

With PLL testing, FRCs are identified by keeping the
force amplitude constant via an additional control loop
and performing a sequential continuation on the phase
lag.
With CBC, FRCs can be identified by implementing a
pseudo-arclength continuation [22]. In this article, FRCs
are extracted from a collection of S-curves identified by
keeping the frequency constant and performing a sequen-
tial continuation on the voltage amplitude.

4 Experimental results

The system is subjected to a series of experiments to characterize the first
bending mode of the beam. Specifically, a harmonic force f = F sin(Ωt) is
applied vertically to the frame. Its acceleration a is measured by the impedance
head while the velocity v of the beam is measured by the laser vibrometer. When
periodic, these signals define closed orbits characterizing the system’s response
to the excitation.

PLL testing and CBC are independently used to identify the periodic re-
sponses of the beam at and around the resonance of the first bending mode. The
excitation frequency at resonance ω depends on the amplitude of the response
and is obtained through the identification of backbone curves in Section 4.1 fol-
lowing the method presented in Section 3.3. The backbone is used for estimating
the modal properties of the NNM, presented in Section 4.2. These properties
define a reduced order model which enables to synthesize FRCs in the vicinity
of the mode, presented in Section 4.3. Additionally, FRCs are directly identified
during experiments in Section 4.4 following the method presented in Section 3.4.

4.1 Backbone curves

Figure 11a shows backbone curves identified during PLL testing and CBC fol-
lowing Algorithms 2 and 3 respectively. The experiment was repeated six times
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in a row with each method to assess repeatability. The first experiment of
the series applied CBC and resulted in a qualitatively different identification
(dashed curve). It is suspected that the temperature of the beam increased
during the experiment, resulting in a change of modal properties. The curve
is therefore discarded while the five subsequent CBC experiments and six PLL
testing experiments constitute the results. The frequency content of two peri-
odic responses—one at low amplitude in the softening regime and the other at
high amplitude in the hardening regime—is shown in Figs. 11b and 11c. The
low amplitude of higher harmonics relative to the fundamental supports the
assumption that a single mode is excited without modal interaction.

The minimum amplitude reachable during the experiments depends on the
signal-to-noise ratio. PLL testing requires an online Fourier decomposition for
the phase lag to be fed into the PLL controller at each sample time. Low signal-
to-noise ratio prevents the PLL to converge and thus low-amplitude responses
to be identified. In contrast, the offline Fourier decomposition used during CBC
can gather as much data as needed before proceeding with the continuation
algorithm. This allows averaging of the signals and better performance at low
signal-to-noise ratios.

The nonlinear natural frequency ω approaches the linear natural frequency
ω0 at low amplitudes using both methods. The beam exhibits a softening behav-
ior until an amplitude V1/(Ωh) ≈ 0.15 before which ω decreases with V1. Above
this amplitude, ω increases with V1 in a hardening behavior. This turning point
corresponds to a displacement amplitude of 0.67h at the beam’s center (esti-
mated using the linear mode shape of the FE model). A softening-hardening
transition at this amplitude is expected from a slightly curved beam, as demon-
strated in [55] showing excellent agreement between the results and theory.

Let the successive backbone curves be described by the functions ωk(V1) for
the kth curve. For every value V1, the standard deviation σ(ω) is computed and
shown in Fig. 12a. The standard deviation increases suddenly when reaching
amplitude V1/(Ωh) = 0.15, corresponding to the softening-hardening transition,
and stays large at higher amplitudes. The maximum standard deviation

max
V1

σ(ωk(V1)) = 0.00145ω0 for PLL testing and

= 0.00137ω0 for CBC,

are comparable between the methods. These values are small in absolute value
but relatively significant in the light of the amplitude-dependent frequency
change of about −0.5 % and +2 % attributed to the softening and harden-
ing behavior respectively. To adequately represent the repeatability variations,
the standard deviation is included as colored areas next to the results in the
rest of the article.

A potential explanation for this increase of variability with amplitude resides
in the knowledge that steady state response of dry frictional systems under peri-
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Figure 11: (a) Backbone curves identified with PLL testing (blue curve) and
CBC (orange curve) from six successive experimental identifications (warm-up
in dashed curve); frequency content of periodic responses at resonance and at
amplitudes (b) V1/(Ωh) ≈ 0.1 and (c) V1/(Ωh) ≈ 0.25 identified during PLL
testing (blue) and CBC (orange)
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Figure 12: (a) Standard deviation of the successive backbone experiments using
PLL testing (blue area) and CBC (orange area), (b) measured phase lag error
and (c) frequency error in the identified backbone responses during PLL testing
(blue curve) and CBC (orange line and squares) estimated from the (d) local
response phase surface around the backbone
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odic loading may depend on the initial conditions (slip displacements in sticking
contact zones). These slip displacements can depend in a complex way on the
entire load history of the system under consideration and are thus generally un-
known. Consequently, repeated experiments can show a certain variability [39].
At small amplitudes, the contact area is mostly sticking, leading to a unique
dynamic response. With increasing amplitude, the variability increases. In
the macro-slip regime, theoretically, variability would decrease again, but this
regime is not reached by bolted joints. This behavior is studied in detail for
instance in [56].

Additionally, the softening effect characterized during the experiments and
shown in Fig. 11a is much less pronounced than what is predicted from the
numerical model (Fig. 1). The model assumes that the extremities of the beam
are ideally clamped, whereas the actual joints are bolted. Predictive numerical
models for bolted structures are extremely challenging to produce [39], high-
lighting the relevance of model-free control-based methods.

Fig. 12b shows the error in phase lag compared to the quadrature target φv =
0 rad. PLL testing is able to reach a phase error almost two orders of magnitude
lower than CBC. This is not surprising as CBC can only approach quadrature
using prescribed finite steps, presently following Algorithm 3. Despite the higher
precision achieved by PLL testing, the standard deviation shown in Fig. 12a is
not reduced compared to CBC. It can be concluded that high phase precision
is not needed in this particular application due to high inherent variability.

A frequency error shown in Fig. 12c is estimated as the distance from the
local response surface shown in Fig. 12d. The surface is an interpolation of S-
curves identified using CBC and presented later in the article (Fig. 16). Fig. 12b
shows that most periodic responses identified during CBC at high amplitudes
(V1/(Ωh) > 0.15) lie within the phase tolerance, while Fig. 12c shows that most
periodic responses at low amplitudes (V1/(Ωh) < 0.15) lie within the frequency
tolerance. This can be linked to later results showing that damping increases
with amplitude (Fig. 13b). Lower damping implies a sharper resonance peak:
The phase-lag is sensitive to small variations in frequency. As damping increases,
the sensitivity to changes in frequency diminishes while the sensitivity to changes
in phase-lag increases. The change in damping can be seen visually in Fig. 12d
as the response surface is flatter on its left-hand boundary (lower amplitude and
damping) and more curved on its right-hand boundary (higher amplitude and
damping).

4.2 Nonlinear modal analysis

As established in [32], the amplitude-dependent modal properties can be ex-
tracted from the phase-resonant backbone curve, provided that strong modal
interactions (e.g. due to closely-spaced or internally resonant natural frequen-
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(a) (b)

Figure 13: (a) average nonlinear natural frequency and (b) nonlinear modal
damping depending on the response level, identified with PLL testing (blue
curve) and CBC (orange curve); compared to linear parameters identified during
the linear modal analysis (∗)

cies) remain absent and damping is light. Here, the definition of a nonlinear
mode in accordance with the extended periodic motion concept [57] is used.
The modal frequency (or natural frequency) ω corresponds to the excitation
frequency at phase resonance and is a direct output of the experiments. The
nonlinear modal damping ratio δ is determined by following the idea that the
power supplied by the excitation has to cancel the power dissipated by the
system-inherent damping (see [32] for the details). Finally, the Fourier coef-
ficients of the modal deflection shape are obtained by Fourier analysis. The
fundamental harmonic component of this deflection shape is mass-normalized
using the linear mass-normalized modal deflection shapes [32]. The average
modal frequency and modal damping ratio are shown in Fig. 13a and Fig. 13b,
respectively. As expected, the values of the parameters at low amplitude are
consistent with the linear modal parameters.

Increasing damping ratio with amplitude is typical for micro-slip friction,
which may also cause the increase in variability with amplitude shown in Fig. 12a.
Although the damping has a standard deviation so small that it is barely visible
in Fig. 13b, it exhibits an interesting hysteresis behavior. It is important to note
that it is not a dynamical hysteresis, i.e. each point on the curve corresponds to
a steady state periodic response identified during PLL testing or CBC. Rather,
the behavior of the structure is different whether the amplitude is sequentially
increased or decreased. We do not know the cause of this behavior, but a possi-
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ble explanation could be linked to thermal effects analogous to the observations
in [58].

4.3 FRC synthesis

FRCs can be synthesized from the nonlinear modal parameters presented in
Section 4.2. It can be advantageous to do this as fewer periodic responses need
to be measured compared to a direct FRC identification. Identifying FRCs both
through synthesis and directly is done here as a cross-validation.

The synthesis relies on the single-nonlinear-mode theory: The frequency Ω
of the FRC at a specific response amplitude is computed following [31]. The
FRCs synthesized from the backbone curves are shown in Fig. 14. FRCs are
synthesized from each backbone curve shown in Fig. 11a. They are parametrized
by their phase lag such that there is a one-to-one correspondence between each
point of the different curves: The successive FRCs are described by the functions
ωk(φv) and V1(φv) for the kth curve. The standard deviation is computed for
each phase lag value both in amplitude and frequency, and is shown as colored
areas in Fig. 14.

The softening-hardening behavior is apparent in the FRCs. Under a forcing
amplitude of 3 N, the FRCs are in the softening regime and are skewed toward
lower frequencies. They include two saddle-node bifurcations. This indicates
the existence of a branch of unstable orbits. Increasing the forcing amplitude
above 3 N creates two more saddle-node bifurcations as the FRCs begin to be
skewed towards higher frequencies. This hardening regime therefore includes
two branches of unstable orbits, one due to softening and the other due to hard-
ening. Recall that this leads to as much as four turning point bifurcations and
and a stable high-level branch which can be unreachable by a conventional fre-
quency response test (stepping or slowly sweeping the frequency and controlling
only the excitation level).

4.4 FRC identification

FRCs are identified experimentally using PLL testing by following Algorithm 4.
They are shown in blue in Fig. 15. The identification of FRCs is limited around
the resonance peak. Further from resonance, a small phase lag variation implies
a large frequency variation as illustrated in Fig. 1b. Consequently, even low
phase lag uncertainty prevents the accurate identification of periodic responses.
Additionally, periodic responses further from resonance have a low amplitude,
leading to low signal-to-noise ratio in the measurement and high phase lag un-
certainty, as explained in Section 3.3. Such a limitation is nuanced by the fact
that interesting behavior is rarely expected far from resonance.
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Figure 14: FRCs at varying excitation amplitudes synthesized from the aver-
age backbone curve identified with PLL testing (blue curve) and CBC (orange
curve), and compared to the standard deviation from PLL testing (blue area)
and CBC (orange area) data

The S-curves identified during CBC are shown in Fig. 16. Far away from
resonance, the force level increases quickly, constituting a potential limitation of
the method when applied to structures or equipment sensitive to high forcing.
The phase lag along the S-curves is shown in Fig. 16b. The presence of two
resonance points where φv = 0 rad and the double-S shape of some S-curves
results from the softening-hardening behavior of the system.

Processing S-curves into FRCs requires the approximation of the response
surface from the measurement data. The experiments are not perfectly repeat-
able due to the inherent variability of the structure, it is therefore not appro-
priate to interpolate the S-curves into the response surface as was done in [24].
Rather, the response surface is approximated by a cubic spline surface with 10
equally spaced control points along the frequency dimension and 12 points along
the response amplitude dimension. The location of the control points along the
fundamental excitation force dimension is determined by minimizing the aver-
age distance between the surface and the data points. The data consists in the
S-curves and the average backbone, useful to accurately capture the resonance
region. The surface and data points are shown in Fig. 17.

The FRCs are finally extracted from the response surface as collections of
periodic responses at constant excitation amplitudes. They are shown in or-
ange in Fig. 15. To highlight the fact that the FRCs are not interpolations
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(a) (b) (c)

Figure 15: FRCs at excitation amplitudes (a) F = 1 N, (b) 3 N, and (c)
5 N identified experimentally with PLL testing (blue curve) and CBC (orange
curve), compared to the S-curves identified with CBC (◦) and to the standard
deviation of the FRCs synthesized from backbone curves identified with PLL
testing (blue area) and CBC (orange area)
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Figure 16: (a) Amplitude and (b) phase lag of S-curves identified experimen-
tally during CBC for varying excitation frequencies; with highlighted resonance
points at phase quadrature (◦)
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Figure 17: Response surface representing the response amplitudes of the system
for varying excitation signals, approximated from the S-curves and the back-
bone identified experimentally with CBC (data points shown in orange and
approximated FRC at F = 3 N in white)

but approximations, the intersection of the S-curves with the plane embedding
the FRC are shown as orange circles. The resulting FRCs stay close to these
intersections, showing an accurate approximation.

Although the identified FRCs—either directly using PLL testing or indirectly
using CBC—show a slight difference in frequency, they lie within or very close
to the standard deviation of FRCs synthesized from the backbones. In other
words, such a difference in frequency is expected from the inherent variability
of the system. This gives strong confidence in both the FRCs and the backbone
curves identified using PLL testing and CBC. Finally, both methods successfully
stabilize the unstable orbits in the FRCs.

5 Conclusion and future works

The aim of this article was to compare two recently developed methods capable
of nonlinear modal characterization on the same structure. Both methods use
feedback to control different experimental parameters. During phase-locked
loop (PLL) testing, the phase lag between response and excitation signals is
imposed by a controller. During control-based continuation (CBC), a controller
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generates an excitation signal from the difference between a reference signal and
the response of the structure.

Both PLL testing and CBC were shown capable of a successful characteriza-
tion of the amplitude-dependent modal properties of the lowest-frequency bend-
ing mode of a thin beam possessing an intrinsic curvature when unstressed. The
structure exhibits complex nonlinear hardening-softening dynamics and nonlin-
ear micro-slip in the bolted joints, handled and identified successfully by both
methods. The backbone identification—and subsequent nonlinear modal pa-
rameters and synthesized FRCs—and the FRC identification lead to consistent
results obtained by PLL testing or CBC. The important difference between ex-
perimental data and model prediction shows the importance of control-based
methods when predictive models are difficult to build.

It is difficult to compare quantitatively experimental duration using both
methods. The tuning of the controllers plays a critical role in the dynamics of
the system, e.g. the time needed to reach steady state. The parameters chosen
in the continuation algorithms affect greatly the duration of experiments. An
in-depth parameter study might be done to assess accurately performance of
CBC and PLL testing but it is deemed outside the scope of this article. With
these considerations, no significant difference in performance was observed in
this study.

This article focused on bringing PLL testing and CBC together and pre-
senting their different approaches in performing the same characterization. An
equally relevant approach would set the methods apart by studying special
cases where PLL testing or CBC might fail. Such cases are mentioned in this
article and result from a difference in parametrization of the response surface
exploited by both methods. On the one hand, modal interaction might render
a parametrization by phase lag challenging [48] and a characterization by PLL
testing incomplete. On the other hand, superharmonic resonance might prevent
a parametrization by a single response harmonic [59] and a characterization by
CBC might be incomplete. Further work looking into such particular systems
will bring valuable elements to the discussion.

General methods are still lacking regarding the determination of control laws
for control-based methods. Unless knowing in advance the nonlinearities of a
system—i.e. building a model, defeating the purpose of the methods—controller
gains are currently tuned heuristically. Further work looking into robust and
general methods for building control laws is needed, possibly building upon the
early work that has been done on the subject [51, 52].
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