
University of Liège

Faculty of Applied Sciences
Department of Electrical Engineering & Computer Science

PhD dissertation

C O N T R I B U T I O N S T O D E E P T R A N S F E R L E A R N I N G

from supervised to reinforcement learning

by Matthia Sabatelli

Advisor: Prof. Pierre Geurts

January 2022

J U RY M E M B E R S

Louis Wehenkel, Professor at the Université de Liège (President);

Pierre Geurts, Professor at the Université de Liège (Advisor);

Raphael Fonteneau, Researcher at the Université de Liège;

Gilles Louppe, Professor at the Université de Liège;

Mike Kestemont, Hoofddocent at the Universiteit Antwerpen;

Aske Plaat, Professor at the Universiteit Leiden;

Nicu Sebe, Professor at the Università degli Studi di Trento;

iii

Dedicated to the loving memory of my beloved father

Francesco Sabatelli ...

1960 – 2011

... and to that of my dear friend Marco Alexander Wiering.

1971 – 2021

A B S T R A C T

Throughout our lifetime we constantly need to deal with unfore-
seen events, which sometimes can be so overwhelming to look insur-
mountable. A common strategy that humans as well as animals have
learned to adopt throughout millions of years of evolution, is to start
tackling novel, unseen situations by re-using knowledge that in the
past resulted in successful solutions. Being able to recognize patterns
across similar settings, as well as the capacity of re-using and poten-
tially adapting an already established skillset, is a crucial component
in human’s and animal’s intelligence. This capacity comes with the
name of Transfer Learning.

The field of Artificial Intelligence (AI) aims to create computer pro-
grams that can mimic at least to a certain extent the properties un-
derlying natural intelligence. It follows that among such properties,
there is also that of being capable of learning how to solve new tasks
whilst exploiting some previously acquired knowledge. Within the
mathematical and algorithmic AI toolbox, Convolutional Neural Net-
works (CNNs) are nowadays by far among the most successful tech-
niques when it comes to machine learning problems involving high-
dimensional and spatially organized inputs. In this dissertation, we
focus on studying their transfer learning properties and investigate
whether such models can get transferred and trained across a large
variety of domains and tasks.

In the quest of better characterizing the transfer learning potential
of CNNs, we focus on two of the most common machine learning
paradigms: supervised learning and reinforcement learning. After a
first part (Part I) devoted to presenting all the necessary machine
learning background, we will move to Part II, where the transfer
learning properties of CNNs will be studied from a supervised learn-
ing perspective. Here we will focus on several computer vision tasks
that range from image classification to object detection, which will
be tackled by regular CNNs as well as by pruned models. Next, in
part III, we will shift our transfer learning analysis to the reinforce-
ment learning scenario. Here we will first start by introducing a novel
family of deep reinforcement learning algorithms and then move to-
wards studying their transfer learning properties alongside that of
several other popular model-free reinforcement learning algorithms.

Our transfer learning experiments allow us to identify the benefits,
as well as some of the possible drawbacks that can come from adapt-
ing transfer learning strategies, while at the same time shedding some
light on how convolutional neural networks work.

vii

You’re never gonna grow if you don’t grow now
You’re never gonna know if you don’t find out
You’re never going back never turning around

You’re never gonna go if you don’t go now

A C K N O W L E D G E M E N T S

My most profound gratitude goes to my Ph.D. advisor Pierre Geurts,
without whom this thesis would not exist. I can’t thank you enough
for all the help you have given me throughout my doctoral journey,
academically speaking, as well as on a personal level. Thank you for
trusting me and welcoming me into your research group, always be-
ing excited about my research, always finding the time to meet me,
and most importantly, granting me the research freedom I needed to
pull this Ph.D. off. You already know how grateful I am for having
had you as my supervisor. Thank you also to Mike Kestemont, for
not only being part of my jury, but for all the hard work you have
put in the INSIGHT project. Without Mike this manuscript would be
at least twice as short and twice more boring. Thank you for always
giving me valuable feedback about my research, and for all our con-
versations that kept my Vlaams sharp. An immense thank you goes
to the other jury members, which I have been lucky enough to have
as part of my thesis committee. Thank you, Nicu Sebe, for being the
first academic person to spike my interest in machine learning when I
was a BSc. student in Italy. Thank you, Aske Plaat, for being so enthu-
siastic about my reinforcement learning work and for giving me lots
of research ideas that I would like to explore in the future; I will try
to get a policy gradient version of DQV working as soon as possible.
Thank you, Raphael Fonteneau, for the delightful scientific discussion
we had at my defense and for always being nice to me each time I
encountered you in Montefiore’s corridors; your smile always put me
in a good mood. Thank you Gilles, for all our coffees, the gossip, the
nice times spent in Canada, and always being there for me if I needed
someone to complain to, or confuse with some random reinforcement
learning idea. Lastly, thank you, Louis, for being the president of my
defense and all the stimulating scientific discussions we had through-
out the years.

My non-academic life in Liege was made easier by some very spe-
cial people I was fortunate enough to encounter and share time with:
first and foremost, I wish to thank my Italian landlord Domenico. He
has helped me tremendously when I first moved from Groningen to
Liege. Thank you for helping me out furnishing my apartment, for
the Friday night poker evenings at your bar, and last but not least,
for renting me your apartment at such a friendly price. A special

ix

thank you also goes to my Indian neighbors Ravi, Sridevi, and their
wonderful family, owners of the delicious "Indian Flavour" restau-
rant: thank you for all the amazing vegetarian food that you have
served me throughout the years, and for always being there when I
needed to have a chat in English. I also wish to thank my swimming
teacher Constance: having a swim in the coast of Bretagne with all
those fishes is one of those memories which will always have a spe-
cial place in my heart. I consider learning how to swim the second-
largest achievement of the time spent in Liege, so thank you for all
your patience and those coupons I never found the time to use.

A big thank you goes to those friends who have always been there
for me despite the physical distance separating us: Francesco, thank
you for all of our calls and for constantly showing me your support
even throughout my darkest days; I finally promise I will be visiting
you in Tokyo as soon as possible. I still think it should be possible
to train a Generative Adversarial Network on only a small sample of
the input distribution, so get your coding skills back together. Irene,
thank you for always being there for a call from either Piombinodese
or London, and thank you for your patience and kindness. Samuele,
thank you for always being ready to comment the newest season of
Masterchef with me and for always being down for a solid scientific
discussion, whether it was about machine learning or women. A spe-
cial thanks also goes to my favorite Bayesian friend Matteo, "Bijoux."
Now that you have finally learned how to code, I’m sure you have a
great scientific future ahead of you. I can’t wait to read your future
papers as a Ph.D. student. Remember that until the day of your de-
fense, I will always be one step ahead of you in the academic food
chain. I also owe my gratitude to my dear Dutch friend Marco Gun-
nink. I still remember as if it was yesterday, our first road trip from
Groningen to Liege and our super-sketchy experiences in the streets
of Liege. Also, thank you for always making me feel welcome at your
place in Groningen when I was feeling home-sick, for visiting me in
Liege on New Year’s, and (to this day) still lending me money when
I’m having issues with my bank account. Lastly, thank you to all
my Groningen friends, older and newer ones, who make me feel at
home: thank you to my favorite optimal-control scientist Kat, who is
the goto person if you want to know what the acronyms of a control-
theory conference stay for, thank you to my climbing buddy Diego,
and thank you to Laurids, for our fruitful discussions, about machine
learning, food, and of course, chess; I really outplayed your Dutch
defense right before my defense, didn’t I?!

A special merçi goes to the entire Montefiore research unit for wel-
coming me back in 2017 when I first joined the department. A special
thank you goes to Pierre’s research group; Romain, Vân Anh, An-
tonio, Jean Michel, Yann; thank you for your company around the
lunch table and always doing your best to steer the conversation to-

x

wards English instead of French. I would also like to thank you for
the countless scientific discussions we had, without which most of
the contributions within this thesis would have never seen the light.
I would also like to thank Antoine for being a good friend when I
was having a hard time, for the amazing times spent in Montreal
and Vancouver when visiting Canada for NeurIPS, and the nice road
trip from Liege to Groningen. Michael, thank you for being my office
neighbor, for always being there for a friendly chat, and for the fan-
tastic pictures you took of my defense. Remy, thank you for the (long)
jogging sessions in Tilff and for our discussions ranging from object
detection to soccer. Arthur, thank you for all the saturday afternoons
you’ve spent at my place (or should you be thanking me?), for your
always inspiring curiosity and (mostly annoying) questions about re-
inforcement learning. Thank you also to Joeri, Maxime, Malavika,
Navdeep, Raphael, Ulysse, Laurine, Pascal, and Nicolas, for simply
being around Montefiore and always being down for a nice chat.

Thank you to two very special persons who helped me immensely
over the last stages of my Ph.D. Thank you, Thomas, for the help
you gave me every Friday afternoon by taking care of my mental
health issues when I needed it the most. Thank you, Federica, for
your everlasting willpower, courage, and inspiring passion you put
into everything you do. Now that a new exciting chapter of your life
is about to start, I’m sure a fulfilling journey is awaiting you, and I’m
as curious as you are to see where this will lead you.

Last but not least, thank you to my special family: thank you mum
for the strong, independent woman you are and for the constant
support you have shown me throughout my long academic journey
which has taken me away from Italy. Thanks to my amazing grandpar-
ents, which have always offered me shelter when I needed to switch
from the Walloon-Belgian experience to the Vlaams-Belgian experi-
ence. Thank you, grandpa, for being so patient with my grandma,
constantly forgetting what Ph.D. stays for, and for never giving up
on reminding her. Un ultimo grazie to my cousin Pino and my aunt
Lina, who are now convinced I’m a physician Dr. For medical advice,
you will still have to ask someone else.

One last thought, goes to my beloved dad, sempre con me.

xi

C O N T E N T S

1 introduction 1

1.1 Machine Learning . 1

1.2 Objectives and Research Questions 3

1.3 Outline of the Dissertation 4

1.4 Publications . 5

i preliminaries 7

2 supervised learning and deep neural networks 9

2.1 Introduction . 9

2.2 Statistical Learning . 10

2.3 Neural Networks . 12

2.3.1 Multilayer Perceptrons 12

2.3.2 Stochastic Gradient Descent 14

2.3.3 Backpropagation 16

2.3.4 Loss Functions 17

2.3.5 Vanishing Gradients and Activation Functions . 19

2.4 Convolutional Neural Networks 20

2.4.1 Mathematical Operations 21

2.4.2 Popular Architectures 22

2.5 Conclusion . 25

3 reinforcement learning and deep neural net-
works 27

3.1 Introduction . 27

3.2 Markov Decision Processes 28

3.3 Goals and Returns . 30

3.4 Value Functions . 31

3.5 Learning Value Functions 33

3.5.1 Monte Carlo Methods 34

3.5.2 Temporal Difference Learning 35

3.6 Function Approximators 39

3.6.1 Linear Functions 40

3.7 Deep Reinforcement Learning 41

3.8 The Deadly Triad of Deep Reinforcement Learning . . 48

4 transfer learning 51

4.1 Introduction . 51

4.1.1 Transfer Learning in Machine Learning 52

4.2 Transfer Learning in Practice 53

4.3 Mathematical Definitions 56

4.3.1 Supervised Learning 56

4.3.2 Reinforcement Learning 60

4.4 Deep Transfer Learning 61

4.4.1 General Framework 61

xiii

xiv contents

4.4.2 Literature Review 63

4.5 Relevance for this Dissertation 69

ii transfer learning for deep supervised learn-
ing 71

5 on the transferability of convolutional net-
works 73

5.1 A First Empirical Study 73

5.2 Methodology . 74

5.2.1 Transfer Learning 74

5.2.2 Datasets and Target Tasks TT 75

5.2.3 Convolutional Networks and Training Approaches 77

5.3 Results . 78

5.3.1 From Natural to Non Natural Images 78

5.3.2 Discussion . 82

5.3.3 From One Target Domain DT to Another 83

5.3.4 Selective Attention 84

5.4 Conclusion . 85

6 novel datasets for transfer learning 87

6.1 Challenges of Modern Computer Vision 87

6.2 The MINERVA Dataset 90

6.2.1 Data Collection 90

6.2.2 Annotation Process 91

6.2.3 Versions and Splits 91

6.3 Benchmarking . 93

6.3.1 Classification . 94

6.3.2 Object Detection 94

6.4 Results . 96

6.4.1 Quantitative Analysis 96

6.4.2 Qualitative Analysis 99

6.5 Discussion and Critical Analysis 104

6.6 Future Work: towards more benchmarks 105

7 on the transferability of lottery winners 107

7.1 The Lottery Ticket Hypothesis 107

7.2 Datasets . 110

7.3 Experimental Setup . 111

7.4 Results . 114

7.4.1 On the Importance of Finding Winning Initial-
izations . 114

7.4.2 On the Generalization Properties of Lottery Win-
ners . 117

7.5 Additional Studies . 118

7.5.1 Lottery Tickets VS fine-tuned pruned models . 119

7.5.2 Transferring tickets from similar non-natural do-
mains . 119

7.5.3 On the size of the training set 120

contents xv

7.6 Related Work . 122

7.7 Conclusion . 123

iii transfer learning for deep reinforcement learn-
ing 127

8 the deep quality-value learning family of algo-
rithms 129

8.1 Motivation . 129

8.2 A Novel Family of Deep Reinforcement Learning Al-
gorithms . 130

8.2.1 DQV-Learning 131

8.2.2 DQV-Learning with Multilayer Perceptrons . . 132

8.2.3 DQV-Max Learning 132

8.3 Results . 134

8.3.1 Global Evaluation 134

8.3.2 Convergence Time 135

8.3.3 Quality of the Learned Value Functions 136

8.4 Additional Studies . 139

8.5 Discussion and Conclusion 143

9 on the transferability of deep-q networks 147

9.1 Introduction . 147

9.2 A large-scale Empirical Study 148

9.2.1 The Atari Environments 149

9.2.2 Experimental Setup 149

9.2.3 Results . 151

9.3 Control Experiments . 152

9.3.1 The Catch Environments 152

9.3.2 From one Catch to Another 154

9.3.3 Self-Transfer . 156

9.4 The Two Learning Phases of Deep-Q Networks 157

9.5 Related Work & Conclusion 160

10 concluding remarks 163

10.1 Answers to the Original Research Questions 163

10.2 Critical Discussion & Future Perspectives 166

10.2.1 Deep Supervised Learning 166

10.2.2 Deep Reinforcement Learning 167

iv appendix 169

a how to identify lottery winners 171

b the deep quality-value learning algorithms 173

c reinforcement learning upside down 177

bibliography 181

xvi

acronyms xvii

S Y M B O L S A N D N O TAT I O N

X input space

Y output space

P(X, Y) joint probability distribution

F set of all possible functions

` loss

L learning set

R(f) expected risk

R̂ empirical risk

f ∗ optimal function

RB Bayes risk

fB Bayes model

σ sigmoid function

w weight vector

W weight matrix

θ neural network parameters

L loss function

η learning rate

ρ momentum

~ cross convolution operator

o feature map

M Markov Decision Process

S state space

A action space

P transition function

t time-step

< reward function

γ discount factor

π policy

τ = 〈st, at, rt, st+1〉 trajectory

G goal

Vπ(s) state-value function

Qπ(s, a) state-action value function

Aπ(s, a) advantage function

π∗ optimal policy

V∗(s) optimal state-value function

Q∗(s, a) optimal state-action value function

xviii acronyms

δt temporal-difference error

yt temporal-difference target

ε epislon-greedy exploration parameter

e(t) eligibility traces for state s

D experience replay buffer

h(s, a; θ) generic function approximator

D domain

T task

DS source domain

DT target domain

TS source task

TT target task

f decison function

fT(·) target predictive function

K knowledge

KS source knowledge

KT target knowledge

θS source neural network parameters

θT target neural network parameters

XS source input space

XT target input space

YS source output space

YT target output space

NT number of samples in target dataset

QT number of classes in target dataset

X feature vector

θi ImageNet pre-trained parameters

θr Rijksmuseum pre-trained parameters

It number of instruments in MINERVA

m mask

k late resetting epochs

f (x; m� θ0) winning ticket

f (x; m� θr) random ticket

f (x; m� θk) winning ticket obtained through late resetting

T tensor

acronyms xix

D He-Uniform weight distribution

V(s; Φ) state-value network

V(s; Φ−) state-value target network

Q(s, a; θ) state-action value network

Q(s, a; θ−) state-action value target network

N capacity of the memory buffer

MS source Markov Decision Process

MT target Markov Decision Process

R area ratio score

1
I N T R O D U C T I O N

Ever since the creation of the first computers, humans started to won-
der whether such complex machines could one day be able to think.
Already in the 20th century, computer scientist Alan Turing, who by
many is considered to be the main progenitor of computer science,
designed the Imitation Game, an experiment devoted to test whether
a machine can exhibit intelligent behaviors. While purely theoretical,
as well as philosophical, his work opened the door to many questions
that throughout the years would have defined the field of Artificial In-
telligence (AI), a multidisciplinary field that aims to create computer
programs that are able to mimic, at least in part, the cognitive abilities
underlying human intelligence. In the attempt of answering Turing’s
everlasting question Can machines think?, part of the AI community
started to consider an equally challenging and foundamental ques-
tion: Can machines learn?. This question is nowadays being tackled by
researchers working at the intersection of computer science, probabil-
ity, statistics and even information theory and psychology, which all
fall under the research field that is denoted as machine learning.

The question Can machines learn? might only at first sight appear
to be simple and straightforward to answer, as in reality it actually
forces us to define two very important concepts. First, while it is
true that the term machine has to relate to computer programs, it
is equally true that it gives little insight about the computational na-
ture of such programs, which in practice can come in very different
flavours as they are typically built on top of a wide range of mathe-
matical models. Second, it also requires us to consider what it means
for a computer program to learn and how such an ability, which by
many cognitive scientists is considered to be one of the main intel-
lectual feats underlying intelligence, is related to computer science, a
discipline that at first sight might have little in common with research
fields that study the human brain.

1.1 machine learning

According to Mitchell et al. [158] a computer program, is said to learn
if it manages to improve its performance on a certain task through
experience. Examples of potential tasks might be the recognition of
digits in images [131], mastering a certain boardgame [227], or even
the ability of predicting the outcome of a clinical trial [292]. While
tasks can come in numerous flavours and can differ across eachother
in terms of complexity, the way these are usually tackled by a learning

1

2 introduction

algorithm can be divided into three different paradigms. While two
of these three learning scenarios will be covered in depth in the first
part of this dissertation we still briefly describe them hereafter.

1. Supervised Learning: this instance of machine learning is char-
acterized by problems where there is an input space X and an
output space Y and the goal is to learn a mapping f from X
to Y . The computer program can learn this mapping thanks
to some input-output pairs that are i.i.d. drawn from the joint
probability distribution P(X, Y) and that can be observed through-
out the learning process. Broadly speaking, the more the pro-
gram observes these input-output pairs, the more experienced
it gets and therefore the more accurate its mapping function
becomes.

2. Unsupervised Learning: in this scenario the learning algorithm
does not have access to any output values drawn from P(X, Y)
and therefore cannot rely on them throughout the learning pro-
cess. As a result the aforementioned mapping function f can-
not be learned. Instead, unsupervised learning algorithms aim
at discovering occurring patterns within the input samples they
observe.

3. Reinforcement Learning: is a branch of machine learning where
an agent has to learn how to interact with its surroundings,
typically defined as the environment. Thanks to an interactive
learning procedure, known as the agent-environment loop, the
agent’s goal is that of learning an optimal policy π∗, which al-
lows it to maximize a certain reward signal over time. Differ-
ently from the two learning paradigms mentioned above, re-
inforcement learning is a much more dynamic and uncertain
learning scenario, which builds on top of ideas stemming from
a large variety of disciplines ranging from mathematical opti-
mization to cognitive psychology.

Several learning algorithms able of dealing with the aforementioned
learning scenarios exist, however, the last years have witnessed the
developement of many successfull applications that are based on ar-
tificial neural networks. Among the different types of possible artifi-
cial neural networks, strong potential has been exhibited in all three
machine learning areas by Convolutional Neural Networks (CNNs),
a class of techniques that is particularly well suited for dealing with
high-dimensional and spatially organized inputs such as images. Com-
puter programs based on CNNs are to this date the state of the
art when it comes to a large variety of machine learning tasks. In
fact, CNNs are nowadays able of successfully dealing with super-
vised learning problems that involve the classification of natural im-
ages (see Figure 1.1), and even to learn how to play popular arcade
videogames without any supervision (see Figure 1.2).

1.2 objectives and research questions 3

Figure 1.1: An example of a Convolutional Neural Network that gets trained
for solving a supervised learning problem, namely correctly clas-
sifying the animal depicted in the image as a dog. The different
components of this network will be explained in detail in Chap-
ter 2 of this dissertation. Image taken from [1].

Figure 1.2: An example of a Convolutional Neural Network trained for solv-
ing a reinforcement learning problem, namely learning how to
play the arcade Atari game of Breakout. The way the network
achieves this task will be presented in detail in Chapter 3. Image
courtesy of Patel et al. [179].

1.2 objectives and research questions

The typical machine learning training scenario assumes that when
the learning process begins, a computer program starts solving a cer-
tain task tabula rasa. Going back to the examples presented in Fig. 1.1
and Fig. 1.2, this corresponds to a situation where a CNN has either
never dealt with the supervised learning problem of natural image
classification, or has never learned how to play any Atari videogame
before facing the Breakout game depicted in the image. While overall
CNNs are able of successfully learning how to solve a certain ma-
chine learning problem from scratch, there can however be certain
situations where learning from scratch can result in sub-optimal per-
formance or even prevent a network from learning at all. Based on
this potential limitation, the work presented in this dissertation aims
at exploring whether this family of neural networks can get trans-
ferred and trained across different tasks, and aims to identify which
sort of benefits can arise from tackling several machine learning prob-
lems with CNNs that instead of being trained from scratch have al-
ready been pre-trained on related tasks in the past. Therefore, driven
by the following general research question:

4 introduction

Can convolutional neural networks be transferred and trained across
different source and target domains? if so, which target domains could be of

interest for investigating their transfer learning properties?

we aim at better charactering the transfer learning properties of CNNs,
and investigate whether this family of machine learning models can
get transferred both in a supervised learning scenario as well as in a
reinforcement learning one. We will help answer this research ques-
tion by addressing three, arguably more specific, research questions
which are:

1. What Transfer Learning training strategy should be adopted to maxi-
mize the performance of pre-trained networks?

2. Can Transfer Learning be a valuable tool for better understanding con-
volutional neural networks?

3. Do different machine learning paradigms result in convolutional neu-
ral networks with different transfer learning properties?

1.3 outline of the dissertation

As mentioned earlier, all research questions will be studied both from
a supervised learning perspective as well as from a reinforcement
learning one, while at the same time leaving a transfer learning study
for the unsupervised learning scenario as future work. It naturally fol-
lows that after having introduced these learning paradigms in Chap-
ters 2, 3 and 4, the rest of this dissertation will be divided into two
more parts: Part II, including Chapters 5, 6 and 7, which will focus
on studying the transfer learning potential of CNNs within super-
vised learning; and Part III, made of Chapters 8, 9 and 10, which will
focus on the reinforcement learning scenario instead. More specifi-
cally, in Part II we will focus our supervised transfer learning analysis
on domains that are not defined within the realm of natural images
and that see instead CNNs applied in the areas of digital heritage
(Chapters 5, 6 and 7) and digital pathology (Chapter 7). Here we will
be considering computer vision tasks ranging from image classifica-
tion to object detection. In Part III, our transfer learning studies will
consider the domain of model-free deep reinforcement learning, a
research area that aims to solve optimal control problems with convo-
lutional neural networks that need to serve as value function approx-
imators as well as feature extractors. Here we will see how this task
differs from the aforementioned computer vision problems and how
it affects the overall transfer learning properties of CNNs.

1.4 publications 5

1.4 publications

The aforementioned research questions will be answered thanks to
the work that has been presented in several peer-reviewed publica-
tions. These contributions, together with the role they play through-
out this dissertation, are presented in chronological order hereafter:

Main Publications

• Sabatelli et al. [207] "Deep transfer learning for art classification
problems." Proceedings of the European Conference on Com-
puter Vision (ECCV) Workshops, 2018.
This publication will be mainly reviewed in Chapter 5, and will
be of interest in Chapters 6, 7 and 9.

• Sabatelli et al. [211] Deep Quality Value (DQV) Learning." Ad-
vances in Neural Information Processing Systems (NeurIPS),
Deep Reinforcement Learning Workshop, 2018.
This publication is of interest in Chapter 8 and 9.

• Sabatelli et al. [209] "Approximating two value functions instead
of one: towards characterizing a new family of Deep Reinforcement
Learning algorithms" Advances in Neural Information Process-
ing Systems (NeurIPS), Deep Reinforcement Learning Work-
shop, 2019.
This publication is of interest in Chapter 8.

• Sabatelli et al. [210] "The deep quality-value family of deep reinforce-
ment learning algorithms" Proceedings of the International Joint
Conference on Neural Networks (IJCNN). IEEE, 2020.
This is the main publication underlying Chapter 8, which will
also be of interest in Chapter 9.

• Sabatelli, Kestemont, and Geurts [208] "On the transferability of
winning tickets in non-natural image datasets. Proceedings of the
16th International Joint Conference on Computer Vision, Imag-
ing and Computer Graphics Theory and Applications (VISAPP),
2021.
This work was also presented at the first edition of the Sparsity
in Neural Networks (SNN) Workshop 2021.
Chapter 7 is based on this publication.

• Sabatelli et al. [204] "Advances in Digital Music Iconography:
Benchmarking the detection of musical instruments in unrestricted,
non-photorealistic images from the artistic domain." DHQ: Digital
Humanities Quarterly 15.1 2021.
Chapter 6 extends this publication.

6 introduction

• Sabatelli and Geurts [206] "On the Transferability of Deep-Q Net-
works." Advances in Neural Information Processing Systems
(NeurIPS), Deep Reinforcement Learning Workshop, 2021.
Chapter 9 is based on this publication.

Throughout the Ph.D. several other peer-reviewed papers have been
published, however these are not directly presented in this thesis as
they are either the result of external collaborations, or have served for
reporting preliminary results of ongoing research:

Additional Publications

• Leroy et al. [134] "QVMix and QVMix-Max: Extending the Deep
Quality-Value Family of Algorithms to Cooperative Multi-Agent Re-
inforcement Learning." Proceedings of the AAAI-21 Workshop on
Reinforcement Learning in Games, 2021.

• Hammond et al. [83] "Forest Fire Control with Learning from
Demonstration and Reinforcement Learning". Proceedings of the
International Joint Conference on Neural Networks (IJCNN).
IEEE, 2020.

• Banar et al. [13] "Transfer Learning with Style Transfer between the
Photorealistic and Artistic Domain." IS&T International Sympo-
sium on Electronic Imaging. Computer Vision and Image Anal-
ysis of Art, 2021.

• Sasso, Sabatelli, and Wiering [215] "Fractional Transfer Learning
for Deep Model-Based Reinforcement Learning."
ArXiv preprint arXiv:2108.06526.

Part I

P R E L I M I N A R I E S

You can put some informational part preamble text here.
Illo principalmente su nos. Non message occidental anglo-
romanic da. Debitas effortio simplificate sia se, auxiliar
summarios da que, se avantiate publicationes via. Pan in
terra summarios, capital interlingua se que. Al via multo
esser specimen, campo responder que da. Le usate medi-
cal addresses pro, europa origine sanctificate nos se.

2
S U P E RV I S E D L E A R N I N G A N D D E E P N E U R A L
N E T W O R K S

Outline

In this first chapter, we present Supervised Learning (SL), a branch
of machine learning that aims to create statistical models that, given
a set of previously collected input-output observations, can predict
the value of new unseen output variables. Throughout the chapter,
as well as during this dissertation, we will focus on how one can
represent such models through artificial neural networks, a family of
algorithms that, over the last decade, has gained tremendous popu-
larity within the artificial intelligence community. We start by provid-
ing a general overview of SL in Sec. 2.1 where we describe the main
ideas behind this machine learning paradigm before characterizing
it from a more mathematical perspective in Sec. 2.2. We then move
on towards presenting artificial neural networks in Sec. 2.3 where we
will describe how these kinds of algorithms can be used for solving
SL problems, as well as how these models are trained and designed.
We then present convolutional neural networks, a particular type of
artificial neural network that is particularly well suited for dealing
with SL problems with high-dimensional and spatially organized in-
puts. We will do this in Sec. 2.4, before ending the chapter with some
concluding remarks in Sec. 2.5.

2.1 introduction

Today’s modern society is surrounded by technological services that
aim at exploiting the power of data. It is in fact not a hard task to
think of newspapers, or companies, referring to data-related terms
like “Big Data” or “Internet of Things” in the context of Artificial In-
telligence (AI). While their resulting articles and products are not al-
ways scientifically accurate, nor necessarily useful, it comes without
a doubt that they nevertheless do focus on one critical component
of today’s AI toolbox. Data plays indeed a crucial role nowadays in
the development of AI services, and many AI-based solutions, rang-
ing from recommendation systems underlying our favorite streaming
services to online language translators that allow us to easily trans-
late the most exotic of the languages to our mother tongue, would
not be as effective without data. Yet, what does it mean to build an
AI system based on data, and why does data play such an important

9

10 supervised learning and deep neural networks

role? In this chapter we will answer these questions by focusing on
supervised learning, a branch of machine learning that aims at devel-
oping statistical models that are able of capturing relationships within
structured datasets that come in the form of input-output pairs. The
general idea underlying supervised learning algorithms is that there
is a very precise and defined process governing the generation of
data, which if discovered, can result in the development of successful
AI-based applications. However, correctly identifying such data gen-
eration process can be particularly challenging. We will now see how
one can approach this difficult, yet exciting, problem.

2.2 statistical learning

We start by defining a Supervised Learning (SL) problem with a
quadruplet containing the following elements [64, 144]:

• An input space X ,

• An output space Y ,

• A joint probability distribution P(X, Y).

• A loss function ` : Y × Y → R

Let us define with F the set of all functions f that a certain learning
algorithm can produce. In SL the main goal is to find a function f :
X → Y ∈ F that minimizes the expectation over P(X, Y) of the loss `,
based on the predictions made by f and the correct outputs defined
in Y .

This expectation is also known as the expected risk, or generaliza-
tion error, and is defined as:

R(f) = E(x,y)∼P(X,Y)
[
`(y, f (x))

]
, (2.1)

where f is built from a limited set of observations that define the
SL problem we would like to solve. Such observations constitute the
learning set Lwhich is defined by N pairs of input vectors and output
values (x1, y1), ..., (xN , yN) where xi ∈ X and yi ∈ Y are i.i.d. drawn
from P(X, Y) [69].

As P(X, Y) is unknown and L is finite, one cannot evaluate the
quantity defined in Eq. 2.1. However, one can compute an estimate of
it instead. To this end it is common to use part of the learning set L
for constructing a training set LTrain, of size M, that can be used for
computing the empirical risk, or training error, as follows:

R̂(f ,LTrain) =
1
M ∑

(xi ,yi)∈LTrain

`(yi, f (xi)). (2.2)

2.2 statistical learning 11

Computing Eq. 2.2 results in an unbiased estimate that can be used
for finding a good approximation of the optimal function f ∗ that min-
imizes Eq. 2.1. Formally this corresponds to satisfying the equality

f ∗LTrain
= arg min

f∈F
R̂(f ,LTrain), (2.3)

which is known as the empirical risk minimization principle [267].
As mentioned by Vapnik and Chervonenkis [266], empirical risk min-
imizers should converge in the limit to optimal models:

lim
M→∞

f ∗LTrain
= f ∗. (2.4)

With these concepts in place, we can summarize the goal of SL as
finding a function f that, on average, makes good predictions over
P(X, Y). To this end, when explaining the data generating process
underlying P(X, Y), f does not have to be too “simple” nor too “com-
plex”. In order to assess this, let YX be the set of all functions f :
X → Y . The minimal expected risk over all these functions is defined
as

RB = min
f∈YX

R(f), (2.5)

and is called the Bayes risk. When minimized, the quantity defined
in Eq. 2.5 results in the best possible function fB, which is called the
Bayes model. If the capacity of the hypothesis space F chosen for
finding f is too low, then it follows that R(f)− RB will be large for
any f ∈ F , including f ∗ and f ∗LTrain

. Similarly, if the capacity of F is
too high then although R(f ∗)− RB will be small, f ∗LTrain

can fit LTrain

arbitrarily well such that:

R(f ∗LTrain
) ≥ RB ≥ R̂(f ∗LTrain

,LTrain) ≥ 0. (2.6)

When f is too simple, then it is said to underfit the data, whereas it is
said to overfit it when it is too complex. As a result, one wants both
the expected risk R and the empirical risk R̂ minimizers to be as low
as possible. To achieve this we can again evaluate the performance of
f ∗LTrain

by computing the empirical risk defined in Eq. 2.2 on a separate
independent dataset known as the testing set LTest. Note, however,
that this quantity should be used for model evaluation purposes only
and not for model selection ones as this would lead to some bias.
Model selection is usually done through a separate dataset called the
validation set.

So far we have defined the concepts of expected risk and empirical
risk with respect to a loss function `. However, we have not yet seen
what this loss function looks like in practice. In SL ` changes based
on the characteristics of Y. This allows us to distinguish between two
different SL problems: classification and regression. In the first case
Y comes in the form of a finite set of classes {c1, c2, ..., cC}, whereas

12 supervised learning and deep neural networks

in the latter case Y ∈ R. For classification the arguably most straight-
forward loss function is the 0− 1 loss defined as

`(f (x), y)) = 1(f (x) 6= y), (2.7)

while for regression problems ` can for example come in the form of
the squared error loss:

`(f (x), y) = (y− f (x))2 (2.8)

or in the form of the absolute error loss

`(f (x), y) = |y− f (x)|, (2.9)

depending on how much one wants to penalize large errors made by
f .

While several SL algorithms adopting the empirical risk minimiza-
tion principle exist, throughout this dissertation, we will only focus
on artificial neural networks, a family of techniques that will be re-
viewed hereafter.

2.3 neural networks

Artificial neural networks are learning algorithms that have originally
been developed with the goal of mimicking the neural interactions
within biological systems [158]. Therefore, their primal intent was, to
serve as mathematical models that could be used for better under-
standing biological learning processes. Despite being motivated by a
well-grounded research objective, the most successful algorithms that
nowadays fall within the category of artificial neural networks have,
however, only been developed with the simple objective of resulting
in effective empirical risk minimizers. We, therefore, note that most of
the neural architectures that will be presented and studied through-
out this dissertation mirror actual existing biological processes only
to a very limited extent. Nevertheless, as will be explained in the
coming section, they do build on top of ideas that are in line with
biologically plausible artificial networks.

2.3.1 Multilayer Perceptrons

The first mathematical model developed with the intention of mim-
icking the biological processes underlying the human brain was pro-
posed by Rosenblatt [196]. Inspired by the work of McCulloch and
Pitts [151], Rosenblatt developed the perceptron, the simplest form
of artificial neural network capable of tackling binary classification
problems through supervised learning. Given an input vector x the
perceptron produces the following output:

f (x) =

1 if ∑i wixi + b ≥ 0

0 otherwise
(2.10)

2.3 neural networks 13

which is given by summing up each input x with a certain weight
w and a final additional bias term b. The result of this sum is then
passed through the sign non-linear activation function which yields
output h:

sign(x) =

1 if x ≥ 0

0 otherwise
(2.11)

The way the perceptron works is visually represented in Fig. 2.1 and
can be summarized by the following equation

f (x) = sign(∑
i

wixi + b), (2.12)

x2 w2 Σ σ

Activation
function

h

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 2.1: A visualization of a perceptron.

which, interestingly, can also be rewritten in terms of tensor opera-
tions. This allows us to express the perceptron classification rule as

f (x) = sign(wᵀx + b). (2.13)

Eq. 2.13 makes it possible to conveniently visualize the mathemati-
cal operations of the perceptron through a computational graph, a
directed graph where each node represents a certain mathematical
operation. The computational graph of Eq. 2.13 is represented in Fig.
2.2 and can be considered as the main building block of modern arti-
ficial neural networks.

x ·

w b

+ σ h

Figure 2.2: The computational graph representing the mathematical opera-
tions performed by the perceptron represented in Fig. 2.1 and
defined by Eq. 2.13.

14 supervised learning and deep neural networks

Eq. 2.13 summarizes the computations that are performed by one
single input where x ∈ Rp, w ∈ Rp and b ∈ R. However, the compu-
tation capabilities of such a single unit are very limited and can rarely
be adopted to solve complex tasks. To overcome this, one can stack
several units in parallel such that they create a layer with q outputs
defined as:

h = σ(Wᵀx + b), (2.14)

where h ∈ Rq, x ∈ Rp, W ∈ Rp×q, b ∈ Rq. To increase the flexibility
and capabilities of the model even further, one can then compose a
sequence of L layers

h0 = x

h1 = σ(Wᵀ
1 h0 + b1)

...

hL = σ(Wᵀ
LhL−1 + bL)

(2.15)

that define a multilayer perceptron (MLP), also known as feedforward
neural network. From now on we will refer to an MLP as f (x; θ)

where θ = {Wk, bk|k = 1, ..., L}.
Now that we defined the mathematical computations that are per-

formed by a feedforward neural network we move on to explaining
how one can train these kinds of models to perform empirical risk
minimization.

2.3.2 Stochastic Gradient Descent

Training a neural network consists in finding parameters θ such that
a loss function L (θ), also denoted as the objective function, is min-
imized. Such loss functions are typically expressed as a sum of the
losses `n incurred by each sample n in a training set of size N, and
can be expressed in the following form:

L (θ) =
N

∑
n=1

`n(θ). (2.16)

When neural networks are used, L has to be differentiable as this
allows to minimize it through first-order optimization algorithms.
Among such methods, the arguably most straightforward one is gra-
dient descent, which updates the parameters θ proportionally to the
negative gradient of L . This is done by applying the following up-
date rule:

θt+1 = θt − ηt(∇L (θt))
ᵀ

= θt − ηt

N

∑
n=1

(∇`n(θt))
ᵀ,

(2.17)

2.3 neural networks 15

where t is a time counter variable, and η ≥ 0 is the learning rate,
sometimes also denoted as the step-size parameter. We can easily
observe that computing Eq. 2.17 can become computationally very
expensive as it requires evaluating gradients from all individual func-
tions `n. In fact, this property defines gradient descent as a batch
optimization method, which makes it unfortunately unsuitable for
dealing with large datasets. A possible solution to this computational
burden consists in reducing the amount of computations required by
the sum in Eq.2.17 by simply considering a small, random batch of
samples of the training set. In extreme cases, one can even just esti-
mate the gradient on one single, randomly chosen training sample,
a method called Stochastic Gradient Descent (SGD). While it is true
that this approach gives an unbiased estimate of the true gradient, its
estimate can also be very noisy, which is the reason why it is prefer-
able to evaluate the gradient for a mini-batch of samples rather than
on one single unique sample. A large body of work has investigated
the effect that the batch size has on neural network training [111, 112,
190]; however, so far, no exact rule for determining an optimal batch
size exists. Yet, provided that enough computational resources are
available, large mini-batches are usually preferred as they will result
in more accurate estimates of the gradient, and therefore reduce the
variance in the parameter update θt+1.

When the optimization surface is made of valley floors, gradient
descent has the limitation of being very slow. To deal with this issue,
several works have designed optimization strategies which make gra-
dient based optimization faster and more efficient. The most straight-
forward improvement to the gradient descent algorithm is the one
proposed by Rumelhart, Hinton, and Williams [199] who suggested
the use of an additional term in the update rule presented in Eq. 2.17,
named momentum. This term, simply keeps track of what happened
when the parameters were updated at t− 1 and determines the next
parameter update as a linear combination between the current and
previous gradients. This results in the following update rule:

θt+1 = θt − ηt(∇`(θt))
ᵀ + ρ∆θt (2.18)

where

∆θt = θt − θt−1

= ρ∆θt−1 − ηt−1(∇`(θt−1))
ᵀ,

(2.19)

and ρ ∈ [0, 1]. Momentum is well-known to overall accelerate the
optimization process while also allowing the algorithm to average
out noisy estimates of the gradient.

Next to adding a momentum term to improve the performance of
gradient descent, another common method that can accelerate its con-
vergence revolves around dynamically adapting the learning rate pa-
rameter η. Popular neural network optimizers such as RMSProp [253],

16 supervised learning and deep neural networks

AdaGrad [53], and the very well-known Adam optimizer [114], all adopt
this method. While discussing these algorithms in detail is out of the
scope of this thesis, we refer the reader to the work of Ruder [198],
which provides a nice overview of the most common gradient descent
optimization algorithms, and to the work of Schmidt, Schneider, and
Hennig [219] who empirically evaluate their performance across dif-
ferent networks and machine learning problems.

Before ending this section, it is worth noting that there are several
alternative algorithms besides SGD-like methods that can be used for
optimization problems. Among such methods, we mention second-
order optimization techniques such as Newton, Quasi-Newton, and
the Conjugate gradient methods discussed in [247]. While these algo-
rithms are able to minimize the empirical risk faster and even better
than SGD, they do not result in equally good generalization perfor-
mance. Recall from Sec. 2.2, that in SL, minimizing the expected risk
is just as important as minimizing the empirical risk, which is a prop-
erty that the aforementioned second-order optimization algorithms
do not have. This key result, first presented by Bottou and Bousquet
[26], is what motivates the use of SGD-like optimizers in deep learn-
ing.

2.3.3 Backpropagation

From Eq. 2.19 we can note that a crucial role in the optimization pro-
cess is played by the gradient ∇`(θ). As we have seen in Sec. 2.3.1
neural networks can be considered as a composition of nested func-
tions hk for k = 1, ..., L, where each function comes with its own
parameters θk. Therefore the gradient comes in the form of a vector
which contains all the partial derivatives of the loss ` with respect to
the weights θ that parametrize the neural network:

∇`(θ) =
[∂`

∂θ1
(θ), ...,

∂`

∂θL
(θ)
]
. (2.20)

As the number of functions increases, so does the complexity of the
gradient; therefore, an efficient way of calculating it is necessary. The
backpropagation algorithm [31, 140, 199] is a special case of a more
general technique, called automatic differentiation (see [16] for a gen-
eral review about the topic), that allows evaluating the gradient of
complicated functions numerically and automatically. This is done by
exploiting the chain rule, which can be applied recursively on the
computation graph that keeps track of all the arithmetic operations
that are performed by the network.

To this end, let us define a simplified version of a two hidden layer
perceptron f that is parametrized with weight matrices W1 and W2.
When given input data x the network produces a prediction ŷ which
results from traversing the computational graph represented in Fig.

2.3 neural networks 17

x ·

W1

σ h1 ·

W2

σ ŷ

Figure 2.3: The computational graph representing a simplified version of a
multi-layer perceptron with one hidden layer. Note that no bias
term is added after multiplying x and h1 by W1 and W2 respec-
tively.

2.3. During the traversal, also known as the forward pass, the result of
each mathematical operation is stored within its own output variable,
denoted ui (see Fig. 2.4). Having such an annotated graph it is now

x ·

W1

u1

σ h1 ·

W2

u2

σ ŷ

Figure 2.4: The computational graph that results after having performed one
forward pass through the network. We can see that the result of
each mathematical operation is stored within a new node u that
will be necessary for computing the partial derivatives required
to perform stochastic gradient descent.

possible to compute all partial derivatives efficiently by traversing the
graph backwards (backward pass [140]), and by applying the chain
rule which in its general form states that:

d`
dθi

= ∑
k∈parents(`)

∂`

∂uk

∂uk

∂θi
. (2.21)

Therefore taking as example W1, the derivative of the network’s out-
put ŷ with respect to this weight matrix is given by:

dŷ
dW1

=
∂ŷ
∂u2

∂u2

∂h1

∂h1

∂u1

∂u1

∂W1

=
∂σ(u2)

∂u2

∂Wᵀ
2 h1

∂h1

∂σ(u1)

∂u1

∂Wᵀ
1 x

∂W1
.

(2.22)

2.3.4 Loss Functions

Defining an appropriate loss function is a task that has important
practical implications for the design of the neural architecture. As
for any other type of machine learning model, the choice of which
loss function to minimize depends on the SL task we would like to
solve. Fortunately, since neural networks are parametric models, their

18 supervised learning and deep neural networks

loss functions are not too different from those typically used by, e.g.,
linear models such as logistic regression. The most important con-
cept underlying the loss functions used by neural networks is that of
maximum likelihood estimation. As many other parametric models,
neural networks implicitly define a distribution p(Y|x; θ). This is con-
venient as it makes it possible to exploit the cross-entropy between
the training data and the model’s predictions. Therefore, no matter
whether we are dealing with a classification problem or a regression
one, the loss function that a neural network will adopt will always
come in the following general form:

L (θ) = −E(x,y)∼P(X,Y) log pmodel(Y|x). (2.23)

Typical loss functions that derive from Eq. 2.23 (see Chapter 5 of
[74] for the exact derivations) are the mean squared error (MSE) loss

L (θ) =
1
2
E(x,y)∼P(X,Y)||y− f (x; θ)||2 (2.24)

which is used for tackling regression problems, and the categorical
cross-entropy loss

L (θ) = −E(x,y)∼P(X,Y)

C

∑
i=1

1(y = i) log pmodel fi(x; θ) (2.25)

which is used for multi-class classification problems, where C is the
number of classes we would like to classify.

Based on whether Eq. 2.24 or Eq. 2.25 is minimized, the final layer
of a neural network comes in different forms. As the goal of a regres-
sion problem is to predict a single numerical value, it follows that the
final layer simply consists of one individual unit that is necessary for
estimating Y ∈ R. One single output unit is also used for binary clas-
sification problems, where it is combined with the sigmoid activation
function

σ(x) =
1

1 + exp(−x)
(2.26)

which allows to model a Bernoulli distribution over a binary variable.
For classification problems, where C > 2, and the goal is to represent
the distribution over a discrete variable that can have C possible val-
ues, the sigmoid function can be generalized to a softmax function by
producing a vector z for i = 1, ..., C such that:

Softmax(z)i =
exp(zi)

∑C
j=1 exp(zj)

. (2.27)

We can observe that Eq. 2.27 makes the log probabilities zi, typically
estimated by the second-last layer of a network, positive and sum
up to one, therefore successfully modeling a multinoulli distribution.

2.3 neural networks 19

While the aforementioned output layers are arguably among the most
popular ones it is worth noting that several other types of output
layers exist [75, 76]. Since throughout this dissertation none of these
layers will be used in practice, we will not describe them here and
refer the reader to Chapter 6 of [74] for more information about this
topic.

2.3.5 Vanishing Gradients and Activation Functions

A typical problem of neural networks that come with many hidden
layers is vanishing gradients. Recall from Sec. 2.3.3 that in order to
perform SGD, we first need to collect all the partial derivatives of
the network output with respect to its parameters. As we do this by
applying the chain rule, this can have the drawback of making the
gradient decrease exponentially with respect to the depth of the net-
work. As a result, deeper layers can become particularly hard to train
since no information necessary for updating the respective weights
will be contained within the gradient. The most common cause of this
problem is the activation function used for introducing non-linearity
across the network. For example, let us consider the sigmoid function
presented in Eq. 2.26 and its derivative, which comes in the following
form:

dσ

dx
(x) = σ(x)(1− σ(x)). (2.28)

As we can see from the first image of Fig. 2.5, the maximum value of
Eq. 2.28 is 0.25. If we then use this value when adopting the chain rule
as done in Eq. 2.22, and assume the network comes with a large num-
ber of hidden layers, it is easy to see that the gradient dŷ

dW1
will shrink

to zero as the number of layers increases. The sigmoid function is
not the only activation function which suffers from this phenomenon,
which is also not restricted to feedforward neural networks only. In
fact as first presented by Hochreiter and Schmidhuber [98], another
non-linear activation function that suffers from the vanishing gradi-
ent problem is the hyperbolic tangent

tanh(x) =
1− exp(−2x)
1 + exp(−2x)

. (2.29)

As can be seen in the second plot of Fig. 2.5, the tanh is very simi-
lar in shape to the sigmoid. This activation function is largely used
within Recurrent Neural Networks (RNNs), a particular type of neu-
ral network that can be unfolded into very deep MLPs. Its vanishing
gradient issue has put the potential of RNNs into question for many
years until it was solved thanks to the introduction of the Long Short
Term Memory (LSTM) cells [98].

Another solution to the vanishing gradient problem is to use the
Rectified Linear Unit (ReLU) activation function (represented in green

20 supervised learning and deep neural networks

−10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1 σ(x)
dσ
dx (x)

−3 −2 −1 0 1 2 3

−1

0

1

2

3 ReLU
Elu

Tanh
Sigmoid

Figure 2.5: In the left plot a visualization of the vanishing gradient problem
that can come from using a sigmoid non-linear activation func-
tion throughout a network. In the right plot a representation of
typical non-linear activation functions within the [−3, 3] range
that are currently used by popular neural architectures.

in Fig. 2.5), which is arguably the most popular choice when it comes
to the design of deep neural networks. This activation function is sim-
ply defined as

ReLU(x) = max(0, x). (2.30)

Its derivative has the appealing property of staying constant to 1

whenever a unit is activated as defined by:

d
dx

ReLU(x) =

0 if x ≤ 0

1 otherwise
(2.31)

However, a potential drawback of the ReLU is that whenever its in-
put is negative, gradient-based methods could not be used for learn-
ing, as the unit will have a value of 0. To overcome this, several activa-
tion functions that generalize the ReLU to negative inputs have been
proposed within the literature [43, 90, 146], among which we mention
the Elu [43] that is visually represented in red in the right plot of Fig.
2.5.

2.4 convolutional neural networks

Convolutional Neural Networks (CNNs) are a family of artificial neu-
ral networks that are particularly well suited for problems involving
spatially organized inputs such as (2D) images or (3D) videos. This
kind of data, in fact prohibits the use of the multi-layer perceptrons
presented in Sec. 2.3.1, as it requires representing images as unstruc-
tured vectors, which is a process that, for obvious computational rea-
sons, is not feasible. Furthermore, MLPs present some additional lim-
itations. First and foremost, due to their fully connected structure,
they do not involve any sort of parameter sharing across the network.
Second, as the output of each unit in a layer is given as input to all

2.4 convolutional neural networks 21

the units in the subsequent layer, the interaction among neurons is
also extremely dense. CNNs address these limitations by exploiting
sparse weight sharing strategies that result in neural networks that
are significantly more memory, computationally and statistically effi-
cient.

2.4.1 Mathematical Operations

As their name suggests, the key mathematical operation behind CNNs
is that of convolution. In one dimension, a convolution operation is
performed over two arguments: an input vector x ∈ RW , and a kernel
u ∈ Rw. Its output is a new vector of size W − w + 1 such that:

(x ~ u)[i] =
w−1

∑
m=0

xm+ium, (2.32)

where ~ technically denotes the cross-correlation operation, namely
a convolution operation that does not flip the kernel. The process
described in Eq. 2.32 can easily be generalized to multi-dimensional
tensors such as images which can in fact be seen as three-dimensional
tensors x ∈ RC×H×W , of width and height W and H respectively,
defined over the RGB color domain (C = 3). Similarly, one can also
define a three-dimensional kernel u ∈ RC×h×w whose purpose is to
slide over the input tensor x and which yields a two-dimensional
output tensor o of size (H − h + 1)× (W − w + 1) that is computed
as follows:

oi,j = bi,j +
C−1

∑
c=0

(xc ~ uc)[i, j]

= bi,j +
C−1

∑
c=0

h−1

∑
n=0

w−1

∑
m=0

xc,n+i,m+juc,n,m,

(2.33)

where b (∈ Rh×w) and u are learnable parameters. Within the deep
learning literature, o is also referred to as a feature map [74].

Note that by adopting a convolution approach, one input unit in
the network only affects as many output units as defined by the size
of the kernel, which improves the computational efficiency of the net-
work greatly. Furthermore, each member of the kernel is used across
the entire image, which means that the parameters that define a con-
volution operation are shared alongside the different locations that
are visited by u. The way the kernel interacts with its respective ten-
sor is usually defined by two additional components that both play
an important role in the design of convolutional networks. The first
of these components is padding which is a technique that adds some
extra values around the perimeter of the input tensor x, to preserve
the information that is depicted around its corners. Second, there is
the concept of strides which defines by how many elements at a time

22 supervised learning and deep neural networks

we wish to slide u over x. As the goal of CNNs is to downsample the
input tensor in a computationally efficient manner, it is usually good
practice to have strides larger than one, albeit this comes at the cost
of extracting features not exhaustively.

Convolutional networks typically perform several convolutions in
parallel, as multiple kernels are used. The output of each convolution
is then passed through a non linear activation function such as the
ones that we represented in Fig. 2.5. To downsample the resulting
feature maps even further, a pooling function is usually adopted. Its
idea is to summarize the output of the convolving process at a cer-
tain location of the feature map through a summary statistic. This
reduces its size while at the same time preserves the presence of the
detected features. There are two common pooling operations one can
choose from: max-pooling [295], which, given a three dimensional
tensor x ∈ RC×(rh)×(sw), produces a tensor o ∈ RC×r×s by simply
keeping the maximum value of a feature map within a certain rectan-
gular neighborhood of size h× w such that

oc,j,i = max
0≤n<h,m<w

xc,rj+n,si+m, (2.34)

and average pooling, which instead computes the mean of a feature
map such that

oc,j,i =
1

hw

h−1

∑
n=0

w−1

∑
m=0

xc,rj+n,si+m. (2.35)

Besides reducing the size of a feature map, pooling operations also
have the important benefit of making the representations learned by
the network invariant to small translations. In fact, one could translate
the input by a small amount and still obtain the same output after
pooling. Note, however, that albeit desirable in most cases, there are
situations where adopting pooling strategies should be avoided [24,
205].

2.4.2 Popular Architectures

With all these concepts in place we can now define the general struc-
ture of a convolutional neural network. These models follow a gen-
eral pattern, originally described in [130], which is in principle very
simple: an input tensor is processed by the aforementioned convo-
lution operation, which is done many times in parallel, as different
kernels are typically used. The resulting feature map is then given as
input to one of the non-linear activation functions described in Sec.
2.3.5, among which the ReLU is by far the most popular choice, as it
allows controlling the vanishing gradient problem. The resulting fea-
ture map is then reduced by performing one of the aforementioned
pooling operations. This process of convolving + ReLU + pooling is

2.4 convolutional neural networks 23

repeated several times, until the feature map is small enough to be
reduced to a feature vector. This feature vector is finally processed by
either a multilayer perceptron, or directly by the last output layer of
the network, which as described in Sec. 2.3.4, changes with respect to
the SL problem we would like to solve. While this general principle
has arguably barely changed over the last two decades, it is worth
noting that several design choices have been proposed over the years
with the aim of creating better performing, and increasingly more
efficient models. We will review some of the most important ones
hereafter.

Image Classification Networks The first successful applica-
tion of a convolutional neural network dates back to 1998, when Le-
Cun et al. [130] introduced LeNet-5, a 5-layer deep network which
achieved state-of-the-art results on the MNIST handwriting recogni-
tion benchmark. Despite its success however, convolutional neural
networks did not gain much popularity for over ten years. In fact,
the largely limited computational resources of the time, prevented
them to successfully tackle image classification tasks more compli-
cated than the ones defined by the aforementioned MNIST dataset.
Only in 2012, with the introduction of AlexNet [120], did convolu-
tional networks start to grab the spotlight within the computer vision
community. The work of Krizhevsky, Sutskever, and Hinton [120], re-
sulted in an 8-layer convolutional network, which combined with a
3-layer multilayer perceptron, achieved state-of-the-art results on the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a pop-
ular computer vision dataset which we will review in more detail in
Chapter 4. Among the main contributions of their work we mention
the first results reporting the possibility of applying convolutional
networks to more complicated computer vision tasks, and the possi-
bility of training these models in a distributed fashion by exploiting,
at least partially, the benefits of parallel computing. The advent of bet-
ter specialized hardware, among which we mention the development
of increasingly more powerful Graphical Processing Units (GPUs), to-
gether with the successful results obtained by AlexNet, convinced the
machine learning community to explore the potential benefits of con-
volutional networks further. The most promising line of work was
certainly pioneered by Oxford’s University Visual Geometry Group
(VGG) which investigated whether deeper networks could yield bet-
ter performance. Their VGG16 and VGG19 models [229], of depth 16

and 19 respectively, showed that this was indeed the case, a design
choice which combined with the use of smaller kernels allowed these
models to outperform AlexNet. Similar results were almost concur-
rently achieved by Szegedy et al. [244] who introduced GoogLeNet,
a convolutional network that uses the notion of Inception-Blocks, a
specific form of convolutional layer which simultaneously uses ker-

24 supervised learning and deep neural networks

nels of different sizes. Among these kernels we mention the use of
1 × 1 convolutions which have the appealing benefit of acting as
a powerful memory reduction technique. While all these networks
are certainly deeper than LeNet-5, their number of hidden layers re-
mains on average around a dozen. Despite adopting ReLU activation
functions, all the aforementioned networks do still happen to suffer
from the vanishing gradient problem. He et al. [91] successfully ad-
dressed this limitation by introducing the concept of residual blocks
and skipped connections. They propose using the output of one con-
volutional layer l, not only as input to the immediate subsequent layer
l + 1, but also to some of the subsequent layers e.g., l + 2 and l + 3.
This simple, yet very effective trick, allowed He et al. [91] to build
ResNets, convolutional networks consisting of up to 152 layers which
significantly outperformed GoogLeNet. Huang et al. [102] built on top
of their ideas and introduced DenseNets, which take the concept of
skipped connections to one level further, by designing models where
each layer in the network takes as input the feature maps computed
by all the predecessor layers. While the models presented so far are
arguably the most popular ones, as they outperformed each other
over the years when the ILSVRC was still an on-going yearly com-
petition, it should be noted that many more, equivalently successful
networks have been proposed over the years. Among such networks
we mention Inception-ResNets, which combine inception and resid-
ual blocks [243] and MobileNets [100, 213] and EfficientNet [248],
which are models that are specifically built for minimizing inference
time on devices with limited hardware capabilities.

Beyond Image Classification So far we have only described
convolutional architectures that are specifically designed for tackling
the machine learning task of image classification; however, many other
supervised learning problems involving high dimensional inputs ex-
ist. When it comes to the field of computer vision, lots of research
attention has been given to the tasks of object detection and object
segmentation. It naturally follows that several neural architectures,
specifically designed for such problems, have been introduced over
the years. When it comes to object detection, namely the task of
locating and classifying existing objects in an image [106], convolu-
tional neural networks are typically divided into two different fam-
ilies: models that adopt a region proposals based framework, and
models that directly tackle the problem as a combination of classifica-
tion and regression. The first family of techniques requires a network
to go through two distinctive stages before being able to detect objects
within images: a fisrt stage that aims at proposing candidate object
bounding boxes, and a second, later stage, that classifies them. The
most representative model that adopts region proposals is arguably
R-CNN [71] which, as described by Jiao et al. [106], was among the

2.5 conclusion 25

very first works to show that convolutional neural networks could
successfully be used for object detection tasks, and that this type of
architectures could perform better than computer vision approaches
based on HOG-like features [106]. One of the main issues of R-CNN,
and of most models that are based on region proposals, is their partic-
ularly high inference time. As a result, several improvements to this
architecture have been introduced over the years, among which we
mention Fast R-CNN [195], Faster R-CNN and Mask R-CNN [89], which
all managed to significantly reduce inference time as well as the total
training time that was originally required by R-CNN. When it comes
to networks that do not involve region proposals, the arguably more
popular, and by far successful, architecture is YOLO, whose first ver-
sion was introduced by Redmon et al. [192]. As we will see in Chap-
ter 6, YOLO treats the task of object detection as a regression problem,
which overcomes the need of having two separate models that are
respectively responsible for object localization and object classifica-
tion. As no region proposals have to be estimated, YOLO-like networks
[103, 192, 193] are typically more time efficient compared to Fast-CNN

based methods, although this can sometimes come at the price of
overall worse performing detectors [106].

When it comes to object segmentation, namely the task of clas-
sifying each pixel in an image according to its semantic label, sev-
eral deep learning-based approaches also exist. These approaches are
however not only limited to the use of convolutional neural networks
exclusively [157], and can therefore also include architectures such as
RNNs, Generative Adversarial Networks and Graphical Models. As
the task of object segmentation will not be considered throughout this
dissertation we will not discuss these approaches here, but refer the
reader to a recent survey about the topic instead [157].

2.5 conclusion

In this chapter we have introduced supervised learning and seen
what it means to build statistical models that can capture the interac-
tion between input-output observations. We have specifically focused
on algorithms that come in the form of artificial neural networks as
this is the type of learning technique that, to this date, are among
the most successful ones, in particular for computer vision tasks. In-
terestingly, their learning capabilities are not limited to supervised
learning problems only, which means that artificial neural networks
can also be used for machine learning tasks that do not strictly re-
quire building an empirical risk minimizer. Among such problems,
we mention the ones modeled in reinforcement learning, a branch
of machine learning that throughout this dissertation will receive as
much attention as supervised learning. We will present reinforcement
learning in the next chapter.

3
R E I N F O R C E M E N T L E A R N I N G A N D D E E P N E U R A L
N E T W O R K S

Outline

This chapter introduces the research field of Reinforcement Learn-
ing (RL) and presents how its algorithms can successfully be com-
bined with neural networks. The successful marriage between RL and
deep neural networks comes with the name of Deep Reinforcement
Learning (DRL) and builds on top of research that dates back to a
time when training neural networks was not the common practice it
is nowadays. We start by providing a general introduction to the field
of RL in Sec. 3.1 where we describe the main objectives of this ma-
chine learning paradigm and see how it differs from the supervised
learning setting that we have described in the previous chapter. We
then present the mathematical framework that underpins the devel-
opment of RL algorithms in Sec. 3.2, 3.3 and 3.4. In Sec. 3.5 and Sec.
3.6 we describe how one can create RL algorithms and why it is de-
sirable to integrate the resulting algorithms with neural networks. In
Sec. 3.7 we describe the field of DRL and introduce some of the most
popular techniques that have been proposed over the years. This chap-
ter ends with Sec. 3.8 where we discuss one of the main challenges
that currently characterizes DRL and that has served as inspiration
for the research that will be presented in Chapters 8 and 9 of this
dissertation.

3.1 introduction

In Chapter 2, we have described Supervised Learning (SL), a machine
learning framework that aims at constructing models which can an-
swer statistical questions about data coming in the form of input-
output pairs. When these models are built successfully, it is possible
to use them to make predictions about the behavior of new unseen
data. Training SL models is a process which from some perspective
is very static. Datasets are divided into training, validation, and test-
ing sets, and besides providing a model with a large set of samples
drawn from these datasets, there is no real interaction between the
learning algorithm and the data that drives the learning process. In
Reinforcement Learning (RL), this changes drastically. The goal is not
to learn a mapping between a set of fixed input samples and their re-
spective targets, but to train an algorithm that learns how to interact

27

28 reinforcement learning and deep neural networks

with an environment. RL is, therefore, a much more dynamic learning
paradigm, where the concept of time is omnipresent and is critical for
the development of algorithms that not only need to solve a specific
problem, but additionally, also have to be able to adapt themselves
while training progresses.

In RL, a learning algorithm is usually called the agent, and it can
come in numerous forms: it can range from being a self-driving car
that needs to learn how to drive; to a recommendation system whose
goal is to propose products to users navigating the web. More gen-
erally, we define an RL agent as any system that, given a specific
situation, has to choose which action to perform. However, there is
one more additional component that makes RL the challenging ma-
chine learning setting it is. It is not enough for an agent to just learn
how to interact with the environment, it is even more desirable for
it to learn an interaction which can be defined as "intelligent". Going
back to the self-driving car example, an "intelligent" agent would not
only be a car that can drive autonomously, but a car that is also able
to do this while complying with the driving code. Because of this con-
cept of learning how to make (intelligent) decisions while interacting,
the problems tackled by RL algorithms are also reffered to as opti-
mal decision making problems, which are also the target of research
fields other than machine learning, such as control theory. Interest-
ingly, both worlds try to solve the same set of problems, one by tack-
ling them through algorithms that are denoted as "intelligent", while
the other through the development of algorithms that are "optimal."
Throughout this dissertation, we will not make a clear distinction
between these two worlds and will assume that algorithms yielding
intelligent behaviors also result in optimal behaviors. Nevertheless,
we encourage the reader that has finished reading this chapter to
assess whether acting optimally necessarily coincides with acting in-
telligently.

3.2 markov decision processes

Before starting to develop RL algorithms for sequential decision mak-
ing problems, we formulate the problem within the mathematical
framework of Markov Decision Processes (MDPs) [187, 188]. Through-
out this dissertation, we will characterize MDPs, and the resulting RL
concepts, by using the mathematical notation that was used by Sutton
and Barto [240] in their seminal book about RL, although it is worth
noting that within the literature, different formulations can be found
for expressing the same kind of concepts [21–23, 32].

We start by introducing the following elements:

• A set of possible states S , that can be visited by an agent while
it is interacting with the MDP, where st ∈ S denotes the state
being visited at time-step t.

3.2 markov decision processes 29

• A set of possible actions A that are available to the agent when
it is in a certain state, where at ∈ A(st) denotes the action that
is performed by the agent in state s at time-step t.

• A transition function P : S × A × S → [0, 1] that defines the
probability for an agent to visit state st+1, based on its current
state and the action which will be performed thereafter.

• A reward function < : S ×A× S → R which returns a reward
signal rt when an agent performs action at in state st and transits
to st+1.

• A discount factor denoted as γ ∈ [0, 1] (explained in Section
3.3).

Based on these concepts a MDP is defined by the following tuple
〈S ,A,P ,<, γ〉 and is also commonly denoted in the RL literature as
the environment. The way the agent interacts with this environment
is given by its policy π, defined as a probability distribution over
a ∈ A(s) for each s ∈ S :

π(a|s) = Pr {at = a|st = s}, for all s ∈ S and a ∈ A. (3.1)

Policies can be deterministic if ∀s : π(a|s) = 1 for exactly one a ∈
A(s) and π(b|s) = 0 for all b ∈ A(s) \ {a}. A policy is also stationary
if it does not change over time.

The elements of the MDP allow us to properly model the dynam-
ics of an agent interacting with its environment, an interaction which
can be summarized as follows: at each time-step t the environment
provides the agent with a certain state st, the agent then performs
action at which results into the reward signal rt. After performing
such action the agent will enter into a new state st+1. This continuous
interaction with the environment is also known as the Reinforcement
Learning loop, and can technically be infinite. However, this is never
the case in practice, as an agent will eventually visit a state (denoted
as terminal) that only transits to itself, which will therefore stop the
agent-environment interaction. We visually represent the Reinforce-
ment Learning loop in Fig. 3.1.

Each interaction of the agent with the environment is defined as an
episode, which consists of one or several trajectories τ that come in
the form of the following sequence:

〈(st, at, rt, st+1)〉, t = 0, . . . , T − 1 (3.2)

where T is a random variable representing the length of the episode.
A key property of the environment is that it fulfills the Markov

property which is defined as follows:

Definition 1 A discrete stochastic process is Markovian if the conditional
distribution of the next state of the process only depends from the current
state of the process.

30 reinforcement learning and deep neural networks

Agent

Environment

action

at

st+1

rt+1

state

st

reward

rt

Figure 3.1: A visual representation of how an agent interacts with an envi-
ronment as modeled by a Markov decision process. Figure in-
spired by page 48 of the Sutton and Barto [240] textbook.

This implies that the only information that is necessary for predicting
to which state an agent will step next are st and at, a concept which
can be expressed formally as:

p(st+1|st, at, st−1, at−1, . . .) = p(st+1|st, at). (3.3)

Interestingly, the same property is also assumed for the reward that
the agent will get, meaning that the reward that an agent obtains is
only determined by its previous action, and not by the history of all
previously taken actions, as defined by:

p(rt|st, at, . . . , s1, a1) = p(rt|st, at). (3.4)

3.3 goals and returns

So far, we have defined all the elements that model an agent’s interac-
tion with an environment while introducing some of its fundamental
properties. However, we do not yet know what the purpose of this
interaction is. In RL, an agent’s goal is defined with respect to the
reward signal rt that is returned by the reward function < and is very
straightforward: maximizing the total amount of reward it receives
while interacting with the environment. In the simplest case, we can
define this as:

Gt = rt + rt+1 + rt+2 + . . . + rT. (3.5)

While simple and intuitive, this formulation has one major drawback:
it treats each reward signal equally as it does not distinguish rewards
that are obtained in the near future, rt, from the ones that will be
obtained in the more distant future, rT−1. To deal with this issue, we
need an additional concept known as discounting, and that is gov-
erned by the discount rate parameter γ, also known as the discount
factor. γ allows us to weight the different reward signals based on
how close or distant in the future these rewards are received by the

3.4 value functions 31

agent. By introducing γ in Eq. 3.5 we can now define the expected
discounted return as:

Gt = rt + γrt+1 + γ2rt+2 + ...

=
∞

∑
k=0

γkrt+k.
(3.6)

The role of γ can be interpreted as follows: a reward obtained k time
steps in the future is only worth γk−1 times what it would be worth
if received immediately. It is easy to see how different γ values can
result in different agent’s behaviors. If γ = 0 an agent will only take
into account immediate rewards, therefore aiming to maximize rt+1

only and resulting into having a "myopic" behavior. If γ approaches 1
the agent will become more "far-sighted", it will take future rewards
into account more strongly and will therefore increase its chances
of accessing rewards that will result into a higher cumulative return.
Please note that by defining γ < 1, we can make the infinite sum
presented in Eq. 3.6 finite as long as the rewards rk are bounded.

While the role of γ is often taken for granted within the RL liter-
ature, it is worth noting that as mentioned by Hessel et al. [95] and
Schmidhuber [218], γ is an artificial concept that is not present in
fields such as traditional control theory or engineering. This is be-
cause γ corresponds to a concept that does not exist in the real world
and that in practice distorts the actual value of rt in an exponentially
shrinking fashion. Even if it is considered standard practice to include
a discount factor in the development of RL algorithms, it is worth not-
ing that making γ part of the RL framework corresponds to including
a form of "inductive bias" within the resulting algorithms. It is com-
mon knowledge that low discount factors result in poor performance
and that it is therefore beneficial to set γ as close to 1, yet choosing
an appropriate γ parameter can be more challenging than expected,
especially when RL algorithms are combined with function approxi-
mators. For example, Wiering and Van Hasselt [278] show that differ-
ent algorithms prefer different discount factors, while François-Lavet,
Fonteneau, and Ernst [59] show the benefits of initially starting with
a low discount factor which gradually gets increased while training
progresses. Finally, Van Seijen, Fatemi, and Tavakoli [263] introduce
a method that allows the use of low discount factors for approximate
RL algorithms while at the same time highlighting that the common
perception of the role of γ might need revision from the RL commu-
nity. We discuss an alternative perspective to solving RL problems
that does not involve the role of γ in Appendix C.

3.4 value functions

We are now ready to introduce the arguably most important concept
underlying many RL algorithms: the concept of value. We can define

32 reinforcement learning and deep neural networks

the value of a state s, as well as the value of a specific policy π or
of a particular action a, anyhow, independently from what we are
considering, the notion of value is always directly linked to the con-
cept of expected discounted return defined in Eq. 3.6. Given an MDP
and a policy π, we can determine the value of a state s as a function
Vπ : S → R that measures the expected return that the agent will
receive when starting in s and following π thereafter.

Vπ(s) = E

[∞

∑
k=0

γkrt+k

∣∣∣∣st = s, π

]
. (3.7)

Vπ(s) is also known as the state-value function and intuitively tells us
how good or how bad it is for an agent to be in a certain state. While
this function is only conditioned on the state that is being visited by
the agent, we can also condition it on the actions that the agent takes.
By doing so we will quantify how good or bad it is for the agent to
take a certain action a in a certain state. This function Qπ : S ×A → R

comes with the name of state-action value function and is defined as
follows:

Qπ(s, a) = E

[∞

∑
k=0

γkrt+k

∣∣∣∣st = s, at = a, π

]
. (3.8)

Both value functions are very powerful as they allow to characterize
an agent’s behavior by quantitatively assessing its interaction with
the environment. They can be seen as the agent’s knowledge and
represent its desirability of being in a specific state. As we will see in
the coming sections, accurately modeling these value functions is one
of RL’s major goals.

A key property of Vπ(s) and Qπ(s, a) is that both value functions
satisfy a consistency condition that allows us to define both functions
recursively. For example let us consider the state-value function Vπ(s)
presented in Eq. 3.7, we can rewrite it as:

Vπ(s) = E
[∞

∑
k=0

γkrt+k
∣∣st = s, π

]
= E

[
rt + γrt+1 + γ2rt+2 + . . .

∣∣st = s, π
]

= E
[
rt + γ(rt+1 + γrt+2 + . . .)

∣∣st = s, π
]

= E
[
rt + γVπ(st+1)

∣∣st = s, π
]

= ∑
a

π(a|s) ∑
st+1

p(st+1|s, a)
[
<(st, a, st+1) + γVπ(st+1)

]
.

(3.9)

Similar steps can be followed when considering Qπ(s, a) which can
then be recursively defined as:

Qπ(s, a) = ∑
st+1

p(st+1|s, a)
(
<(st, a, st+1)+γ ∑

at+1

π(at+1|st+1)Qπ(st+1, at+1)
)
.

(3.10)

3.5 learning value functions 33

When it comes to sequential decision making, we are interested in
maximizing each state value or each state-action pair value, since by
doing so, we will be finding a policy π that is optimal. The optimal
policy π∗ is a policy that realizes the optimal expected return defined
as:

V∗(s) = max
π

Vπ(s), for all s ∈ S (3.11)

and the optimal Q value function:

Q∗(s, a) = max
π

Qπ(s, a) for all s ∈ S and a ∈ A. (3.12)

When we recursively define both optimal value functions as we did
for Eq. 3.9 we obtain:

V∗(st) = max
a ∑

st+1

p(st+1|st, a)
[
<(st, a, st+1) + γV∗(st+1)

]
(3.13)

for the optimal state-value function, and

Q∗(st, at) = ∑
st+1

p(st+1|st, at)

[
<(st, at, st+1)+γ max

a
Q∗(st+1, a)

]
,

(3.14)

for the optimal state-action value function. Equations 3.13 and 3.14

are well known to correspond to the Bellman optimality equations
[19].

If the optimal Q function is learned, it becomes a straightforward
task to derive an optimal policy since one only needs to select the
action which has the highest value in each state as defined by:

π∗(s) = arg max
a∈A

Q∗(s, a) for all s ∈ S . (3.15)

It is also worth noting that the Q function and the V function satisfy
the following equality

V∗(s) = max
a∈A

Q∗(s, a) for all s ∈ S . (3.16)

As we will later see throughout this thesis this equality is particularly
important for the development of many RL algorithms.

3.5 learning value functions

The V function and the Q function play a crucial role in the devel-
opment of optimal decision making algorithms, and over the years,
several methods have been introduced to learn them. While all these
algorithms’ ultimate goal is to yield an optimal policy, there exist
cases for which learning these value functions is easier than others.

34 reinforcement learning and deep neural networks

The complexity of learning a value function depends on how many
MDP components are known to the agent. If the agent has access to
all five of the components of the MDP that we introduced in Sec. 3.2
and the state and action spaces are finite, then these algorithms are
part of a collection of methods that comes with the name of Dynamic
Programming (DP). DP algorithms such as value-iteration, policy-
iteration and variants [20, 273] learn an optimal value function, or
optimal policy, by exploiting the fact that the transition function P ,
and the reward function < of the MDP are known. While DP meth-
ods can be considered as the progenitors of many RL algorithms, we
will not discuss them here since throughout this thesis, we will be
interested in scenarios for which P and < are unknown. Specifically,
we will introduce novel methods that aim to learn an optimal value
function without requiring to learn an approximation of the transi-
tion and reward functions (P̂ and <̂) neither, therefore placing all
contributions of this dissertation within the model-free RL literature.

3.5.1 Monte Carlo Methods

The first family of methods that can learn optimal value functions
when no complete knowledge of the environment is available comes
with the name of Monte Carlo (MC) methods. MC algorithms only
require RL trajectories to discover an optimal policy and achieve this
by sampling and averaging the rewards obtained while the agent is
interacting with the environment. While MC methods can be used
both for learning V∗(s) as well as for learning Q∗(s, a), in this section,
we only present how one can learn the state-value function. MC al-
gorithms’ key idea relies on computing the actual sum of discounted
rewards that an agent obtains once an episode finishes. This corre-
sponds to computing the quantity defined in Eq. 3.6. Once this value
is computed, it can be used for updating the current value of each
state with the following update rule:

V(st) := V(st) + α
[
Gt −V(st)

]
(3.17)

where α ∈ [0, 1] is the learning rate controlling how much we want
to change the value estimate of a state based on Gt. As a practical ex-
ample let us consider the MDP represented in Fig. 3.2. Let us assume
that the starting state of the environment is s0 while the terminal state
(the state that interrupts the Reinforcement Learning loop) of the en-
vironment is s2, and that the agent follows a policy π that results
into the following state visits: s0, s1, s0, s2. The rewards associated to
each visited state are therefore −1,+2 and +3 respectively. If we set
the discount factor to 0.99 we know that the real discounted return
that is obtained at the end of the agent-environment interaction when
starting in state s0 is ∑∞

k=0 γkrt+k+1 = −1+γ2+γ23 ≈ 3.92. If we now
assume that the value of s0 has never been updated before and that is

3.5 learning value functions 35

therefore 0, and that we set α = 0.5, the result of one MC update for
s0 will be ≈ 1.96.

s0 s1 s2

−1

+2

+3

0

Figure 3.2: A visual representation of a simple MDP. For each state transi-
tion the corresponding reward is presented in red.

When dealing with MC learning, it can be possible that a certain
state is visited more than once before a terminal state is reached. In
the MDP represented in Fig. 3.2 this is the case for s0. If that happens,
one must decide when to update V(s) and which value to use as Gt,
as different state visits result in different Gt values. There are two typ-
ical ways to deal with this: either update V(s) only once, or one can
update V(s) each time the state is visited by simply using as Gt the
average of all the different discounted returns. While several success-
ful applications of MC methods exist [105, 127, 141], a well known
issue from this family of algorithms is that they suffer from highly bi-
ased updates. In fact, one needs to compute the sum presented in Eq.
3.5 over all visited states, resulting in returns with considerable vari-
ance. It is easy to see how this can become an issue, especially when
the length of the episodes increases. In fact, the larger the episode’s
length, the more significant the variance of the updates. Furthermore,
an additional drawback of MC methods is that one must wait until
the agent visits a terminal state before being able to perform an up-
date that is based on Eq. 3.17, a drawback that is addressed by the
methods that are presented hereafter.

3.5.2 Temporal Difference Learning

Temporal Difference (TD) Learning [238, 242] is a learning paradigm
that allows overcoming the issues mentioned above that character-
ize MC learning based methods. The key idea of TD-Learning is to
update the value of each state with respect to a single MC update,
therefore overcoming the hurdle of having to wait for the end of an
episode before being able to update the value of a state. Just as MC
methods TD-Learning algorithms also learn an optimal value func-
tion based on the experience that the agent collects. However, these
algorithms base their updates only on the value of a single, consecu-

36 reinforcement learning and deep neural networks

tive state rather than on the real discounted return that is dependent
on the entire sequence of visited states. Updating the value of a state
with respect to the value of its successor state only is a technique that
comes with the name of bootstrapping, and is a very effective design
choice that reduces the variance in the updates. Bootstrapping can be
used to learn the V function and the Q function and is at the core
of the most popular model-free RL algorithms. The first and simplest
form of TD-Learning was introduced by Sutton [238] for learning the
state-value function with an algorithm that updates the value of a
state based on the following learning rule:

V(st) := V(st) + α
[
rt + γV(st+1)−V(st)

]
. (3.18)

We can now clearly see that differently from what happens in the MC
update presented in Eq. 3.17 the update of a state now only depends
on the reward and the value of the next state. This quantity is denoted
as the TD-error δt and is defined as:

δt = rt + γV(st+1)−V(st). (3.19)

where rt + γV(st+1) is also known as the TD-target. If we again con-
sider the simple MDP represented in Fig. 3.2 and assume that the
value of each state of the process is set to 0 while the discount fac-
tor γ is this time set to 0.5 and α is again 0.5, a TD update for V(s0)

based on a policy resulting in state s2 will result into the new value
estimate of 1.5. TD-Learning is a very effective strategy for building
algorithms that can learn in an online, fully incremental fashion as
one only needs to wait for a single time-step before updating the con-
sidered value function. Due to its striking simplicity, TD-Learning has
been widely adopted by RL practitioners developing algorithms for
learning the Q function. We will present some of the most important
algorithms hereafter.

Q-Learning Introduced by Watkins and Dayan [272] is arguably
the most popular model-free RL algorithm. It works by keeping track
of an estimate of the state-action value function Q : S ×A → < and
updates each visited state-action pair with the following update rule:

Q(st, at) := Q(st, at) + α
[
rt + γ max

a∈A
Q(st+1, a)−Q(st, at)

]
. (3.20)

The key component of Q-Learning’s update rule is the max opera-
tor, which characterizes its TD-error and that is necessary for con-
structing the TD-target. Since there are as many Q values as there
are actions available to the agent, one must choose which Q value to
use as a reference when updating the value of the state-action pair
that the agent is currently visiting. The max operator simply chooses
the state-action pair with the largest Q value, a simple design choice

3.5 learning value functions 37

that has the appealing property of making Q-Learning converge to
Q∗(s, a) with probability 1 as long as all state-action pairs are visited
infinitely often. Interestingly, this guarantee holds even if the agent
follows a random policy. The max operator also defines Q-Learning
as an off-policy learning algorithm, since the Q values chosen for the
construction of the TD-target might not correspond to the ones that
are associated with the state that the agent will visit after having up-
dated its Q function.

SARSA Also known as "online Q-Learning" [200] can be seen as
the most straightforward extension of the TD-Learning method pre-
sented in Eq. 3.18, and similarly to Q-Learning is an algorithm that
aims at learning the state-action value function Q. The key idea of
SARSA is to update a state-action value with respect to the Q value
that is associated to the state that the agent will visit after a certain
action is performed. Therefore, SARSA does not use the max opera-
tor within its TD-error and constructs TD-targets that represent the
policy that the agent is following, a characteristic that defines SARSA
as an on-policy RL algorithm. The way SARSA learns the Q function
is given by the following update rule

Q(st, at) := Q(st, at) + α
[
rt + γQ(st+1, at+1)−Q(st, at)

]
, (3.21)

where we can clearly see how the algorithm uses all the elements of
the quintuple of events (st, at, rt, st+1, at+1) a property that gives rise
to the name sarsa. Not using the max operator in Eq. 3.21 results
in an algorithm that, differently from Q-Learning, does not directly
learn the optimal Q function anymore, but rather learns to estimate
Qπ(s, a). This has the drawback of not guaranteeing convergence to
Q∗(s, a) for any random policy anymore. To overcome this, SARSA
needs an exploration policy that is greedy in the limit of infinite explo-
ration [231]. This can be achieved with the popular ε-greedy selection
policy which defines the action that the agent takes as:

at =

arg max

a∈A
Q(st, a) with probability 1− ε

a ∼ U (A) with probability ε

(3.22)

where ε is a hyperparameter that changes while training progresses.
During early training iterations, its value is close to 1, while it ap-
proaches 0 by the end of training. This allows the agent to take actions
that are representative of a large set of policies when the learned Q
function does not yet correspond to Q∗(s, a), while it will favor greedy
actions at the end of training. This is a simple, yet effective strategy
that deals with the exploration-exploitation dilemma. It is however
worth noting that its use is not limited to on-policy RL algorithms
only. Furthermore, the method presented in Eq. 3.22 represents only

38 reinforcement learning and deep neural networks

one possible way of balancing exploration and exploitation, and al-
though it is arguably the most popular of such methods, it is not
the only existing one. We refer the reader to chapter 5 of [275] for a
thorough analysis of different exploration algorithms.

Double Q-Learning In some environments, Q-Learning is known
to perform poorly. This poor performance stems from the fact that the
algorithm largely overestimates some state-action values due to the
max operator in its TD-error [252]. The max operator serves for con-
structing an approximation of the maximum expected action-value of
a state, which, as discussed by Van Hasselt [260], is a technique that
results in positively biased estimates [232, 235]. In some RL problems,
this can significantly influence the learning process, which has led
the RL community to develop a set of solutions that try to mitigate
this bias [132, 133, 182, 296]. Among the different solutions, Double
Q-Learning [260] is probably the most popular one. Its main idea is
to keep track of two different state-action value functions, Q1 and Q2,
which get alternatively used for selecting which action to perform.
When one of the two Q functions determines the action that max-
imizes the state-action value of the next state, the remaining value
function is used for evaluating this estimate. This can be achieved
with the following rule:

Q1(st, at) := Q1(st, at) + α
[
rt + γ Q2(st+1, a∗)−Q1(st, at)

]
, (3.23)

where a∗ = arg maxa∈A Q1(st+1, a). Note that at each time step, only
one of the two Q functions gets updated. While training progresses,
the choice of which Q function to update is determined randomly.
In the case it is Q2, the update rule is identical to the one presented
in Eq. 3.23 with the only difference being that the role of the two Q
functions is swapped. Double Q-Learning converges to the optimal
state-action value function with probability 1 under the same condi-
tions as Q-Learning. Van Hasselt [260] shows that using two separate
Q functions significantly mitigates the overestimation bias. Yet, this
comes at the price of an algorithm that is twice more expensive in
terms of memory requirements. It is also worth noting that although
Double Q-Learning does not overestimate the state-action values, it
might instead underestimate them, which in some environments can
still yield poor performance.

QV(λ)-Learning First introduced by Wiering [277] and further
developed by Wiering and Van Hasselt [278] is an on-policy RL al-
gorithm which differently from the previously introduced methods
keeps track of an estimate of the state-value function V : S → R

alongside the usual estimate of the state-action value function Q :
S × A → R. Since the goal is to jointly learn two value functions,
QV(λ)-Learning requires two separate update rules. The V function

3.6 function approximators 39

is learned via the same form of TD-Learning that we introduced in
Eq. 3.18, with the only difference being the addition of the eligibil-
ity traces et(s) at the end of the update rule (an RL technique that
we will review in Chapter 8). QV(λ)-Learning, therefore, learns the V
function with the following update rule:

V(s) := V(s) + α
[
rt + γV(st+1)−V(st)

]
et(s). (3.24)

Since as discussed earlier only learning the V function is not sufficient
for deriving an optimal policy one needs to learn the Q function as
well. In QV(λ)-Learning this is done as follows:

Q(st, at) := Q(st, at) + α
[
rt + γV(st+1)−Q(st, at)

]
. (3.25)

An attractive property of the algorithm is that it uses the same TD-
target (rt + γV(st+1)) for defining the two different TD-errors that
are required for learning the state-value and the state-action value
functions. Among the main insights that motivate learning two value
functions over one, Wiering [277] mentions the possibility that the V
function, since it does not depend on the agent’s actions, might con-
verge faster than the Q function. As described earlier, the V function
only depends on the state space of the MDP, which by definition is
smaller than the state-action space. For a more in-depth and formal
presentation of the conditions that show the benefits of jointly learn-
ing the V function alongside the Q function, we refer the reader to
chapter 5 of [86].

3.6 function approximators

If it is true that model-free RL algorithms are very powerful meth-
ods for learning an optimal policy when parts of the MDP are un-
known, it is also true that all the algorithms mentioned above suffer
from the curse of dimensionality. Model-free algorithms are typically
implemented in a tabular fashion, meaning that the state values, or
state-action values, are stored within tables of sizes |S| and |S × A|
respectively. Albeit straightforward and easy to implement, such an
approach presents severe limitations. The first major drawback of the
tabular representation approach is that it does not scale well with
respect to the MDP complexity. If the environment state and action
spaces become very large, storing a table quickly becomes unfeasible
in terms of storage space. Furthermore, tabular representations are
also unable to deal with continuous states. A natural solution to this
problem could consist in discretizing the state space; however, this ap-
proach still results in the aforementioned storage space issues when
done thoroughly. Therefore, if one wants to use RL techniques, even
when the state space of the MDP is large, a better solution is needed.
This solution is based on parametrized function approximation. In
this context, the goal is not to learn the exact value function anymore

40 reinforcement learning and deep neural networks

but to rather replace its tabular representation with a parametrized
function. This function parameters can then be adjusted based on the
RL algorithms that we introduced in Sec. 3.5.2.

3.6.1 Linear Functions

The most straightforward type of function approximator one can use
is a linear function. Given a state-action tuple that gets represented
as a feature vector x(s) = [x1(s), x2(s), ..., xq(s)] ∈ Rq, and a function
parametrized by a vector of parameters θa ∈ Rq for each action a ∈ A,
as shown in [276], we can redefine the value of a state-action pair as:

Q(s, a) = ∑
i

θa
i xi(s). (3.26)

Given a trajectory 〈st, at, rt, st+1〉, the Q-Learning algorithm presented
in Eq. 3.20 can now be used for updating the parameters θa

i for all i
with the following update rule:

θat
i := θat

i + α(rt + γ max
a∈A

Q(st+1, a)−Q(st, at))xi(st). (3.27)

We can observe that this update rule modifies the parameter vectors
θa by minimizing the mean squared error loss between a given state-
action tuple and Q-Learning’s TD-target since

L(θ) = 1
2
(
yt −Q(st, at)

)2 with yt = rt + γ max
a∈A

Q(st+1, a)

∂L
∂θi,at

= −
(
yt −Q(st, at)

)
xi(st)

θat
i := θat

i + α(rt + γ max
a∈A

Q(st+1, a)−Q(st, at))xi(st).

(3.28)

Similar steps can be used for adapting all of the RL algorithms that
we introduced in the previous section. As a representative example
for the on-policy learning case let us consider the SARSA algorithm.
One can learn an approximation of the Q function by updating the
parameters of a linear function as follows:

θat
i := θat

i + α(rt + γQ(st+1, at+1)−Q(st, at))xi(st). (3.29)

Linear functions can yield successful results [123, 151, 176] as they can
indeed deal with the aforementioned curse of dimensionality prob-
lem. However, non-linear functions are usually preferred since their
representational power is even larger than the one of linear methods.
Throughout this dissertation, we are interested in non-linear func-
tions that come in the form of deep neural networks. As we have
seen in the previous chapter, neural networks such as e.g convolu-
tional networks are able to learn very rich representations from their

3.7 deep reinforcement learning 41

inputs. However, this also makes these kinds of models particularly
challenging to train in an RL context. We will now describe how one
can successfully deal with some of the challenges that characterize
the use of deep neural networks in RL by presenting some of the
most important algorithms that have been introduced over the years.

3.7 deep reinforcement learning

Before looking into how RL algorithms should be integrated within
deep neural networks, it is important to mention that RL techniques
have been successfully combined with (less powerful) neural networks
for over three decades. In fact, the field known as Connectionist Re-
inforcement Learning (CRL) resulted in the very first algorithms that
managed to outperform human experts on specific tasks. Among the
multiple possible examples of this family of techniques, we mention
the TD-Gammon program introduced by Tesauro [251]. TD-Gammon
successfully learns an approximation of the popular Backgammon
boardgame’s evaluation function through the same TD-Learning meth-
ods that we presented in Sec. 3.5.2. Tesauro’s program achieved a
level of play comparable to the one of the top human Backgammon
players of its time and is even nowadays considered one of the most
important RL breakthroughs. For a more detailed presentation about
the successful applications of CRL algorithms, we refer the reader to
[33].

While certainly successful for a certain set of problems (see for ex-
ample chapter 1 of [203]), CRL techniques also present severe limi-
tations. Since they only use multi-layer perceptrons as function ap-
proximators, these algorithms cannot be used for tackling problems
where the state representation of the MDP is highly dimensional.
To overcome this, more complicated and powerful networks are re-
quired. Deep Reinforcement Learning (DRL) [11, 60, 135] is a research
field that combines RL algorithms with deeper and more complex
neural architectures. In value based model-free DRL we are inter-
ested in learning an approximation of either the optimal state-value
function V(s; θ) ≈ V∗(s) or the optimal state-action value function
Q(s, a; θ) ≈ Q∗(s, a) with a deep neural network that comes with
parameters θ and that usually comes in the form of a convolutional
neural network. We now describe some of the algorithms which have
contributed to the development of DRL the most.

Deep Q-Learning (DQN) Just like Q-Learning is arguably the
most important tabular model-free RL algorithm, so is DQN when it
comes to DRL. First introduced by Mnih et al. [161] and then made
popular by the work presented in [162] this algorithm can certainly
be considered as the very first successful example of a neural net-
work that is able to learn an approximation of the optimal state-action

42 reinforcement learning and deep neural networks

value function just from high sensory inputs (in this case images). As
the name suggests, Deep Q-Learning (DQN)1 is based upon the Q-
Learning algorithm and aims at learning an approximation of the
optimal state-action value function Q. This is done by reshaping Q-
Learning’s update rule, presented in Eq. 3.20, into a differentiable loss
function that can be used for training a convolutional network. This
is achieved through the following objective function:

L(θ) = E〈st,at,rt,st+1〉∼U(D)

[(
rt + γ max

a∈A
Q(st+1, a; θ−)

− Q(st, at; θ)
)2
]

. (3.30)

We can start by observing that the general principles that charac-
terize the algorithm are the same ones that made it possible to gen-
eralize Q-Learning to the use of linear function approximators, how-
ever, differently from when a linear function is used, the mapping
between input and feature spaces is now naturally not preserved any-
more. Similarly to what we presented in Sec. 3.6.1, we can see from
Eq. 3.30 that learning Q(s, a, θ) is again achieved by minimizing the
squared error loss between the Q(st, at; θ) estimates and the off-policy
TD-target

yDQN
t = rt + γ max

a∈A
Q(st+1, a; θ−). (3.31)

Despite this similarity, DQN requires some additional algorithmic de-
sign choices, without which it would turn out to be almost impossible
to successfully train a neural network with Eq. 3.30. These additions,
which significantly make DQN differ from the algorithm presented
in Eq. 3.27 are the following:

• Experience Replay: a memory buffer, D, represented as a queue
which stores RL trajectories of the form 〈st, at, rt, st+1〉. Once
this memory buffer is filled with a large set of these quadruples,
DQN uniformly samples batches of trajectories for training its
network. This makes it possible to exploit past trajectories mul-
tiple times by reusing them while training, which makes the
overall algorithm more sample efficient. Furthermore, using a
memory buffer also improves the stability of the training pro-
cedure. Recall that each trajectory is representative of a certain
episode. By repeatedly randomly sampling a different τ from
the memory buffer, a resulting mini-batch of trajectories will
be representative of different episodes and of different policies.
As a consequence, the correlation between trajectories within a
mini-batch will be small. Although made popular by the DQN

1 In DQN the ‘N" in the acronym stays for ‘Network" and replaces what could have
been the, arguably more intuitive, ‘L" of Learning.

3.7 deep reinforcement learning 43

algorithm, using an experience replay buffer for tackling se-
quential decision making problems was already presented by
Lin [138].

• Target Network: We can observe from Eq. 3.31 that the TD-
target used by DQN for bootstrapping is not computed by the
Q network that is being optimized (θ), but rather from a second
separate network that is parametrized with θ−. This second net-
work has the same structure as the main Q network, but its
weights do not change each time RL experiences are sampled
from D. On the contrary, its weights are temporally frozen and
only periodically get updated with the parameters of the main
network θ as defined by an appropriate hyperparameter. Note
that this is a design choice that is not motivated by the TD-
Learning paradigm that we presented in Sec. 3.5.2, where we
have seen that TD-Learning based methods learn in a fully on-
line fashion by updating their value estimates based on their
own future estimates. With a target-network, although the θ net-
work still learns via the methods of temporal differences, it now
requires an auxiliary, external model if it wants to successfully
learn ≈ Q∗(s, a; θ). Several works have studied the target net-
work’s role to understand why this design choice appears to be
necessary for DRL. Yet, the DRL community does not fully un-
derstand the role of θ−. For more about this topic, we refer the
reader to [113, 186].

With all these concepts in place we can show that given a train-
ing iteration i, differentiating this objective function with respect to θ

gives the following gradient:

∇θiL(θi) = E〈st,at,rt,st+1〉∼U(D)

[(
rt+

γ max
a∈A

Q(st+1, a; θ−i−1)−Q(st, at; θi)
)
∇θi Q(st, at; θi)

]
. (3.32)

The DQN algorithm showcased its entire potential in [162] where
Mnih and colleagues developed a convolutional neural network that
trained with Eq. 3.30 learned how to successfully play most of the
Atari games that are part of the popular Atari Arcade Learning En-
vironment (ALE) [18], a well-known platform that even nowadays
serves as a benchmark for testing the performance of DRL algorithms.
In the ALE, a DRL algorithm has to learn how to play 57 different
emulations of Atari games which are specifically designed within a
simulator (see Fig. 3.3 for a visualization of some of the games that
are part of the ALE suite). Remarkably, DQN not only learned how
to play most of the games of the platform but also achieved a final
performance that, on most games, was superior to the one of hu-
man expert players. What is even more remarkable is that this was

44 reinforcement learning and deep neural networks

achieved by providing as inputs to the network the images represent-
ing the game only, therefore making the model learn just from its
own experience in a pure model-free RL fashion. Since then, DQN
has been successfully used for a large variety of applications ranging
from healthcare [191, 256], robotics [110] and natural language pro-
cessing [87, 168] to even particle physics [142, 212]. However, despite
all these remarkable applications, the algorithm still comes with some
drawbacks, some of which are addressed by the algorithms presented
below.

Figure 3.3: A visual representation of some of the Atari games that are
part of the Arcade Learning Environment (ALE) [18]. From
left to right Breakout, Seaquest, Qbert, Pong, MsPacman,

KungFu-Master, Enduro and Space Invaders. Most of these
games will be of interest in Chapter 8 and Chapter 9.

Double Deep Q-Learning (DDQN) Van Hasselt, Guez, and
Silver [262] showed that the DQN algorithm suffers from the same
issue that also characterizes the Q-Learning algorithm: the overesti-
mation bias of the Q function. They show that DQN is prone to learn
overestimated Q-values because the same values are used both for
selecting an action (max

a∈A
) as well as for evaluating it (Q(st+1, a; θ−)).

This becomes clearer when re-writing DQN’s TD-target presented in
Eq. 3.31 as:

yDQN
t = rt + γ Q(st+1, arg max

a∈A
Q(st+1, a; θ); θ−). (3.33)

As a result, DQN tends to approximate the expected maximum value
of a state, instead of its maximum expected value. As presented in Sec.
3.5.2, in the tabular case this can be solved by keeping track of two
separate Q functions, and by randomly preferring one Q function
over the other when it comes to selecting which action to execute.
DDQN generalizes this idea and untangles the action selection pro-
cess from its evaluation by taking advantage of the previously intro-
duced target network θ−. DDQN’s target stays the same as in DQN

3.7 deep reinforcement learning 45

with the main difference being that the selection of an action, given
by the online Q-network θ, and the evaluation of the resulting policy,
given by θ−, can now result into smaller overestimations simply by
symmetrically updating the two sets of weights (θ and θ−) which can
easily be achieved by regularly switching their roles during training.
While not always significantly impacting the performance of DQN
(one can still act optimally even if some actions are associated to un-
realistically high Q(s, a) estimates), there are also cases for which the
overestimation bias of the Q function significantly slows down the
training process, and even prevents the DQN algorithm from improv-
ing its policy over time at all. We will come back to this issue in
Chapter 8.

Prioritized Experience Replay (PER) We have seen that next
to the target network θ− an equally important role within the DQN al-
gorithm is played by the experience replay memory buffer D. Schaul
et al. [217] showed that the efficiency of how Deep Q-Networks use
this buffer could be improved. Their claim stems from the fact that, as
shown in Eq. 3.30, the RL trajectories that get sampled from the mem-
ory buffer when constructing a mini-batch of trajectories are sampled
uniformly (∼ U(D)). This approach has the main drawback that it
considers each τ stored in the buffer as equally important and repre-
sentative for training. However, it is easy to imagine learning situa-
tions where some trajectories are more valuable than others. For ex-
ample, at the beginning of training, most of the trajectories contained
within D will be representative of early agent-environment interac-
tions. It is, therefore, safe to assume that the network will learn the
Q(s, a) estimates representative of these early dynamics much faster
than it will learn the Q values that are associated with trajectories oc-
curring more rarely. The idea of PER is to use only highly informative
trajectories when it comes to building the mini-batches that are used
for training the network. The importance of different trajectories is
given by their respective TD-error. PER ensures that the probability
of sampling trajectories is proportional to their respective TD-errors:
the higher the TD-error, the larger the probability for a specific τ to be
sampled. In practice, given a trajectory τ, the probability of sampling
it is given by the following equation:

P(τ) =
pα

τ

∑k pα
k

(3.34)

where pτ is |δτ + ε| with ε being a small positive number ensuring
that the probability of sampling a trajectory remains positive even
in the edge case where the TD-error is 0. Although simple and intu-
itive, implementing a PER buffer is not that straightforward and still
presents some algorithmic caveats that need to be taken into account.
Yet, if done correctly it dramatically improves the sample efficiency
of Deep Q-Networks [168].

46 reinforcement learning and deep neural networks

Dueling Networks While the DDQN algorithm directly tack-
les a fundamental algorithmic bias that characterizes the way DQN
learns the Q function, and PER addresses the inefficiency of its mem-
ory buffer, the contribution presented by Wang et al. [271] is of slightly
different nature. Their work consists of a novel type of neural archi-
tecture called the Dueling Network. This is a contribution that re-
sembles more the kind of progress that is made by the supervised
learning community, which, as we discussed in the previous chap-
ter, has put a lot of effort into developing novel neural architectures
for tackling computer vision tasks. Nevertheless, Wang’s work is a
perfect example that showcases how in DRL, carefully designing the
function approximator is just as important as properly defining its
objective function. A Dueling network is a network that, after per-
forming a series of convolutions, instead of directly outputting the
state-action values for a specific state as DQN and DDQN do, adds
some intermediate computations. The idea is to estimate the value of
a state and the advantages for each action before outputting the final
Q values. The state values are computed based on Eq. 3.7, while the
advantage function A is simply the difference between the Q function
and the V function:

Aπ(s, a) = Qπ(s, a)−Vπ(s). (3.35)

To successfully estimate state values, advantages, and state-action val-
ues, the network requires a specific architecture consisting of three
separate streams. Each stream is responsible for estimating one of the
three value functions and is initialized with its own parameters θ(·).
The final Q function of the model is then obtained by combining what
is learned by each stream as follows:

Q(s, a; θ(1), θ(2), θ(3)) = V
(
s; θ(1), θ(3)

)
+(

A(s, a; θ(1), θ(2))− max
at+1∈A

A(s, at+1; θ(1), θ(2))
)
. (3.36)

Building a network with different task-specific streams is a design
choice that resembles the way models are built when tackling multi-
task classification tasks. However, note that the output of each stream
that either estimates the state values or the advantage function gets
aggregated in a final layer that estimates the state-action values. Train-
ing a Dueling Network is done by minimizing the same objective
function that is also minimized by DQN and DDQN. The idea of tak-
ing into account the V function when learning the Q function is a
concept which will come back, in a different flavor, in Chapter 8 and
Chapter 9.

Policy Gradient Methods So far we have only considered al-
gorithms that are part of the action-value family of methods, which,
as explained in Sec. 3.5 are techniques that derive an optimal policy

3.7 deep reinforcement learning 47

from a learned Q function. Yet, there is a collection of algorithms that
is able to learn a policy directly, and that therefore bypasses the re-
quirement of having to consult state-action values when it comes to
action selection. These methods, which have contributed to the de-
velopment of DRL just as much as action-value methods, come with
the name of Policy Gradients. They directly parametrize a policy at
each time-step as π(a|s; θ) = Pr {at = a|st = s; θt = θ} and seek
to optimize the parameters θ such that the performance of the pol-
icy is maximized. Note that this is drastically different from all the
methods which we have seen so far, where the aim, in fact, was to
minimize the TD-error through gradient descent optimization. Since
policy gradients aim to maximize their performance, they learn via
gradient ascent and therefore update their parameters as follows

θ ← θ + α∇ξ(θ). (3.37)

Here α is again the learning rate, and ξ is a measure that quantifies
the performance of the policy. Similarly to action-value based meth-
ods, one can parametrize a policy either with a linear function or with
a deep neural network. When the action space is discrete, it is com-
mon practice to parametrize π through the same exponential softmax
distribution, which we have seen in the previous chapter when pre-
senting neural networks trained for classification tasks. Therefore we
have

π(a|s; θ) =
eh(s,a;θ)

∑b eh(s,b;θ)
(3.38)

where h(s, a; θ) is any function approximator. By doing so, policy gra-
dient methods naturally deal with the exploration-exploitation trade-
off since they simply assign different probabilities to different actions.
This also allows these methods to approach a deterministic policy
(which cannot be achieved when using ε-greedy action selection) and
makes these algorithms arguably easier to train since learning a pol-
icy could be easier than learning state-action returns. The fundamen-
tal result which allows optimizing any differentiable policy is the pol-
icy gradient theorem [241]. Sutton et al. [241] show that the gradient
of π does not depend on the gradient of the state distribution and
that it can therefore be expressed as follows:

∇ξ(θ) = ∑
s

µ(s)∑
a

Qπ(s, a)∇π(a|s; θ) (3.39)

where µ(s) is the stationary on-policy distribution under π. By ex-
pressing the gradient as such, it is now possible to optimize π even
when the state distribution of the environment is unknown (as dis-
cussed in Sec. 3.5). Policy gradient methods can be used for learning
a policy through the same kind of techniques which in Sec. 3.5 were
used for learning value functions. Within the Monte Carlo setting the

48 reinforcement learning and deep neural networks

arguably most important of such algorithms is REINFORCE [280],
while Actor-Critic algorithms [66, 79, 136, 159, 220–222, 270] learn a
policy with the additional help of a bootstrapped value function (typ-
ically V or A).

Rainbow From the examples above, it is clear that much progress
has been achieved by the DRL community in creating algorithms
capable of learning faster and better. Explaining all the individual
value-based contributions that have made DRL the popular research
field it is nowadays [92], is beyond the scope of this chapter. Yet, if
there is one algorithm that encapsulates most of the progress that the
DRL community has achieved over the last years, that is Rainbow
[96]. Rainbow is a single, almighty agent that integrates most of the
important breakthroughs that DRL researchers have introduced over
the last decade within the same algorithm, ranging from the previ-
ously mentioned DDQN algorithm and PER system to more recent
techniques such as distributional DRL [17], multi-step learning, dis-
tributed training [159] and noisy networks [58] that allow for better
exploration.

3.8 the deadly triad of deep reinforcement learning

We now end this chapter by presenting one of the main limitations
that currently characterizes the field of DRL and that has inspired
part of the research that is presented in this dissertation.

The combination of RL with function approximation can result in
unstable training and algorithms prone to diverge while learning. As
a representative example of what it means for an RL algorithm to
diverge, let us consider the following MDP firstly introduced by Tsit-
siklis and Van Roy [257]. The MDP consists of three states s0, s1 and
the terminal state s2. Each state is described by a single scalar fea-
ture ψ such that ψ(s0) = 1, ψ(s1) = 2, and ψ(s2) = 3. The estimated
state-value of each state is therefore given by V(s) = ψ(s) · w, where
w is the single weight we would like to update. The MDP is repre-
sented in Fig 3.4. Each state transition is associated with a reward

w

s0

2w

s1

3w

s2

1− ε
ε

Figure 3.4: A visual representation of the MDP proposed by Tsitsiklis and
Van Roy [257] that shows how RL algorithms combined with
function approximators can diverge.

of 0, which means that the optimal weight value for having perfect
value predictions is w∗ = 0. Let us now assume that we are updat-

3.8 the deadly triad of deep reinforcement learning 49

ing the state-value function based on an on-policy learning scheme
as discussed in Sec. 3.5.2. We then know that each time we are updat-
ing the state-value function for s0, the value of s1 will, in expectation,
also be updated multiple times. This however, changes if we are fol-
lowing an off-policy learning scheme since each time we update the
state-value function for s0, we do not necessarily update the value
of s1 anymore. As shown by Van Hasselt et al. [261] if we would
now update w based on Eq. 3.18 we would have to modify w as
∆w ∝ rt + γ(V(st+1) − V(st)). Which results into 0 + γ2w − w =

γ2w − w = (2γ − 1)w. If we then set the discount factor γ > 0.5
as is common practice, we can see that we have 2γ > 1, which will
make any weight w 6= 0 be updated away from the desired value
of 0. Sutton and Barto [240] show that the cause of this type of di-
vergence occurs when RL algorithms are combined with three con-
cepts which we have already encountered in this chapter. These con-
cepts are: bootstrapping (Sec. 3.5.2), off-policy learning (Sec. 3.5.2)
and function approximation (Sec. 3.6). This combination is known as
the ‘Deadly Triad" of DRL, and it is well known that if all of these
three elements are combined within the same algorithm, divergence
can appear. Divergence results in algorithms that are extremely slow
to train, or even in agents that are not able to improve their policy
over time at all. Throughout this dissertation we will tackle the prob-
lem of the Deadly Triad by first introducing novel algorithms that
are less prone to diverge (Chapter 8), while in a second approach by
investigating whether the particularly long training times that charac-
terize such algorithms can be reduced by adapting transfer learning
strategies (Chapter 9).

4
T R A N S F E R L E A R N I N G

Outline

We now present Transfer Learning (TL), a machine learning
methodology that aims to create algorithms capable of retaining and
reusing previously learned knowledge when getting trained on new,
unseen problems. Most of the contributions presented within this dis-
sertation are motivated by TL. Therefore, we now introduce the read-
ers to this specific learning paradigm to provide them with all the
preliminary knowledge necessary to fully understand the research
presented in the coming chapters. We start with a gentle introduc-
tion to TL in Sec. 4.1 where we describe the main concepts under-
lying TL and explain why it is desirable to have machine learning
models that are transferable. We then show in Sec. 4.2 some practi-
cal, high-level examples that visually represent the benefits that can
come from adopting TL strategies in machine learning. We will then
provide more rigorous mathematical definitions in Sec. 4.3 where we
will characterize TL both for the supervised learning setting as well
as for the reinforcement learning one. In Sec. 4.4 we thoroughly re-
view how TL has been studied by the deep learning community in
both settings. We end this chapter with Sec. 4.5, where we describe
how all the machine learning concepts encountered throughout the
first part of this dissertation will play a role in the coming chapters.

4.1 introduction

Imagine being an Italian Ph.D. student living abroad who just went
for dinner with his French housemate. You had the chance of eating
the best, most Italian pasta the two of you have ever eaten in almost
ten years spent abroad. The pasta was so good that, one week later,
you cannot see yourself as having anything else for dinner. Unfortu-
nately, when your housemate suggests going back to the restaurant,
you have to politely decline the invitation, as your favorite Italian
restaurant, next to serving delicious food, is also extraordinarily ex-
pensive. This prevents you from going there at least until the end
of the month, which is when your gentle supervisor will kindly pay
you despite you not having published a single paper in over a year.
However over all the years you spent abroad, seeking some proper
Italian food that was supposedly going to make you feel less home-
sick, you learned how to cook plenty of pasta yourself. The outcome

51

52 transfer learning

of your cooking sessions is certainly not on par with those of your
favorite restaurant, but over the years, resulted in some pretty tasty
dishes nevertheless. Therefore you decide to cook dinner for your-
self and your housemate by replicating the pasta you had as dinner
one week ago. While cooking, you try to remember all of the knowl-
edge you acquired over the years while learning how to cook abroad.
You remember how to salt the water properly, how long to keep the
pasta in the boiling water, and how to season the sauce with the right
mix of spices. In the end, the resulting meal, albeit not perfect, will
turn out to be a much better dish than the one you will be having
one week later, when, this time, it will be your housemate’s turn to
replicate the pasta for dinner. The reason your pasta ended up being
tastier than your housemate’s is not that your housemate is French,
but rather because he turned out to never having cooked any pasta
before. Therefore, he had no previous knowledge to attain from while
cooking, while you could instead re-use a set of previously acquired
cooking skills. This intuitive but straightforward life episode perfectly
summarizes the concept of Transfer Learning, the main topic of inter-
est of this dissertation. However, throughout this work, we will not
be focusing on any sort of cooking abilities, nor on any Ph.D. stu-
dent other than the one authoring this document. We will instead
center our attention on situations where it is particularly desirable to
have machine learning models, particularly neural networks, that are
transferable.

4.1.1 Transfer Learning in Machine Learning

There are many reasons that can motivate why it should be worth
studying machine learning models from a Transfer Learning (TL) per-
spective. In this dissertation we have mainly been driven by the fol-
lowing rationale. A first typical scenario where it is helpful to have
transferable models is characterized by the lack of training data. This
is a problem that mostly affects supervised learning and is typical of
situations where collecting and annotating data is an expensive and
laborious task (we will see one of such situations in Chapter 7). As
we have seen in Chapter 2, the ultimate goal of supervised learning
is that of training a machine learning model that minimizes the em-
pirical risk alongside the expected risk. Unfortunately, when training
data is limited, it is well known that this goal becomes much harder
to achieve, as the resulting learning algorithms become more prone
to overfitting and successfully training neural networks can therefore
become problematic [5]. TL is also particularly desirable when there
are limited computational resources available, which might not al-
low machine learning practitioners to train new models each time
a novel machine learning task is encountered. This can be the case
both when tackling supervised learning problems as well as rein-

4.2 transfer learning in practice 53

forcement learning ones, although we believe that among the two
learning paradigms, the resources that are required by reinforcement
learning are by far more prone to becoming out of reach for many
researchers (for a position paper about this topic, we refer the reader
to the work of Obando-Ceron and Castro [171]). Lastly, we also be-
lieve that studying the degree of transferability of machine learning
models has potential additional benefits that go beyond the afore-
mentioned practical advantages. In fact, we argue that TL offers an
effective tool for better understanding the machine learning models
that are currently being used. By analyzing whether such models can
be adapted to novel unseen tasks, it is possible to gain insights about
their generalization capabilities, as well as their fundamental inner
workings.

4.2 transfer learning in practice

Before mathematically defining TL, we continue building some intu-
ition by visually representing how one can observe the benefits of
TL in practice. We assume that we would like to solve a certain task
for which labeled examples have been collected. Although the discus-
sion in this section applies to any transfer learning scenario, to fix the
idea, we assume that we adopt a standard learning strategy where an
initial model, e.g. a neural network, is trained iteratively using these
examples. In the absence of any other information, the model is typi-
cally trained from scratch, i.e., its trainable parameters are initialized
at random. When a model, of similar nature, pre-trained on a similar
task is available, a common transfer learning strategy (see Section 4.4)
consists in starting the training from this pre-trained model instead
of a randomly initialized one. Ideally, as mentioned in the previous
section, we would like the model trained from the pre-trained one to
perform better on the considered training task than the model trained
from scratch. Yet, how can we determine if one model is better than
the other? As initially presented by Langley [124], and later general-
ized by Lazaric [126], we would like the performance of a pre-trained
model to result in three possible improvements. If at least one of these
improvements is observed while training, we can then consider the
pre-trained model to be a better alternative than the scratch model.
These improvements are the following:

• Learning Speed Improvements: in this scenario, the performance
between a pre-trained model and a model trained from scratch
is identical by the time training is finished; however, when this
kind of improvement appears, we observe that the pre-trained
model converges faster than the model trained from scratch. An
example of this TL improvement is presented in the first plot of

54 transfer learning

Fig. 4.1 1. The goal is to train a model such that by the end of
training, its performance reaches a value of 200. We can clearly
see that both models manage to converge to this desired per-
formance value, but that the pre-trained model manages to con-
verge already after ≈ 50 training iterations, whereas the model
trained from scratch requires more than 200 training iterations
to perform similarly. Also, note that the performance of both
models at the beginning of training is identical, as they both
start from an initial performance of ≈ 20.

• Jumpstart Improvements: similar to the previous case, also in
this scenario, there are no significant differences between the
performance of a pre-trained model and the performance of a
scratch model by the end of training. However, this changes
when we consider the very first training iteration. If jumpstart
improvements appear, we can usually observe that when both
models start their training process, the performance of the pre-
trained model is much closer to the one that will be obtained
by the end of training than the one of the scratch model. We
visually report an example of this scenario in the second plot of
Fig. 4.1 2. In this case, the goal is to train a model such that by
the end of training its performance will be of ≈ −100. We can
clearly see that by the end of training both models are able to
achieve this goal successfully, but that at the very first training
iteration, the performance of the pre-trained model is signifi-
cantly closer to the desired final performance (≈ −250) than
the one of the scratch model (≈ −450).

• Asymptotic Improvements: when this TL improvement appears,
the final performance of a pre-trained model is significantly
higher than the one of a model trained from scratch. It is worth
noting that similarly to what happens when learning speed im-
provements are observed, also in this case, the performance of
both models is identical when training begins, and that this
TL improvement only presents itself after several training it-
erations. A visualization of this TL improvement can be ob-
served in the last plot of Fig. 4.1 3 where we can observe that
for the first ≈ 20 training iterations, there are no differences
in terms of performance between a pre-trained model and a

1 This example has been created after pre-training a DQN agent [162] on the
Cartpole-v1 environment of the OpenAI gym [29] and transferring and fine-tuning
its parameters to the Cartpole-v0 environment.

2 This example has been created after pre-training a DQN agent [162] on the
Acrobot-v1 environment of the OpenAI gym [29] and transferring and fine-tuning
its parameters to a modified version of the task where we have manually increased
the size of the joints of the pendulum.

3 This is a pure artificial example solely created with the purpose of visualizing how
asymptotic improvements can present themselves in practice.

4.2 transfer learning in practice 55

model trained from scratch. However, the more training itera-
tions are performed, the more the pre-trained model starts out-
performing the model trained from scratch, reaching a final per-
formance that is almost twice as good by the 100th training
iteration.

0 50 100 150 200 250
0

50

100

150

200

Training Iterations

Pe
rf

or
m

an
ce

Learning Speed Improvements

0 100 200 300 400 500

−400

−300

−200

−100

Training Iterations

Pe
rf

or
m

an
ce

Jumpstart Improvements

0 20 40 60 80 100 120 140

0

50

100

150

Training Iterations

Pe
rf

or
m

an
ce

Asymptotic Improvements

Pre-trained Model Scratch Model

Figure 4.1: A visualization of the three possible desired outcomes that can
come from adopting Transfer Learning strategies as initially de-
fined by Langley [124] and later by Lazaric [126].

While the improvements presented in Fig. 4.1 are all highly desir-
able, it is worth noting that some of them can be preferable to others.
In fact, the potential benefits of TL highly depend on the problem at
hand. For example, let us consider a training situation where the main
goal is to minimize the overall training time of a model. In this partic-
ular case, jumpstart and learning speed improvements are more de-
sirable than asymptotic improvements since the latter improvement
might not result in a model that converges to a potentially desirable
solution faster. On the other hand, if the main objective is that of
training a model which performs as best as possible, then evidently,
asymptotic improvements are preferred. It is also worth noting that
the examples presented in Fig. 4.1 are not mutually exclusive and
that, in practice, the benefits of TL can present themselves as a com-

56 transfer learning

bination of improvements rather than in the form of a single, isolated
improvement.

Now that we have introduced the key ideas behind TL and pre-
sented how adopting TL training strategies can be beneficial, we
move to formally characterizing this machine learning paradigm both
from a supervised learning perspective and rom a reinforcement learn-
ing one.

4.3 mathematical definitions

As is common throughout this thesis, we start by focusing on the
supervised learning case.

4.3.1 Supervised Learning

The first two definitions that we provide are the ones of domain and
task. The first one is defined as follows:

Definition 2 A domain D is the combination (X , P(X)) of an input space
X and a marginal distribution P(X), with X ∈ X , over the input space.

Examples of domains can be natural images, time-series data, biomed-
ical markers, etc. In supervised learning, we know that each domain
is associated with its respective task, representing the problem we
would like to solve. A task is defined as follows:

Definition 3 Given a domain D = {X , P(X)}, a task T consists of a label
space Y and a conditional output distribution P(Y|X), T = {Y , P(Y|X)}.
A decision function f : X → Y can only be learned by sampling data from
X × Y according to P(X, Y) = P(X)P(Y|X) which comes in the form of
(x, y) pairs.

Examples of possible decision functions f can be classifiers that cate-
gorize natural images in their respective classes or regressors that can
predict future values in a time series.

The key concept underlying TL is that, differently from the com-
mon supervised learning scenario, where the only available informa-
tion to train a model is one domain and one task, there is now access
to at least two domains and tasks: the target domain DT and task TT

that correspond to the supervised learning problem we would like to
address and, additionally, the source domain DS and task TS, defin-
ing another supervised learning problem possibly related to the tar-
get one. With all these concepts in place, we can now define Transfer
Learning:

Definition 4 Given a source domain DS and a source task TS and a target
domain DT and a target task TT, with DS 6= DT and/or TT 6= TS, transfer
learning aims at exploiting knowledge implied in the source domain and task

4.3 mathematical definitions 57

to improve the performance of the learned decision function fT on the target
domain and task.

Obviously, this definition can be generalized to more than one source
and target domain and task, but we will restrict our discussion below
to this simplified setting.

As pointed out by Pan and Yang [174] the condition that the source
and the target domains might be different DS 6= DT implies that ei-
ther their respective input spaces are different as well (XS 6= XT), or
that their corresponding marginal distributions are different (PS(X) 6=
PT(X)). Similarly, if the tasks are different instead TS 6= TT, then ei-
ther one of the output spaces, or the conditional distributions have to
be different (YS 6= YT or PS(Y|X) 6= PT(Y|X)).

Based on the consistency between the source and target input spaces
X , and the respective output spaces Y , one can categorize TL into
three following settings.

Inductive Transfer Learning This TL scenario is characterized
by the fact that the target task TT is different from the source task
TS, while the source domain DS and the target domain DT might,
or might not be similar. As originally presented in [174] we define
inductive transfer learning as:

Definition 5 Given a source domain DS and a source task TS, and a target
domain DT and a target task TT, inductive transfer learning aims to help to
improve the target predictive function fT(·) in DT by using the knowledge
in DS and TS, where TS 6= TT.

A key requirement of this type of TL is that some labeled data in
the target domain is necessary for inducing the targeted predictive
function fT(·). To build some more intuition about this kind of TL,
let us assume that we would like to train a model on our target task
TT, which corresponds to recognizing what kind of Japanese letter is
depicted in an image. Instead of training a model only on a dataset
of letters, one possibility would be to start from a model that has al-
ready been trained to recognize digits, which will therefore constitute
our source task TS. Note that in this case, the source and the target
tasks are evidently different TS 6= TT (classifying digits vs. classify-
ing letters). The input space of the source and target domains is the
same (XS = XT), since it corresponds in both cases to black and white
images as represented in Fig. 4.2, but the marginal distributions, and
thus the domains, are different (PS(X) 6= PT(X)). Please note that in
this example, as we use a model that is pre-trained on images repre-
senting digits, we assume that we have had access to some labeled
data in the source domain in the past. However, the definition of
inductive transfer learning does not require labeled data within the
source domain to be strictly necessary.

58 transfer learning

Figure 4.2: A visualization of two datasets that can be used for performing
inductive transfer learning. On the left we represent instances of
the popular MNIST dataset [131], while on the right instances
of the Kuzushiji-MNIST dataset [42]. We see that both datasets
share the same input space (XS = XT , black and white images),
but are associated to different tasks (TS 6= TT , classification of
digits vs classification of Japanese letters) and marginal distribu-
tions (PS(X) 6= PT(X)).

Transductive Transfer Learning Also known as Domain Adap-
tation [10], this type of TL is characterized by the fact that the source
and target tasks are the same TS = TT, but their respective domains
are different DS 6= DT. It is also possible that the feature spaces be-
tween domains are the same but, if that is the case, then the marginal
probability distributions are different PS(X) 6= PT(X). In its original
formulation, Arnold, Nallapati, and Cohen [10] assumed that all unla-
beled data in the target domain is available at training time. However,
we hereafter report the definition of Pan and Yang [174] who instead
relax this condition and require only a subset of unlabeled target data
to be seen at training time.

Definition 6 Given a source domain DS and a source task TS, and a target
domain DT, and a target task TT, transductive transfer learning aims to help
to improve the target predictive function fT(·) inDT by using the knowledge
in DS and TS, where DS 6= DT and TS = TT.

As an example of transductive transfer learning let us assume that we
would like to train a model to classify which type of clothing is de-
picted in an image. This time, differently from the inductive transfer
learning case, the images in our target domain DT are not black and
white anymore, but rather colored images; therefore, defined over the
RGB domain (see the right image of Fig. 4.3). We now assume that
we have access to a pre-trained model which has already been trained
to classify the same type of clothes, with the main difference being
that the images constituting the source domain DS were black and
white images (see the left image of Fig. 4.3). If we now train this pre-
trained model on our colored dataset, we see that our setting fits the

4.3 mathematical definitions 59

Figure 4.3: Two datasets that are representative of transductive transfer
learning. On the left we show images coming from the Fashion-
MNIST dataset [285], while on the right we report instances
of the same dataset that are colored. In this case tasks among
datasets are shared TS = TT (classification of clothes), but the
respective images come from different domains DS 6= DT (black
and white vs RGB images).

transductive transfer learning scenario: our considered domains are
different (DS 6= DT, black and white vs. colored images), but their re-
spective tasks are the same (TS = TT), since a model is always trained
to classify types of clothing.

Although this section, as well as the second part of this dissertation,
primarily focuses on supervised learning, we hereafter still report
for the sake of completeness a definition of unsupervised transfer
learning, and see how this kind of TL connects to the types of TL that
we have analyzed so far.

Unsupervised Transfer Learning Arguably considered to be
the most challenging and the least explored type of TL, unsupervised
transfer learning is characterized by the total absence at training time
of labeled data in both the source domain and the target domain. As
mentioned by Pan and Yang [174], very little research work has so far
explored this TL paradigm, with the only existing works exploring
typical unsupervised learning topics such as clustering [44, 107, 189]
and dimensionality reduction [269, 297, 298]. Unsupervised transfer
learning is defined as follows:

Definition 7 Given a source domain DS and a source task TS, and a target
domain DT, and a target task TT, unsupervised transfer learning aims to
help to improve the target predictive function fT(·) in DT by using the
knowledge in DS and TS, where TS 6= TT and YS and YT are not observable.

Based on this definition, we can note that unsupervised transfer learn-
ing is more similar to inductive transfer learning than to transductive
transfer learning as we again assume that the source and the target
tasks are different TS 6= TT.

60 transfer learning

4.3.2 Reinforcement Learning

When it comes to the Reinforcement Learning (RL) setup, the TL def-
inition mentioned above slightly changes and becomes arguably less
general. Recall from Chapter 3 that in RL, the main goal is that of
training an agent such that it becomes able to interact with its envi-
ronment, a problem that is modeled with Markov Decision Processes
(MDP). It follows that in the RL context, the previously introduced
concept of domain D (which could come in numerous flavors) now
comes in the arguably more strict form of an MDP M. Just like do-
mains, MDPs can either be representative of a source task, MS , or
of a target task MT, with the latter case corresponding to the main
RL problem we are interested in solving. The previously introduced
predictive function f (·) now corresponds to the task of learning an
optimal policy π∗ for MT. Based on these concepts, we give the fol-
lowing definition of TL for reinforcement learning that is adapted
from the one proposed by Zhu, Lin, and Zhou [300].

Definition 8 Given a source MDP MS and a target MDP MT, transfer
learning in reinforcement learning aims to learn an optimal policy π∗ for
MT by exploiting some prior knowledge related to MS, denoted as KS,
together with the knowledge that underliesMT, denoted as KT, such that:

π∗ = arg max
π

Es∼µt
0,a∼π

[
Qπ
M(s, a)

]
, (4.1)

where π∗ = ζ(KS,KT) : S t → At is a function mapping from the states to
actions forMT learned thanks to both KS and KT.

Note that differently from the supervised learning case, we are now
making explicit use of the concept of knowledge K, which is what we
would like to retain when moving from a source MDPMS to a target
MDP MT. We do this because RL is a machine learning paradigm
that is arguably, more complex than supervised learning. A complex-
ity that stems from the fact that in RL there are concepts such as
e.g., rewards and policies, which are, by definition, not present in the
supervised learning setup. As a result, K can come in forms that it
cannot take in SL, and correctly identifying which kind of knowledge
to transfer between MS and MT is just as important as developing
a method that successfully transfers this knowledge in the first place.
As mentioned by Lazaric [126] K can come in the following forms.

Transfer of Instances In this scenario, K corresponds to RL tra-
jectories coming in the form 〈st, at, rt, st+1〉 and that have been col-
lected on one, or possibly multiple, source MDPs MS. Such trajec-
tories can then be used both in a model-based RL setting, as done
by Taylor, Jong, and Stone [249], or for speeding up the process of
learning a value function as described in [128] and [125]. Ideally,

4.4 deep transfer learning 61

transferring RL trajectories should result in highly sample efficient
algorithms, although it is worth noting that this property, albeit desir-
able, can constrain the source taskMS and the target taskMT to have
similar transition models and reward functions. This instance of TL is
usually used within the batch RL setup, where gathering experience
samples for MT can be particularly expensive or time-consuming,
which is a constraint that usually does not hold for MS. The typical
challenge then consists of correctly identifying which of the samples
coming from MS are the most informative ones for solving MT, as
for example, studied by Tirinzoni et al. [255].

Transfer of Parameters As we have seen in Chapter 3, it is often
desirable to integrate RL algorithms with parametric function approx-
imators. The main goal is to then train these parametric functions to
learn an approximation of an optimal value function or policy. When
parameter transfer is performed, the main idea is to start solving the
problem modeled by the target taskMT with a function that, instead
of being initialized with random parameters, is initialized with pa-
rameters that have been learned on a certain source task MS. Exam-
ples of knowledge K that fit this description are the parameters θ

of a pre-trained Deep Q-Network, or the parameters that model an
Actor-Critic agent.

While both representations are arguably the most popular ones, it
is important to mention that as described by Tirinzoni, Sanchez, and
Restelli [254] there are alternative ways of representing K. Among
such ways, K can come in the form of e.g., features [14, 152], rewards
[117, 216] and options [230].

4.4 deep transfer learning

We now present the field of “Deep Transfer Learning” (DTL), a ma-
chine learning paradigm that aims at performing TL when a source
model comes in the form of a pre-trained convolutional neural net-
work. We start by describing how one can exploit the availability of a
pre-trained network when training a model on the desired target task
and then present a thorough literature review that describes the most
successful applications that the DTL community has so far achieved.

4.4.1 General Framework

Let us assume we would like to train a neural network on a regression
task. Instead of initializing its weights randomly, we initialize it with
weights that have already been optimized on a certain source task.
We refer to the parameters of this pre-trained model as θS, where
S stands again for “source”. When training the network on the tar-

62 transfer learning

get task, the main challenge revolves around deciding up to what
extent the parameters θS should be modified through stochastic gra-
dient descent. In practice, this corresponds to deciding how much of
the knowledge contained in θS should be retained when training the
pre-trained network on TT. Typically, one can choose between three
different approaches:

• Off-the-Shelf Extraction: in this setting, the parameters θS of
the pre-trained model are not changed when the network gets
trained on the target task. Instead, the only weights that get
optimized are the ones that are responsible for the final predic-
tions of the model. In the regression example mentioned above,
these weights would correspond to the ones parametrizing the
network’s final output neuron. Similarly, if we would be dealing
with a classification problem, we would only train the weights
that constitute the final softmax layer of the model, as this is
the part of the network that, as described in Chapter 2, is re-
sponsible for outputting the predicted output classes. Since this
approach does not involve any backpropagation operations, it
is particularly desirable when computational resources are lim-
ited. In fact, one only needs to compute the forward pass in
order to get the features from the pre-trained model. However,
this approach also comes with the major limitation of not al-
lowing the network to adapt to the target task as it assumes
that all the knowledge that is required for solving TT is already
contained within θS. In the context of convolutional neural net-
works, this corresponds to a model that has already learned
all the features that are necessary for solving TT when getting
trained on TS.

• Fine-Tuning: when this approach is adopted all the parameters
θS that have been learned on the source task get optimized when
training the network on the target task. Evidently, this training
strategy is computationally more expensive than the previous
one, as it involves all the training steps that characterize neural
networks discussed in Chapter 2. Despite being computation-
ally more demanding, fine-tuning a network has the significant
benefit of allowing a model to become target task-specific. In
fact, whilst training, part of the knowledge contained within θS
can be “forgotten”, which will result in a new set of parameters,
θT, that can perform better on TT than θS. From a practical per-
spective, however, it is important to train the model in such a
way that the knowledge contained within θS does not get “for-
gotten” too quickly, while at the same time ensuring that the
network stays flexible enough for successfully learning the tar-
get task. One possible way of achieving this is by using small
learning rate values for training.

4.4 deep transfer learning 63

• Intermediate Approaches: the aforementioned approaches do
either not modify the source weights θs parametrizing the con-
volutional layers at all, or instead allow the network to com-
pletely change them. However, some intermediate approaches
are also possible. As convolutional networks typically come with
a large number of layers, one possible way of exploiting the re-
spective source weights θs could be done by fine-tuning only
a specific sub-set of layers, while keeping the remaining ones
frozen. As a result only one part of the model will involve the
backpropagation algorithm, whereas the remaining parts will
simply act as feature extractors. Furhtermore it is also worth
noting that an off-the-shelf feature extraction approach can tech-
nically be performed after any convolutional layer. As features
can be obtained after any convolutional layer, some interme-
diate approaches rely on extracting them without performing
a forward pass throughout the entire network. While such ap-
proaches can certainly be valuable [165, 215], they will not be
considered throughout this thesis.

While all approaches come with pros and cons, the second option
is usually preferred if enough computational resources are available.
In fact, as we will see in the coming section, the community seems
to agree that it often results into better final performance. When DTL
strategies are adopted, it is usually good practice to compare the per-
formance of a pre-trained model with the performance that is ob-
tained by a model that is initialized randomly, and that gets therefore
trained from scratch. Throughout this thesis we will constantly char-
acterize the benefits of adapting TL strategies from this perspective,
therefore, to add even more clarity to the concepts presented in this
section, we also visually represent them in Fig. 4.4.

4.4.2 Literature Review

We now review how the deep transfer learning community has over
the years studied the transfer learning properties of convolutional
neural networks. Specifically, we focus on four different perspectives.

Convolutional Neural Networks as Feature Extractors As
soon as convolutional neural networks started to perform well on
popular Computer Vision (CV) benchmarks, research investigating
whether these networks could be transferred and reused for novel
tasks started to bloom. The first work exploring this direction was
that of Yosinski et al. [287], who observed that the early layers of deep
neural networks trained on natural images, learn features which are
general and, therefore, independent from the CV task used for train-
ing. Such generalization property can hence be exploited by initializ-
ing a convolutional neural network with transferred features instead

64 transfer learning

Figure 4.4: A simplified visual representation of the different deep transfer
learning training paradigms that are considered throughout this
thesis. The first plot represents a model that comes as pre-trained
on a source task but which will not update most of its weights
during the training stage (represented in gray): the only trainable
parameters of this network are the ones that parametrize the fi-
nal layer of the model and that are represented in green. In the
second plot we visually represent a model that is parametrized
with weights that have been learned on a certain source task, and
that get “unfrozen” when the network gets trained on the target
task, therefore defining the model as fully trainable. Lastly we vi-
sualize a model that does not come as pre-trained on any source
task, and that is therefore initialized with random weights in-
stead (represented by the various colours). As already mentioned
throughout this chapter, the main goal of TL is to obtain a model
that if trained with the first two approaches results into a final
performance that is better than the one that would be obtained
by the last type of model.

of randomly, which is a strategy that results in models less prone to
overfitting.

Alongside Yosinski et al. [287], Donahue et al. [50] investigated
whether features extracted from a convolutional neural network trained
for image classification could also be used for tackling CV tasks such
as scene recognition and domain adaptation. Donahue et al. [50]
showed that this was indeed the case and publicly released the pre-
trained model under the name of DeCAF intending to stimulate the
CV community to investigate further the extent to which the fea-
tures learned by this network were transferable to novel tasks. Al-
most concurrently, similar conclusions about the transferability of
pre-trained convolutional networks were drawn by Oquab et al. [172],
who showed the benefits of using a pre-trained convolutional model
as feature extractor when dealing with object and action localization
problems, and by Zeiler and Fergus [290] who first showed that on
many problems it was more beneficial to simply train the final classifi-
cation layer of a pre-trained network, than to train a randomly initial-
ized model from scratch. While definitely promising, all these works
restricted their experimental analysis to a relatively small set of CV

4.4 deep transfer learning 65

problems, and it was only with the seminal work of Sharif Razavian
et al. [225] that the deep learning community realized how powerful
pre-trained networks could be. Sharif Razavian et al. [225] used the
off the shelf (OTS) features of the pre-trained OverFeat network [224]
for tackling numerous challenging CV problems and consistently re-
ported a final performance that was superior to the one of the state of
the art algorithms of the time. Next to providing a wealth of empirical
evidence supporting the use of off-the-shelf features, their work also
established the first training protocol for combining high dimensional
OTS features with linear classifiers, such as SVMs, and dimensional-
ity reduction techniques such as principal component analysis.

It did not take long before the scientific community started to in-
vestigate whether off-the-shelf features could also be used for prob-
lems outside the typical CV benchmarks, and therefore fully realized
the potential of this TL approach. Among the very first practical ap-
plications, we mention the work of Van Ginneken et al. [259] who
used the previously mentioned DeCAF model for (successfully) tack-
ling the challenging medical task of pulmonary nodule detection.
Along the same line of research, equally good results were obtained
within the medical domain by Hernandez-Diaz, Alonso-Fernandez,
and Bigun [93] who tackled the problem of periocular recognition,
and by Nguyen et al. [170] who considered the similar task of iris
recognition.

Further successful applications of OTS classification, which go be-
yond the medical domain, are the ones reported by Sharma et al. [226],
who considered the handwriting recognition task of word spotting,
and the one of Wolfshaar, Karaaba, and Wiering [282], who studied
the task of gender classification. While all these researches solely re-
lied on an OTS feature extraction approach when addressing a CV
problem, it is also worth noting that OTS features can be used in
combination with more traditional CV feature engineering techniques
such as SIFT [145] and HOG [45]. This research direction has been suc-
cessfully explored by, e.g., Wang, Qiao, and Tang [268] who examined
the task of human action understanding, and by Zhong, Sullivan, and
Li [294] who addressed the problem of face localization.

On the Benefits of Fine-Tuning Modern deep learning frame-
works such as TensorFlow [2] and PyTorch [178], provide high level
and easy to use APIs that make it possible to create and train deep
learning models even without a necessarily strong machine learning
background. Among the main reasons that have made deep learn-
ing so accessible there is the fact that the aforementioned deep learn-
ing libraries provide easy access to models that have already been
trained on a large variety of CV tasks [55, 139, 201]. As a result, us-
ing pre-trained neural networks has become increasingly easy, which
is among the reasons that allowed the deep learning community to

66 transfer learning

explore whether fine-tuning pre-trained models could result in better
performance than simply using them as OTS feature extractors. It is
easy to see how this research question is of high practical interest and
why it has therefore been heavily explored by practitioners working
at the intersection of machine learning and fields such as medicine
[97, 246]. Among the first works exploring whether it is beneficial to
fine-tune pre-trained models instead of using them as simple feature
extractors, there is the one of Tajbakhsh et al. [246]. The authors con-
sistently show that fine-tuning a pre-trained network outperforms the
OTS feature extraction approach when it comes to four distinct medi-
cal imaging tasks and that, similarly to what was predicted by Zeiler
and Fergus [290], pre-trained networks outperform models that are
trained from scratch. A similar conclusion has also been reached by
Mormont, Geurts, and Marée [165], who analyzed the same research
question under the lens of image classification problems coming from
the digital pathology field. They also show that fine-tuning yields bet-
ter performance than OTS feature extraction, but they do not answer
whether this TL strategy works better than training a network from
scratch. The question of whether to fine-tune or not to fine-tune a
neural network has also been explored outside of the CV domain.
Among the different works, we mention the one of Peters, Ruder,
and Smith [184], who address this question from a Natural Language
Processing (NLP) perspective. In line with what has been observed
by the CV community, they also highlight the significant benefits that
can come from fine-tuning popular NLP models such as ELMo [183]
and BERT [47] as long as the source task is carefully chosen. By now,
studies investigating the benefits coming from fine-tuning pre-trained
models are countless and range over a large variety of domains that
do not necessarily strictly involve CV problems [4, 27, 46, 49, 68, 99,
101, 116, 289].

On the Role of Imagenet as Source Task Throughout this
chapter, we have constantly referred to the concept of source domain
DS and source task TS, two key elements without which the entire
field of TL would not even exist. Albeit in the previous paragraphs
we have mentioned the task of image classification as source task TS
that can be used for pre-training convolutional networks, we have
not explicitly described what this task consists of in practice. When
adopting TL strategies for CV problems, the most common and, by
far successful, approach is that of relying on models that have been
trained for the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [201]. The ILSRVC dataset, more commonly referred to as
the ImageNet dataset, is a collection of over one million natural im-
ages that are categorized among one thousand different classes. Until
2017 it was primarily considered to be the most complex and chal-
lenging problem of all CV and is among the main reasons which

4.4 deep transfer learning 67

have encouraged the deep learning community to develop most of
the neural architectures that we described in Chapter 2. Due to the
large number of samples constituting the dataset and the complexity
of the tackled task, networks trained for the ILSVRC challenge are
regularly used as pre-trained networks even when the target task TT

does not involve the classification of natural images. Intuitively, the
reasons behind this choice are very straightforward: on the one hand,
it is safe to assume that some of the features that are learned by a
network that receives as input more than one million images will, at
least in part, correspond to the features that the same network would
have to learn when getting trained from scratch on the desired target
task.

On the other hand, it is also unlikely that the target task TT will
be more complex than the source task TS since it is not common to
deal with classification problems that involve more than 1000 classes.
In this sense, as pointed out by Mensink et al. [154], it is reasonable
to assume that if a network performs well on TS, it should also per-
form well on TT, as the latter task is essentially easier than the former.
Despite these intuitive explanations, a large body of work has stud-
ied why it is beneficial to transfer ImageNet pre-trained models and
the factors of influence of this dataset for TL. This question was first
tackled by Huh, Agrawal, and Efros [104] who studied, among other
questions, how many examples and classes of the ImageNet dataset
should be used for successfully pre-training a model. Perhaps sur-
prisingly, they found that already half of the ImageNet data yielded
a well-performing pre-trained network and that among the different
1000 classes, it was already enough to pre-train a network on a subset
of 127 of them. Kornblith, Shlens, and Le [119] empirically studied
the benefits of using ImageNet pre-trained models for 12 different
classification problems and found that the better a model performs
on ImageNet, the better it transfers to new unseen tasks. A similar
study, which, however, yielded slightly different results, is the one
of He, Girshick, and Dollár [88] who showed that there might not
be significant differences in terms of final performance between us-
ing an ImageNet pre-trained network and a randomly initialized one,
but that the first ones consistently converge faster than the latter. Fi-
nally, the recent work of Mensink et al. [154] shows that ImageNet
pre-trained models always outperform models that are trained from
scratch, but that this dataset might not necessarily always be the best
possible source task for pre-training. It is worth noting that all the
examples mentioned earlier revolve around the field of supervised
learning within CV, it naturally follows that different pre-training
strategies, and therefore different source domains, need to be con-
sidered for other fields (see e.g. NLP.). Since discussing these tech-
niques would go beyond the main scope of this dissertation, we do
not present them here. However, we refer the reader to [30, 47, 156,

68 transfer learning

197] for a discussion of pre-training strategies outside the CV and
supervised learning domain.

The Deep Reinforcement Learning Setting While within
the supervised learning setting, the body of work studying the trans-
fer learning properties of neural networks is substantial, the same
cannot be said when it comes to reinforcement learning. Although,
as presented in Sec. 4.3.2 there exist many different approaches for
performing TL in RL, the integration of such techniques with convo-
lutional neural networks is much rarer. Perhaps the work that studies
the TL properties of Deep Q-Networks in a flavor that is the closest
to the TL approaches used in supervised learning presented in Fig.
4.4 is that of Farebrother, Machado, and Bowling [56]. The authors
study whether convolutional neural networks that are trained with
the DQN algorithm [162] are capable of learning features that are
robust enough to allow the algorithm to generalize across different
tasks. The results, obtained on four different Atari 2600 games do not
provide a clear answer to this question: when Deep Q-Networks come
as pre-trained on a particular game and simply get fine-tuned on a
new different game, the authors do not observe any of the benefits
that this TL approach typically yields in the supervised learning con-
text. However, if networks get pre-trained in combination with typ-
ical supervised learning regularization techniques such as dropout
[233] and l2 regularization, then the authors observe that fine-tuning
these models results in a final performance that is better than the one
of models trained from scratch. While indeed encouraging, these re-
sults were only obtained on a minimal set of RL environments, and it
is unclear whether these conclusions would hold if a more extensive
set of benchmarks, and algorithms, would be tested. A similar study,
which arguably presents the same limitations, is the one performed
by Tyo and Lipton [258]. On the same line with Farebrother, Machado,
and Bowling [56], the authors study the effect of fine-tuning different
pre-trained Rainbow agents [96] that use different weight initializa-
tion strategies. Results reported on three different Atari games show
that fine-tuning is beneficial only for one single game but do not
explain the TL properties of pre-trained Deep Q-Networks any fur-
ther. A more thorough and successful study is the one presented by
Parisotto, Ba, and Salakhutdinov [175], where the authors also inves-
tigate the effect of fine-tuning pre-trained DRL agents and show that
this TL strategy can result in significant benefits. Their study, however,
presents some significant differences when compared to the previous
works. First, the DRL algorithm under scrutiny is a policy gradient
algorithm which, as discussed in Chapter 3, is part of a family of tech-
niques that is significantly different from the family that DQN and
Rainbow are part of. Second, their proposed Actor-Mimic algorithm
does not come as pre-trained on a single Atari game anymore but

4.5 relevance for this dissertation 69

is pre-trained in a multi-task learning setting instead. The algorithm,
therefore, deals with different source-tasks TS during the pre-training
stage, which is a strategy that arguably can result in algorithms that
are more robust and suitable for TL [115].

4.5 relevance for this dissertation

With all the concepts above and the ones presented in Chapters 2

and 3, we are now ready to end this first part of this dissertation
by describing how all the aforementioned content will play a role
throughout the rest of this thesis.

Takeaway of Part I

First, we start by noting that all the quantitative results that will be
presented from now on will be defined with respect to the three trans-
fer learning benefits that we described in Sec. 4.2. No matter which
kind of task we will be training neural networks for, we will always
seek to identify at least one of the three possible transfer learning
benefits. The only chapter where we will not do this is Chapter 8,
which instead, will serve for introducing some novel deep reinforce-
ment learning algorithms that will be studied from a transfer learning
perspective only in Chapter 9.

When it comes to the research performed within the supervised
learning setting (Chapters 5, 6 and 7), it is important to note that
we will only consider the inductive transfer learning scenario. More
specifically, we will always study the extent to which neural networks
pre-trained on natural images can generalize to non-natural datasets.
The content of these datasets, and therefore the considered target
tasks TT, will change from chapter to chapter, and so will the source
task TS that will be used for pre-training. For the research involving
reinforcement learning, we will instead only consider the TL setting
that studies the transferability of parameters (Chapter 9) presented in
Sec. 4.3.2. As a result, no matter whether we will tackle supervised
learning problems or reinforcement learning ones, the experimental
protocol that we will adopt will always follow the TL training strate-
gies that we have described in Sec. 4.4.1 and presented in Fig. 4.4. As
a result, the respective studies will all contribute to the development
of the field that studies the transferability of neural networks that we
have reviewed in Sec. 4.4.

We will now present our research investigating the TL properties of
convolutional neural networks trained for supervised learning prob-
lems.

Part II

T R A N S F E R L E A R N I N G F O R D E E P S U P E RV I S E D
L E A R N I N G

5
O N T H E T R A N S F E R A B I L I T Y O F C O N V O L U T I O N A L
N E T W O R K S

Contributions and Outline

We now present a first study that characterizes the Transfer Learn-
ing (TL) properties of convolutional neural networks that come as pre-
trained on the ImageNet dataset. We thoroughly investigate whether
popular neural networks that have obtained state of the art results on
this benchmark of natural images can perform equally well once used
on non-natural datasets. Specifically, we explore whether it is possible
to tackle three different target tasks TT that come in the form of art
classification problems. We study the effects of different TL training
approaches (off-the-shelf classification vs. fine-tuning), and explore
whether it is possible to improve the TL performance of the consid-
ered pre-trained networks by allowing these models to have access
to source domains DS other than the ImageNet dataset exclusively.
The chapter is structured as follows: we start by providing the reader
with some background information in Sec. 5.1. In Sec. 5.2 we present
a brief theoretical reminder of the field of TL, a description of the
datasets that we have used, and the methodological details about the
experiments that we have performed. In Sec. 5.3 we present and dis-
cuss our results. A summary of the main contributions of this chapter
is finally presented in Sec. 5.4.

This chapter is adapted from the publication Sabatelli et al. [207].

5.1 a first empirical study

In the first part of this thesis, we have seen that convolutional neural
networks have become a crucial component in today’s machine learn-
ing toolbox. Thanks to their ability to automatically learn relevant
features, these neural networks can successfully be used for tackling
both supervised learning problems, as well as reinforcement learn-
ing ones. Specifically, as reviewed in Chapter 4, thanks to the field
of deep transfer learning it is now possible to find a broad range of
successful applications that see the usage of convolutional networks
even outside the domain these networks were originally developed
for, namely natural images [118]. Despite many successfull examples,
there still are some domains for which their applicability, and there-
fore potential transfer learning properties, have not been explored.

73

74 on the transferability of convolutional networks

A promising research field in this sense is that of Digital Heritage
[177]. Due to a growing and rapid process of digitization, museums
have started to digitize large parts of their cultural heritage collec-
tions, leading to the creation of several digital open datasets [7, 155].
The images constituting these datasets are mostly matched with de-
scriptive metadata, which, as presented by Mensink and Van Gemert
[155], can be used for defining a set of challenging machine learning
tasks. However, the image samples in these datasets are very different
in terms of quantity, size, and resolution from the images that typi-
cally constitute popular computer vision benchmarks; therefore, the
computer vision potential of convolutional networks in this domain
is largely unknown. In this chapter, we address this research ques-
tion and present a first, thorough, empirical study that explores the
potential that convolutional neural networks have to offer when trans-
ferred to the artistic domain. The next section moves towards provid-
ing the reader with a brief formal reminder of TL. We then introduce
the three classification problems that are considered in our study, to-
gether with a brief description of the datasets. Finally, we present the
neural architectures that we have used for the experiments.

5.2 methodology

5.2.1 Transfer Learning

As seen in Chapter 2, a supervised learning (SL) problem can be iden-
tified by three elements: an input space XT, an output space YT, and
a probability distribution PT(x, y) defined over XT × YT (where T
stands for ’target’, as this is the main problem we would like to solve).
The goal of SL is then to build a function f : XT → YT that minimizes
the expectation over PT(x, y) of a given loss function ` assessing the
predictions made by f :

E(x,y)∼Pt(x,y){`(y, f (x))}, (5.1)

where the only information available to build this function is a learn-
ing sample of input-output pairs LST = {(xi, yi)|i = 1, . . . , NT} drawn
independently from PT(x, y). As introduced in Chapter 4, in the gen-
eral transfer learning setting, one assumes that an additional dataset
LSS, called the source data, is available that corresponds to a differ-
ent, but related, SL problem. More formally, the source SL problem
is assumed to be defined through a triplet (XS,YS, PS(x, y)), where at
least either XS 6= XT, YS 6= YT, or PS 6= PT. The goal of TL is then to
exploit the source data LSS together with the target data LST to po-
tentially find a better model f in terms of the expected loss (5.1) than
when only LST is used for training this model. We have seen that de-
pending on the availability of labels in the target and source data and
on how the source and target problems differ, one can distinguish

5.2 methodology 75

different TL settings (see Sec. 4.4.1 of Chapter 4). In what follows, we
assume that labels are available in both the source and target data and
that the input spaces XT and XS, that both correspond to color images,
match. However, output spaces and joint distributions will differ be-
tween the source and target problems, as they will correspond to
different classification problems (ImageNet object recognition versus
art classification tasks). We, therefore, consider the inductive transfer
learning setup and assume that information between the source and
target problems is exchanged in the form of a neural network that
comes as pre-trained on the source data.

5.2.2 Datasets and Target Tasks TT

For our experiments, we use two datasets that come from two dif-
ferent heritage collections. The first one contains the largest number
of samples, comes from the Rijksmuseum in Amsterdam, and cor-
responds to the first version of the dataset released in 2014 under
the name “The Rijsmuseum Challenge” [155]. Our second ‘Antwerp’
dataset is much smaller. This dataset presents a random sample that
is available as open data from a larger heritage repository: DAMS
(Digital Asset Management System)1. This repository can be searched
manually via the web interface or queried via a Linked Open Data
API. It aggregates the digital collections of the foremost GLAM insti-
tutions (Galleries, Libraries, Archives, Museums) in the city of Antwerp
in Belgium. Thus, this dataset presents a varied and representative
sample of the sort of heritage data nowadays being collected at the
level of individual cities across the globe. While it is much smaller, its
coverage of cultural production is similar to that of the Rijksmuseum
dataset and presents an ideal testing ground for the transfer learning
task under scrutiny here. Both image datasets come with metadata en-
coded in the Dublin Core metadata standard [274]. We selected three
well-understood classification problems:

• Material classification: which consists in identifying the mate-
rial the different heritage objects are made of (e.g., paper, gold,
porcelain, ...);

• Type classification: in which the neural networks have to clas-
sify in which artistic category the samples fall into (e.g., print,
sculpture, drawing, ...);

• Artist classification: where the main goal is to match each sam-
ple of the dataset with its creator.

As the goal is to tackle these classification problems through TL,
we will refer to them as TT 1 , TT 2 and TT 3 respectively. As re-
ported in Table 5.1 we can see that the Rijksmuseum collection is the

1 https://dams.antwerpen.be/

https://dams.antwerpen.be/

76 on the transferability of convolutional networks

Figure 5.1: A visualization of the images that are used for our experiments.
It is possible to see how the samples range from images repre-
senting plates made of porcelain to violins, and from Japanese
artworks to a more simple picture of a key.

dataset with the largest amount of samples per target task (Nt) and
the highest amount of labels to classify (Qt). Furthermore, it is also
worth noting that there was no metadata available when it comes to
the first classification task for the Antwerp dataset (as marked by the
− symbol), and that there are some common labels between the two
heritage collections when it comes to the classification of types (TT

2). A visualization reporting some of the images that are present in
both datasets is shown in Fig. 5.1.

Table 5.1: An overview of the two datasets that are used in our experiments.
For each heritage collection we report with Nt the amount of sam-
ples constituting the datasets and with Qt the number of labels.
Lastly, we also report if there are common labels between the two
heritage collections.

TT Dataset Nt Qt % of overlap

Material 1 Rijksmuseum 110, 668 206 ∅
Antwerp − −

Type 2 Rijksmuseum 112, 012 1, 054

Antwerp 23, 797 920 ≈ 15%

Artist 3 Rijksmuseum 82, 018 1, 196 ∅
Antwerp 18, 656 903

We use 80% of the datasets for training while the remaining 2× 10%
is used for validation and testing respectively. Furthermore, we en-
sure that only classes which occur at least once in all the splits are
used for our experiments. Naturally, in order to keep all comparisons
fair between neural architectures and different TL approaches, all ex-
periments have been performed on the exact same data splits.

5.2 methodology 77

5.2.3 Convolutional Networks and Training Approaches

For our experiments, we use four pre-trained convolutional networks
that were reviewed in Chapter 2 and that have all obtained state-of-
the-art results on the ImageNet classification challenge. These neural
architectures are VGG19 [229], Inception-V3 [245], Xception [39] and
ResNet50 [286]. We use the implementations of the networks that are
provided by the Keras Deep Learning library [40] together with their
appropriate Tensorflow weights [2] that come from the Keras offi-
cial repository as well. Since all architectures have been built in order
to deal with the ImageNet dataset, we replace the final classification
layer of each network with a new one. This final layer simply consists
of a new softmax output, with as many neurons as there are classes
to classify, which follows a 2D global average pooling operation. We
rely on this dimensionality reduction step because we do not add
any fully connected layers between the last convolution layer and the
softmax output. Hence, in this way, we are able to obtain a feature
vector, X , out of the rectified activation feature maps of the network
that can be properly classified. Since all experiments are treated as a
multi-class classification problem, all networks minimize the categor-
ical cross-entropy loss function. We investigate the potential of the TL
approaches that were reviewed in Chapter 4, which, as a reminder,
are: the off-the-shelf classification approach, which only trains the fi-
nal softmax classifier on X retrieved after performing one forward
pass of the image through the network and the fine-tuning approach,
which differs from the previous one by the fact that together with
the final softmax output the entire network is trained as well. From
now on, we refer to the networks trained with the off-the-shelf clas-
sification approach as θ−i , while to the fine-tuned networks simply
as θi, where i stands for the source task TS these models have been
trained on, namely the ImageNet (i) dataset. In order to maximize the
performance of all models, we follow some of the recommendations
presented by Masters and Luschi [150] and train the networks with a
relatively small batch size of 32 samples. We do not perform any data
augmentation operations besides a standard pixel normalization to
the [0, 1] range and a re-scaling operation that resizes the images
to the input size that the different models require. Regarding the
stochastic optimization procedures of the different classifiers, we use
two different optimizers, that after preliminary experiments, turned
out to be the best-performing ones. For the off-the-shelf approach we
use the RMSprop optimizer [253] which has been initialized with its
default hyperparameters (learning rate = 0.001, a momentum value
ρ = 0.9 and ε = 1e− 08). On the other hand, when we fine-tune the
models, we use the standard Stochastic Gradient Descent (SGD) algo-
rithm with the same learning rate, 0.001, and a Nesterov Momentum
value [169] set to 0.9. Training has been controlled by the early stop-

78 on the transferability of convolutional networks

ping method [35] which interrupted training as soon as the validation
loss did not decrease for 7 epochs in a row. The model which is then
used on the testing set is the one that obtained the smallest validation
loss while training.

5.3 results

Our experimental results are divided into two sections, depending on
which kind of dataset has been used. We first report the results that
we have obtained when using architectures that were pre-trained on
the ImageNet dataset only and aimed to tackle the three classification
tasks of the Rijksmuseum dataset that were presented in Section 5.2.2.
We report these results in Section 5.3.1 where we explore the benefits
of using the ImageNet dataset as source domain DS only, and how
well such pre-trained models generalize when it comes to the artis-
tic target domain. We then present the results from classifying the
Antwerp dataset, using models that are both pre-trained on the Ima-
geNet dataset and on the Rijksmuseum collection in Section 5.3.3. We
investigate whether these neural architectures, which have already
been trained to tackle art classification problems before, perform bet-
ter than those trained on the ImageNet dataset only. All results show
comparisons between the off-the-shelf classification approach and the
fine-tuning scenario. In addition to that, in order to establish the po-
tential benefits that TL from ImageNet has over training a model from
scratch, we also report the results that have been obtained when train-
ing a network with weights that have been initially sampled from a
He-Uniform distribution [90]. Since we take advantage of the work
presented by Bidoia et al. [24] we use the Inception-V3 architecture.
We refer to it in all figures as Scratch-V3 and always visualize it with
a solid orange line. Fig. 5.2 and Fig. 5.3 report the performance in
terms of accuracy (%) that the models have obtained on the valida-
tion sets. While the performance that the neural architectures have
obtained on the final testing set are reported in Tables 5.2 and 5.3.

5.3.1 From Natural to Non Natural Images

The first results that we report have been obtained on TT 1 , namely
the material classification task. We believe that this can be considered
as the easiest classification task within the ones that we have intro-
duced in Section 5.2.2 for two main reasons: first, the number of pos-
sible classes the networks have to deal with is more than five times
smaller when compared to the other two challenges; second, we also
believe that this classification task is, within limits, the most similar
one when compared to the original ImageNet challenge. Hence, the
features that might be useful to classify the different natural images
on the latter classification testbed might not be too dissimilar from

5.3 results 79

the ones needed to properly recognize the material that the different
samples of the Rijksmuseum collection are made of. If this were the
case, we would expect a very similar performance between the off-the-
shelf classification approach and the fine-tuning one. Comparing the
learning curves of the two classification strategies in Fig. 5.2, we ob-
serve that the fine-tuning approach leads to significant improvements
when compared to the off-the-shelf one for three architectures out of
the four tested ones. Note, however, that, in support of our hypoth-
esis, the off-the-shelf approach can still reach high accuracy values
on this problem and is also competitive with the model trained from
scratch, with the crucial difference being that these models result in
faster training as jumpstart improvements can be observed. This sug-
gests that features extracted from networks pretrained on ImageNet
are relevant for the target task TT of material classification.

0 2 4 6 8 10
0.8

0.85

0.9

0.95

Epochs

A
cc

ur
ac

y
(%

)

TT 1

Xception θi
ResNet50 θi

InceptionV3 θi
VGG19 θi

Scratch-V3 θ

Xception θ−i
ResNet50 θ−i

InceptionV3 θ−i
VGG19 θ−i

Figure 5.2: Comparison between the fine-tuning approach (θi) versus the off-
the-shelf one (θ−i) when classifying the material of the heritage
objects of the Rijksmuseum dataset. We can observe that for three
out of four neural architectures the first approach leads to signif-
icant improvements when compared to the latter one. Further-
more, we can also observe that training a randomly initialized
model from scratch (solid orange line) leads to worse results than
fine-tuning a network that comes as pre-trained on the ImageNet
dataset.

We can also observe that the ResNet50 architecture is the architec-
ture that, when fine-tuned, performs overall best compared to the
other three models. This happens despite it being the network that
initially performed worse as a simple feature extractor in the off-the-
shelf experiments. As reported in Table 5.2 we can see that this kind of
behavior reflects itself on the separated testing set as well, where it ob-
tained the highest testing set accuracy when fine-tuned (92.95%), and
the lowest one when the off-the-shelf approach was used (86.81%).
It is worth noting that the performance between the different neural
architectures do not strongly differ between each other once they are

80 on the transferability of convolutional networks

fine-tuned, with all models performing around ≈ 92% on the final
testing set. Furthermore, special attention needs to be given to the
VGG19 architecture, which does not seem to benefit from the fine-
tuning approach as much as the other architectures do. In fact, its
off-the-shelf performance on the testing set (92.12%) is very similar to
its fine-tuned one (92.23%). This suggests that this neural architecture
is the only one that, in this task, and when pre-trained on ImageNet,
can successfully be used as a simple feature extractor without relying
on complete retraining.

When analyzing the performance of the different neural architec-
tures on TT 2 (type classification) and TT 3 (artist classification),
respectively the left and right plots reported in Fig. 5.3, we observe
that on these problems the fine-tuning strategy leads to even more sig-
nificant improvements when compared to what we observed in the
previous experiment. The results obtained on the second task show
again that the ResNet50 architecture is the architecture that leads to
the worse results if the off-the-shelf approach is used (its testing set ac-
curacy is as low as 71.23%), and similarly to what has been observed
before, it then becomes the best performing model when fine-tuned,
with a final accuracy of 91.30%. Differently from what has been ob-
served in the previous experiment, the VGG19 architecture, despite
being the network performing best when used as off-the-shelf feature
extractor, this time performs significantly worse when it is fine-tuned,
which highlights the benefits of this latter training approach. Similar
to what has been observed before, our results are again not signifi-
cantly favoring any fine-tuned neural architecture, with all final accu-
racies being around ≈ 91%.

If the so far considered target tasks have highlighted the significant
benefits of the fine-tuning approach over the off-the-shelf one, it is
also important to note that the latter approach is still able to yield
satisfying results. In fact, a final accuracy of 92.12% has been obtained
when using the VGG19 architecture for tackling TT 1 , and the same
architecture reached a classification rate of 77.33% on TT 2 . Despite
the latter accuracy being very far in terms of performance from the
one obtained when fine-tuning the network (90.27%), these results
still show that models pre-trained on ImageNet do learn particular
features that can also be used for classifying the material and the type
of heritage objects. In fact, jumpstart improvements were observed in
Fig. 5.2 as well as in the left plot of Fig. 5.3.

When considering the third target task, we can however observe
that these conclusions partially change: the Xception, ResNet50, and
Inception-V3 architectures all perform extremely poorly if not fine-
tuned, with the latter two models not reaching a 10% classification
rate. Better results are obtained when using the VGG19 architecture,
which reaches a final accuracy of 38.11%. Most importantly, the per-
formance of each model is again significantly improved when the

5.3 results 81

0 5 10 15 20 25
0.65

0.7

0.75

0.8

0.85

0.9

Epochs

A
cc

ur
ac

y
(%

)

TT 2

0 10 20 30 40

0.2

0.4

0.6

Epochs

A
cc

ur
ac

y
(%

)

TT 3

Xception θ−i ResNet50 θ−i InceptionV3 θ−i
VGG19 θ−i Scratch-V3 θ Xception θi

ResNet50 θi InceptionV3 θi VGG19 θi

Figure 5.3: A similar analysis as the one which has been reported in Fig-
ure 5.2 but for the second and third classification tasks (left and
right figures respectively). The results show again the significant
benefits that fine-tuning (reported by the dashed line plots) has
when compared to the off-the-shelf approach (reported by the
dash-dotted lines) and how this latter strategy miserably under-
performs when it comes to artist classification. Furthermore we
again see the benefits that using a pre-trained model has over
training the architecture from scratch (solid orange line).

networks are fine-tuned. As already observed in the previous exper-
iments, ResNet50 outperforms the other architectures on the valida-
tion set. However, on the test set (see Table 5.2), the overall best per-
forming network is Inception-V3 (with a final accuracy of 51.73%),
which suggests that ResNet50 suffered from overfitting. It is impor-
tant to state two major important points about this set of experiments.
The first one relates to the final classification accuracy that is obtained
by all models, and that at first sight might seem disappointing. While
it is true that these classification rates are significantly lower when
compared to the ones obtained in the previous two experiments, it is
important to highlight how a large set of artists present in the dataset
are associated to a minimal amount of samples. This reflects a lack of
appropriate training data, which does not allow the models to learn
all the necessary features for successfully dealing with this particular
classification challenge. In order to do so, we believe that more train-
ing data is required. Moreover, it is worth pointing out that despite
performing very poorly when used as off-the-shelf feature extractors,
ImageNet pre-trained models do still perform better once they are
fine-tuned than a model that is trained from scratch, as asymptotic
improvements were observed in all our experiments. This suggests
that these networks do learn potentially representative features when
it comes to the classification of artists, but in order to correctly classify
them, fine-tuning is required.

82 on the transferability of convolutional networks

Table 5.2: An overview of the results obtained by the different models on the
testing set when classifying the heritage objects of the Rijksmu-
seum. The overall best performing architecture is reported in a
green cell, while the second best performing one is reported in
a yellow one. The additional columns “Params” and “X ” report
the amount of parameters the networks have to learn and the size
of the feature vector that is used as input for the softmax classifier.

TT model off the shelf fine tuning Params X

1 Xception 87.69% 92.13% 21K 2048

1 InceptionV3 88.24% 92.10% 22K 2048

1 ResNet50 86.81% 92.95% 24K 2048

1 VGG19 92.12% 92.23% 20K 512

2 Xception 74.80% 90.67% 23K 2048

2 InceptionV3 72.96% 91.03% 24K 2048

2 ResNet50 71.23% 91.30% 25K 2048

2 VGG19 77.33% 90.27% 20K 512

3 Xception 10.92% 51.43% 23K 2048

3 InceptionV3 .07% 51.73% 24K 2048

3 ResNet50 .08% 46.13% 26K 2048

3 VGG19 38.11% 44.98% 20K 512

5.3.2 Discussion

In the previous section, we have investigated whether four different
architectures pre-trained on the ImageNet dataset can be successfully
used to address three art classification problems. We have observed
that this is particularly the case when it comes to classifying the
material and the type, where in fact, an off-the-shelf classification
approach already yielded satisfactory results. However, most impor-
tantly, we have also shown that the performance of all models can be
significantly improved when the networks are fine-tuned and that an
ImageNet initialization is beneficial when compared to training a ran-
domly initialized network from scratch. Furthermore, we have also
shown that ImageNet pre-trained models can still perform extremely
poorly when they are used as simple feature extractors (as demon-
strated by the experiments reported on TT 3). In the next section, we
explore the performance of fine-tuned models trained to tackle two
of the already seen target tasks on a different heritage collection. For
this problem, we will again compare the off-the-shelf approach with
the fine-tuning one.

5.3 results 83

5.3.3 From One Target Domain DT to Another

Table 5.3 compares the results that we obtained on the Antwerp dataset
when using ImageNet pre-trained models (θi) versus the same archi-
tectures that were fine-tuned on the Rijksmuseum dataset (θr). While
looking at the performance of the different neural architectures, two
interesting results can be highlighted. First, models which have been
fine-tuned on the Rijksmuseum dataset outperform the ones pre-trained
on ImageNet on both target tasks TT. This happens to be the case both
when the networks are used as simple feature extractors and when
they are fine-tuned. On TT 2 , this result is not surprising since, as
discussed in Section 5.2.2, the types corresponding to the heritage ob-
jects of the two collections partially overlap. This is, however, more
surprising when it comes to the artist classification tasks TT 3 as
there is no overlap at all between the artists of the Rijksmuseum and
the ones from the Antwerp dataset. A second interesting result, which
is consistent with the results presented in the previous section, re-
volves around the observation that it is always beneficial to fine-tune
the networks over just using them as off-the-shelf feature extractors.
Once the models get fine-tuned on the Antwerp dataset, these net-
works, which have also been fine-tuned on the additional source do-
main of the Rijksmuseum dataset, outperform the architectures that
were pre-trained on ImageNet only. This happened to be the case for
both target tasks TT, and for all considered architectures, as reported
in Table 5.3. This demonstrates how beneficial it is for the models to
have been trained on a similar source task and how this can lead to
significant improvements both when the networks are used as feature
extractors as when they are fine-tuned.

Table 5.3: The results obtained on the classification experiments performed
on the Antwerp dataset with models that have been initially pre-
trained on ImageNet (θi) and the same architectures which have
been fine tuned on the Rijksmuseum dataset (θr). Our results show
that the latter pre-trained networks yield better results both if
used as off the shelf feature extractors and if fine tuned.

TT model θi + off the shelf θr + off the shelf θi + fine tuning θr + fine tuning

2 Xception 42.01% 62.92% 69.74% 72.03%

2 InceptionV3 43.90% 57.65% 70.58% 71.88%

2 ResNet50 41.59% 64.95% 76.50% 78.15%

2 VGG19 38.36% 60.10% 70.37% 71.21%

3 Xception 48.52% 54.81% 58.15% 58.47%

3 InceptionV3 21.29% 53.41% 56.68% 57.84%

3 ResNet50 22.39% 31.38% 62.57% 69.01%

3 VGG19 49.90% 53.52% 54.90% 60.01%

84 on the transferability of convolutional networks

5.3.4 Selective Attention

The benefits of the fine-tuning approach over the off-the-shelf one
are clear from our previous experiments. Nevertheless, we do not
have any insights yet about what exactly allows fine-tuned models
to outperform the Imagenet only pre-trained architectures. In order
to provide an answer to that, we investigate which pixels of each in-
put image contribute the most to the final classification predictions of
the networks. We do this by using the “VisualBackProp” algorithm
presented by [25], which is able to identify which feature maps of
the networks are the most informative ones with respect to their final
prediction. Once these feature maps are identified, they get backprop-
agated to the original input image and visualized as a saliency map
according to their weights. The higher the activation of the filters, the
brighter the set of pixels covered by these filters are represented.

The results that we have obtained provide interesting insights into
how fine-tuned models develop novel selective attention mechanisms
over the images, which are very different from those that characterize
the ImageNet only pre-trained networks. We report the existence of
these mechanisms in Fig. 5.4 where we visualize the different saliency
maps between a model pre-trained on ImageNet and the same neural
architecture, which has been fine-tuned on the Rijksmuseum collec-
tion. In Fig. 5.4 we visualize which sets of pixels allow the fine-tuned
model to successfully classify an artist of the Rijksmuseum collection
that the same architecture was not able to recognize initially. It is pos-
sible to notice that the saliency maps of the latter architecture either
correspond to what is more similar to a natural image, as represented
by the central image of the first row of plots, or even to what appear
to be non-informative pixels at all, as shown by the second image
in the second row. However, when considering the fine-tuned model,
we clearly observe that these saliency maps change. In this case, the
network attends towards the set of pixels representing people at the
bottom, suggesting that this allows the model to recognize the artist
of the considered artwork appropriately.

These observations can be related to parallel insights in authorship
attribution research [54], an established task from Natural Language
Processing that is highly similar in nature to artist recognition. In this
field, preference is typically given to high-frequency function words
(articles, prepositions, particles etc.) over content words (nouns, ad-
jectives, verbs, etc.), because the former are generally considered to
be less strongly related to the specific content or topic of a work.
As such, function words or stop words lend themselves more easily
to attribution across different topics and genres. In art history, strik-
ingly similar views have been expressed by the well-known scholar
Giovanni Morelli (1816-1891), who published seminal studies in the
field of artist recognition [284]. In Morelli’s view too, the attribution

5.4 conclusion 85

Figure 5.4: A visualization of the saliency maps that are obtained when try-
ing to classify an artist of the Rijksmuseum collection (first row of
images) with either an ImageNet pre-trained model that is used
as simple feature extractor (second row of images), or with the
same kind of model which gets fine-tuned (third row of images).
We can observe that after getting fine-tuned the network devel-
ops novel selective attention mechanisms that allow it to shift its
attention from e.g., the buildings depicted in the paintings to the
people represented at the bottom.

of a painting could not happen on the basis of the specific content
or composition of a painting, because these items were too strongly
influenced by the topic of a painting or the wishes of a patron. In-
stead, Morelli proposed to base attributions to so-called Grundformen
or small, seemingly insignificant details that occur frequently in all
paintings and typically show clear traces of an artist’s individual style,
such as ears, hands or feat, a painting’s function words, so to speak.
The saliency maps above reveal a similar shift in attention when the
ImageNet weights are adapted on the Rijksmuseum data: instead of
focusing on higher-level content features, the network shifts its atten-
tion to lower layers in the network, seemingly focusing on insignifi-
cant details, that nevertheless appear crucial to perform artist attribu-
tion.

5.4 conclusion

This chapter provides the first insights into the potential that TL can
offer for art classification. We have investigated the behavior of convo-

86 on the transferability of convolutional networks

lutional networks which have been pre-trained initially on a very dif-
ferent classification task and shown how their performance can be im-
proved when a fine-tuneing training approach is adopted. Moreover,
we have observed that such neural architectures perform better than
if they are trained from scratch and that during the fine-tuning stage,
they develop new saliency maps that can provide insights about what
makes these models outperform the ones that are pre-trained on the
ImageNet dataset only. Such saliency maps reflect themselves in the
development of new features, which can then be successfully used by
the models when classifying heritage objects from different heritage
collections. It turns out that the Rijksmuseum fine-tuned models are
a better alternative to the same kind of architectures that are pre-
trained on ImageNet only and we hope that they will serve the CV
community that will deal with similar machine learning problems in
the future.

6
N O V E L D ATA S E T S F O R T R A N S F E R L E A R N I N G

Outline

In this chapter, we continue studying the transfer learning proper-
ties of convolutional neural networks trained on non-natural image
distributions. To facilitate this process, we present MINERVA, a novel
dataset that can be used both for object classification as for object de-
tection. We report thorough experiments that highlight the challenges
that can arise from using MINERVA as a computer vision testbed,
while at the same time, we further characterize the benefits that can
come from adopting transfer learning training strategies. The struc-
ture of this chapter is the following: in Sec. 6.1 we describe some of
the limitations that currently define the field of computer vision and
that have served as inspiration for the development of our newly in-
troduced dataset. In Sec. 6.2 we present MINERVA, we thoroughly
explain how its images have been collected and annotated, and how
the resulting splits have served for the experiments that are presented
in Sec. 6.3. We then report and discuss the results of our experiments
in Sec. 6.4 and Sec. 6.5 respectively, before ending the chapter by iden-
tifying possible avenues for future work in Sec. 6.6.

This chapter is an extended version of the publication Sabatelli et al. [204].

6.1 challenges of modern computer vision

If it is true that the results presented in the previous chapter show that
it is possible to transfer pre-trained convolutional neural networks to
non-natural image datasets successfully, it is equally true that some
limitations might still need to be addressed. Above all, the need to
fine-tune the networks instead of simply using them as feature ex-
tractors. As demonstrated by the experiments performed on the third
classification problem of the Rijksmuseum dataset, it is clear that pre-
trained models might only learn features that are relevant for their
respective source task TS (ImageNet), which therefore might result
in unsatisfying performance when an off-the-shelf training strategy
is used. While this is a result that does not come as a surprise, as
it would be unreasonable to expect pre-trained networks to act as
universal feature extractors, this limitation can still have some im-
portant practical implications since it can prevent the deployment of

87

88 novel datasets for transfer learning

computer vision systems outside the domain of natural images. As a
practical example, let us consider the first image presented in Fig. 6.1
and the computer vision task of object detection. We tackle this task
with an object detector that is pre-trained on natural images only and
that, therefore, has never seen any images coming from a domain
other than the source domain DS. From the model’s performance, it
is clear that only one out of the two predictions made by the network
is appropriate, as it fails in detecting the musical instrument depicted
in the image by wrongly classifying it as a “frisbee”. While certainly
reasonable and fully justifiable, this kind of performance is the result
of some limitations that currently characterize modern Computer Vi-
sion (CV), which we summarize as follows:

• Photorealism and Data Scarcity: it is well known that mod-
ern CV strongly gravitates towards photorealistic material since
most of the datasets that are used in the field are representative
of digitized, or born-digital, versions of photographs. Neverthe-
less, datasets like MNIST, CIFAR-10/100 and the already men-
tioned ImageNet play a crucial role in today’s rapid develop-
ment of the field, as they are constantly used as benchmarks by
the community. While certainly suitable for defining different
challenging CV tasks, it is worth noting that these datasets are
also only partially representative of the physical world, as they
do not actively attempt to distort the reality they depict. Unfor-
tunately, datasets going beyond the photorealistic domain are
either much rarer, or are not as popular as their photorealistic
counterparts, a limitation that results into pre-trained models
that fail in performing well when used outside from the natural
world (see again first image of Fig. 6.1).

• Modern Training Classes: the performance depicted in the first
image of Fig. 6.1 can largely be attributed to the fact that the
model used for detecting the objects in the image has never
been explicitly trained on images of musical instruments. As
a result its predictions can only tend to be representative of
the classes that have governed the training process. While this
behavior has only to be expected, it can still serve as a surro-
gate for highlighting an important limitation of modern object
detection datasets: datasets are not as diversified and hetero-
geneous as one might expect. As an example let us consider
the popular Pascal-Voc [55] and MS-COCO [139] datasets. The
first one tackles the detection of 20 classes, out of which more
than a third constitute different kinds of transportation systems,
such as “trains”, “boats”, “motorcycles” and “cars”. The latter,
albeit more complex, mostly represents objects that are repre-
sentative of the highly technological world we currently live in,
with classes such as “microwave”, “laptop” and “remote con-

6.1 challenges of modern computer vision 89

trol”. In practice, this results in models that gravitate towards
detecting objects in an image that are modern, a behavior that
hurts not-technological classes such as the “person” one, which
should, but unfortunately is not, be detected in the second im-
age of Fig. 6.1.

• Model Robustness: the aforementioned limitation also results
into models that learn features that are hardly general enough
for successfully tackling different representations of the same
class. As an example, let us consider the last image of Fig. 6.1:
we can see that a model pre-trained on MS-COCO successfully
detects the persons represented in the paintings only as long
as their pose corresponds to a pose that can easily be found
in the images depicting persons in photorealistic datasets. As
soon as a person is depicted in a pose different from the one that
usually characterizes a person in a photorealistic dataset (sitting
or standing), then a pre-trained network mistakenly detects it as
an animal.

Figure 6.1: Some examples that show the limitations of object detectors that
are trained on photorealistic images only. In the first image, we
see how a model confidently detects a “frisbee” for a “lute”,
while in the second image, we can observe how next to being
unable to detect the people in the painting, it also mistakenly
detects the frame as a “tv-monitor”. Similar limitations can be
observed in the third image, where we can see that the persons
within the painting are only correctly detected as long as they
are either sitting or standing.

This chapter takes inspiration from these limitations and uses them
as a surrogate for introducing novel datasets that can be used as
a benchmark for CV researchers. The purpose of such datasets is
twofold: on the one hand, they represent, at least in part, a solution
to the aforementioned issues that currently characterize CV, while on
the other hand, they allow us to continue studying the transfer learn-
ing properties of convolutional neural networks which we started ex-
ploring in the previous chapter.

90 novel datasets for transfer learning

6.2 the minerva dataset

We now introduce MINERVA, a novel annotated dataset that can
be used for object detection. More specifically, the main task that
we present is that of the detection of musical instruments in non-
photorealistic, unrestricted image collections from the artistic domain.
We start by describing how its images have been first collected and
then annotated, while we then move on towards quantitatively char-
acterizing the dataset from a machine learning perspective.

6.2.1 Data Collection

The images constituting MINERVA come from three different data
sources, which allow the dataset to be highly varied and unrestricted.
Its images cover a large range of periods, genres, and materials and
are both of photorealistic and not-photorealistic nature as visually
represented in Fig. 6.2. The three data sources are the following:

• RIDIM: which stays for Repertoire International d’Iconographie Mu-
sicale is an international digital inventory for musical iconogra-
phy that functions as a reference image database. Developed
and curated by Green and Ferguson [77] it has been designed
to facilitate the discovery of music-related artworks. Among the
three different considered data sources, the images coming from
the RIDIM collection are the ones of the highest quality in terms
of resolution.

• RMFAB/RMAH: which stays for Royal Museums of Fine Arts of
Belgium and Royal Museums of Art and History. These images
come from a larger pool of digitized images that have been man-
ually selected based on whether they included depictions of mu-
sical instruments or not. Among the different data sources, the
amount of images coming from RMFAB/RMAH within MIN-
ERVA is the lowest compared to the other two data sources.
These images are of midrange resolution.

• Flickr: is a well-known image hosting service from which we
downloaded a large dataset of images depicting musical instru-
ments in the visual arts pre-dating 1800. Most of the images
present within MINERVA come from Flickr, although their res-
olution is not always on par with the one of the previous two
data sources.

Once all these images have been collected we have started the la-
beling process.

6.2 the minerva dataset 91

Figure 6.2: Samples from Minerva.

6.2.2 Annotation Process

We manually annotated almost 10000 instruments by using the con-
ventional method of rectangular bounding boxes. To this end, we
have used the open-source Cytomine software [148], a rich web envi-
ronment that allows highly collaborative analysis of multi-gigapixel
imaging data. Initially developed for facilitating the task of image an-
notation in biomedical informatics, Cytomine has already been widely
used for the annotation and creation of several datasets [165]. How-
ever, it is worth noting that its use within the present study is among
the very first ones which use the software outside the context of
large-scale bioimaging data. All the individual instruments within
MINERVA have been unambiguously identified and labeled by using
their MIMO codes. The MIMO (Musical Instrument Museums On-
line) initiative is an international consortium, well known for its on-
line database of musical instruments, aggregating data and metadata
from multiple heritage institutions [48]. An important contribution of
Dolan [48] is the development of a uniform metadata documentation
standard for the field, including a multilingual vocabulary that can be
used for identifying musical instruments in an interoperable manner.
We have followed this metadata standard and manually labeled the
previously collected images within Cytomine as visually represented
in Fig. 6.3.

6.2.3 Versions and Splits

MINERVA comes in four different, increasingly complex versions:
Minerva-0 which is arguably the easiest version of the dataset where

92 novel datasets for transfer learning

Figure 6.3: A visualization of the annotation process performed with the
Cytomine platform.

the target task TT simply consists in detecting whether a musical in-
strument is present within an image or not. We, therefore, do not
yet consider the task of predicting the class of the detected instru-
ment. The second version of the dataset is Minerva-Hypernym where
the goal is that of detecting all the images present within Minerva-0

and classify them according to their hypernym categories. All instru-
ments present within MINERVA correspond to 5 different hypernyms
which define them as: “stringed instruments”, “wind instruments”,
“percussion instruments”, “keyboard instruments” and “electronic in-
struments’. The last two versions of MINERVA are Minerva-5 and
Minerva-10 where the goal is to detect and classify the instruments
depicted in the images according to the top 5 or top 10 most oc-
curring classes. These classes are: “Lute”, “Harp”, “Violin”, “Trum-
pet”, “Shawn”, “Bagpipe”, “Organ”, “Horn”, “Rebec” and “Lyre”.
Naturally, in Minerva-5 we only consider the first 5 of such classes,
whereas in Minerva-10 we consider all 10 of them. Each version of the
dataset comes with its training, validation, and testing splits, where
we offer the guarantee that at least one of the instrument classes in
the task is represented in each of the splits. Additionally, the splits
are stratified so that the class distribution is approximately the same
in each split. The number of images per split in each version is sum-
marized in Table 6.1 where Nt corresponds to the number of images
present within the split, whereas It denotes the number of total in-
struments. The hypernym version of the dataset is not reported as it
shares the same images and splits as Minerva-0 (they both contain all
instruments). However, a distribution of the hypernym classes within
Minerva-Hypernym is reported in Fig. 6.4. All splits have been created
with the scikit-learn software [180] by using 50% of the images

6.3 benchmarking 93

for training and the remaining 50% for validation and testing (25%
respectively).

Table 6.1: An overview reporting how many images Nt and instruments It
are present within the splits of the Minerva-0, Minerva-5 and
Minerva-10 versions of the MINERVA dataset.

TT training-set validation-set testing-set

Nt It Nt It Nt It

Minerva-0 1857 4243 1137 2288 1182 2102

Minerva-5 952 1589 540 852 721 1173

Minerva-10 1227 2147 680 1127 897 1506

Stringed

Wind

Percussion

Keyboard

Electronic

2,099

1,212

478

339

14

1,130

751

214

184

9

1,058

706

180

151

7

Hypernym distribution in Minerva-0

Training
Validation

Testing

Figure 6.4: A visual representation of the distribution of the hypernym
classes that are present within Minerva-0 and that define the
Minerva-Hypernym benchmark.

6.3 benchmarking

While MINERVA has been created with the primary intention of serv-
ing as a novel dataset for object detection, it can nevertheless still be
used to test the classification performance of convolutional neural
networks. Although it could be argued that this task could be easier
than object detection, it is still of high interest as it provides a novel
benchmark for further characterizing the transfer learning properties
of neural networks that we started studying in the previous chapter.
Therefore, we hereafter report results both for classification experi-
ments as well as for object detection experiments. In the first section,
we consider the target task TT of classifying the bounding boxes that
have been annotated in MINERVA as standalone images, while in the
second section, we aim at both detecting and classifying the content

94 novel datasets for transfer learning

of the potentially detected bounding boxes. We hereafter describe the
experimental protocol used for both sets of experiments in detail.

6.3.1 Classification

The experimental setup used for the classification experiments largely
builds on top of the study that we presented in Chapter 5. We con-
tinue to explore whether popular neural architectures, which have
obtained state-of-the-art results on the ImageNet benchmark, can per-
form equally well when trained on datasets of non-natural images. To
this end, we again consider the well known VGG19 [229], InceptionV3

[245] and ResNet50 [286] neural architectures. As done in the previ-
ous chapter, we keep investigating the effect that different weight ini-
tialization strategies have on the final performance of the networks to
characterize further the potential benefits that can come from adopt-
ing transfer learning. Specifically, we train the three considered neu-
ral architectures by following three different initialization strategies:
“random” which simply initializes the model’s parameters after fol-
lowing He’s weight initialization strategy [90], “ImageNet” which in-
stead uses the weights that are obtained after training the networks
on the ImageNet source task TS, and “RijksNet” which are models
that are trained both on the ImageNet dataset and on the Rijksmu-
seum collection, and that were also used for the final experiments
reported in the previous chapter. As the benefits of fully fine-tuning
the models over using them as off-the-shelf feature extractors were
clear from the results obtained in Chapter 5, we now limit our anal-
ysis to this transfer-learning approach solely. We train all networks
with the Adam optimizer [114] and by using an initial learning rate
of 0.001. As already done for the previous study, we again controlled
the training process by using early stopping and by interrupting the
training regime as soon as the validation loss did not decrease for
five epochs in a row. Naturally, all networks minimize the categorical
cross-entropy loss function.

6.3.2 Object Detection

For this set of experiments we explore the performance of a YOLO
object detector [193], a popular neural architecture that has obtained
state-of-the-art results on the MS-COCO object detection benchmark.
YOLO treats the task of object detection as a standard regression prob-
lem by dividing an image into a S× S grid and by predicting for each
grid cell B bounding boxes and C class probabilities. The main as-
sumption behind YOLO is that any of the S× S cells contains at most
the center of one single object, therefore for every image, cell index
i = 1, ..., S× S, predicted box j = 1, ..., B and class index c = 1, ..., C
we have the following components:

6.3 benchmarking 95

• 1
obj
i which is 1 if there is an object in cell i, and 0 otherwise;

• 1
obj
i,j which is 1 if there is an object in cell i and predicted box j

that is the most fitting one, whereas is 0 otherwise;

• pi,c which is 1 if there in an object of class c in cell i, and 0

otherwise;

• xi, yi, wi, hi which are the coordinates of an annotated bounding
box that are defined only if 1

obj
i = 1;

• ci,j which is the IoU between the predicted box and the ground
truth target.

At training, YOLO computes the value of the 1
obj
i,j for each image

together with the respective ci,j, and then minimizes the following
multi-part loss function:

λcoord

S×S

∑
i=1

B

∑
j=1

1
obj
i,j

(
(xi − x̂i,j)

2 + (yi − ŷi,j)
2 + (
√

wi −
√

ŵi,j)
2 + (

√
hi −

√
ĥi,j)

2
)

+ λobj

S×S

∑
i=1

B

∑
j=1

1
obj
i,j (ci,j − ĉi,j)

2 + λnoobj

S×S

∑
i=1

B

∑
j=1

(1− 1
obj
i,j)ĉ

2
i,j

+ λclasses

S×S

∑
i=1

1
obj
i

C

∑
c=1

(pi,c − p̂i,c)
2

(6.1)

where p̂i,c, x̂i,j, ŷi,j, ŵi,j, ĥi,j and ĉi,j are the predictions of the network.
In our experiments, we use the YOLO-V3 version of the network

introduced by Redmon and Farhadi [194] and initialize it with the
weights that are obtained after training the network on the MS-COCO
dataset. Regarding the stochastic optimization procedure, we use two
different optimizers: we train the network with the Adam optimizer
for the first 10 epochs, while we then use the RMSprop optimizer for
the remaining training epochs, which are again controlled through
early stopping. To assess the final performance of the model, we fol-
low an evaluation protocol that is typical for object detection prob-
lems in CV [139]. Each detected bounding box is compared to the
bounding box, which has been annotated on the Cytomine platform.
We only consider bounding boxes for which the confidence level is
≥ 0.05, following the protocol established by Everingham et al. [55].
We then compute the “Intersection over Union” (IoU) for measuring
how much the detected bounding boxes differ from the ground-truth
ones. To assess whether a prediction can be considered as a true pos-
itive or a false positive, we define two increasingly restrictive metrics:

96 novel datasets for transfer learning

first, IoU ≥ 10 and, secondly, IoU ≥ 50. This approach is inspired by
the work of Gonthier et al. [73], where the authors report results for
both IoU thresholds when assessing the performance of their weakly
supervised learning system on the IconArt dataset.

6.4 results

6.4.1 Quantitative Analysis

Classification We start by discussing the results obtained with
our classification experiments. The performance of all models is re-
ported in Tables 6.2, 6.3 and 6.4, where we present the accuracy that
the networks have obtained on the different MINERVA testing sets,
together with their respective F1 scores. To this end for a given class
c, a ground truth label y and a model’s prediction ŷ, let us introduce
the notions of precision and recall. The first is computed as:

P(c) = p(y = c|ŷ = c) =
TP

TP + FP
, (6.2)

while the latter as

R(c) = p(ŷ = c|y = c) =
TP

TP + FN
. (6.3)

Both quantities can be used for computing the F-1 score as follows:

F1(c) = 2 · P(c) · R(c)
P(c) + R(c)

. (6.4)

Similarly to the results reported in Chapter 5 we again report the
best performing architecture in a green cell, while the second-best
performing model in a yellow one.

We can start by observing that among all the results presented
in the three different tables, the best performing models are either
the ones reported in Table 6.3 or the ones presented in Table 6.4.
This confirms the results that were presented in the previous chapter:
fine-tuning pre-trained models yields significantly better results than
training models from scratch, even when the source and the target
tasks can be particularly different (as is the case for musical instru-
ments classification). While the results of this study confirm the con-
clusions that were drawn at the end of Chapter 5, they also provide
some additional insights that were not observed before. First, it ap-
pears that the best performing architecture is not ResNet50 anymore,
but rather the arguably older InceptionV3, a result which seems to
suggest that there is no overall best-performing architecture for all
target tasks TT, and that the best architecture is highly problem de-
pendent. Second, and perhaps arguably more surprising, we can also
see that differently from what was observed in the last experiment

6.4 results 97

in Chapter 5, it appears to be more beneficial to transfer models pre-
trained on ImageNet only, instead of models that are additionally
trained on the Rijksmuseum collection. Indeed, as can be observed
by the results presented in Tables 6.3 and 6.4, the latter pre-training
strategy outperforms the first one only when the ResNet50 and the
InceptionV3 architectures are trained on the Minerva-5 benchmark.
These results can be explained as follows: in Chapter 5 the target task
TT tackled with a model pre-trained on the Rijksmuseum collection
corresponded to the original source task TS (classification of “types”
and “artists”). In these experiments, however, albeit coming from sim-
ilar domains, the considered source task TS and target task TT are
unrelated, which could work in favor of an arguably more general
ImageNet weight initialization.

Table 6.2: Results obtained when classifying the bounding boxes of the three
different MINERVA benchmarks with models that do not come as
pre-trained on any sort of source task TS. We can see that their
performance is significantly worse than the one that is obtained
when the same models come as pre-trained (see Table 6.3 and
Table 6.4).

TT ResNet50 InceptionV3 VGG19

Accuracy (%) F1 Accuracy (%) F1 Accuracy (%) F1

Minerva-Hypernym 50.33 13.39 51.80 14.02 50.12 13.12

Minerva-5 40.83 21.88 40.49 21.65 41.26 22.01

Minerva-10 32.85 0.09 32.18 0.09 19.72 0.03

Table 6.3: Results obtained when classifying the bounding boxes of the three
different MINERVA benchmarks after adapting transfer learning
and considering the ImageNet dataset as the only source task TS.
We observe that, compared to the results presented in Table 6.2,
this approach yields significant benefits, therefore confirming the
results presented in Chapter 5.

TT ResNet50 InceptionV3 VGG19

Accuracy (%) F1 Accuracy (%) F1 Accuracy (%) F1

Minerva-Hypernym 76.64 58.56 79.40 60.07 76.54 57.39

Minerva-5 60.41 49.10 72.06 68.89 70.43 68.42

Minerva-10 55.37 41.65 60.1 45.12 44.22 40.12

Object Detection The results for this set of experiments are re-
ported in terms of average precision as for each class; we report the
area under the precision-recall curve that is obtained by setting IoU
≥ 10 and ≥ 50 as explained in Sec. 6.3.2. We start by discussing the
performance that is obtained after fine-tuning a pre-trained YOLO-V3

model on the Minerva-0 benchmark, where, as a reminder, the goal is
that of simply detecting a musical instrument within an image with-
out classifying it. For an IoU ≥ 10 we report an average precision of

98 novel datasets for transfer learning

Table 6.4: Results obtained when classifying the bounding boxes of the three
different MINERVA benchmarks after adapting transfer learning
and considering the ImageNet and the Rijksmuseum collection as
source domains DS. Similarly to what was observed in Table 6.3,
we can again see that transfer learning yields significant benefits
although this weight initialization strategy does mostly not out-
perform the more common ImageNet one.

TT ResNet50 InceptionV3 VGG19

Accuracy (%) F1 Accuracy (%) F1 Accuracy (%) F1

Minerva-Hypernym 72.26 52.66 75.80 57.03 66.41 40.35

Minerva-5 68.71 64.10 73.66 70.29 48.33 33.92

Minerva-10 52.85 41.55 55.51 45.77 37.52 15.22

35.33%, while for an IoU ≥ 50, a final score of 22.31%. Both scores
demonstrate that the model is successfully able to detect the musical
instruments within MINERVA and that, on this task, its performance
is on par with the one that is reported on more common object detec-
tion benchmarks [139]. More specifically, the model detects an instru-
ment 1386 times, out of which when an IoU ≥ 10 is considered, 878
detections correspond to true positives, whereas 508 detections are
false positives. Naturally, the model’s performance decreases when
an IoU ≥ 50 is considered, as the amount of true positive detections
decreases to 648 and the number of false positives increases to 738.

We report a similar quantitative analysis for the Minerva-Hypernym,
Minerva-5 and Minerva-10 benchmarks. We do this in Tables 6.5, 6.6
and 6.7 where we present the different average precision scores, and
in Figures 6.5, 6.6 and 6.7, where we visualize the true vs false pos-
itives detections. We can see that out of these three benchmarks, the
Minerva-Hypernym one appears to be the most challenging one as it
results in the worst-performing models independently from which
IoU threshold is considered. We can observe from Fig. 6.5 that the
model can detect “stringed instruments” successfully, whereas its per-
formance in detecting the remaining four hypernyms of the dataset
is drastically worse. When it comes to the Minerva-5 benchmark, we
can observe from Table 6.6 that the model can successfully detect
three instruments out of the five instruments which constitute this
benchmark, namely “Harps’, “Lutes”, and “Violins”. These results
are only second to the ones obtained on Minerva-0, although the con-
sidered target task TT is now significantly harder. Similar detections
have been obtained after fine-tuning the model on the Minerva-10

benchmark. Here we can again observe (see Table 6.7 and Fig. 6.7)
that the network can only successfully detect the first three most oc-
curring instruments of the dataset, whereas for the “Horn”, “Bagpipe”
“Rebec” and “Lyre” classes no detections at all are made.

6.4 results 99

Table 6.5: Average Precision (%) obtained when fine-tuning a pre-trained
YOLO-V3 object detector on the Minerva-Hypernyms dataset. We
can observe that satisfying results are obtained for both IoU
thresholds when it comes to the detection of stringed instruments,
whereas detecting the remaining four hypernyms of MINERVA
appears to be much more challenging.

Stringed Wind Percussion Keyboard Electronic Mean

AP IoU ≥ 10 28.22 4.58 2.55 7.36 0 6.03

AP IoU ≥ 50 20.95 2.91 1.84 4.47 0 8.54

Table 6.6: Average Precision (%) obtained on the Minerva-5 benchmark.
We can observe that the fine-tuned model successfully de-
tects “Harps”, “Lutes” and “Violins”, whereas the detection of
“Shawns” and “Trumpets” can be improved.

Harp Lute Violin Shawn Trumpet Mean

AP IoU ≥ 10 55.60 36.51 12.21 1.75 1.3 21.47

AP IoU ≥ 50 46.80 26.93 7.64 1.01 1.07 16.69

Table 6.7: Average Precision (%) obtained on the Minerva-10 benchmark.
Similarly to what was presented in Table 6.6, we can again ob-
serve that the model successfully detects the first three most oc-
curring instruments within the dataset, whereas it appears to per-
form poorly on the remaining instrument classes.

Harp Lute Violin Shawn Trumpet Organ Rebec Lyre Horn Bagpipe Mean

AP IoU ≥ 10 46.88 33.74 6.73 0.59 1.83 6.1 0 0 0 0 9.58

AP IoU ≥ 50 39.81 25.40 4.82 0.59 0.14 6.1 0 0 0 0 7.68

Stringed

Wind

Keyboard

Percussion

Electronic

488

123

63

17

0

325

146

42

34

0

IoU ≥ 10

TP
FP

Stringed

Wind

Keyboard

Percussion

Electronic

412

89

47

15

0

401

182

58

36

0

IoU ≥ 50

TP
FP

Figure 6.5: True Positive (TP) vs False Positive (FP) analysis on the
Minerva-Hypernym benchmark for IoU ≥ 10 and IoU ≥ 50.

6.4.2 Qualitative Analysis

We now characterize the performance of the aforementioned fine-
tuned models from a qualitative perspective.

100 novel datasets for transfer learning

Harp

Lute

Violin

Trumpet

Shawn

163

107

65

4

4

71

97

46

0

0

IoU ≥ 10

TP
FP

Harp

Lute

Violin

Trumpet

Shawn

151

84

34

4

4

83

115

77

0

0

IoU ≥ 50

TP
FP

Figure 6.6: True Positive (TP) vs False Positive (FP) analysis on the
Minerva-5 benchmark for IoU ≥ 10 and IoU ≥ 50.

Harp
Lute

Violin
Organ

Bagpipe
Shawn

Trumpet
Horn

Rebec
Lyre

163
125

49
31

0
3
4

0
0
0

101
101

138
10

25
15

2
5

0
0

IoU ≥ 10

TP
FP

Harp
Lute

Violin
Organ

Bagpipe
Shawn

Trumpet
Horn

Rebec
Lyre

148
107

37
10

0
3
1
0
0
0

116
119

150
31

25
15

5
5

0
0

IoU ≥ 50

TP
FP

Figure 6.7: True Positive (TP) vs False Positive (FP) analysis on the
Minerva-Hypernym benchmark for IoU ≥ 10 and IoU ≥ 50.

Object Classification For the classification experiments, we keep
building on top of the study presented in the previous chapter and
perform a qualitative evaluation of the models that is based on the
visualization of saliency maps, as this allows us to investigate which
visual properties in the image are exploited by the networks for cor-
rectly classifying the instruments in MINERVA. We hereafter report
saliency maps that are obtained after fine-tuning an ImageNet pre-
trained ResNet50 model on the Minerva-Hypernym benchmark, and
that are computed with two different, gradient-based techniques: Grad-
CAM [223] and Grad-CAM ++ [37]. Examples of computed saliencies
are reported in Fig. 6.8. We can observe that the model focuses on
two broad types of regions within the image: properties of the instru-
ments themselves (which can be expected), but also the immediate
context of the instruments, and more specifically, the way they are
operated, handled, or presented. Let us, for example, consider the
“stringed instruments” category: as can be seen from the images in
the first and third row of Fig. 6.8, the network happens to focus more
on the strings of the instruments rather than on the, arguably more
representative, resonance body of the instrument (which is however
of interest in the second row of images). When it comes to the “per-
cussion instrument” represented in the fourth row and the “wind

6.4 results 101

instrument” represented in the last row, we can again observe that
the model considers the fingers handling the instruments at least as
important as the instruments themselves.

While saliency maps can produce appealing visual explanations
of the performance of neural networks, it is also worth noting that
the output of these methods should also be critically assessed. As
reported by Alqaraawi et al. [8] saliency maps do not always neces-
sarily explain the model’s predictions, and there is a large body of
work questioning their reliability [12, 214, 228]. Nevertheless, we also
believe that they can still be interesting to visually inspect, as long as
the resulting saliencies are taken with a grain of salt.

Figure 6.8: Saliency maps obtained after fine-tuning an ImageNet pre-
trained ResNet50 on the Minerva-Hypernym benchmark. The first
image corresponds to the original image, while the second and
fourth images, and the third and fifth images, respectively report
the performance of the Grad-CAM and Grad-CAM ++ methods.

Object Detection Regarding the models trained for object de-
tection, we visually investigate the quality of the predictions on the
IconArt dataset [73], a database of ≈ 6000 paintings that have been

102 novel datasets for transfer learning

collected with the aim of detecting classes that are specific to the anal-
ysis of artworks. Among such classes, IconArt tackles the detection of
“angels”, “Jesus” and “Mary”, or more simply “ruins”. IconArt how-
ever, does not come with any ground truth labels that are suitable
for the task of instruments detection, as the dataset has been built for
different purposes. Yet, musical instruments might still be depicted
within its images, and trying to detect them corresponds to a nice
proof of concept that can show the benefits of deploying MINERVA
pre-trained models to different artistic collections. In Fig. 6.9 we show
some successful examples of detections that were obtained after test-
ing the performance of a YOLO-V3 model that was fine-tuned on the
Minerva-Hypernym benchmark. We see that the model can success-
fully detect musical instruments within this new artistic collection, a
result that can be exploited by art historians interested in the study
of musical instruments.

Figure 6.9: Some examples of successful detections that have been ob-
tained on the IconArt dataset with a model fine-tuned on the
Minerva-Hypernym benchmark.

While these results are undoubtedly nice and encouraging, it is
arguably of even more considerable interest analyzing the model’s
erroneous detections. To this end, we have manually identified the in-
correct predictions and grouped them into different categories. This
process resulted in novel insights that, at least in part, explain the per-
formance of the models that we have quantitatively assessed in Sec.
6.4.1. First and foremost, we have noticed that the model strongly
gravitates towards the detection of “stringed instruments” (a result
which was already observed in Fig. 6.5) and that naturally stems from
the fact that, as also presented in Fig. 6.4, stringed instruments are by

6.4 results 103

far the most occurring type of instruments within MINERVA. How-
ever, we also believe that there are two more reasons which drive
such erroneous detections: the significant presence of dual, conic con-
tour curves of naked women’s bodies, which are reminiscent of the
resonance box of guitar-like instruments (see Fig. 6.10), and the pres-
ence of book-like objects that, just as instruments, are mostly depicted
next to hands and fingers (see Fig. 6.11). We have then also observed
that long, often martial objects such as swords, arrows, and spears
are mistakenly detected as “wind instruments”. We believe that the
reason for this is that the shape between such objects and the one of
instruments like “shawns”, is very similar, and sometimes even hard
to distinguish for the human eye (see Fig. 6.12). Lastly, we have no-
ticed that musical instruments are often mistakenly detected when
regular patterns or parallel grids of straight lines (e.g. folds in cloth-
ing or wheel spokes) are present within the images. We hypothesize
that the model associates these patterns to the presence of strings (see
Fig. 6.13) within stringed instruments.

Figure 6.10: Examples of false detections of “stringed instruments” within
some images representing “nudity” that are part of the IconArt
dataset.

Figure 6.11: Additional examples of false detections of “stringed instru-
ments” that are triggered by the presence of objects close to
hands and fingers.

104 novel datasets for transfer learning

Figure 6.12: Examples of false detections that are due to the strong resem-
blance between long martial objects and (mostly) “wind instru-
ments”.

Figure 6.13: Examples of geometrical patterns that mistakenly yield the de-
tection of instruments.

6.5 discussion and critical analysis

In this chapter, we have introduced MINERVA, the first sizable bench-
mark dataset for identifying and detecting musical instruments in
unrestricted, digitized images from the realm of the visual arts. We
hope that this dataset can serve as a novel test-bed for the computer
vision community as it provides, at least in part, a solution to some
of the challenges that currently define the field (see Sec. 6.1). Our
benchmark experiments have highlighted the feasibility of our newly
proposed classification and object detection tasks and served us for
further characterizing the degree of transferability of pre-trained con-
volutional neural networks. While, when it comes to the classification
experiments presented in the first part of Sec. 6.4.1, the obtained re-
sults are lower in terms of accuracy when compared to the classifica-
tion tasks that we tackled in the previous chapter, they nevertheless
provide strong evidence in favor of adapting transfer learning. At the
same time, these experiments also show how challenging the simple
task of image classification can be, as we believe there is definitively
room for improving the results presented in Tables 6.3 and 6.4. Simi-
larly, the results presented in the second part of Sec. 6.4.1 show that
it is equally possible to transfer models that have been initially built
for the detection of objects in natural images and to use them on
non-natural image distributions. We again believe that albeit satis-

6.6 future work : towards more benchmarks 105

fying results on MINERVA have been obtained by starting with an
MS-COCO weight initialization, better performance than the one re-
ported in Tables 6.5, 6.6 and 6.7 can be obtained. To this end, we
recommend taking into account the qualitative analysis that we pre-
sented in Sec. 6.4.2. Overall, our study is a first step towards creating
novel, arguably more challenging computer vision test-beds that we
hope can be used to further characterize the potential, and limitations,
of modern state-of-the-art neural networks. To this end, the method-
ological protocol that was used for the creation of MINERVA has
already inspired the development of new datasets and experimental
studies that will be briefly reviewed in the next section.

6.6 future work : towards more benchmarks

The work of Claes [41] has taken inspiration from the process that has
led to the development of MINERVA, and has used the Cytomine plat-
form for the creation of a novel object detection dataset that tackles
the problem of animals detection in paintings. The dataset, coming
with ≈ 8000 images distributed over 25 different animals classes, has
successfully been used for confirming some of the main results that
we presented throughout this chapter. More specifically, the good
transfer learning properties of object detectors have also been ob-
served when using models that, differently from the aforementioned
YOLO architecture, use region proposals and selective search tech-
niques for identifying possible locations of objects of interest within
images [70]. Furthermore, this work also shows the potential benefits
that could come from using feature extractors that instead of being
pre-trained on natural images, as was the case for the YOLO network
used throughout this study, are pre-trained on artistic collections in-
stead. Their study, which is in large part inspired by the research that
we have performed at the end of the previous chapter also shows
that the closer the source domain DS and the target domain DT, the
better the performance of a transferred model, therefore confirming
some of the conclusions that we had drawn for image classification
and generalizing them to object detection problems. We report some
of the successful detections of animals in artworks obtained by Claes
in Fig. 6.14.

To conclude, we hope that MINERVA, together with the dataset cre-
ated and benchmarked by Claes et al. [41] will push the Computer Vi-
sion community towards better identifying the transfer learning prop-
erties of convolutional neural networks. Furthermore, we also hope
that the Cytomine platform, that was so successfully used for creating
the aforementioned datasets, will in the future be used for developing
novel datasets outside from the digital heritage and digital pathology
domains.

106 novel datasets for transfer learning

Figure 6.14: Some examples of animal detections within artworks obtained
by Claes [41].

7
O N T H E T R A N S F E R A B I L I T Y O F L O T T E RY
W I N N E R S

Contributions and Outline

In Chapters 5 and 6, we have always performed Transfer Learn-
ing (TL) with large and deep convolutional neural networks, as this
is the type of models which have obtained state-of-the-art results in
the naturalistic domain. While all the studies presented so far aimed
at characterizing the TL properties of popular convolutional architec-
tures, we explore a different approach in this chapter. We use TL as
a tool for not only exploiting the performance of pre-trained neural
networks but also for characterizing a relatively new deep learning
phenomenon that comes with the name of the “Lottery Ticket Hy-
pothesis” (LTH). Specifically, we investigate whether lottery winners
found on datasets of natural images contain inductive biases that are
generic enough to generalize to non-natural image distributions. To
do so, we present the first results that study the transferability of win-
ning initializations in this particular training setting. Furthermore, we
also show that the LTH offers a novel way for doing TL when the
training data is scarce. The rest of this chapter is structured as fol-
lows: Sec. 7.1 introduces the LTH and presents the reasons that have
motivated studying this phenomenon from a TL perspective. Sec. 7.2
and Sec. 7.3 present the experimental setup that was used through-
out this chapter, while Sec. 7.4 and Sec. 7.5 present the main findings
of our research. The chapter ends by contextualizing its content with
respect to the existing literature in Sec. 7.6 and by identifying some
potential avenues for future work in Sec. 7.7.

This chapter is based on the publication Sabatelli, Kestemont, and Geurts
[208].

7.1 the lottery ticket hypothesis

The “Lottery-Ticket-Hypothesis” (LTH) [61] states that within large
randomly initialized neural networks, there exist smaller sub-networks
which, if trained from their initial weights, can perform just as well
as the fully trained unpruned network from which they are extracted.
This happens to be possible because the weights of these sub-networks
seem to be particularly well initialized before training starts, there-
fore making these smaller architectures suitable for learning (see Fig

107

108 on the transferability of lottery winners

7.1 for an illustration). These sub-networks, i.e., the pruned structure
and their initial weights, are called winning tickets, as they appear to
have won the initialization lottery. Since winning tickets only contain
a very limited amount of parameters, they yield faster training, infer-
ence, and sometimes even better final performance than their larger
over-parametrized counterparts [61, 62]. So far, winning tickets are
typically identified by an iterative procedure that cycles through sev-
eral steps of network training and weight pruning, starting from a
randomly initialized unpruned network. While simple and intuitive,
the resulting algorithm has, unfortunately, a high computational cost.
Even though the resulting sparse networks can be trained efficiently
and in isolation from their initial weights, the LTH idea has not yet
led to more efficient solutions for training a sparse network than ex-
isting pruning algorithms that all also require to first fully train an
unpruned network [51, 84, 137, 163, 301].

Figure 7.1: A visual representation of the LTH as introduced by Frankle
and Carbin [61]. Let us consider a simplified version of a two
hidden layer feedforward neural network as is depicted in the
first image on the left. The LTH states that within this neural
network, there exist multiple smaller networks (represented in
green), which can perform just as well as their larger counter-
part. Training these sparse models from scratch successfully is
only possible as long as their weights are initialized with the
same values that were also used when the larger (black) model
was initialized. Furthermore, the structure of these sparse mod-
els appears to be crucial as well, as it is not possible to randomly
extract any subset of weights from an unpruned model and suc-
cessfully train the resulting sparse network (represented in red
in the last figure) from scratch. We visually represent the perfor-
mance of models that are the winners of the LTH in the two plots
reported in Figure 7.2.

Since the introduction of the idea of the LTH, several research
works have focused on understanding what makes some weights
so special to be the winners of the initialization lottery. Among the
different tested approaches, which will be reviewed in Sec. 7.6, one
research direction, in particular, has looked into how well winning
ticket initializations can be transferred among different training set-

7.1 the lottery ticket hypothesis 109

0
.0

0
.2

0
.3

6

0
.4

8
8

0
.5

9

0
.6

7
2

0
.7

3
8

0
.7

9

0
.8

3
2

0
.8

6
6

0
.8

9
3

0
.9

1
4

0
.9

3
1

0
.9

4
5

0
.9

5
6

0
.9

6
5

0
.9

7
2

0
.9

7
7

0
.9

8
2

0
.9

8
6

0
.9

8
8

0
.9

9
1

0
.9

9
3

0
.9

9
4

0
.9

9
5

0
.9

9
6

0
.9

9
7

0
.9

9
8

0
.9

9
8

0
.9

9
8

0
.9

9
9

86

88

90

92

94

96

98

Fraction of Weights Pruned

A
cc

ur
ac

y
(%

)

MNIST

Baseline
Winning Ticket f (x; m� θ0)
Random Ticket f (x; m� θr)

0
.0

0
.2

0
.3

6

0
.4

8
8

0
.5

9

0
.6

7
2

0
.7

3
8

0
.7

9

0
.8

3
2

0
.8

6
6

0
.8

9
3

0
.9

1
4

0
.9

3
1

0
.9

4
5

0
.9

5
6

0
.9

6
5

0
.9

7
2

0
.9

7
7

0
.9

8
2

0
.9

8
6

0
.9

8
8

0
.9

9
1

0
.9

9
3

0
.9

9
4

0
.9

9
5

0
.9

9
6

0
.9

9
7

0
.9

9
8

0
.9

9
8

0
.9

9
8

0
.9

9
9

0

20

40

60

80

Fraction of Weights Pruned

A
cc

ur
ac

y
(%

)

CIFAR-10

Baseline
Winning Ticket f (x; m� θk)
Random Mask + Random θ

Figure 7.2: A visual representation of the performance of lottery winners
that replicate the findings first presented by Frankle and Carbin
[61]. In the first plot we consider a multilayer perceptron that gets
trained on the MNIST dataset. After the network gets trained
from scratch it obtains a final accuracy of ≈ 97% as reported by
the black line. We can observe that winning tickets f (x; m� θ0)
only start performing worse than the network they have been ex-
tracted from once a large fraction of their weights gets pruned.
We can also observe how crucial it is to re-initialize the weights
of the pruned models with the same weights that were used
when initializing the unpruned model from scratch (θ0). If ran-
dom weights are used instead (θr), the pruned masks appear
to be less robust to pruning (orange curve). In the second plot
we show, for a ResNet-50 architecture on the CIFAR-10 dataset,
how important it is for a pruned model to come in the form of
f (x; m� θk), where θk are the parameters obtained after k train-
ing epochs (k = 2 in this plot). Indeed, the red curve shows that
it is not possible to simply extract any random subset of weights
from a deep convolutional network and obtain a performance
that is robust to pruning after randomly initializing the parame-
ters of the model.

tings (datasets and optimizers), an approach that aims at characteriz-
ing the winners of the LTH by studying to what extent their inductive
biases are generic [164]. The most interesting findings of this study
are that winning tickets generalize across datasets, within the natural
image domain at least, and that tickets obtained from larger datasets
typically generalize better. This opens the door to the transfer of win-

110 on the transferability of lottery winners

ning tickets between datasets, which makes the high computational
cost required to identify them much more acceptable in practice, as
this cost has to be paid only once and can be shared across datasets.

In this chapter, we build on top of this latter work. While Morcos
et al. [164] focused on the natural image domain, we investigate the
possibility of transferring winning tickets obtained from the natural
image domain to datasets in non-natural image domains. This ques-
tion has an important practical interest as datasets in non-natural
image domains are typically scarcer than datasets in natural image
domains. They would, therefore, potentially benefit more from a suc-
cessful transfer of sparse networks since the latter can be expected to
require less data for training than large over-parametrized networks.
Furthermore, besides studying their generalization capabilities, we
also focus on another interesting property that characterizes models
that win the LTH, and which so far has received less research atten-
tion. As originally presented by Frankle and Carbin [61], pruned mod-
els, which are the winners of the LTH, can yield a final performance
that is better than the one obtained by larger over-parametrized net-
works. In this chapter we explore whether it is worth seeking such
pruned models when training data is scarce, a scenario that as re-
viewed in Chapter 4 is well known to constraint the training of deep
neural networks. To answer these two questions, we carried out exper-
iments on several datasets from two very different non-natural image
domains: digital pathology and, similarly to Chapters 5 and 6, digital
heritage.

7.2 datasets

We consider seven datasets that will serve as target domains DT,
and that come from two different, unrelated sources: histopathology
and digital heritage. Each dataset comes with its training, validation,
and testing splits. Furthermore, the datasets change in size, resolu-
tion, and amount of labels that need to be classified. We report an
overview about the size of these datasets in Table 7.1 while a visual
representation of the samples constituting these datasets is given in
Fig. 7.3. The Digital-Pathology (DP) data comes from the Cytomine

[148] web application, the same open-source platform that allowed
the creation of the MINERVA dataset described in the previous chap-
ter. While Cytomine has collected many datasets over the years, in
what follows, we have limited our analysis to a subset of four datasets
that all represent tissues and cells from either human or animal or-
gans. These datasets, which therefore correspond to the first four
target tasks TT that will be considered throughout this chapter are:
Human-LBA, Lung-Tissues, and Mouse-LBA (which were originally pro-
posed in [165]), and Bone-Marrow (which comes from [108]). All four
datasets have been used by Mormont, Geurts, and Marée [165], who,

7.3 experimental setup 111

as described in Chapter 4, researched whether neural networks pre-
trained on natural images could successfully be re-used in the DP
domain. In this chapter, we explore whether an alternative to their
transfer-learning approaches could be based on training pruned net-
works that are the winners of the LTH. This will allow us to investi-
gate the two research questions introduced in Sec. 7.1: we will explore
whether winning initializations that are found on datasets of natural
images do generalize to non-natural domains and whether sparse
models winners of the LTH can perform better than larger unpruned
models that get trained from scratch. Regarding the field of Digital-
Humanities (DH) we use three novel, small datasets that all revolve
around the target task TT that is the classification of artworks. We con-
sider two different target tasks that were already studied in Chapter
5, namely type and artist classification. When it comes to the latter
target task TT we use two different datasets, referred to as Artist 1

and Artist 2 , which purpose will be better explained in Sec. 7.5. All
images are publicly available as part of the WikiArt gallery [185] and
can also be found within the large popular OmniArt dataset [236].
Albeit as we have seen in Chapter 5 in DH it is possible to find large
datasets, which cannot be said for the field of histopathology, it is
worth mentioning that we have kept the size of these datasets inten-
tionally small in order to fit the research questions introduced in Sec.
7.1.

Table 7.1: A brief overview of the seven different datasets which have been
used in this work. As usual throughout this thesis Nt corresponds
to the total amount of samples that are present in the dataset,
while Qt represents the number of classes.

Dataset Training-Set Validation-Set Testing-Set Nt Qt

Human-LBA 4051 346 1023 5420 9

Lung-Tissues 4881 562 888 6331 10

Mouse-LBA 1722 716 1846 4284 8

Bone-Marrow 522 130 639 1291 8

Artist 1 3103 389 389 3881 20

Type 2868 360 360 3588 20

Artist 2 2827 353 353 3533 19

7.3 experimental setup

We follow an experimental set-up similar to the one that was intro-
duced in [164] (and that has been replicated and validated by Gohil,
Narayanan, and Jain [72]). Let us define a neural network f (x; θ) that
gets randomly initialized with parameters θ0 ∼ Dθ and then trained
for j iterations over an input space X , and an output space Y . At the

112 on the transferability of lottery winners

Figure 7.3: Some image samples that constitute the non-natural image
datasets which have been used in this work. From left to right we
have the Human-LBA, Lung-Tissues, Mouse-LBA and Bone-Marrow

datasets, while finally we report some examples that represent
artworks which come from the field of digital heritage and that
are therefore similar to the images we have used for the experi-
ments reported in Chapters 5 and 6.

end of training a percentage of the parameters in θj gets pruned, a
procedure which results in a mask m. The parameters in θj which did
not get pruned are then reset to the values they had at θk, where k rep-
resents an early training epoch. A winning ticket corresponds to the
combination between the previously obtained mask, and the parame-
ters θk, and is defined as f (x; m� θk)

1. Constructing a winning ticket
with parameters θk, instead of θ0, is a procedure which is known as
late-resetting [62], and is a simple but effective trick that makes it
possible to stably find winning initializations in deep convolutional
neural networks [62, 164]. In this study f (x; θ) comes in the form
of a ResNet-50 architecture [84] which gets trained2 on three popu-
lar Computer Vision (CV) natural image datasets serving as source
domains DS: CIFAR-10/100 and Fashion-MNIST (see Fig. 7.4 for a
visualization). Following [84, 164], 31 winning tickets f (x; m� θk) of
increasing sparsity are obtained from each of these three datasets by
repeating 31 iterations of network training and magnitude pruning
with a pruning rate p of 20%. Specifically, given a tensor T repre-
senting the unpruned parameters in a layer, at each pruning iteration
we first train the network for several epochs (using early stopping
on the validation set), and then remove all entries in channel c along
dimension d defined as:{

T[...,c,...] : cth

(
{T[...,i,...]}

|d|
i=1

∣∣∣∣|| · ||1) ≤ p
}

, (7.1)

where cth is the relative rank of the cth channel of T along direction d
according to the L1 norm and p (= 0.2) is the pruning fraction. This
corresponds to the L1-structured pruning method of [173]. The pa-
rameters θk that define each of the 31 tickets are then taken as the

1 Note that this formulation generalizes the original version of the LTH [61] that we
have represented in Fig. 7.1, where a winning ticket is obtained after resetting the
unpruned parameters of the network to the values they had right after initialization,
therefore defining a winning ticket as f (x; m� θ0).

2 All hyperparameters are detailed in Appendix A.

7.3 experimental setup 113

Figure 7.4: The three natural datasets constituting the source tasks TS that
are necessary for finding winning tickets. From left to right sam-
ples from the CIFAR-10/100 and Fashion-MNIST datasets.

weights of the corresponding pruned networks at the kth epoch of
the first pruning iteration, with k set to 2 in all our experiments. Once
these pruned networks are found, we aim at investigating whether
their parameters θk contain inductive biases that allow them to gen-
eralize to the non-natural image domain. To do so, we replace the
final fully connected layer of each winning ticket with a randomly
initialized layer that has as many output nodes as there are classes to
classify. We then fine-tune each of these networks on the non-natural
target tasks TT considered in this study. At the end of training, we
study the performance of each winning ticket in two different ways.
First, we compare the performance of each network to the perfor-
mance of a fully unpruned network that gets randomly initialized
and trained from scratch. Second, we also compare the performance
of winning tickets that have been found on a natural image dataset
to 31 new sparse models that are the winners of the LTH on the con-
sidered target dataset. Since it is not known to which extent pruned
networks that contain weights that are the winners of the LTH on a
natural image dataset can generalize to target domains DT that do
not contain natural images, we report the first results that investi-
gate the potential of a novel transfer-learning scheme which has so
far only been studied on datasets from the natural image domain.
Moreover, testing the performance of sparse networks that contain
winning tickets that are specific to a non-natural image target distri-
bution also allows us to investigate whether it is worth pruning large
networks with the hope of finding smaller models that might per-
form better than a large over-parametrized one. As mentioned in Sec.
7.1, pruned networks that are initialized with the winning weights
can sometimes perform better than a fully unpruned network. Iden-
tifying such sparse networks leads to a very significant reduction of
model size, which can be a very effective way of regularization when
training data is scarce.

114 on the transferability of lottery winners

7.4 results

The results of all our experiments are visually reported in the plots of
Fig. 7.5. Each line plot represents the final performance obtained by
a pruned model containing a winning ticket initialization on the final
testing set of our target datasets. This performance is reported on the
y-axis of the plots, while on the x-axis we represent the fraction of
weights that are pruned from the original ResNet-50 architecture. As
explained in the previous section, the performance of each winning
ticket is compared to the performance obtained by an unpruned, over-
parametrized architecture reported by the black lines. The models
that are the winners of the LTH on a natural image dataset are re-
ported by the green, red and purple lines, while the blue lines report
the winners of the LTH on a non-natural target dataset. Furthermore,
when it comes to the latter lottery tickets, we also report the perfor-
mance that is obtained by winning tickets that get randomly reini-
tialized (f (x; m � θ

′
0) with θ

′
0 ∼ Dθ). The orange lines report these

results.

7.4.1 On the Importance of Finding Winning Initializations

We can start by observing that pruned models which happen to be the
winners of the LTH either on a natural dataset or on a non-natural one
can maintain a good final performance until large pruning rates are
reached. This is particularly evident on the first two datasets, where
models that keep only ≈ 1% of their original weights barely suffer
from any drop in performance. On the other four datasets, the per-
formance of winning tickets from natural images remain high even
for large pruning rates, but winning ticket initializations that are di-
rectly found on the considered target dataset start getting harmed
once a fraction of ≈ 97% of original weights are pruned. Nonetheless,
these results show that an extremely large part of the parameters of a
ResNet-50 architecture can be considered superfluous, therefore con-
firming the LTH when datasets contain non-natural images. More im-
portantly, we also observe that pruned models winners of the LTH,
significantly outperform larger over-parametrized models that get
trained from scratch. This can be very clearly seen in all plots where
the performance of pruned models is always consistently better than
what is reported by the black line. To get a better sense of how much
these pruned networks perform better than their larger unpruned
counterparts, we report in Table 7.2 the performance that is obtained
by the best performing pruned model, found over all 31 possible
pruned models, and compare it to the performance of an unpruned
architecture. The exact fraction of weights which is pruned from an
original ResNet-50 architecture is reported in Table 7.3 for each con-
figuration. We can observe that no matter which dataset has been

7.4 results 115

used as source domain DS for finding a winning ticket initialization,
all pruned networks reach a final accuracy that is significantly higher
than the one that is obtained after training an unpruned model from
scratch directly on the target task TT. While in most cases, the differ-
ence in terms of performance is of ≈ 10% (see e.g., the Human-LBA,

Lung-Tissues and the Type datasets), it is worth highlighting that
there are other cases in which this difference is even larger. This is
the case for the Mouse-LBA and Artist 1 datasets where a winning
ticket coming from the CIFAR-10 dataset performs more than 20%
better than a model trained from scratch. These results show that to
maximize the performance of deep networks, it is always worth find-
ing and training pruned models that are the winners of the LTH.

Table 7.2: The results comparing the performance that is obtained on the
testing-set by the best pruned model winner of the LTH, and an
unpruned architecture trained from scratch. The overall best per-
forming model is reported in a green cell, while the second best
one in a yellow cell. We can observe that pruned models win-
ners of the LTH perform significantly better than a larger over-
parametrized architecture that gets trained from scratch. As can
be seen by the results obtained on the Mouse-LBA and Artist 1

datasets the difference in terms of performance can be particularly
large (≈ 20%). Results averaged over 5 different training runs ±1
std.

Target-Dataset Scratch-Training CIFAR-10 CIFAR-100 Fashion-MNIST Target-Ticket

Human-LBA 71.85±1.12 79.17±1.85 76.97±0.73 77.32±1.85 81.72±0.39

Lung-Tissues 84.75±0.81 88.90±1.97 87.61±0.90 87.61±0.11 90.48±0.16

Mouse-LBA 48.17±1.18 74.20±2.04 57.42±0.48 52.27±1.73 68.20±3.79

Bone-Marrow 64.66±1.36 71.75±3.36 69.87±0.39 68.77±0.39 72.55±0.46

Artist 1 45.88±0.42 66.58±1.54 65.55±1.79 63.88±0.12 58.74±1.92

Type 41.36±2.31 58.63±2.97 60.56±0.44 58.92±0.59 50.44±2.23

Table 7.3: Some additional information about the lottery winners which per-
formance is reported in Table 7.2. For each winning ticket we
report the fraction of weights that is pruned from an original
ResNet-50 architecture and that therefore characterizes the level
of sparsity of the overall best performing lottery ticket. The re-
sults in the Scratch-Training column are not reported as these are
unpruned models that are trained from scratch.

Target-Dataset Scratch-Training CIFAR-10 CIFAR-100 Fashion-MNIST Target-Ticket

Human-LBA - 0.945 0.79 0.886 0.832

Lung-Tissues - 0.977 0.977 0.672 0.965

Mouse-LBA - 0.972 0.893 0.738 0.931

Bone-Marrow - 0.866 0.988 0.931 0.914

Artist 1 - 0.972 0.993 0.991 0.931

Type - 0.991 0.931 0.995 0.963

116 on the transferability of lottery winners

0
.0

0
.2

0
.3

6

0
.4

8
8

0
.5

9

0
.6

7
2

0
.7

3
8

0
.7

9

0
.8

3
2

0
.8

6
6

0
.8

9
3

0
.9

1
4

0
.9

3
1

0
.9

4
5

0
.9

5
6

0
.9

6
5

0
.9

7
2

0
.9

7
7

0
.9

8
2

0
.9

8
6

0
.9

8
8

0
.9

9
1

0
.9

9
3

0
.9

9
4

0
.9

9
5

0
.9

9
6

0
.9

9
7

0
.9

9
8

0
.9

9
8

0
.9

9
8

0
.9

9
9

40

50

60

70

80

90

Fraction of Weights Pruned
A

cc
ur

ac
y

(%
)

Human-LBA

0
.0

0
.2

0
.3

6

0
.4

8
8

0
.5

9

0
.6

7
2

0
.7

3
8

0
.7

9

0
.8

3
2

0
.8

6
6

0
.8

9
3

0
.9

1
4

0
.9

3
1

0
.9

4
5

0
.9

5
6

0
.9

6
5

0
.9

7
2

0
.9

7
7

0
.9

8
2

0
.9

8
6

0
.9

8
8

0
.9

9
1

0
.9

9
3

0
.9

9
4

0
.9

9
5

0
.9

9
6

0
.9

9
7

0
.9

9
8

0
.9

9
8

0
.9

9
8

0
.9

9
9

70

75

80

85

90

95

Fraction of Weights Pruned

A
cc

ur
ac

y
(%

)

Lung Tissues

0
.0

0
.2

0
.3

6

0
.4

8
8

0
.5

9

0
.6

7
2

0
.7

3
8

0
.7

9

0
.8

3
2

0
.8

6
6

0
.8

9
3

0
.9

1
4

0
.9

3
1

0
.9

4
5

0
.9

5
6

0
.9

6
5

0
.9

7
2

0
.9

7
7

0
.9

8
2

0
.9

8
6

0
.9

8
8

0
.9

9
1

0
.9

9
3

0
.9

9
4

0
.9

9
5

0
.9

9
6

0
.9

9
7

0
.9

9
8

0
.9

9
8

0
.9

9
8

0
.9

9
9

0

20

40

60

80

Fraction of Weights Pruned

A
cc

ur
ac

y
(%

)

Mouse-LBA

0
.0

0
.2

0
.3

6

0
.4

8
8

0
.5

9

0
.6

7
2

0
.7

3
8

0
.7

9

0
.8

3
2

0
.8

6
6

0
.8

9
3

0
.9

1
4

0
.9

3
1

0
.9

4
5

0
.9

5
6

0
.9

6
5

0
.9

7
2

0
.9

7
7

0
.9

8
2

0
.9

8
6

0
.9

8
8

0
.9

9
1

0
.9

9
3

0
.9

9
4

0
.9

9
5

0
.9

9
6

0
.9

9
7

0
.9

9
8

0
.9

9
8

0
.9

9
8

0
.9

9
9

20

30

40

50

60

70

80

Fraction of Weights Pruned

A
cc

ur
ac

y
(%

)

Bone Marrow

7.4 results 117

0
.0

0
.2

0
.3

6

0
.4

8
8

0
.5

9

0
.6

7
2

0
.7

3
8

0
.7

9

0
.8

3
2

0
.8

6
6

0
.8

9
3

0
.9

1
4

0
.9

3
1

0
.9

4
5

0
.9

5
6

0
.9

6
5

0
.9

7
2

0
.9

7
7

0
.9

8
2

0
.9

8
6

0
.9

8
8

0
.9

9
1

0
.9

9
3

0
.9

9
4

0
.9

9
5

0
.9

9
6

0
.9

9
7

0
.9

9
8

0
.9

9
8

0
.9

9
8

0
.9

9
9

0

20

40

60

Fraction of Weights Pruned

A
cc

ur
ac

y
(%

)

Artist Classification 1

0
.0

0
.2

0
.3

6

0
.4

8
8

0
.5

9

0
.6

7
2

0
.7

3
8

0
.7

9

0
.8

3
2

0
.8

6
6

0
.8

9
3

0
.9

1
4

0
.9

3
1

0
.9

4
5

0
.9

5
6

0
.9

6
5

0
.9

7
2

0
.9

7
7

0
.9

8
2

0
.9

8
6

0
.9

8
8

0
.9

9
1

0
.9

9
3

0
.9

9
4

0
.9

9
5

0
.9

9
6

0
.9

9
7

0
.9

9
8

0
.9

9
8

0
.9

9
8

0
.9

9
9

10

20

30

40

50

60

70

Fraction of Weights Pruned

A
cc

ur
ac

y
(%

)

Type Classification

Baseline Winning Ticket f (x; m� θk)
Random Ticket f (x; m� θr) CIFAR-10

CIFAR-100 Fashion-MNIST

Figure 7.5: An overview of the results showing that sparse models that are
the winners of the LTH (represented by the coloured lines) sig-
nificantly outperform unpruned networks which get randomly
initialized and trained from scratch (dashed black line). This hap-
pens to be the case on all tested datasets, no matter whether a
winning initialization comes from a natural image source or not.
It is however worth mentioning that, especially on the biomed-
ical datasets, natural image tickets get outperformed by sparse
networks that that are the winners of the LTH on a biomedical
dataset. On the other hand this is not the case when it comes to
the classification of arts where natural image tickets outperform
the ones which are found within artistic collections.

7.4.2 On the Generalization Properties of Lottery Winners

We then investigate whether natural image tickets can generalize to
the non-natural setting, therefore accounting for the distribution shift
between domains D. Findings differ across datasets. When consid-
ering the datasets that come from the DP field, we can see that, in
three out of four cases, winning tickets that are found on a nat-
ural image dataset get outperformed by sparse winning networks
that come after training a model on the biomedical dataset. This is
particularly evident in the results obtained on the Human-LBA and

118 on the transferability of lottery winners

Lung-Tissues datasets, where the blue line plots consistently reach
the highest testing-set accuracy. When it comes to the Bone-Marrow

dataset, the difference in terms of performance between the best nat-
ural image ticket, in this case coming from the CIFAR-10 dataset, and
the one coming from the biomedical dataset, is less evident (see Ta-
ble 7.2 for the exact accuracies). Furthermore, it is worth highlighting
that on the Bone-Marrow dataset, albeit natural image models seem
to get outperformed by the ones found on the biomedical dataset,
the performance of the latter ones appears to be less stable once sub-
stantial pruning rates are reached. When it comes to the Mouse-LBA

dataset, these results slightly differ. In fact, this dataset corresponds
to the only case where a natural image source ticket outperforms a
non-natural one. As can be seen, by the green line plot, pruned mod-
els coming from the CIFAR-10 dataset outperform the ones found on
the Mouse-LBA dataset.

When focusing our analysis on the classification of arts, we see that
the results change significantly from the ones obtained on the biomed-
ical datasets. In this case, all of the natural image lottery winners, no
matter the source tasks TS they were initially found on, outperform
the same kind of models that were found after training a full network
on the artistic collection. We can see from Table 7.2 that the final test-
ing performance is similar among all of the best natural image tickets.
Similar to what has been noticed on the Bone-Marrow dataset, we can
again observe that tickets coming from a non-natural data distribu-
tion seem to suffer more from large pruning rates.

These results show both the potential and limitations that natural
image winners of the LTH can offer when fine-tuned on non-natural
images datasets. The results obtained on the artistic datasets suggest
that winning initializations contain inductive biases that are strong
enough to get at least successfully transferred to the artistic domain,
therefore confirming some of the claims that were made by Morcos
et al. [164]. However, it also appears that there are stronger limita-
tions to transferring winning initializations which were not observed
by Morcos and colleagues. In fact, our results show that on DP data,
the best strategy is to find a winning ticket directly on the biomedi-
cal dataset, and that winning initializations found on natural image
datasets, albeit outperforming a randomly initialized unpruned net-
work, perform worse than pruned models that are the winners of the
LTH on a biomedical dataset.

7.5 additional studies

To characterize the transferability of winning initializations even more
while at the same time gaining a deeper understanding of the LTH,
we have performed a set of three additional experiments which help
us characterize this phenomenon better.

7.5 additional studies 119

7.5.1 Lottery Tickets VS fine-tuned pruned models

So far, we have focused our transfer learning study on lottery tickets
that come in the form of f (x; m � θk), where, as mentioned in Sec.
7.3, θk corresponds to the weights that parametrize a neural network
at a very early training iteration. This formalization is, however, dif-
ferent from the transfer learning scenarios that we have described in
Chapter 4 and adapted in Chapters 5 and 6, where neural networks
get transferred with the weights that are obtained at the end of the
training process. We have therefore studied whether there is a differ-
ence in terms of performance between transferring and fine-tuning a
lottery ticket with parameters θk, and the same kind of pruned net-
work which is initialized with the weights that are obtained once the
network is fully trained on a source task TS. We define these kind of
models as f (x; m� θi) where i stays for the last training iteration. We
report some examples of this behaviour in the plots presented in Fig.
7.6, where we consider f (x; m � θi) models which were trained on
the CIFAR-10 and CIFAR-100 datasets, and then transferred and fine-
tuned on the Human-LBA dataset. We found that these models overall
perform worse than lottery tickets while also being less robust to
pruning. This also shows that on this dataset, the slightly inferior per-
formance of the natural image tickets with respect to the target tickets
is not due to the weight re-initialization.

7.5.2 Transferring tickets from similar non-natural domains

Inspired by the results obtained in Sec. 5.3.3 of Chapter 5 we investi-
gated whether it is beneficial to fine-tune lottery winners that come
from a related non-natural image distribution instead of a natural
dataset. Specifically we tested whether winning tickets generated on
the Human-LBA dataset generalize to the Mouse-LBA one (since both
datasets are representative of the field of Live-Blood-Analysis), and
whether lottery winners coming from the Artist 1 dataset general-
ized to the Artist 2 one. We visually represent these results in Fig.
7.7. We observed that winning tickets from a related source are work-
ing at least as well as winning tickets obtained from the target dataset.
Specifically, Human-LBA tickets can perform just as well as winning
tickets that are generated on the Mouse-LBA dataset, while at the same
time also being more robust to large pruning rates. When it comes to
lottery winners found on the Artist 1 dataset we observe that these
tickets outperform the ones generated on the Artist 2 one for all
pruning levels. Tickets from a related source are however not neces-
sarily better than tickets from natural image datasets. On Mouse-LBA,
Human-LBA tickets perform better than CIFAR-100 and Fashion-MNIST

tickets but they are outperformed by CIFAR-10 tickets for low prun-
ing levels. On Artist 2 , all natural image tickets perform better than

120 on the transferability of lottery winners

0
.0

0
.2

0
.3

6

0
.4

8
8

0
.5

9

0
.6

7
2

0
.7

3
8

0
.7

9

0
.8

3
2

0
.8

6
6

0
.8

9
3

0
.9

1
4

0
.9

3
1

0
.9

4
5

0
.9

5
6

0
.9

6
5

0
.9

7
2

0
.9

7
7

0
.9

8
2

0
.9

8
6

0
.9

8
8

0
.9

9
1

0
.9

9
3

0
.9

9
4

0
.9

9
5

0
.9

9
6

0
.9

9
7

0
.9

9
8

0
.9

9
8

0
.9

9
8

0
.9

9
9

40

50

60

70

80

90

Fraction of Weights Pruned

A
cc

ur
ac

y
(%

)

Human-LBA

Baseline
Winning Ticket f (x; m� θk)

CIFAR-10 f (x; m� θi)

0
.0

0
.2

0
.3

6

0
.4

8
8

0
.5

9

0
.6

7
2

0
.7

3
8

0
.7

9

0
.8

3
2

0
.8

6
6

0
.8

9
3

0
.9

1
4

0
.9

3
1

0
.9

4
5

0
.9

5
6

0
.9

6
5

0
.9

7
2

0
.9

7
7

0
.9

8
2

0
.9

8
6

0
.9

8
8

0
.9

9
1

0
.9

9
3

0
.9

9
4

0
.9

9
5

0
.9

9
6

0
.9

9
7

0
.9

9
8

0
.9

9
8

0
.9

9
8

0
.9

9
9

40

50

60

70

80

90

Fraction of Weights Pruned

A
cc

ur
ac

y
(%

)
Human-LBA

Baseline
Winning Ticket f (x; m� θk)

CIFAR-100 f (x; m� θi)

Figure 7.6: Our results showing the advantages of transferring lottery win-
ners over pruned models that are fully fine-tuned on natural
datasets (CIFAR-10/100). We can observe that their performance
is overall inferior to the one of lottery tickets and that these mod-
els are significantly less robust to pruning. We believe that the
reason behind their poor performance revolves around the fact
that, once completely trained on a specific source task, and after
having gone through the pruning stage, these models lose the
necessary flexibility that is required for them to adapt to a new
task.

the Artist 1 tickets. The better performance of natural image tickets
could be explained by the fact that they are extracted from signifi-
cantly larger datasets than winning tickets derived from the related
datasets. Their even stronger performance on the Artist 1 dataset
could furthermore be due to the fact that images from the DH do-
main are closer to natural images than images from the DP domain.

7.5.3 On the size of the training set

We have observed from the blue line plots of Fig. 7.5 that there are
cases in which lottery winners are very robust to extremely large
pruning rates (see as an example the first and second plots), while
there are other cases in which their performance deteriorates faster
with respect to the fraction of weights that get pruned. The most ro-
bust performance is obtained by winning tickets that are generated on
the Human-LBA and Lung-Tissues datasets, which are the two target

7.5 additional studies 121

0
.0

0
.2

0
.3

6

0
.4

8
8

0
.5

9

0
.6

7
2

0
.7

3
8

0
.7

9

0
.8

3
2

0
.8

6
6

0
.8

9
3

0
.9

1
4

0
.9

3
1

0
.9

4
5

0
.9

5
6

0
.9

6
5

0
.9

7
2

0
.9

7
7

0
.9

8
2

0
.9

8
6

0
.9

8
8

0
.9

9
1

0
.9

9
3

0
.9

9
4

0
.9

9
5

0
.9

9
6

0
.9

9
7

0
.9

9
8

0
.9

9
8

0
.9

9
8

0
.9

9
9

0

20

40

60

80

Fraction of Weights Pruned

A
cc

ur
ac

y
(%

)

Mouse-LBA

0
.0

0
.2

0
.3

6

0
.4

8
8

0
.5

9

0
.6

7
2

0
.7

3
8

0
.7

9

0
.8

3
2

0
.8

6
6

0
.8

9
3

0
.9

1
4

0
.9

3
1

0
.9

4
5

0
.9

5
6

0
.9

6
5

0
.9

7
2

0
.9

7
7

0
.9

8
2

0
.9

8
6

0
.9

8
8

0
.9

9
1

0
.9

9
3

0
.9

9
4

0
.9

9
5

0
.9

9
6

0
.9

9
7

0
.9

9
8

0
.9

9
8

0
.9

9
8

0
.9

9
9

0

20

40

60

80

Fraction of Weights Pruned

A
cc

ur
ac

y
(%

)

Artist 2

Baseline Winning Ticket f (x; m� θk)
CIFAR-10 CIFAR-100

Fashion-MNIST Related Ticket

Figure 7.7: Our results showing the benefits of transferring lottery winners
that have been identified on a related source task. We can observe
that on the Mouse-LBA dataset, winning tickets that were obtained
on the Human-LBA dataset are the ones that are the most robust
ones to pruning, while on the Artist 2 dataset we can observe
that lottery winners that have been obtained on the Artist 1

dataset are both more robust to pruning, while they also yield
overall better performance.

datasets that contain the largest amount of training samples. There-
fore, we have studied whether there is a relationship between the
size of the training data used for finding lottery winners and the ro-
bustness in terms of performance of the resulting pruned models. We
generated lottery winners after incrementally reducing the size of the
training data by 75%, 50% and 25%, and then investigated whether
we could observe a similar drop in performance like the one we have
observed in the last three blue line-plots of Fig. 7.5 once a large frac-
tion of weights got pruned. Perhaps surprisingly, we have observed
that this was not the case, and as can be seen, by the plots represented
in Fig. 7.8, the performance of lottery winners that are found when
using only 25% of the training set is just as stable as the one of win-
ning tickets which are generated on the entire dataset. However, it is
worth mentioning that, albeit the performance of such sparse models
is robust, their final performance on the testing set is lower than the

122 on the transferability of lottery winners

one obtained by winning tickets that have been trained on the full
training data distribution.

0
.0

0
.2

0
.3

6

0
.4

8
8

0
.5

9

0
.6

7
2

0
.7

3
8

0
.7

9

0
.8

3
2

0
.8

6
6

0
.8

9
3

0
.9

1
4

0
.9

3
1

0
.9

4
5

0
.9

5
6

0
.9

6
5

0
.9

7
2

0
.9

7
7

0
.9

8
2

0
.9

8
6

0
.9

8
8

0
.9

9
1

0
.9

9
3

0
.9

9
4

0
.9

9
5

0
.9

9
6

0
.9

9
7

0
.9

9
8

0
.9

9
8

0
.9

9
8

0
.9

9
9

70

75

80

85

90

95

Fraction of Weights Pruned

A
cc

ur
ac

y
(%

)

Lung-Tissues

0
.0

0
.2

0
.3

6

0
.4

8
8

0
.5

9

0
.6

7
2

0
.7

3
8

0
.7

9

0
.8

3
2

0
.8

6
6

0
.8

9
3

0
.9

1
4

0
.9

3
1

0
.9

4
5

0
.9

5
6

0
.9

6
5

0
.9

7
2

0
.9

7
7

0
.9

8
2

0
.9

8
6

0
.9

8
8

0
.9

9
1

0
.9

9
3

0
.9

9
4

0
.9

9
5

0
.9

9
6

0
.9

9
7

0
.9

9
8

0
.9

9
8

0
.9

9
8

0
.9

9
9

40

50

60

70

80

90

Fraction of Weights Pruned

A
cc

ur
ac

y
(%

)

Human-LBA

Baseline 100% of training data 75% of training data
50% of training data 25% of training data

Figure 7.8: Our study showing that the robustness to large pruning rates
of lottery winners does not depend from the size of the training
dataset. We can observe that even when lottery tickets are trained
on only 25% of the dataset their performance remains stable with
respect to the fraction of pruned weights. These results suggest
that the less stable performance of Bone-Marrow lottery tickets
observed in Fig. 7.5 does not depend from the small training set.

7.6 related work

The research presented in this chapter contributes to a better under-
standing of the LTH by exploring the generalization and transfer
learning properties of lottery tickets. The closest approach to what
has been presented in this work is undoubtedly the one presented by
Morcos et al. [164], which shows that winning models can generalize
across datasets of natural images and across different optimizers. As
mentioned in Sec. 7.3, a large part of our experimental setup is based
on this work. Besides the work presented in [164], there have been
other attempts that aimed to better understand the LTH after study-
ing it from a transfer learning perspective. However, just as the study

7.7 conclusion 123

presented by Morcos et al. [164], all this research limited its analysis to
natural images. Van Soelen and Sheppard [264] transfer winning tick-
ets among different partitions of the CIFAR-10 dataset, while Mehta
[153] shows that sparse models can successfully get transferred from
the CIFAR-10 dataset to other object recognition tasks. While these
results seem to suggest that lottery tickets contain inductive biases
which are strong enough to generalize to different domains, it is
worth highlighting that their transfer learning properties were only
studied after considering the CIFAR-10 dataset as a possible source
task TS for winning ticket initializations, a limitation which we over-
come in this chapter. It is also worth mentioning that the research
presented in this part of the dissertation is strongly connected to the
work presented by Frankle et al. [62]. While the first paper that intro-
duced the LTH limited its analysis to relatively simple neural archi-
tectures, such as multilayer perceptrons and convolutional networks,
which were tested on small CV datasets, the presence of winning
initializations in larger, more popular convolutional models such as
the ones that we used in Chapter 5 trained on large datasets [201]
was only first presented in [62]. Since we have used a ResNet-50 ar-
chitecture [91], we have followed all the recommendations that were
introduced by Frankle et al. [62] for successfully identifying the win-
ners of the LTH in larger models. More specifically, we mention the
late-resetting procedure, which resets the weights of a pruned model
to the weights that are obtained after k training iterations instead of
to the values which were used at the beginning of training (as ex-
plained in Sec. 7.3), a procedure which has shown to be related to
linear mode connectivity [63]. While the work presented in this chap-
ter has limited its analysis to networks that minimize an objective
function that is relevant for classification problems, it is worth noting
that more recent approaches have identified lottery winners in dif-
ferent training settings. Yu et al. [288] have shown that winning ini-
tializations can be found when neural networks are trained on tasks
ranging from natural language processing to reinforcement learning,
while Sun et al. [237] successfully identify sparse winning models
in a multi-task learning scenario. As future work, one could study
whether lottery tickets can be found on different neural architectures
and also whether they appear when neural networks are trained on
CV tasks other than classification. To this end, the YOLO-V3 architec-
ture used in Chapter 6 comes to mind, alongside CV tasks such as
object detection and image segmentation.

7.7 conclusion

We have investigated the transfer learning potential of pruned neural
networks that are the winners of the LTH from datasets of natural
images to datasets containing non-natural images. We have explored

124 on the transferability of lottery winners

this in training conditions where the size of the training data is rela-
tively small. All of the results presented in this chapter confirm that
it is always beneficial to train a sparse model, winner of the LTH, in-
stead of a larger over-parametrized one. Regarding our study on the
transferability of winning tickets, we have reported the first results,
which study this phenomenon under non-natural data distributions
by using datasets coming from the fields of digital pathology and
heritage. While for the case of artistic data, it seems that winning tick-
ets from the natural image domain contain inductive biases which
are strong enough to generalize to this specific domain, we have also
shown that this approach can present stronger limitations when it
comes to biomedical data. This probably stems from the fact that
DP images are further away from natural images than artistic ones.
We have also shown that lottery tickets perform significantly better
than fully trained pruned models, that it is beneficial to transfer lot-
tery winners from different but related, non-natural sources, and that
the performance of lottery tickets is not dependent on the size of
the training data. To conclude, we have provided a better character-
ization of the LTH while simultaneously showing that when train-
ing data is limited, the performance of deep neural networks can
get significantly improved by using lottery winners over larger over-
parametrized ones.

7.7 conclusion 125

Takeaway of Part II

This chapter ends the second part of this dissertation where we
have studied the transfer learning properties of convolutional neu-
ral networks trained for solving supervised learning problems. The
results presented throughout this part have consistently shown the
benefits that can arise from adopting transfer learning training strate-
gies, as over all its three chapters we have seen that convolutional net-
works can be generic and powerful feature extractors. We have also
seen that their final performance can usually be further improved if
a fine-tuning training approach is adopted, and how studying their
behavior under the lens of transfer learning allows to gain deeper in-
sights when such networks are combined with the phenomenon of
the Lottery Ticket Hypothesis. We now move on towards studying
the transfer learning properties of convolutional networks that get
trained for solving reinforcement learning tasks, with the aim of in-
vestigating whether this family of models is as transferable within
this machine learning paradigm as it is in the supervised learning
one.

Part III

T R A N S F E R L E A R N I N G F O R D E E P
R E I N F O R C E M E N T L E A R N I N G

You can put some informational part preamble text here.
Illo principalmente su nos. Non message occidental anglo-
romanic da. Debitas effortio simplificate sia se, auxiliar
summarios da que, se avantiate publicationes via. Pan in
terra summarios, capital interlingua se que. Al via multo
esser specimen, campo responder que da. Le usate medi-
cal addresses pro, europa origine sanctificate nos se.

8
T H E D E E P Q U A L I T Y- VA L U E L E A R N I N G FA M I LY O F
A L G O R I T H M S

Contributions and Outline

In the second part of this thesis we have thoroughly studied the
level of transferability of deep neural networks that get trained in
a supervised learning fashion. From the results of our studies we
concluded that significant benefits can come from using pre-trained
models over networks that get trained from scratch, and that trans-
fer learning can be a valuable machine learning paradigm for study-
ing the generalization properties of neural networks. In this third,
last part of this dissertation we will study whether adopting transfer
learning strategies can be as useful in a Deep Reinforcement Learn-
ing (DRL) context, where convolutional neural networks get trained
for solving optimal control problems. Before studying such transfer
learning properties, however, we will start by contributing to the DRL
literature by introducing a novel family of DRL algorithms. Therefore,
this chapter does not study DRL algorithms from a transfer learning
perspective yet, but rather introduces some novel techniques whose
transfer learning properties will be researched in the next chapter.
The structure of this chapter is the following: in Sec. 8.1 we remind
the reader with some background information about the field of DRL
and recall the mathematical notation that will be used throughout this
chapter. In Sec. 8.2 we introduce the main algorithmic contributions
of our research: a novel family of DRL algorithms the performance
of which is thoroughly studied from different perspectives in Sec. 8.3.
The chapter ends with Sec. 8.4 and Sec. 8.5 where we provide a set
of additional studies that characterize the performance of our newly
introduced algorithms further, and critically discuss their properties.

This chapter combines the work presented in the following publi-
cations: Sabatelli et al. [211], Sabatelli et al. [209], and Sabatelli et al.
[210]

8.1 motivation

In Chapter 3 we have seen that the aim of value-based Reinforcement
Learning (RL) is to construct algorithms which learn value functions
that are either able to estimate how good or bad it is for an agent to be
in a particular state, or how good it is for an agent to perform a par-
ticular action in a given state. Such functions are respectively denoted

129

130 the deep quality-value learning family of algorithms

as the state-value function V(s), and the state-action value function
Q(s, a) [240]. We have then seen that in Deep Reinforcement Learn-
ing (DRL) the aim is to approximate these value functions with e.g.,
deep convolutional neural networks [129], as these kind of networks
can serve as universal function approximators as well as powerful
feature extractors. Classic model-free RL algorithms like Q-Learning
[272], Double Q-Learning [260] and SARSA [200] have all led to the
development of a “deep” version of themselves in which the original
RL update rules are expressed as objective functions that can be min-
imized by gradient descent [162, 262, 291]. Despite their successful
applications [135], however, the aforementioned algorithms only aim
at approximating the Q function, while completely ignoring the V
function, which is an approach that is prone to issues that go back
to standard RL literature. As shown by Van Hasselt, Guez, and Sil-
ver [262] the DQN algorithm [162] is known to overestimate the val-
ues of the Q function and requires an additional target network to
not diverge (which role, as shown by Achiam, Knight, and Abbeel
[3], is not yet fully understood). These overestimations can partially
be corrected by the DDQN [262] algorithm (see Sec. 3.7 of Chapter
3), which, despite yielding stability improvements, does not always
prevent its Q networks from diverging [261] and sometimes even un-
derestimating the Q function. Furthermore, DRL algorithms are also
extremely slow to train. In what follows, we introduce a new family
of DRL algorithms based on the key idea of simultaneously learning
the V function alongside the Q function with two separate neural
networks. Our main insight is that by jointly approximating the V
function and the Q function, the task of learning one of these value
functions can be sped up if the model that is responsible for learn-
ing it, can rely on what is being learned by the model responsible
for learning the other value function. We show that this simple, yet
effective idea yields faster, more robust and better model-free Deep
Reinforcement Learning.

8.2 a novel family of deep reinforcement learning al-
gorithms

Just as much as DQN and DDQN are based on two tabular RL algo-
rithms, so is the new family of algorithms presented in this chapter.
More specifically we extend two RL algorithms which were first intro-
duced by Wiering [277] and then extended by Wiering and Van Has-
selt [278] to the use of deep neural networks that serve as function
approximators. Training these algorithms robustly is done by taking
advantage of some of the techniques which have been reviewed in
Chapter 3.

8.2 a novel family of deep reinforcement learning algorithms 131

8.2.1 DQV-Learning

Our first contribution is the Deep Quality-Value (DQV) Learning al-
gorithm, a novel DRL algorithm which aims at jointly approximating
the V function alongside the Q function in an on-policy learning set-
ting. This algorithm is based on the QV(λ) algorithm [277], a tabular
RL algorithm which was reviewed in Chapter 3 and that learns the
V function via the simplest form of TD-Learning [238]. The estimates
that are learned by this value function are then used to update the
Q function in a Q-Learning resembling way. Specifically, after a RL
transition 〈 st, at, rt, st+1 〉, QV(λ) uses the TD(λ) learning rule [238]
to update the V function for all states:

V(s) := V(s) + α
[
rt + γV(st+1)−V(st)

]
et(s), (8.1)

where α stands for the learning rate and γ is the discount factor, while
et(s) are the elibility traces [67, 181, 279] that are necessary for keep-
ing track if a particular state has occurred before a certain time-step
or not. These are updated for all states as follows:

et(s) = γλet−1(s) + ηt(s), (8.2)

where ηt(s) is an indicator function that returns a value of 1 whether
a particular state occurred at time t and 0 otherwise. Before updating
the V function, QV(λ) updates the Q function first, and does this via
the following update rule:

Q(st, at) := Q(st, at) + α
[
rt + γV(st+1)−Q(st, at)

]
. (8.3)

We take inspiration from this specific learning dynamic and aim at
learning an approximation of both the V function, and the Q function,
with two neural networks that are respectively parametrized by Φ
and θ. To do so, we follow the same principles which have led to the
development of the DQN algorithm. Therefore, starting from Eq. 8.1,
and after removing et(s) for simplicity, we get the following objective
function which is used by DQV for learning the state-value function:

L(Φ) = E〈st,at,rt,st+1〉∼U(D)

[(
rt + γV(st+1; Φ−)−V(st; Φ)

)2
]

,

(8.4)

while the following loss is minimized for learning the Q function
when starting from Eq. 8.3:

L(θ) = E〈st,at,rt,st+1〉∼U(D)

[(
rt + γV(st+1; Φ−)−Q(st, at; θ)

)2
]

,

(8.5)

where D is the Experience-Replay memory buffer, used for uniformly
sampling batches of RL trajectories 〈st, at, rt, st+1〉, and Φ− is the target-
network used for the construction of the TD-errors. Note that the role

132 the deep quality-value learning family of algorithms

of this target network is different from its role within the DQN algo-
rithm reviewed in Chapter 3. In DQV, this network corresponds to
a copy of the network which approximates the state-value function
and not the state-action value function. It is also worth noting that
both networks learn from the same TD-target which comes in the
following form:

yDQV
t = rt + γV(st+1; Φ−). (8.6)

8.2.2 DQV-Learning with Multilayer Perceptrons

We start by exploring whether this learning dynamic of jointly ap-
proximating two value functions simultaneously, and let the Q func-
tion bootstrap from the TD-targets that are learned from the V net-
work, can yield successful results on a set of preliminary experiments.
To do so, we use two classic control problems that are well known in
the RL literature: Acrobot [239] and Cartpole [15] with both envi-
ronments being provided by the Open-AI Gym package [29]. We ap-
proximate the V function and the Q function with a two hidden layer
Multilayer Perceptron (MLP) that is activated by a ReLU non linearity
(f (x) = max(0, x)) and compare the performance of DQV to the one
of the DQN and the DDQN algorithms, which use the same MLP but
for approximating the Q function only. Given the simplicity of these
two control problems we did not integrate DQV with the target net-
work Φ− yet. Our preliminary results reported in Fig. 8.1, show the
benefits that can come from training two separate networks with the
update rules reported in Eq. 8.4 and Eq. 8.5. We can in fact observe
that on both control problems DQV-Learning outperforms DQN and
DDQN, by converging significantly faster.

8.2.3 DQV-Max Learning

Based on the successful results presented in Fig. 8.1 that highlight the
potential benefits that could come from jointly approximating two
value functions over one, we now introduce the Deep Quality-Value-
Max (DQV-Max) algorithm, a novel DRL algorithm which builds on
top of some of the ideas that characterize DQV. Similarly as done
for DQV, we still aim at jointly learning an approximation of the V
function and the Q function, but in this case, the goal is to do this with
an off-policy learning scheme. To construct this algorithm we take
inspiration from the QV-Max RL algorithm introduced by Wiering
and Van Hasselt [278]. The key component of QV-Max is the use of
the max

a∈A
Q(st+1, a) operator, which makes RL algorithms learn off-

policy. We use this operator when approximating the V function and
for computing TD-errors which correspond to the ones that are also
used by the DQN algorithm. However, within DQV-Max, these TD-

8.2 a novel family of deep reinforcement learning algorithms 133

0 50 100 150 200
−600

−500

−400

−300

−200

−100

Episodes

R
ew

ar
d

Acrobot

0 50 100 150 200 250 300

0

50

100

150

200

Episodes

R
ew

ar
d

Cartpole

DQV DQN DDQN

Figure 8.1: Our preliminary results that show the benefits in terms of con-
vergence time that can come from jointly approximating the V
function alongside the Q function. We can observe that the DQV-
Learning algorithm yields faster convergence when compared
to popular algorithms which only approximate the Q function:
DQN and DDQN.

errors are used by the state-value network and not by the state-action
value network. This results in the following loss which is used for
learning the V function:

L(Φ) = E〈st,at,rt,st+1〉∼U(D)

[(
rt +γ max

a∈A
Q(st+1, a; θ−)−V(st; Φ)

)2
]

.

(8.7)

In this case the target network θ− corresponds to the same target net-
work that is also used by DQN. The TD-error rt + γ max

a∈A
Q(st+1, a; θ−)

is however only used for learning the V function. When it comes
to the Q function we use the same update rule that is presented in
Eq. 8.5 with the only difference being that in this case no Φ− target
network is used. Despite requiring the computation of two different
targets for learning, we noticed that DQV-Max did not benefit from
using two distinct target networks, therefore its loss function for ap-
proximating the Q function is simply:

L(θ) = E〈st,at,rt,st+1〉∼U(D)

[(
rt + γV(st+1; Φ)−Q(st, at; θ)

)2
]

.

(8.8)

The pseudocode of both DQV and DQV-Max is presented at the
end of this thesis in Algorithm 1 which can be found in Appendix
B. The pseudocode is an adaptation of a standard DRL training loop
which corresponds to what is usually presented within the literature
[162]. We just make explicit use of the hyperparameters total_a and
c which ensure that enough actions have been performed by the agent

134 the deep quality-value learning family of algorithms

before updating the weights of the target network. We also ensure via
the hyperparameter total_e, that enough episodes are stored within
the memory buffer (which has capacityN) before starting to optimize
the neural networks.

8.3 results

8.3.1 Global Evaluation

We evaluate the performance of DQV and DQV-Max on a subset of
15 games coming from the popular Atari-2600 benchmark [18]. Our
newly introduced algorithms are compared against DQN and DDQN.
To keep all the comparisons as fair as possible we follow the same ex-
perimental setup and evaluation protocol which was used in [162]
and [262]. The only difference between DQV and DQV-Max, and
DQN and DDQN is the exploration schedule which is used. Differ-
ently from the latter two algorithms, which use an epsilon-greedy
strategy which has an ε starting value of 1.0, DQV and DQV-Max’s
exploration policy starts with an initial ε value of 0.5. All other hyper-
parameters, ranging from the size of the Experience-Replay memory
buffer to the architectures of the neural networks, are kept the same
among all algorithms. We refer the reader to the original DQN pa-
per [162] for an in-depth overview of all these hyperparameters. The
performance of the algorithms is tested based on the popular no-op

action evaluation regime. At the end of the training, the learned poli-
cies are tested over a series of episodes for a total amount of 5 minutes
of emulator time. All testing episodes start by executing a set of par-
tially random actions to test the level of generalization of the learned
policies. We present our results in Table 8.1 where the best performing
algorithm is reported in a green cell while the second-best performing
algorithm is reported in a yellow cell. As is common within the DRL
literature, the table also reports the scores which would be obtained
by an expert human player and by a random policy. When the scores
over games are equivalent, we report in the green and yellow cells the
fastest and second fastest algorithm with respect to its convergence
time (determined by a visual inspection of the learning curves).

We can start by observing that DQV and DQV-Max successfully
master all the environments on which they have been tested, with
the only exception being the Montezuma’s Revenge game. It is well-
known that this game requires more sophisticated exploration strate-
gies than the epsilon-greedy one [58], and was also not mastered by
DQN and DDQN when these algorithms were introduced. We can
also observe that there is no algorithm which performs best on all
the tested environments even though, as highlighted by the green
and yellow cells, the algorithms of the DQV-family seem to gener-
ally perform better than DQN and DDQN, with DQV-Max being the

8.3 results 135

overall best performing algorithm in our set of experiments. When
either DQV or DQV-Max are not the best performing algorithm (see
for example the Boxing and Crazy Climber environments), we can
still observe that our algorithms managed to converge to a policy
which is not significantly worst than the one learned by DQN and
DDQN. There is however one exception being the Road Runner envi-
ronment. In fact, in this game, DDQN significantly outperforms DQV
and DQV-Max. It is also worth noting the results on the Bank Heist

and Enduro environments. Both DQN and DDQN failed to achieve
super-human performance on these games, while DQV and DQV-
Max successfully managed to obtain a significantly higher score than
the one obtained by a professional human player. On the Bank Heist

environment DQV and DQV-Max obtain ≈ 400 points more than an
expert human player, while on the Enduro environment their perfor-
mance is almost three times better than the one obtained by DQN
and DDQN.

Table 8.1: The results obtained by DQV and DQV-Max on a subset of 15

Atari games, compared with those obtained by DQN and DDQN
(reproduced from their corresponding publications). We can see
that our newly introduced algorithms have a comparable, and
often even better performance than DQN and DDQN. As high-
lighted by the green cells the overall best performing algorithm
in our set of experiments is DQV-Max while the second-best per-
forming algorithm is DQV (as reported by the yellow cells). Spe-
cific attention should be given to the games BankHeist and Enduro

where DQV and DQV-Max are the only algorithms which can mas-
ter the game with a final super-human performance.

Environment Random Human DQN [162] DDQN [262] DQV DQV-Max

Asteroids 719.10 13156.70 1629.33 930.60 1445.40 1846.08

Bank Heist 14.20 734.40 429.67 728.30 1236.50 1118.28

Boxing 0.10 4.30 71.83 81.70 78.66 80.15

Crazy Climber 10780.50 35410.50 114103.33 101874.00 108600.00 1000131.00

Enduro 0.00 309.60 301.77 319.50 829.33 875.64

Fishing Derby -91.70 5.50 -0.80 20.30 1.12 20.42

Frostbite 65.20 4334.70 328.33 241.50 271.86 281.36

Gopher 257.60 2321.00 8520.00 8215.40 8230.30 7940.00

Ice Hockey -11.20 0.90 -1.60 -2.40 -1.88 -1.12

James Bond 29.00 406.70 576.67 438.00 372.41 440.80

Montezuma’s Revenge 0.00 4366.70 0.00 0.00 0.00 0.00

Ms.Pacman 307.30 15693.40 2311.00 3210.00 3590.00 3390.00

Pong -20.70 9.30 18.90 21.00 21.00 21.00

Road Runner 11.50 7845.00 18256.67 48377.00 39290.00 20700.00

Zaxxon 32.50 9173.30 4976.67 10182.00 10950.00 8487.00

8.3.2 Convergence Time

While DRL algorithms have certainly obtained impressive results on
the Atari-2600 benchmark, it is also true that the amount of training

136 the deep quality-value learning family of algorithms

time which is required by these algorithms can be very long. Over the
years, several techniques reviewed in Sec. 3.7 of Chapter 3, ranging
from Prioritized Experience Replay (PER) [271] to the Rainbow exten-
sions introduced by Hessel et al. [96], have been proposed to reduce
the training time of DRL algorithms. It is therefore natural to inves-
tigate whether jointly approximating the V function alongside the Q
function can lead to significant benefits in this behalf. Unlike the Q
function

Qπ(s, a) = E

[∞

∑
k=0

γkrt+k

∣∣∣∣st = s, at = a, π

]
,

recall that the state-value function

Vπ(s) = E

[∞

∑
k=0

γkrt+k

∣∣∣∣st = s, π

]
,

is not conditioned on the set of possible actions that the agent may
take, and therefore requires fewer parameters to converge. Since DQV
and DQV-Max use the estimates of the V network to train the Q
function, it is possible that the Q function could directly benefit from
these estimates and as a result converge faster than when regressed
towards itself (as happens in DQN).

We use two self-implemented versions of DQN and DDQN for com-
paring the convergence time that is required during training by all
the tested algorithms on three increasingly complex Atari games:
Boxing, Pong and Enduro. Our results, reported in Fig. 8.2, show
that DQV and DQV-Max converge significantly faster than DQN and
DDQN, therefore confirming the preliminary results which we re-
ported in Fig. 8.1, and highlighting once again the benefits of jointly
approximating two value functions instead of one when it comes to
the overall convergence time that is required by the algorithms. Even
though, as presented in Table 8.1, DQV and DQV-Max do not always
significantly outperform DQN and DDQN in terms of the final cu-
mulative reward which is obtained, it is worth noting that these al-
gorithms require significantly less training episodes to converge on
all tested games. This benefit makes our two novel algorithms faster
alternatives within model-free DRL.

8.3.3 Quality of the Learned Value Functions

It is well-known that the combination of RL algorithms with function
approximators can yield DRL algorithms that diverge. The popular
Q-Learning algorithm is known to result in unstable learning both if
linear [257] and non-linear functions are used when approximating
the Q function [261]. As seen at the end of Chapter 3, this divergence
according to Sutton and Barto [240] is caused by the interplay of three
elements that are known as the ‘Deadly Triad’ of DRL. The elements
of this triad are:

8.3 results 137

0 200 400 600 800 1,000

−20

0

20

40

60

Episodes

R
ew

ar
d

Boxing

0 100 200 300 400 500

0

200

400

600

Episodes

R
ew

ar
d

Enduro

0 500 1,000 1,500

−20

−10

0

10

20

Episodes

R
ew

ar
d

Pong

DQV DQV-Max DQN DDQN

Figure 8.2: Learning curves obtained during training on three different
Atari games by DQV and DQV-Max, and DQN and DDQN. We
can observe that on these games both DQV and DQV-Max con-
verge significantly faster than DQN and DDQN and that they
obtain higher cumulative rewards on the Enduro environment.

• a function approximator: which is used for learning an approxima-
tion of a value function that could not be learned in the tabular
RL setting due to a too large state-action space.

• bootstrapping: when the algorithms use a future estimated value
for learning the same kind of estimate.

• off-policy learning: when a future estimated value is different
from the one which would be computed by the policy the agent
is following.

Van Hasselt et al. [261] have shown that the ‘Deadly Triad’ is respon-
sible for enhancing one of the most popular biases that characterize
the Q-Learning algorithm: the overestimation bias of the Q function
[260]. It is therefore natural to study how DQV and DQV-Max relate
to the ‘Deadly Triad’ of DRL, and to investigate up to what extent these
algorithms suffer from the overestimation bias of the Q function. To
do this we monitor the estimates that are given by the network that
is responsible for approximating the Q function. More specifically, at

138 the deep quality-value learning family of algorithms

training time, we compute the averaged max
a∈A

Q(st+1, a) over a set (n)

of full evaluation episodes as defined by

1
n

n

∑
t=1

max
a∈A

Q(st+1, a; θ). (8.9)

As suggested by Van Hasselt, Guez, and Silver [262] these estimates
can then be compared to the averaged discounted return of all visited
states that comes from an agent that has already concluded training.
By analyzing whether the Q values which are estimated while train-
ing differ from the ones which should be predicted by the end of
it, it is possible to quantitatively characterize the level of divergence
of DRL algorithms. We report our results in Figs. 8.3, 8.4, 8.5 and 8.6
where the black full lines correspond to the value estimates that come
from each algorithm at training time, while the coloured lines corre-
spond to the actual averaged discounted return that is given by an
already trained agent.

We can start by observing that the values denoting the averaged
discounted return obtained by each algorithm differ among agents.
This is especially the case when it comes to the Enduro environment,
and is a result which is in line with what has been presented in Ta-
ble 7.2: DQV and DQV-Max lead to better final policies than DQN
and DDQN. Furthermore, when we compare these baseline values to
the value estimates that are obtained during training, we can observe
that the ones obtained by the DQN algorithm significantly diverge
from the ones which should be predicted by the end of training. This
behavior is known to be caused by the overestimation bias of the Q
function which can be corrected by the DDQN algorithm. By analyz-
ing the value estimates of DQV and DQV-Max we can observe that
both algorithms produce value estimates which are more similar to
the ones computed by DDQN than to the ones given by DQN. This
is especially the case for DQV (Fig. 8.5). In fact, its value estimates
nicely correspond to the averaged discounted return baseline, both
on the Pong environment and on the Enduro environment. The esti-
mates coming from DQV-Max, however, seem to diverge more when
compared to DQV and DDQN’s ones. This is clearer on the Enduro

environment, where the algorithm does show some divergence (right
plot of Fig. 8.6). However, we can also observe that this divergence is
less strong when compared to DQN’s one. The value estimates of the
latter algorithm keep growing over time, while DQV-Max’s ones get
bounded while training progresses (see the two right plots of Fig. 8.3
and Fig. 8.6). This results in smaller estimated Q values. We believe
that there are mainly two reasons why our algorithms suffer less from
the overestimation bias of the Q function. When it comes to DQV, we
believe that this algorithm suffers less from this bias since it is an on-
policy learning algorithm. Such algorithms are trained on exploration
actions with lower Q values. Because of its on-policy learning scheme,

8.4 additional studies 139

DQV also does not present one element of the ‘Deadly Triad’, which
might help reducing divergence. When it comes to DQV-Max, we be-
lieve that the reason why this algorithm does not diverge as much as
DQN can be found in the way it approximates the Q function. One
key component of the ‘Deadly Triad’, is that divergence occurs if the
Q function is learned by regressing towards itself. As given by Eq. 8.8
we can see that this does not hold for DQV-Max, since the Q function
bootstraps with respect to estimates that come from the V network.
We believe that this specific learning dynamic, which also holds for
the DQV algorithm, makes our algorithms less prone to estimate large
Q values.

0 0.2 0.4 0.6 0.8 1
·104

0

0.5

1

1.5

2

Training Steps

V
al

ue
Es

ti
m

at
es

Pong

0 0.2 0.4 0.6 0.8 1
·104

0

5

10

15

Training Steps

V
al

ue
Es

ti
m

at
es

Enduro

DQN-True Value DQN-Estimated Value

Figure 8.3: Results investigating the extent to which the DQN algorithm suf-
fers from the overestimation bias of the Q function. We can ob-
serve that on the Pong environment during the early stages of
training, the max

a∈A
Q(st+1, a) estimates quickly grow, while on the

Enduro game the values estimated by the Q network keep in-
definitely growing, therefore making the algorithm significantly
diverge from the real return that is obtained by a trained agent.

8.4 additional studies

As introduced in Sec. 8.2 DQV and DQV-Max use two separate neu-
ral networks for approximating the Q function and the V function.
To verify whether two different architectures are needed for making
both algorithms perform well, we have experimented with a series
of variants of the DQV-Learning algorithm. The aim of these exper-
iments is that of reducing the number of trainable parameters that
are required by the original version of DQV, and investigate whether
its performance could get harmed when reducing the capacity of the
algorithm. The studied DQV’s extensions are the following:

1. Hard-DQV: a version of DQV which uses one single common
neural network for approximating both the Q and the V func-
tions. An additional output node (see Fig. 8.7a for an impression

140 the deep quality-value learning family of algorithms

0 0.2 0.4 0.6 0.8 1
·104

0

0.2

0.4

Training Steps

V
al

ue
Es

ti
m

at
es

Pong

0 0.2 0.4 0.6 0.8 1
·104

0

2

4

6

8

Training Steps

V
al

ue
Es

ti
m

at
es

Enduro

DDQN-True Value DDQN-Estimated Value

Figure 8.4: Results investigating the extent to which the DDQN algorithm
suffers from the overestimation bias of the Q function. We can
observe that compared to the analysis presented in Fig. 8.3, the
DDQN algorithm prevents its Q-Network from diverging since
on both Atari environments the max

a∈A
Q(st+1, a) estimates do not

diverge from the observed real return of a trained agent. These
results replicate the findings reported by Van Hasselt et al. [261].

0 0.2 0.4 0.6 0.8 1
·104

0

0.2

0.4

0.6

Training Steps

V
al

ue
Es

ti
m

at
es

Pong

0 0.2 0.4 0.6 0.8 1
·104

0

2

4

6

8

Training Steps

V
al

ue
Es

ti
m

at
es

Enduro

DQV-True Value DQV-Estimated Value

Figure 8.5: Results investigating the extent to which the DQV algorithm suf-
fers from the overestimation bias of the Q function. We can ob-
serve that the performance of the algorithm is similar to the one
observed in Fig. 8.4 for the DDQN algorithm. On both environ-
ments the estimated cumulative reward does not diverge from
the real return that is obtained by the end of training, therefore
suggesting that DQV-Learning does not suffer from the overes-
timation bias of the Q function. It is also worth noting the dif-
ference between the real return obtained by the DQN and the
DDQN algorithms on the Enduro environment, and the one ob-
tained by DQV. As can be seen by the black line, the real return
obtained by a DQV agent is higher than DQN and DDQN’s one,
a result which shows that DQV converges to a better policy than
DQN and DDQN.

8.4 additional studies 141

0 0.2 0.4 0.6 0.8 1
·104

0

0.2

0.4

0.6

Training Steps

V
al

ue
Es

ti
m

at
es

Pong

0 0.2 0.4 0.6 0.8 1
·104

0

5

10

15

Training Steps

V
al

ue
Es

ti
m

at
es

Enduro

DQV-Max-True Value DQV-Max-Estimated Value

Figure 8.6: Results investigating the extent to which the DQV-Max algo-
rithm suffers from the overestimation bias of the Q function. We
can observe that on the Pong environment the value estimates of
the algorithm are comparable to the ones of DDQN and DQV,
therefore showing that DQV-Max also diverges significantly less
than DQN. On the Enduro environment we can observe that the
algorithm does diverge, although, differently from what is re-
ported in Fig. 8.3 for the DQN algorithm, the max

a∈A
Q(st+1, a) es-

timates seem to converge towards an upper bound (≈ 15). Simi-
larly to what is reported in Fig.8.5 we can again observe that the
real return obtained by a trained agent is higher compared to the
one obtain by DQN, DDQN and DQV, therefore confirming the
results presented in Table 8.1 which see the DQV-Max algorithm
as the best performing algorithm on the Enduro game.

of the architecture), needed for estimating the value of a state,
is added next to the output nodes which estimate the different
Q values (one per action). The parameters of this algorithm are
therefore ‘hardly-shared’ among the agent, and provide the ben-
efit of halving the total amount of trainable parameters of DQV.
The different outputs of the network get then alternatively opti-
mized according to Eq. 8.4 and 8.5.

2. Dueling-DQV: a slightly more complicated version of Hard-DQV
which adds one specific hidden layer before the output nodes
that estimate the Q and V functions. In this case, the outputs
of the neural network which learn one of the two value func-
tions, partly benefit from some specific weights that are not
shared within the neural network. This approach is similar to
the one used by the ‘Dueling-Architecture’ presented by Wang
et al. [271], therefore the name Dueling-DQV. While it is well
established that three convolutional layers are needed [162, 262]
for learning the Q function, the same might not be true when
it comes to learning the V function. We thus report experi-
ments with three different versions of Dueling-DQV: Dueling-
1st, Dueling-2nd, and Dueling-3rd. The difference between these

142 the deep quality-value learning family of algorithms

methods is simply the location of the hidden layer which pre-
cedes the output that learns the V function. It can be positioned
after the first convolutional layer, the second or the third one
(see Fig. 8.7b). Training this architecture is done as for Hard-
DQV.

3. Tiny-DQV: the neural architectures used by DQV and DQV-Max
that approximate the V function and the Q function follow the
one which was initially introduced by the DQN algorithm [162].
This corresponds to a three-hidden layer convolutional neural
network which is followed by a fully connected layer of 512

hidden units. The first convolutional layer has 32 channels while
the last two layers have 64 channels. In Tiny-DQV we reduce
the number of trainable parameters of DQV by reducing the
number of channels at each convolution operation. Tiny-DQV
only uses 8 channels after the first convolutional layer and 16

at the second and third convolutional layers. Furthermore, the
size of the final fully connected layer is reduced to only 128

hidden units. The choice of this architecture is motivated by the
work presented in [261] which studies the role of the capacity of
the DDQN algorithm. Unlike the Hard-DQV and Dueling-DQV
extensions, the parameters of Tiny-DQV are not shared at all
among the networks that are responsible for approximating the
V function and the Q function.

(a) (b)

Figure 8.7: Two representations of convolutional neural networks which
jointly approximate the V function and the Q function with the
aim of reducing DQV’s learning parameters. On the left, an ar-
chitecture which simply adds one output node to the network
next to the output nodes which estimate the Q function. On the
right an architecture in which a specific hidden layer precedes
the output that is necessary for computing each value function.
When it comes to the V function we experiment with different
locations of such hidden layer, which is positioned after each
possible convolution block.

The results obtained by these alternative versions of DQV are pre-
sented in Figs. 8.8, 8.9 and 8.10 where we report the learning curves
obtained by the tested algorithms on six different Atari games. Each
DQV extension is directly compared to the original DQV algorithm.

8.5 discussion and conclusion 143

We can observe that all the extensions of DQV, which aim at reducing
the number of trainable parameters of the algorithm, fail in perform-
ing as well as the original DQV algorithm. Starting from Fig. 8.8 we
can observe that Hard-DQV does not only yield significantly lower
rewards (see the results obtained on Boxing) but also presents more
unstable training (as highlighted by the results obtained on the Pong

environment). Lower rewards and unstable training also character-
ize the Tiny-DQV algorithm (see results on Bank Heist and Crazy

Climber reported in Fig.8.10). Overall the most promising extensions
of DQV are its Dueling counterparts, we have observed in particular
that the best performing architecture over most of our experiments
was the Dueling-DQV-3rd one. As can be seen by the results reported
in Fig. 8.9 on the Pong environment we can observe that Dueling-DQV-
3rd has a comparable performance to DQV, even though it converges
slower. Unfortunately, Dueling-DQV-3rd still shows some limitations,
in particular when tested on more complicated environments such
as Enduro, we can observe that it under-performs DQV with ≈ 200

points. It is also worth mentioning that the idea of approximating the
V function before the Q function explored by Dueling-DQV-1st and
Dueling-DQV-2nd yielded negative results.

0 200 400 600 800 1,000

−20

0

20

40

60

Episodes

R
ew

ar
d

Boxing

0 500 1,000 1,500

−20

−10

0

10

20

Episodes

R
ew

ar
d

Pong

DQV Hard-DQV

Figure 8.8: Our results which aim to approximate the V and the Q function
with a unique, shared paramterized network, an approach that is
heavily inspired by multi-task learning studies that can be found
in supervised learning [34, 166, 293]. We can see that this exten-
sion of DQV, named Hard-DQV, significantly underperforms the
original DQV-Learning algorithm.

8.5 discussion and conclusion

We have presented two novel model-free DRL algorithms which in
addition to learning an approximation of the Q function also aim
at learning an approximation of the V function. We have compared
DQV and DQV-Max Learning to DRL algorithms which only learn

144 the deep quality-value learning family of algorithms

0 500 1,000 1,500

−20

−10

0

10

20

Episodes

R
ew

ar
d

Pong

0 100 200 300 400 500

0

200

400

600

Episodes

R
ew

ar
d

Enduro

DQV Dueling-DQV-1st Dueling-DQV-2nd Dueling-DQV-3rd

Figure 8.9: Our extensions of DQV that aim to reduce the amount of train-
able parameters of the algorithm by following an approach sim-
ilar to the one presented by Wang et al. [271] when “Dueling
Networks" for DRL have been introduced. We can observe that
among all the three Dueling-DQV extensions, only the Dueling-
DQV-3rd one yielded good performance, but as highlighted by
the results obtained on the Enduro environment, its performance
is still inferior when compared to the one of the original DQV
algorithm.

0 500 1,000 1,500 2,000 2,500 3,000

0

200

400

600

Episodes

R
ew

ar
d

Bank Heist

0 200 400 600 800 1,000
0

2

4

6

8

·104

Episodes

R
ew

ar
d

Crazy Climber

DQV Tiny-DQV

Figure 8.10: Learning curves obtained when reducing the capacity of the
convolutional networks that approximate the V and the Q func-
tions. We can observe that albeit each value function is approx-
imated with its own parametrized network, the tiny-dqv exten-
sion still yields worse performance. These results highlight that
it is not sufficient to simply have two separate neural networks
for DQV to perform well, but that a crucial role in DQV’s perfor-
mance is played by the capacity of the networks that are used
as well.

an approximation of the Q function, and showed the benefits which
come from jointly approximating two value functions over one. Our
newly introduced algorithms learn significantly faster than DQN and
DDQN and show that approximating both the V function and the Q

8.5 discussion and conclusion 145

function can yield significant benefits both in an on-policy learning
setting as in an off-policy learning one. This specific training dynamic
allows for a better learned Q function which makes DQV and DQV-
Max less prone to estimate unrealistically large Q values. All these
benefits come however at a price: to successfully learn two value
functions, two separate neural networks with enough capacity are
required.

In the coming chapter we will analyze the transfer learning proper-
ties of convolutional neural networks that get trained with the DQN,
DDQN and the newly introduced DQV-Learning algorithms.

9
O N T H E T R A N S F E R A B I L I T Y O F D E E P - Q
N E T W O R K S

Outline

Throughout the second part of this dissertation we have seen how
Transfer Learning (TL) has become an efficient machine learning
paradigm that allows overcoming some of the hurdles that charac-
terize the successful training of deep neural networks, ranging from
long training times to the needs of large datasets. While exploiting
TL is a well established and successful training practice in Super-
vised Learning (SL), its applicability in Deep Reinforcement Learn-
ing (DRL) is rarer. Therefore, in this chapter, we study the level of
transferability of three different variants of Deep-Q Networks on pop-
ular DRL benchmarks as well as on a set of novel, carefully designed
control tasks. Differently from what we have extensively observed in
Chapters 5, 6 and 7, we now show that transferring neural networks
in a DRL context can be particularly challenging and is a process
which in most cases results in negative transfer. In the attempt of
understanding why Deep-Q Networks transfer so poorly, we gain
novel insights into the training dynamics that characterizes this fam-
ily of algorithms. The chapter is structured as follows: we start with
a general introduction in Sec. 9.1 while we then move towards pre-
senting a large-scale TL study that considers agents that are trained
with the DQV and DDQN DRL algorithms and that get transferred
across different Atari games. The results of this study are critically
discussed and studied in Sec. 9.3 through the use of novel, carefully
designed control problems, that in Sec. 9.4 allow us to discover how
Deep-Q Networks tackle RL problems. The chapter finishes with Sec.
9.5 where we describe how its content contributes to the DRL transfer
literature.

This chapter is based on the following publication: Sabatelli and
Geurts [206].

9.1 introduction

In the previous chapter we have seen that neural networks can be
extremely successful in a model-free RL setting. Large part of their
success can be attributed to their ability of serving as feature extrac-
tors as well as function approximators, a property that allows them
to successfully learn optimal value functions [161, 162, 210, 262, 271,

147

148 on the transferability of deep-q networks

291], but also stochastic policies [66, 79, 136, 159, 220–222, 270], and
models of an environment [78, 80–82, 109] that as reviewed in Chap-
ter 3 is usually formalized as a Markov Decision Process (MDP) [187].
Despite the many remarkable achievements, training a DRL agent is
a process that can be very time-consuming. The task of solving an
optimal decision making problem is, in fact, a challenging problem
of its own, which is sometimes made even more difficult by the DRL
community itself, which requires DRL practitioners to test the perfor-
mance of their algorithms on benchmarks that are computationally
very expensive (for a position paper about this topic see [171]). One
way of overcoming the need of individually training a DRL agent
from scratch each time a new RL problem is encountered is based on
Transfer Learning (TL). Despite being largely adopted by the Super-
vised Learning (SL) community, as extensively documented through-
out the second part of this dissertation [49, 97, 104, 165, 207, 265], the
typical TL approaches reviewed in Chapter 4 such as off the shelf fea-
ture extraction, or fine-tuning [225], have rarely been thoroughly stud-
ied from a DRL perspective. Therefore, the degree of transferability
of DRL algorithms is not yet known. In this chapter, we keep focusing
on value-based, model-free algorithms, a family of techniques which
trains neural networks with the intent of learning an approximation
of an optimal value function. While several of such algorithms, com-
monly denoted as Deep-Q Networks, exist, research studying their TL
properties is, on the contrary scarce, and a clear answer to the ques-
tion “How transferable are Deep-Q Networks?” has yet to be given. In
the attempt to clearly answering this question, this chapter presents
the following three contributions:

• We present a first large scale empirical study that analyses the
TL properties of popular model-free DRL algorithms on the
Atari Arcade Learning Environment (ALE), where we show that
transferring pre-trained networks in a DRL context can be a
very challenging task.

• We design a set of novel, control experiments which allows us to
thoroughly characterize the TL dynamics of Deep-Q Networks.

• While studying Deep-Q Networks from a TL perspective, we
discover novel learning dynamics that provide a better under-
standing of how this family of algorithms deals with RL tasks.

9.2 a large-scale empirical study

In this section, we carry out a large-scale TL experiment on several
games from the Atari Environment (Sec. 9.2.1). The experimental pro-
tocol is detailed in Sec. 9.2.2 and results are discussed in Sec. 9.2.3.

9.2 a large-scale empirical study 149

9.2.1 The Atari Environments

In this study, we keep using the Atari Arcade Learning Environment
(ALE) [18] that was also used in Chapter 8. Next to being one of
the most popular benchmarks in DRL, the ALE is particularly well
suited for TL research as it allows to choose among a set of 57 Atari
games that can be used as source MS and target MT MDPs within
a deep transfer learning setting. Since training a model-free agent on
the games of the ALE is a process which can be computationally very
expensive, we have carefully selected a subset of 10 different environ-
ments. Numerous reasons guided the game selection process. First,
we have selected games for which we guarantee that a model-free
DRL agent can learn a good policy for. Since, as discussed by Lazaric
[126], one of the key requirements of TL is that of correctly identi-
fying and transferring knowledge across source and target tasks, we
naturally ensured that some knowledge coming in the form of neural
network parameters representing a near-optimal value function was
available for transfer. Second, while it is true that all of the selected
games result in an agent that can improve its policy over time, some
games were chosen because the learned policy resulted in a final per-
formance that was not on par with that of a human expert player.
This is, for example, the case of the Frostbite game, where the gap in
performance between an agent trained with our DQV-Learning algo-
rithm [211] (≈ 270) and a human expert player (≈ 4300) is particularly
significant (see Table 8.1 for a reminder). It follows that Frostbite is
an interesting target task for transfer, as the agent’s performance can
potentially be improved through TL. Furthermore, we have also en-
sured that among the selected games, some environments are more
similar to each other than others. This is, for example, the case for the
Ms. Pacman and Bank Heist games which, as can be seen in Fig. 9.1,
are two games where the state space is represented as a maze, and
where the end goal of an agent is that of learning how to navigate
it. In like manner, we have also included games that are very differ-
ent from each other as is, e.g., the case for the Crazy Climber and
Pong games, where it is clear from Fig. 9.2 that no visual similarities
are shared among the two environments. Including visually similar
and dissimilar games allows us to investigate whether, as is the case
for supervised learning, a source task is particularly well suited for
transfer if it is similar to its respective target task [154].

9.2.2 Experimental Setup

We investigate the TL performance of agents that get trained with
the DQV-Learning algorithm [207], and with the DDQN algorithm
[262]. We take models which come as pre-trained on 10 Atari games
and transfer them to all remaining environments. We mostly con-

150 on the transferability of deep-q networks

Figure 9.1: The visually similar
Ms Pacman and Bank

Heist games.

Figure 9.2: The highly different
Crazy Climber and
Pong games.

sider the same games for both algorithms (Bank Heist, Boxing, Crazy
Climber, Fishing Derby, Frostbite, James Bond, Ms. Pacman, Pong

and Zaxxon) with the only exception that for DDQN Frostbite is
replaced by Gopher, and Zaxxon is replaced by Ice Hockey as the
Frostbite and Zaxxon DDQN agents failed to improve their policy
whilst training. It is worth noting that TL is particularly easy to
perform as both algorithms learn an approximation of the optimal
state-action value function Q(s, a; θ) by training a convolutional neu-
ral network directly on the images representing the state of the game.
Since the state space across Atari games is always represented as an
84× 84× 4 tensor, it is straightforward to transfer the same neural
architecture among various Atari environments without needing spe-
cial modifications. However, the only modification that we apply to a
pre-trained network concerns its last layer responsible for estimating
the different Q values, which we always replace and randomly re-
initialize. Following the typical deep transfer learning literature, we
investigate whether in DRL it is as beneficial as it is in supervised
learning to transfer a network that comes as pre-trained on MS and
fine-tune it on MT. We do this by quantitatively assessing the trans-
fer learning benefits on each MS/MT pair by computing the area
ratio metric R [250]. Specifically, given a learning curve representing
the performance of an agent pre-trained onMS, and that of an agent
that is instead trained from scratch, we compute R as follows:

R =
area ofMS − area ofMT

area ofMT
. (9.1)

where the area under the curve is approximated via trapezoidal nu-
merical integration∫ b

a
f (x) dx ≈ (b− a) · 1

2
(f (a) + f (b)) (9.2)

and a and b correspond to the first and last training epochs respec-
tively.

9.2 a large-scale empirical study 151

9.2.3 Results

The results on each MS/MT pair for both the DQV and DDQN al-
gorithms are presented in Table 9.1. In each cell of the tables, we
report the area ratio metric defined in Eq. 9.1: the lower (resp. higher)
this score, the less (resp. more) beneficial it is to transfer and fine-
tune a pre-trained agent. When it comes to the DQV algorithm, we
can see that, out of nine target environments, there is only one Atari
game for which it is always beneficial to transfer and fine-tune a pre-
trained model: Fishing Derby. In fact, a positive area ratio score is ob-
tained no matter which source environment is used for pre-training,
although the best results have been obtained when starting from
an Enduro or Pong pre-trained network, which both resulted in an
area ratio score of ≈ 0.72. Positive transfer can also be observed on
the Frostbite and James Bond games, but only for a limited num-
ber of source games. For example, a Bank Heist pre-trained agent
transfers well to both target games as it obtains an area ratio score
of 0.729 and 0.973 respectively, but the same cannot be said for an
Enduro pre-trained network, which on Frostbite results in absent
transfer (the area ratio score is, in fact, −0.017), and yields nega-
tive transfer on James Bond (R = −0.41). We can also observe that
there are environments where it is surprisingly never beneficial to
transfer and fine-tune a pre-trained agent. This is, for example, the
case for the Bank Heist and Pong games, where independently from
which source game MS is used for pre-training, a negative area ra-
tio score is always obtained. Furthermore, it can also be observed
that transfer learning across environments is not symmetric, as one
source game MS can result in positive transfer when it gets trans-
ferred to a certain target game MT, but the same outcome is not
obtained when transfer is performed in the opposite direction. As
an example we can consider the Boxing/Fishing Derby games: pos-
itive transfer is obtained when transferring from Boxing→Fishing

Derby (R = 0.552), but negative transfer is obtained when transfer-
ring from Fishing Derby → Boxing (R = −0.893). When it comes
to the DDQN algorithm, similar conclusions can be drawn: we can
again observe that there are only very few cases for which it is bene-
ficial to transfer and fine-tune a pre-trained DRL agent. Examples of
such cases are networks that are pre-trained on Ice Hockey and James

Bond which get transferred to Boxing (R = 0.245 and R = 0.232 re-
spectively), or Boxing and Enduro models that get transferred to Pong

(R = 0.936 and R = 0.248). Bank Heist and Pong are again the two
target environments for which most of the transferred source models
resulted in negative transfer, while differently from the experiments
performed with the DQV algorithm, this time no positive transfer can
be observed on Fishing Derby. Overall, the process of fine-tuning
a pre-trained DDQN agent mostly results in absent transfer, as can

152 on the transferability of deep-q networks

Table 9.1: The results obtained when fine-tuning ten different pre-trained
agents (rows) on nine other Atari games (columns), with DQV
(top table) and DDQN (bottom table). Positive values (in green)
represent positive transfer, while negative values (in red) repre-
sent negative transfer. The darker the color, the higher the abso-
lute value of the area ratio score.

DQV BankHeist Boxing CrazyClimber Enduro FishingDerby Frostbite JamesBond MsPacman Pong Zaxxon

BankHeist - -0.019 -1 -0.317 0.5 0.729 0.973 -0.089 -1.238 -0.998

Boxing -0.494 - -0.278 -0.852 0.552 -0.01 0.247 -0.184 -0.841 -0.999

CrazyClimber -0.569 -0.261 - -0.593 0.19 0.277 0.621 -0.111 -1.206 -0.178

Enduro -0.571 -0.018 -0.25 - 0.726 -0.017 -0.41 -0.08 -0.466 -0.164

FishingDerby -1 -0.893 -0.093 -0.45 - 0.068 0.197 -0.136 -3.083 -0.999

Frostbite -0.933 0.024 -1 -0.348 0.222 - 0.569 0.009 -0.663 -0.076

JamesBond -0.123 -0.106 -0.131 -0.033 0.519 0.262 - 0.218 -1.329 -1

MsPacman -0.985 -0.219 -0.012 -0.494 0.6 0.346 0.398 - -1.646 -0.997

Pong -1 -0.083 -0.428 -0.476 0.725 -0.024 0.896 0.123 - -0.729

Zaxxon -0.76 -0.028 0.037 -0.116 0.385 0.16 -0.253 0.06 -1.602 -

DDQN BankHeist Boxing CrazyClimber Enduro FishingDerby Gopher IceHockey Jamesbond MsPacman Pong

BankHeist - 0.121 -0.378 -0.006 -0.107 0.042 -0.006 -0.058 0.001 -3.013

Boxing -0.316 - -0.104 -0 0.038 0.06 0.015 -0.225 -0.027 0.936

CrazyClimber -0.192 -0.487 - -0.012 -0.084 0.016 0.015 0.016 -0.015 -2.64

Enduro -0.296 0.193 -0.167 - 0.039 0.03 0.019 -0.235 -0.039 0.248

FishingDerby -0.212 -0.545 -1 -0.085 - 0.016 0.001 -0.055 -0.026 -0.935

Gopher -0.466 0.044 -0.108 -0.005 0.007 - -0.005 -0.094 -0.02 -1.816

IceHockey -0.046 0.245 -0.067 0.014 -0.178 0.072 - 0.037 -0.015 0.112

Jamesbond -0.145 0.232 -0.064 0.005 -0.267 0.031 -0.092 - -0.006 -1.578

MsPacman -0.173 -1.179 -0.129 -0.06 0.003 -0.019 0.007 0.071 - -2.774

Pong -0.127 0.028 -0.12 0.01 0.037 0.042 0.002 -0.174 -0.006 -

be observed by the area ratio scores obtained on Enduro, Fishing

Derby, Gopher and Ice Hockey which are all ≈ 0 on average.

9.3 control experiments

The results presented in the previous section seem to be questioning
the level of transferability of DRL agents. In fact, the training strat-
egy of fine-tuning a pre-trained model on MT does not result in the
same type of performance gains that we have extensively observed
throughout the second part of this dissertation. To better characterize
their TL properties, we have designed a set of simple control exper-
iments that allow us to examine their transfer learning behavior in
training conditions that do not require extraordinarily long training
times for learning an optimal policy.

9.3.1 The Catch Environments

To this end, we have implemented four different versions of the Catch

game, a simple RL task that was first presented by Mnih, Heess,
Graves, et al. [160], and that has been widely used within the liter-
ature for investigating the performance of DRL algorithms in a fast,
and computationally less expensive manner than the one required
by the Atari games [6, 283]. In the game of Catch, an agent con-
trols a paddle at the bottom of the environment, represented by a

9.3 control experiments 153

21 × 21 grid, and has to catch a ball falling from top to bottom,
which can potentially bounce off walls. At each time step, the agent
can choose between three actions: move the paddle one pixel to the
right, move it to the left, or do not perform any of the aforemen-
tioned actions, therefore keeping its paddle in the same position in
the grid. An RL episode ends either when the agent manages to catch
the ball, in which case it receives a reward of 1, or when it misses
the ball, which naturally results in a reward of 0. Following the de-
sign choices presented in [281], we model the ball to have vertical
speed of vy = −1 cell/s and horizontal speed of vx ∈ {−2,−1, 0, 1, 2}.
From now on, we will refer to this version of the game as Catch-v0,
as it is the most basic and simplest form of the game that will be
used throughout our experiments. Next to Catch-v0 we have imple-
mented three slightly different and arguably more complex versions
of the game as well: Catch-v1, where we increased the complexity
of the game by reducing the size of the paddle that the agent con-
trols. While for Catch-v0 its size is of five pixels, in Catch-v1 it is
of two pixels, therefore requiring the agent to be more precise if it
wants to successfully catch the falling ball. The second alternative
version of Catch is Catch-v2. In this case, the dynamics of the game
are identical to the ones that define Catch-v0; however, the way the
21× 21 grid is represented changes. While in Catch-v0 as well as in
Catch-v1 the state is represented by a binary grid where all pixels,
but the ones representing the paddle and the ball have a value of
0, in Catch-v2 the cells around the paddle and the ball can have a
random value between 0 and 255. This design choice makes it much

0 100 200 300

0.2

0.4

0.6

0.8

1

Epochs

%
of

ca
ug

ht
ba

lls

Catch-v0
Catch-v1
Catch-v2
Catch-v3

Figure 9.3: Image on the left: the four different versions of the Catch en-
vironment. In clockwise order: Catch-v0, Catch-v1, Catch-v3

and Catch-v2. Image on the right: learning curves obtained by a
DQN agent that is trained from scratch on the aforementioned
Catch versions. Shaded areas correspond to ±1 std. obtained
over 5 different random seeds.

harder for a convolutional network to correctly locate and identify
the position of the paddle and of the falling ball and makes Catch-v2
the arguably most complex version among the different Catch envi-

154 on the transferability of deep-q networks

ronments. Lastly, we have implemented Catch-v3, a version of Catch
which is identical to the one that is modeled by Catch-v0 with the
main difference that the representation of the state is now mirrored,
therefore requiring the agent to look at different parts of the grid if
it wants to locate the paddle, and understand that the ball is unnatu-
rally moving from the bottom to the top. For an impression of all four
Catch versions see the left image of Fig. 9.3. Given the overall simplic-
ity of the different Catch environments, we now train a DQN agent
instead of the arguably more complex DQV and DDQN agents that
we considered in Sec. 9.2. As we can see from the results reported in
the right plot of Fig. 9.3, averaged over five different runs, the agent is
able to successfully learn a near optimal policy for all Catch versions.
When it comes to Catch-v0, Catch-v2 and Catch-v3 we can observe
that by the end of training, the agent is able to catch ≈ 100% of the
falling balls, whereas its performance is slightly worse (≈ 90%) when
it comes to Catch-v1 1. We can also observe that among the different
Catch versions, Catch-v0 and Catch-v3 appear to be the easiest ones,
as the agent requires significantly less training episodes to converge
when compared to Catch-v1 and Catch-v2. Furthermore, in line with
the explanation presented beforehand, our results also confirm the
hypothesis that Catch-v2 is the overall most complicated Catch ver-
sion, as learning requires significantly more, and potentially unstable,
training epochs.

9.3.2 From one Catch to Another

We now replicate the TL study presented in Sec. 9.2 on the aforemen-
tioned Catch environments, with the hope of identifying why the
process of fine-tuning a pre-trained convolutional neural network in
a DRL context, seems to not be as beneficial as it is in the supervised
learning one. Our goal is to find at least one pair of Catch environ-
ments which results in positive transfer, and to then potentially iden-
tify some properties within the different Catch versions that could
also hold for the pairs of Atari games which have yielded positive
transfer in Tables 9.1 and 9.1. We formulate two hypothesis, based on
which, we expect to experimentally observe positive transfer. First,
we foresee that positive transfer will happen for all possible Catch

combinations, as in the end the source MDPMS and the target MDP
MT do not significantly differ from each other: in fact, the main task
across different Catch versions remains that of catching a falling ball;
the action space is identical; and so is the reward function that al-
ways returns a value of 1 when the agent succeeds in catching the

1 Please note that the performance on Catch-v1 can be improved by increasing the
complexity of the DQN agent by adding one more convolutional layer. However, as
the goal is to transfer the same type of model across Catch games, we did not modify
the architecture of the DQN agent, at the cost of having a slightly worse performing
model.

9.3 control experiments 155

falling ball. This hypothesis is also motivated by the results obtained
in Chapter 5 and 7 were we have shown that the higher the similarity
between the source domain DS and the target domain DT, the better
the performance of a transferred pre-trained network. Second, in the
case the previous hypothesis will not be empirically supported, we
expect to at least observe positive transfer when using a model that
comes as pre-trained either on Catch-v1 or on Catch-v2. In fact, as
described above and also shown by the performance reported in Fig.
9.3, these are the two most complicated versions of the Catch envi-
ronment. As reviewed in Chapter 4, in supervised learning one of
the main factors that makes a certain source task TS good for trans-
ferring is its complexity [154], which is usually defined in terms of
dataset size and number of classes to classify, therefore we expect
the complexity of the source game to play an important role within
DRL as well. Similarly to what we did for DQV and DDQN in Sec.
9.2, we take the four different models that have been trained from
scratch on their respective Catch version, randomly re-initialize their
last layer (responsible for estimating the different state-action values
Q(s, a)) and fully fine-tune the pre-trained network on the three re-
maining Catch environments. The results of this study are reported in

Table 9.2: The area ratio obtained after fine-tuning a pre-trained DQN agent
on the different Catch environments. We can see that no matter
which source game is used for pre-training, transfer learning sur-
prisingly never results in positive transfer.

Catch-v0 Catch-v2 Catch-v3 Catch-v4

Catch-v0 - -0.026 -0.486 -0.479

Catch-v2 -0.16 - -0.121 -0.248

Catch-v3 -0.406 -0.313 - -0.465

Catch-v4 -0.016 -0.24 -0.179 -

Fig. 9.4, where, from left to right, we show the performance that is ob-
tained when considering Catch-v0, Catch-v1, Catch-v2 and Catch-v3

as target MDP MT. The performance of each transferred network is
compared against the performance that is obtained after training a
DQN agent from scratch which matches with the results reported in
Fig. 9.3. Surprisingly we found that fine-tuning a pre-trained DQN
agent never resulted in positive transfer learning. This can clearly be
seen in all plots represented in Fig. 9.4 and by the results reporting
the area ratio metric in Table 9.2. The only case where starting from
a pre-trained network appeared to be at least in part beneficial is rep-
resented by the first plot of Fig. 9.4 when Catch-v1 is considered as
source MDP MS. In this case we can in fact observe some learning
speed improvements within the first 25 learning epochs. This is not
surprising as an agent which is able to catch a ball with a small pad-

156 on the transferability of deep-q networks

dle (as defined by the game Catch-v1) should in principle also be
able to do this when the size of its paddle is larger (which is the case
for Catch-v0). What is more surprising, however, is that while train-
ing progresses we see that the performance of a Catch-v1 pre-trained
model starts deteriorating and that this model barely converges to the
same performance that is obtained by a model trained from scratch.
When it comes to all otherMS/MT pairs we see that pre-trained net-
works always perform significantly worse than randomly initialized
models trained from scratch, with some extreme cases, as the one re-
ported in the last plot of Fig. 9.4, where a Catch-v0 pre-trained agent
is barely able to improve its policy over time at all. These results in-
validate our two hypotheses mentioned above as they clearly show
that positive transfer in DRL does not arise when MS and MT are
similar, nor whenMS is more complex thanMT.

0 50 100 150 200 250

0.2

0.4

0.6

0.8

1

Epochs

%
of

ca
ug

ht
ba

lls

Catch-v0

0 50 100 150 200 250

0.2

0.4

0.6

0.8

1

Epochs

Catch-v1

0 50 100 150 200 250

0.2

0.4

0.6

0.8

1

Epochs

Catch-v2

0 50 100 150 200 250
0.2

0.4

0.6

0.8

1

Epochs

Catch-v3

Catch-v0
Catch-v1
Catch-v2
Catch-v3

Figure 9.4: The results obtained after using a pre-trained Catch agent and
fine-tuning it on a different Catch version. We can observe that
despite all Catch versions being very similar no positive transfer
is ever observed, as a model trained from scratch always outper-
forms a pre-trained, fine-tuned network.

9.3.3 Self-Transfer

The surprisingly poor transfer learning performance observed in the
previous experiment made us question the level of transferability of
Deep-Q Networks even more. To further characterize their TL prop-
erties, we decided to investigate whether pre-trained DRL agents are
at least able to transfer to themselves. To this end, we studied what
happens when a DQN agent gets transferred to a version of Catch

that matches with the version of the game that was also used during
the pre-training stage. This experiment is in large part identical to
the one presented in Sec. 9.3.2, with the only difference being that
now MS = MT. Moreover, differently from the previous study, we
now also investigate what happens if instead of fine-tuning the net-
work completely, we just use the pre-trained DQN agent as a simple
feature extractor, therefore only training its last layer (the head) re-
sponsible for estimating the different state-action values. Our results
are presented in Fig. 9.5, where for each Catch version, the full lines
represent the performance of a network that is trained from scratch,
whereas the dashed and dotted lines respectively report the perfor-

9.4 the two learning phases of deep-q networks 157

Table 9.3: The area ratio scores obtained after performing self-transfer. We
can see that if only the last linear layer is trained, then positive
transfer is obtained on all Catch environments, whereas if the net-
work is fine-tuned, positive transfer is (in part) only obtained on
Catch-v2.

Catch-v0 Catch-v1 Catch-v2 Catch-v3

Only-Head 0.05 0.141 0.674 0.059

Fine-Tuning 0.017 -0.218 0.393 -0.236

mance that is obtained when the network is either used as simple fea-
ture extractor or entirely fine-tuned. We can see that if a pre-trained
Deep-Q Network is used as a simple feature extractor, the agent can
converge to the optimal policy almost immediately. In fact, as can
consistently be observed in all plots of Fig. 9.5 and from the results
presented in Table 9.3, training only the last layer of a pre-trained net-
work yields positive transfer for all different Catch versions. However,
when a fine-tuning training strategy is adopted, much more surpris-
ing results have been obtained. First, and more importantly, we can
see that despite all models showing some learning speed improve-
ments at early training iterations, their final performance is never on
par with the one that is obtained when the same kind of model is
either used as a feature extractor or trained from scratch (the dotted
lines are consistently below the dashed and full lines). While when
it comes to Catch-v0 the policy learned by a fine-tuned model still
allows the agent to successfully catch ≈ 95% of the falling balls,
the same cannot be said when the models are tested on Catch-v1,

Catch-v2 and Catch-v3, where the difference in terms of performance
between a model trained from scratch and a fine-tuned one is much
more significant. Please also note that special attention should be
given to Catch-v2, which is an environment where the area ratio score
reported in Table 9.3 can be misleading as it does not entirely reflect
the quality of the final policy learned by the agent. In fact, while it is
true that an R value of 0.393 is obtained, it is worth noting that a fine-
tuned network converges to a policy that is significantly worse than
the one of a network trained from scratch, as the agent is only able
of catching ≈ 80% of the falling balls. Second, as highlighted by the
large variance across different training runs, fine-tuning on Catch-v1

and Catch-v3 resulted in highly unstable learning as well.

9.4 the two learning phases of deep-q networks

As reviewed in Sec. 3.7 of Chapter 3 a prototypical Deep-Q Network
takes as input an image representing the state of the environment
and processes it through a series of convolutions and a fully con-
nected layer. When this is done, it outputs as many Q(s, a) values as

158 on the transferability of deep-q networks

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Epochs

%
of

ca
ug

ht
ba

lls

Catch-v0

Catch-v0

Only-Head
Fine-Tuning

0 50 100 150 200 250

0.2

0.4

0.6

0.8

1

Epochs

Catch-v1

Catch-v1

Only-Head
Fine-Tuning

0 100 200 300

0.2

0.4

0.6

0.8

1

Epochs

Catch-v2

Catch-v2

Only-Head
Fine-Tuning

0 50 100 150 200 250

0.2

0.4

0.6

0.8

1

Epochs

Catch-v3

Catch-v3

Only-Head
Fine-Tuning

Figure 9.5: The results of our self-transfer experiments. From left to right
the performance obtained on Catchv-0, Catch-v1, Catch-v2 and
Catch-v3 after either training only the last linear layer of a pre-
trained Deep-Q Network (dotted lines), or after wholly fine-
tuning the model (dashed lines). We can see that the former trans-
fer learning strategy yields significantly better results, and that a
fine-tuning approach results in networks that in three cases out
of four are not even able to transfer to themselves.

there are actions available to the agent, a process that corresponds to
learning a linear policy in the latent feature space of the network. It
follows that by the end of training, such a model has to serve two
purposes: it has to perform as a feature extractor as well as an op-
timal value function approximator. Extracting relevant features from
high dimensional inputs and learning an optimal value function can
arguably be seen as two separate tasks; yet, despite their dissimilarity,
we believe that they are more interconnected than one might expect.
Specifically, we hypothesize that while learning, a Deep-Q Network
has to carefully find a balance between training the parts that serve
as feature extractors and the components that are responsible for esti-
mating a policy. The poor TL performance observed throughout this
chapter could therefore be the result of using models where the fea-
ture extractor component of an agent, as it comes as pre-trained, is
too detached from the respective final layer of the network, which is
randomly initialized instead. To show that a Deep-Q Network has to
carefully coordinate training its feature extractor components and its
final layer, let us consider the left image of Fig. 9.6. The figure de-
picts how the weights of an agent, whose feature extractor layers are
represented by a square and the linear layer is represented through
circles, change according to the self-TL experiments presented in Sec.
9.3.3. Each experiment is represented through two networks, one on
the left side of the arrow representing the source model, and a second
one, on the right part of the arrow, obtained by the end of training.
From top to bottom, and from left to right, the first three network
pairs represent the training process of: a randomly initialized model
trained from scratch, a pre-trained model whose only last linear layer
is trained after random initialization, and a pre-trained agent who
gets fully fine-tuned. Following the results presented in Sec. 9.3.3,
we know that positive transfer is only obtained when the last lin-
ear layer is trained in isolation after being randomly re-initialized,

9.4 the two learning phases of deep-q networks 159

whereas negative transfer is obtained if a fine-tuning training strat-
egy is adopted.

Pre-training

<latexit sha1_base64="DPAl+5FDIlo1aNqhDjSdlH9OSW4=">AAAB/HicbVBNSwMxEM36WevXao9egkXwYtmVih6LXjxWsB/QLiWbTtvQbLIkWXFZ6l/x4kERr/4Qb/4b03YP2vpg4PHeDDPzwpgzbTzv21lZXVvf2CxsFbd3dvf23YPDppaJotCgkkvVDokGzgQ0DDMc2rECEoUcWuH4Zuq3HkBpJsW9SWMIIjIUbMAoMVbquaVuFMrHrK7gzCjCBBPDSc8texVvBrxM/JyUUY56z/3q9iVNIhCGcqJ1x/diE2REGUY5TIrdRENM6JgMoWOpIBHoIJsdP8EnVunjgVS2hMEz9fdERiKt0yi0nRExI73oTcX/vE5iBldBxkScGBB0vmiQcGwkniaB+0wBNTy1hFDF7K2Yjogi1Ni8ijYEf/HlZdI8r/jVysVdtVy7zuMooCN0jE6Rjy5RDd2iOmogilL0jF7Rm/PkvDjvzse8dcXJZ0roD5zPHz++lSs=</latexit>

Only-Head

<latexit sha1_base64="ktrRDOV6wYYBDWO/PcLuv8laXv8=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g0VwY0mkosuim+6sYB/QhjKZTNuh8wgzk2II/RM3LhRx65+482+ctllo64ELh3Pu5d57wphRbTzv2ymsrW9sbhW3Szu7e/sH7uFRS8tEYdLEkknVCZEmjArSNNQw0okVQTxkpB2O72Z+e0KUplI8mjQmAUdDQQcUI2Olvuv2eCifsnvB0os6QdG075a9ijcHXCV+TsogR6PvfvUiiRNOhMEMad31vdgEGVKGYkampV6iSYzwGA1J11KBONFBNr98Cs+sEsGBVLaEgXP190SGuNYpD20nR2akl72Z+J/XTczgJsioiBNDBF4sGiQMGglnMcCIKoINSy1BWFF7K8QjpBA2NqySDcFffnmVtC4rfrVy9VAt127zOIrgBJyCc+CDa1ADddAATYDBBDyDV/DmZM6L8+58LFoLTj5zDP7A+fwBjyiTng==</latexit>

Fine-Tuning

<latexit sha1_base64="+rqyRxoXTLTzbtrsH3jDbAHM4EU=">AAAB+3icbVDLSgMxFM34rPU11qWbYBHcWGakosuiIC4r9AXtUDJppg3NY0gy0jLMr7hxoYhbf8Sdf2PazkJbDwQO59zDvTlhzKg2nvftrK1vbG5tF3aKu3v7B4fuUamlZaIwaWLJpOqESBNGBWkaahjpxIogHjLSDsd3M7/9RJSmUjTMNCYBR0NBI4qRsVLfLfV4KCfpvY1fNBJBxTDru2Wv4s0BV4mfkzLIUe+7X72BxAknwmCGtO76XmyCFClDMSNZsZdoEiM8RkPStVQgTnSQzm/P4JlVBjCSyj5h4Fz9nUgR13rKQzvJkRnpZW8m/ud1ExPdBCkVcWKIwItFUcKgkXBWBBxQRbBhU0sQVtTeCvEIKYSNratoS/CXv7xKWpcVv1q5eqyWa7d5HQVwAk7BOfDBNaiBB1AHTYDBBDyDV/DmZM6L8+58LEbXnDxzDP7A+fwBPi2UlQ==</latexit>

Hybrid

<latexit sha1_base64="Q42bdIPlmtnORI0geihbyBwULHY=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVRY9FLz1WsB/QLiWbTdvQJLsm2eKy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRS0eJIrRJIh6pToA15UzSpmGG006sKBYBp+1gfDfz2xOqNIvkg0lj6gs8lGzACDZW8nsiiJ6yehooFk775YpbdedAq8TLSQVyNPrlr14YkURQaQjHWnc9NzZ+hpVhhNNpqZdoGmMyxkPatVRiQbWfzY+eojOrhGgQKVvSoLn6eyLDQutUBLZTYDPSy95M/M/rJmZw42dMxomhkiwWDRKOTIRmCaCQKUoMTy3BRDF7KyIjrDAxNqeSDcFbfnmVtC6q3mX16v6yUrvN4yjCCZzCOXhwDTWoQwOaQOARnuEV3pyJ8+K8Ox+L1oKTzxzDHzifP0ZjknA=</latexit>

0 200 400 600 800

0.2

0.4

0.6

0.8

1

Epochs

%
of

ca
ug

ht
ba

lls

Catch-v0
Catch-v4

Figure 9.6: Image on the left: a visualization of differently initialized Deep-Q
Networks before and after training. Image on the right: a success-
ful example of positive transfer.

We now investigate the TL performance of a model that is a combi-
nation of the Only-Head and Fine-Tuning settings (see bottom right
image of Fig. 9.6 for a visualization). Specifically, we fine-tune a Deep-
Q Network whose last linear layer is initialized with the parameters
that yielded positive transfer in Sec. 9.3.3 (Only-Head in Fig. 9.6),
whereas its convolutional and fully connected layers are initialized
with the parameters that yielded negative transfer (Fine-Tuning in
Fig. 9.6). We visualize the self-transfer performance of these models,
denoted as “Hybrid”, as they are a hybrid combination of two dif-
ferently pre-trained networks, in Fig. 9.7 with a cyan dashed dotted
line. We can observe that learning is characterized by a very atypical
behavior: the network starts by improving its performance (thanks to
the already trained final layer); it then goes through a second stage
where it starts to perform more poorly (due to the poor feature ex-
tractor part), and then finally starts learning stably (when the feature
extractor and the head of the model are synchronized). We believe
that the poor TL performance observed throughout this chapter is,
therefore, the result of models which could not find a balance be-
tween a randomly initialized head and their respective pre-trained
layers which are too biased towards the source task.

Based on these results, one critical question still remains to be an-
swered: how come positive transfer for some Atari games was ob-
served in Sec. 9.2?. We believe that the answer to this question does
not lie within the feature representations that a Deep-Q Network
learns, but rather in some inner properties of the environment that
is used as target task and that favors a Deep-Q Network to correctly
synchronize its components. As a proof of concept, we have created
one final Catch environment, called Catch-v4, which is identical to
Catch-v0 with the only difference being that a positive reward is re-
turned to the agent only if it manages to catch five falling balls in a

160 on the transferability of deep-q networks

row. We can see from the right image of Fig. 9.6 that a model trained
from scratch (represented by the purple line) is not able to improve
its policy over time at all, as the reward signal is probably too sparse
for learning, whereas a Catch-v0 model is now able to yield positive
transfer. We hence believe that some environments, if combined with
certain learning algorithms, are more prone to positive transfer than
others, as was, e.g., the case for Fishing Derby and DQV-Learning
where positive transfer was observed no matter what source task was
used for pre-training. This is not due to the representations that are
learned by a pre-trained network but rather because of some specific
dynamics within the target MDPMT.

0 50 100 150 200 250
0.2

0.4

0.6

0.8

1

Epochs

%
of

ca
ug

ht
ba

lls

Catch-v0

Catch-v0
Fine-Tuning

Hybrid Fine-Tuning

0 50 100 150 200 250

0.2

0.4

0.6

0.8

1

Epochs

Catch-v1

Catch-v1
Fine-Tuning

Hybrid Fine-Tuning

0 100 200 300

0.2

0.4

0.6

0.8

1

Epochs

Catch-v2

Catch-v2
Fine-Tuning

Hybrid Fine-Tuning

0 100 200 300

0.2

0.4

0.6

0.8

1

Epochs

Catch-v3

Catch-v0
Fine-Tuning

Hybrid Fine-Tuning

Figure 9.7: The performance (in cyan) of a fine-tuned pre-trained network
whose last layer is initialized with parameters that yielded posi-
tive transfer, whereas its convolutional and fully conntected lay-
ers are initialized with parameters that yielded negative transfer.

9.5 related work & conclusion

The closest research to the one presented in this chapter is certainly
that of Farebrother, Machado, and Bowling [56] and Tyo and Lipton
[258] that we reviewed in Sec. 4.4.2 of Chapter 3. In fact, both stud-
ies investigated the generalization properties of Deep-Q Networks in
a model-free DRL context. Our extensive experiments confirm some
of the preliminary claims that were made by the former about the
potentially poor TL properties of Deep-Q Networks, but contradict
the study of the latter, who suggested that fine-tuning DRL agents
results in positive transfer when moving from a simpler task to a
harder. While both works are certainly valuable, we also believe that
their experimental results are not as thorough and on par with the
ones of this study as they both considered a very limited number of
RL problems (four and three respectively), therefore leaving the ques-
tion “How transferable are Deep-Q Networks?” unanswered. We believe
that the answer to it is “barely”, but we also believe that their poor TL
properties, as well as the learning dynamics identified in Sec. 9.4, are
inherent to this family of algorithms only. In fact, it is worth noting
that several works describing the benefits of TL in RL do exist (Sec.
4.3.2 of Chapter 4): Tirinzoni, Sanchez, and Restelli [254] show that
it possible to successfully transfer value functions across tasks, yet
their work does not consider deep networks as function approxima-

9.5 related work & conclusion 161

tors but rather Gaussian mixtures. Parisotto, Ba, and Salakhutdinov
[175] show that it can be beneficial to fine-tune a pre-trained DRL
agent, but they consider multi-task learning and policy gradient al-
gorithms as a way of pre-training. Rusu et al. [202] also show that
fine-tuning can be beneficial, but in the context of progressive net-
works and again of policy gradient techniques. Similar conclusions
for Actor-Critic algorithms can also be found in the works of Zhu et
al. [299] and Chen et al. [38]. Furthermore, Landolfi, Thomas, and Ma
[122] and Sasso, Sabatelli, and Wiering [215] show that fine-tuning a
pre-trained network can be beneficial for DRL tasks, but for model-
based RL approaches, which are again part of a family of techniques
that is different from the ones analyzed throughout this dissertation.
To conclude, we would like to stress out that despite the overall poor
TL performance observed throughout this chapter, positive transfer
can nevertheless be obtained in a model-free DRL setup, and hope
that this work can serve as a solid starting point for the DRL commu-
nity which is interested in designing general and transferable agents.

10
C O N C L U D I N G R E M A R K S

Outline

This is the concluding chapter of this dissertation which is divided
in two parts: we start by answering the research questions that were
presented at the beginning of this work. Each question is answered
with respect to the research that has been presented throughout the
earlier chapters of this work and is followed by a brief critical conclu-
sion. We then move to the second part of this chapter, presented in
Sec. 10.2, where we will critically analyze how over the last decade,
the fields of supervised learning and reinforcement learning have
been affected by the rise of deep neural networks and give our per-
sonal interpretation of what the future of both research fields could
look like in the coming years.

10.1 answers to the original research questions

We now answer the research questions that we have introduced at the
beginning of this manuscript and that have served as inspiration for
all the work that has been presented throughout the thesis.

1. Can convolutional neural networks be transferred and trained across
different source and target domains? if so, which target domains could
be of interest for investigating their transfer learning properties?

The research presented in Chapters 5, 6 and 7 shows that when
it comes to supervised learning problems, convolutional neural
networks exhibit strong transfer learning properties. In Chapter
5, we have in fact seen that five popular neural architectures,
originally designed for tackling computer vision problems on
datasets containing natural images, can be transferred for tar-
getting classification problems that come from the field of digi-
tal heritage. Furthermore, we have also empirically shown that
all such pre-trained architectures, are able to learn features on
datasets of natural images that generalize to the non natural
image domain. Similar conclusions can also be drawn from the
results presented in Chapter 6, where we have shown that the
good transfer learning properties of convolutional neural net-
works go beyond the computer vision task of classification, and
also hold for object detection problems. Similarly to the research
presented in Chapter 5 we have again considered the field of

163

164 concluding remarks

digital heritage as target domain, as it offers numerous poten-
tially interesting practical applications such as the one modeled
by the MINERVA dataset. In Chapter 7, we have then seen that
an equally important target domain for exploiting the trans-
fer learning properties of pre-trained image classifiers is digi-
tal pathology, as it is a field that is potentially characterized by
a lack of appropriate training data, a hurdle that can strongly
limit the training process of a convolutional neural network.

While all the research presented in the second part of this the-
sis provides strong evidence in favour of transferring, and po-
tentially fine-tuning, pre-trained convolutional neural networks,
the same can however not be said for the results obtained in
Chapter 9, where we have instead seen that the transfer learn-
ing potential of such models can be much more limiting when
it comes to the model-free deep reinforcement learning domain.

2. What Transfer Learning training strategy should be adopted to maxi-
mize the performance of pre-trained networks?

As presented in Chapter 4, there are two main approaches for
performing transfer learning in the context of convolutional
neural networks: an off-the-shelf feature extraction approach,
and a fully fine-tuning approach. The research presented in
Chapter 5 clearly shows that when it comes to image classifi-
cation problems, the latter training strategy results in signifi-
cantly better final performance, as it allows networks to better
adapt to the target domain, and therefore learn new feature rep-
resentations that are relevant for the target task. The results of
this study served as inspiration for the research presented in
Chapter 6 where a fine-tuning training strategy was preferred
over an off-the-shelf approach when tackling object detection
problems and, in the end, resulted in models that were able
to successfully detect musical instruments in paintings. Surpris-
ingly, however, in Chapter 9 we have then seen that a fine-tuning
transfer learning approach can be detrimental in the context of
model-free deep reinforcement learning, as deep reinforcement
learning agents transfer very poorly across tasks and even to
themselfes. In the case of the latter, however, this only happens
if a fine-tuning training strategy is adopted, and not if the net-
works are used as simple feature extractors.

Despite the negative performance presented in Chapter 9 we
overall still believe that if enough computational resources are
available, pre-trained convolutional neural networks should al-
ways be fine-tuned, especially when it comes to supervised learn-
ing problems.

3. Can Transfer Learning be a valuable tool for better understanding con-
volutional neural networks?

10.1 answers to the original research questions 165

Throughout this thesis we have argued that convolutional neu-
ral networks should be studied from a transfer learning per-
spective, not only because this would allow practictioners to
know whether such algorithms could be deployed outside the
realm of natural images, but also because their transfer learning
properties could deliver novel insights into their inner proper-
ties. The research presented in Chapters 7 and 9 is a clear ex-
ample that shows that a better understanding of convolutional
neural networks can be obtained thanks to transfer learning. In
Chapter 7, we have used transfer learning as a tool for better
understanding the phenomenon of the Lottery Ticket Hypoth-
esis (LTH). This allowed us to show that pruned convolutional
neural networks winners of the LTH contain inductive biases
that are generic at least to some extent, and therefore gain a
deeper understanding of this deep learning phenomenon. In
Chapter 9, we have instead discovered that convolutional neu-
ral networks transfer very poorly when they get trained for
solving reinforcement learning tasks in a model-free deep re-
inforcement learning setting. With the intent of understanding
why their transfer learning potential was not on par with the
one that was extensively observed in Chapters 5 and 6, we have
gained novel insights that allowed us to show that models com-
monly denoted as Deep-Q Networks go through two very dis-
tinct training phases.

We therefore believe that transfer learning is an extremely valu-
able tool for better understanding neural networks, as it al-
lows to study their training process from a perspective which
is unique and that goes beyond that of models that get trained
from scratch.

4. Do different machine learning paradigms result in convolutional neu-
ral networks with different transfer learning properties?

Based on the significant gap in terms of performance between
the results obtained in the second part of this dissertation, and
the results obtained in the third part of this thesis, we strongly
believe that the answer to this research question is yes. Specif-
ically, we have seen that as long as convolutional neural net-
works are trained for solving supervised learning tasks, then
they will very likely exhibit strong transfer learning properties
(see Chapters 5 and 6). However, if such models will be used
for tackling deep reinforcement learning problems in a model-
free reinforcement learning context, then their transfer learning
potential will be much more limited. The reason of this is that
when it comes to supervised learnig, convolutional neural net-
works will only have to serve as feature extractors, whereas the
same cannot be said for model-free deep reinforcement learning,

166 concluding remarks

where such models have also to serve as optimal value function
approximators.

The transfer learning potential of convolutional networks is there-
fore highly dependant on the machine learning problem at hand,
although we also believe that the poor transfer learning prop-
erties observed in Chapter 9 are inherent to model-free deep
reinforcement learning algorithms only.

10.2 critical discussion & future perspectives

We now present a critical discussion which addresses some of the
limitations that currently characterize the fields of deep supervised
and deep reinforcement learning and see how they relate to possible
future work.

10.2.1 Deep Supervised Learning

Data and Computing Power Neural networks only require two
simple ingredients for tackling most of supervised learning problems:
1) large amounts of training data and 2) enough computational re-
sources. If both of such ingredients are available, we believe that
most supervised learning problems within Computer Vision can be
addressed successfully. While it is true that both ingredients can not
always be available to machine learning practitioners, it is also true
that as extensively demonstrated throughout the second part of this
thesis, one could overcome their scarcity thanks to deep transfer learn-
ing. We therefore disagree with Marcus [147] who at the present mo-
ment considers the deep learning field as too data hungry, and believe
that this is an issue that thanks to the availability of large pre-trained
models has been successfully addressed.

Convolutional Neural Networks and Vision Transformers
As extensively documented throughout this dissertation, when it comes
to classification and regression problems that are characterized by
high-dimensional and spatially organized inputs, convolutional neu-
ral networks have become the de facto neural architecture. Yet, the
last years have seen the emergence of a novel type of neural architec-
ture called Vision Transformers (ViTs) [52]. Next to obtaining overall
excellent performance in the domain of Computer Vision, ViTs also
appear to be requiring substantially fewer computational resources
for training. It is, therefore, natural to wonder whether this family of
models could in the future become as popular as convolutional neu-
ral networks are nowadays, and even if they could eventually replace
convolutional architectures completely. We certainly think that ViTs
will in the coming years gain in popularity, but also that their po-
tential within Computer Vision will highly depend from the transfer

10.2 critical discussion & future perspectives 167

learning properties that these models will show (a research direction
that at the present moment has not been thoroughly explored yet). We
therefore believe that a replication of the studies presented in Chap-
ters 5, 6 and 9 could certainly be of great interest to the Computer
Vision and Reinforcement Learning communities, and recommend
them as potential avenues for future work as recently explored by
Liu et al. [143].

10.2.2 Deep Reinforcement Learning

Tedious Hyperparameters In Chapter 3, we have seen that Deep
Reinforcement Learning (DRL) has gained a lot of attention from the
machine learning community over the last decade, as the number of
successful applications showcasing its potential have in fact become
countless, ranging from agents achieving super-human performance
on popular boardgames such as chess and go, to neural networks able
to autonomously navigate stratospheric balloons. To an untrained eye,
or more simply to a RL practitioner with few years of experience, suc-
cessfully training a DRL agent might look like a straightforward task.
However, behind the largely acclaimed accomplishments praised by
the DRL literature, there is an equivalently large, and mostly hidden,
process of hyperparameter tuning which is essential for successfully
training a neural network. Throughout this thesis, convolutional neu-
ral networks have been trained both in a supervised learning context
as well as in a reinforcement learning one, and we have in first per-
son experienced how unrobust and oversensitive such algorithms can
be when targeting the latter type of problems. This susceptibility, on
the contrary, was never encountered when tackling supervised learn-
ing tasks. We believe that at the present moment, despite all of its
remarkable achievements, DRL cannot yet be considered as a success-
ful application of convolutional neural networks. As long as a state
of the art Rainbow agent [96] can only get successfully trained if its
learning rate is set to the unintuitive value of 0.0000625, and a DRL
practitioner has to wait for weeks before being able to see a DQN
agent play certain games of the Atari Arcade Learning Environment
[109], we believe that DRL is far from being solved.

The Deadly Triad In Chapters 3 and 8, we have mentioned the
Deadly Triad of Deep Reinforcement Learning, a combination of three
elements, which if present within the same learning agent can result
into algorithms that diverge and are unable to learn an approximation
of an optimal value function. As one of the elements of the Deadly
Triad is function approximators, it naturally follows that the stability
of deep reinforcement learning algorithms will constantly be ques-
tioned by the deep learning community, which will regularly intro-
duce novel neural architectures in the coming years. This raises the

168 concluding remarks

natural question Which element of the triad should eventually be given
up when developing DRL algorithms?. So far, the community seems to
agree that giving up on function approximators is clearly not possi-
ble as neural networks will always play a crucial role in the develop-
ment of future DRL algorithms [57, 94, 261] thanks to their properties
that we discussed in Sec. 3.6 of Chapter 3. We agree with this point
of view and therefore believe that either off-policy learning or boot-
strapping should be given up: if the end goal is that of developing
algorithms that do not diverge whilst training we believe that it is
the off-policy learning element of the triad which should be with-
drawn during the development of novel DRL techniques. While this
could come at the price of restricting the number of possible policies
that could be learned by an agent, we believe that this is a problem
which could be controlled as long as agents will be combined with
proper exploration policies. The DQV-Learning algorithm presented
in Chapter 8 is an example of a DRL algorithm that can avoid diver-
gence through on-policy learning, while at the same time making use
of a neural network trained through temporal-difference learning.

Part IV

A P P E N D I X

A
H O W T O I D E N T I F Y L O T T E RY W I N N E R S

We hereafter report all the hyperparameters that have guided the
research presented in Chapter 7 and that could be of interest for
researchers interested in identifying pruned models winners of the
Lottery Ticket Hypothesis. In all of our experiments we have used a
ResNet-50 convolutional neural network which has the same struc-
ture as the one presented in [84]. We have chosen this specific archi-
tecture since it has proven to be successful both when used on DP
data [165] as on DH datasets [207]. Specifically when it comes to the
amount of strides, the sizes of the filters, and the number of output
channels, the residual blocks of the network come in the following
form: (1× 1, 64, 64, 256) × 3, (2×2, 128, 128, 512) × 4, (2×2, 256, 256,
1024) × 6, (2×2, 512, 512, 2048) × 3. The last convolution operation of
the network is followed by an average pooling layer and a final linear
classification layer which has as many output nodes as there is classes
to classify in our datasets. Since we only considered classification
problems, the model always minimizes the categorical-crossentropy
loss function. When feeding the model with the images of the datasets
discussed in Chapter 7 we extract a random crop of size 224× 224
and used mini-batches of size 64. No data-augmentation was used.
We train the neural network with the Stochastic Gradient Descent
(SGD) algorithm with an initial learning rate of 10−1. SGD is used in
combination with Nesterov Momentum ρ, set to 0.9, and a weight de-
cay factor α set to 10−5. Training is controlled by the early-stopping
regularization method which stops the training process as soon as
the validation loss does not decrease for five epochs in a row. When
it comes to the parameters used for pruning we follow a magnitude
pruning scheme as the one presented in [85] which has a pruning-rate
of 20%. In order to construct winning-tickets we have used the late-
resetting procedure with k = 2. We summarize all this information in
Table A.1.

171

172 how to identify lottery winners

Hyperparameter

Neural Network ResNet-50

Weight-Initialization Xavier

Optimizer SGD

Size of the mini-batches 64

Learning-rate 10−1

Momentum ρ 0.9

Decay-Factor α 10−5

Annealing-epochs [50, 60, 75]

Early-Stopping 5

Pruning-Rate 0.20

Late-resetting k 2

Table A.1: Hyperparameters for the experimental setup adopted in Chapter
7.

B
T H E D E E P Q U A L I T Y- VA L U E L E A R N I N G
A L G O R I T H M S

In this appendix, we report the pseudocode of the DQV-Learning and
DQV-Max Learning algorithms described in Sec. 8.2 of Chapter 8. The
DQV-Learning algorithm is also used for the transfer learning studies
presented in Sec. 9.2 of Chapter 9.

In Tables B.1, B.2 and B.3 we also summarize all the hyper-parameters
that we have used during the experiments reported in Chapters 8 and
9, ranging from the pre-processing values to the neural architectures.
We have followed the typical experimental setup that is usually re-
ported in the DRL literature [36, 162, 210, 271, 282] that trains Deep
Q-Networks on the Atari 2600 testbed.

Table B.1: Hyper-parameters used in all our experiments that use the DQV
and DQV-Max algorithms. All hyper-parameters coincide with
the ones used by e.g. DQN and DDQN with the only difference
being the epsilon greedy parameter ε that is set to 0.5 instead of
1.0. DQV-Learning is known to converge faster than these algo-
rithms [211], since it is based on an on-policy learning algorithm
[277]. Therefore it requires to explore less than typical off-policy
models.

Hyperparameter

Atari Arcade Learning Version Deterministic-v4

Frame-Skipping True

Reward Clipping [−1, 1]

Epsilon Greedy ε 0.5

Discount Factor γ 0.99

Pre-processing scheme 84× 84× 4

Q-optimizer RMSprop

Q Learning rate 0.00025

V-optimizer SGD

V Learning rate 0.001

Optimizer ρ 0.95

Optimizer ε 0.01

Memory size S 1M trajectories

173

174 the deep quality-value learning algorithms

Algorithm 1 DQV and DQV-Max Learning
Require: Experience Replay Queue D of maximum size N
Require: Q network with parameters θ . Network required by DQV
Require: V networks with parameters Φ and Φ− . Networks required by DQV
Require: Q networks with parameters θ and θ− . Networks required by DQV-Max
Require: V network with parameters Φ . Network required by DQV-Max
Require: total_a = 0

Require: total_e = 0

Require: c = 10000
Require: N = 50000
1: while True do
2: set st as the initial state
3: while st is not terminal do
4: select at ∈ A for st with policy π (using the epsilon-greedy strategy)
5: get rt and st+1
6: store 〈st, at, rt, st+1〉 in D
7: st := st+1
8: total_e += 1

9: if total_e = N then
10: sample a minibatch B = {〈si

t, ai
t, ri

t, si
t+1〉|i = 1, . . . , 32} of size 32 from

D
11: for i = 1 to 32 do
12: if si

t+1 is terminal then
13: yi

t := ri
t . TD-Error for DQV

14: vi
t := ri

t . 1st TD-Error for DQV-Max
15: qi

t := ri
t . 2nd TD-Error for DQV-Max

16: else
17: yi

t := ri
t + γV(si

t+1, Φ−) . TD-Error for DQV
18: vi

t := ri
t + γ max

a∈A
Q(si

t+1, a, θ−) . 1st TD-Error for DQV-Max

19: qi
t := ri

t + γ V(si
t+1, Φ) . 2nd TD-Error for DQV-Max

20: end if
21: end for
22: θ := arg min

θ
∑32

i=1(y
i
t −Q(si

t, ai
t, θ))2 . Train the Q network for DQV

23: Φ := arg min
Φ

∑32
i=1(y

i
t −V(si

t, Φ))2 . Train the V network for DQV

24: θ := arg min
θ

∑32
i=1(q

i
t −Q(si

t, ai
t, θ))2 . Train the Q network for

DQV-Max
25: Φ := arg min

Φ
∑32

i=1(v
i
t −V(si

t, Φ))2 . Train the V network for

DQV-Max
26: total_a += 1

27: if total_a = c then
28: Φ− := Φ . Update the target V network in DQV
29: θ− := θ . Update the target Q network in DQV-Max
30: total_a := 0

31: end if
32: end if
33: end while
34: end while

the deep quality-value learning algorithms 175

Table B.2: Architecture used by DQV-Learning for estimating the Q function,
the n parameter in the last layer of the network changes with
respect to the number of actions that is required by each different
Atari game. Please note that this architecture corresponds to a
typical Q network that is also used by popular algorithms like
DQN [162], DDQN [282] and Rainbow [96]

.

Layer Output Shape Param

Conv2D (None, 20, 20, 32) 8224

Conv2D (None, 9, 9, 64) 32832

Conv2D (None, 7, 7, 64) 36928

Flatten (None, 3136) 0

Dense (None, 512) 1606144

Dense (None, n) 1539

Activations ReLU

Table B.3: Architecture used for estimating the V function. This architecture
corresponds exactly to the one presented in Table B.2 with the
only difference being the last output layer which in this case is set
to one.

Layer Output Shape Param

Conv2D (None, 20, 20, 32) 8224

Conv2D (None, 9, 9, 64) 32832

Conv2D (None, 7, 7, 64) 36928

Flatten (None, 3136) 0

Dense (None, 512) 1606144

Dense (None, 1) 1539

Activations ReLU

C
R E I N F O R C E M E N T L E A R N I N G U P S I D E D O W N

In this appendix, we report some preliminary experiments that we
have performed in the context of Upside-Down Reinforcement Learn-
ing and reflect on the potential that this learning paradigm can offer
to the reinforcement learning community.

Despite many successes, it is clear that the combination of rein-
forcement learning algorithms and deep neural networks can present
some significant limitations. Throughout this dissertation we have
mainly focused on the aforementioned Deadly Triad phenomenon
and on the poor transfer learning properties of Deep-Q Networks
which both can limit the development of robust and general agents.
Next to these issues, DRL algorithms are characterized by numerous
other problems as well (the discussion of which is out of the scope of
this thesis) and that all mainly arise because tabular RL algorithms
are combined with function approximators [9, 65, 66, 121, 149, 257,
262]. Although the DRL community has been able to address most of
such issues successfully, we believe that the way optimal control prob-
lems are currently being solved by the DRL community might need
revision. In fact, we argue that most of the current DRL research fo-
cuses on introducing solutions that, albeit valuable, are only able to
solve very specific and limited problems to a (sometimes very) small
extent. As a result, very few DRL practitioners have been critically
questioning the long term value of modern DRL algorithms, and the
way RL problems are currently being addressed. An exception to this
common trend, however, has recently been introduced by Schmid-
huber [218] who proposed the idea of "Upside-Down Reinforcement
Learning" (UDRL). In UDRL the main goal is to solve typical Marko-
vian control problems via classic supervised learning techniques, and
to replace common RL concepts such as value function approxima-
tion and policy search, through maximum likelihood estimation tech-
niques. In principle this should be done by learning a mapping from
states to actions (see [234] for all the mathematical details), which
could overcome the need of learning an optimal value function or
stochastic policy. We agree with Schmidhuber’s ideas, and support
the goal of potentially solving optimal control problems via super-
vised learning techniques. In fact we strongly believe that DRL in its
current form is already reducing reinforcement learning problems to
supervised learning problems. As an example let us consider the role
of the experience replay memory buffer reviewed in Chapter 3 and
adopted by the DQV and DQV-Max Learning algorithms presented
in Chapter 8. We have seen that the role of experience replay is that

177

178 reinforcement learning upside down

of storing RL trajectories which can in a later moment be sampled
and used for minimizing the objective function of a Deep-Q Network.
By taking a critical look at this buffer, we can see that it is in large
part equivalent to the datasets that are typically used in supervised
learning: it needs to store a large amount of RL trajectories which can
then be used for modeling the task of learning a value function as a
regression problem where Y is modeled by the space of all TD-errors
stored within the buffer. The idea of constructing a dataset of previ-
ous trajectories is very far from the ideal RL setting reviewed at the
beginning of Chapter 3, where we have indeed seen that a RL agent
should be able to learn in an online fashion based on the last trajec-
tory only. We therefore believe that the successess obtained by DRL
stem from the fact that RL problems have been modeled as super-
vised learning ones, which as discussed in Sec. 10.2.1 are well suited
for deep neural networks.

We have experimented with some of the UDRL ideas presented in
[218, 234] and compared the performance of a preliminary version
of an UDRL agent to that of a DQN, DDQN and DQV agent on two
different benchmarks: the popular control problem Cartpole and the
Atari game Pong. We report the results of these very preliminary ex-
periments in Fig. C.1. We can see that on the Cartpole benchmark
the UDRL learns significantly better than all three model-free DRL
algorithms, but is unable to improve its policy over time at all when
it comes to the more complicated Pong game. These results show that
UDRL has definitely some potential, although furhter research will
be required to investigate whether this type of algorithm can scale
to more complicated problems. We believe that if such scaling issues
will be solved, then UDRL could become a valid alternative to pop-
ular DRL algorithms. More specifically we foresee that in the future
UDRL will find a successful application in the following three RL
areas: 1.

• Transfer Learning: as neural networks will not have to jointly
serve as optimal value function approximators and feature ex-
tractors, we believe that UDRL agents should in principle be
more suitable for transfer learning. In fact such models will not
have to go through the training dynamics that we have identi-
fied in Chapter 9, and will in essence be more similar to the
type of models that we have successfully transferred through-
out the second part of this dissertation (as they will be trained
according to supervised learning principles).

• Batch Reinforcement Learning: a common problem of current
DRL algorithms is that they suffer from a phenomenon known

1 Please note that these claims are at the present moment not empirically supported in
any way, and are made on top of some intuition that has been built after performing
the preliminary experiments presented in Fig. C.1.

reinforcement learning upside down 179

0 50 100 150 200 250 300

0

50

100

150

200

Episodes

R
ew

ar
d

Cartpole

0 500 1,000 1,500

−20

−10

0

10

20

Episodes

R
ew

ar
d

Pong

DQV DQN DDQN Upside-Down RL

Figure C.1: Two examples of an UDRL agent described by Schmidhuber
[218]. When combined with a multi-layer perceptron the agent
significantly outperforms the DQV, DQN and DDQN agents on
the Cartpole environment (left figure). However, it is unable to
improve its policy over time at all when trained on the Pong
game and combined with a convolutional neural network (right
figure).

as "extrapolation error" [65]. When such agents are trained in a
batch setting, they fail in improving their policy because the tra-
jectories contained within the experience replay memory buffer
have been collected by a different agent. This can pose numer-
ous practical issues as the process of collecting RL trajectories
can sometimes be particular expensive, therefore limiting the
potential interaction between the agent and its environment. As
UDRL technically overcomes the need of learning an optimal
value function, it follows that such agents should not suffer
from the extrapolation bias and could therefore generalize well
in a batch RL set-up.

• Interpretable Reinforcement Learning: the main training princi-
ple of UDRL agents of maximum likelihood estimation opens
the door to the use of supervised learning algorithms other
than deep neural networks. Deep neural networks are often
considered to be black boxes and highly uninterpretable mod-
els, which is a quality that when it comes to optimal decision
making problems could be desirable [167]. However, supervised
learning algorithms that are largely more interpretable than
neural networks do exist [28], and we therefore foresee that
these could be used in combination with UDRL in situations
where it is desirable to interpret the decisions taken by an agent.

B I B L I O G R A P H Y

[1] https://www.aspexit.com/neural-network-lets-try-to-

demystify- all- this- a- little- bit- 3- application- to-

images/.

[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geof-
frey Irving, Michael Isard, et al. “Tensorflow: A system for
large-scale machine learning.” In: 12th {USENIX} symposium
on operating systems design and implementation ({OSDI} 16). 2016,
pp. 265–283.

[3] Joshua Achiam, Ethan Knight, and Pieter Abbeel. “Towards
Characterizing Divergence in Deep Q-Learning.” In: arXiv preprint
arXiv:1903.08894 (2019).

[4] Sandro Ackermann, Kevin Schawinksi, Ce Zhang, Anna K
Weigel, and M Dennis Turp. “Using transfer learning to detect
galaxy mergers.” In: Monthly Notices of the Royal Astronomical
Society (2018).

[5] Charu C Aggarwal et al. Neural networks and deep learning. Springer,
2018.

[6] Samy Aittahar, Raphaël Fonteneau, and Damien Ernst. “Em-
pirical Analysis of Policy Gradient Algorithms where Start-
ing States are Sampled accordingly to Most Frequently Visited
States.” In: IFAC-PapersOnLine 53.2 (2020), pp. 8097–8104.

[7] Nancy Allen. “Collaboration through the Colorado digitiza-
tion project.” In: First Monday 5.6 (2000).

[8] Ahmed Alqaraawi, Martin Schuessler, Philipp Weiß, Enrico
Costanza, and Nadia Berthouze. “Evaluating saliency map ex-
planations for convolutional neural networks: a user study.”
In: Proceedings of the 25th International Conference on Intelligent
User Interfaces. 2020, pp. 275–285.

[9] Oron Anschel, Nir Baram, and Nahum Shimkin. “Averaged-
dqn: Variance reduction and stabilization for deep reinforce-
ment learning.” In: International conference on machine learning.
PMLR. 2017, pp. 176–185.

[10] Andrew Arnold, Ramesh Nallapati, and William W Cohen. “A
comparative study of methods for transductive transfer learn-
ing.” In: Seventh IEEE international conference on data mining
workshops (ICDMW 2007). IEEE. 2007, pp. 77–82.

181

https://www.aspexit.com/neural-network-lets-try-to-demystify-all-this-a-little-bit-3-application-to-images/
https://www.aspexit.com/neural-network-lets-try-to-demystify-all-this-a-little-bit-3-application-to-images/
https://www.aspexit.com/neural-network-lets-try-to-demystify-all-this-a-little-bit-3-application-to-images/

182 bibliography

[11] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and
Anil Anthony Bharath. “Deep reinforcement learning: A brief
survey.” In: IEEE Signal Processing Magazine 34.6 (2017), pp. 26–
38.

[12] Nishanth Arun, Nathan Gaw, Praveer Singh, Ken Chang, Mehak
Aggarwal, Bryan Chen, Katharina Hoebel, Sharut Gupta, Jay
Patel, Mishka Gidwani, et al. “Assessing the (un) trustworthi-
ness of saliency maps for localizing abnormalities in medical
imaging.” In: arXiv preprint arXiv:2008.02766 (2020).

[13] Nikolay Banar, Matthia Sabatelli, Pierre Geurts, Walter Daele-
mans, and Mike Kestemont. “Transfer Learning with Style
Transfer between the Photorealis-tic and Artistic Domain.” In:
(2021).

[14] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt,
Tom Schaul, Hado P van Hasselt, and David Silver. “Successor
features for transfer in reinforcement learning.” In: Advances in
neural information processing systems. 2017, pp. 4055–4065.

[15] Andrew G Barto, Richard S Sutton, and Charles W Anderson.
“Neuronlike adaptive elements that can solve difficult learning
control problems.” In: IEEE transactions on systems, man, and
cybernetics 5 (1983), pp. 834–846.

[16] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreye-
vich Radul, and Jeffrey Mark Siskind. “Automatic differentia-
tion in machine learning: a survey.” In: Journal of machine learn-
ing research 18 (2018).

[17] Marc G Bellemare, Will Dabney, and Rémi Munos. “A distribu-
tional perspective on reinforcement learning.” In: International
Conference on Machine Learning. PMLR. 2017, pp. 449–458.

[18] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael
Bowling. “The arcade learning environment: An evaluation
platform for general agents.” In: Journal of Artificial Intelligence
Research 47 (2013), pp. 253–279.

[19] Richard Bellman. “Dynamic programming.” In: Science 153.3731

(1966), pp. 34–37.

[20] Dimitri P Bertsekas. “Value and policy iterations in optimal
control and adaptive dynamic programming.” In: IEEE transac-
tions on neural networks and learning systems 28.3 (2015), pp. 500–
509.

[21] Dimitri P Bertsekas. Reinforcement learning and optimal control.
Athena Scientific Belmont, MA, 2019.

[22] Dimitri P Bertsekas and John N Tsitsiklis. “Neuro-dynamic
programming: an overview.” In: Proceedings of 1995 34th IEEE
conference on decision and control. Vol. 1. IEEE. 1995, pp. 560–
564.

bibliography 183

[23] Dimitri P Bertsekas et al. Dynamic programming and optimal con-
trol: Vol. 1. Athena scientific Belmont, 2000.

[24] Francesco Bidoia, Matthia Sabatelli, Amirhossein Shantia, Marco
A. Wiering, and Lambert Schomaker. “A Deep Convolutional
Neural Network for Location Recognition and Geometry based
Information.” In: Proceedings of the 7th International Conference
on Pattern Recognition Applications and Methods, ICPRAM 2018,
Funchal, Madeira - Portugal, January 16-18, 2018. 2018, pp. 27–
36.

[25] Mariusz Bojarski, Anna Choromanska, Krzysztof Choroman-
ski, Bernhard Firner, Larry Jackel, Urs Muller, and Karol Zieba.
“VisualBackProp: efficient visualization of CNNs.” In: arXiv
preprint arXiv:1611.05418 (2016).

[26] Léon Bottou and Olivier Bousquet. “13 the tradeoffs of large-
scale learning.” In: Optimization for machine learning (2011), p. 351.

[27] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal
Vincent. “Audio Chord Recognition with Recurrent Neural
Networks.” In: ISMIR. Citeseer. 2013, pp. 335–340.

[28] Leo Breiman. “Random forests.” In: Machine learning 45.1 (2001),
pp. 5–32.

[29] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schnei-
der, John Schulman, Jie Tang, and Wojciech Zaremba. “Openai
gym.” In: arXiv preprint arXiv:1606.01540 (2016).

[30] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell, et al. “Language mod-
els are few-shot learners.” In: arXiv preprint arXiv:2005.14165
(2020).

[31] Arthur E Bryson. “Applied optimal control: Optimization.” In:
Estimization and Control 2 (1975).

[32] Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien
Ernst. Reinforcement learning and dynamic programming using
function approximators. Vol. 39. CRC press, 2010.

[33] Lucian Buşoniu, Damien Ernst, Bart De Schutter, and Robert
Babuška. “Approximate reinforcement learning: An overview.”
In: 2011 IEEE symposium on adaptive dynamic programming and
reinforcement learning (ADPRL). IEEE. 2011, pp. 1–8.

[34] Rich Caruana. “Multitask learning.” In: Machine learning 28.1
(1997), pp. 41–75.

[35] Rich Caruana, Steve Lawrence, and C Lee Giles. “Overfitting
in neural nets: Backpropagation, conjugate gradient, and early
stopping.” In: Advances in neural information processing systems.
2001, pp. 402–408.

184 bibliography

[36] Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh
Kumar, and Marc G Bellemare. “Dopamine: A research frame-
work for deep reinforcement learning.” In: arXiv preprint arXiv:1812.06110
(2018).

[37] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and
Vineeth N Balasubramanian. “Grad-cam++: Generalized gradient-
based visual explanations for deep convolutional networks.”
In: 2018 IEEE Winter Conference on Applications of Computer Vi-
sion (WACV). IEEE. 2018, pp. 839–847.

[38] Lili Chen, Kimin Lee, Aravind Srinivas, and Pieter Abbeel.
“Improving Computational Efficiency in Visual Reinforcement
Learning via Stored Embeddings.” In: arXiv preprint arXiv:2103.02886
(2021).

[39] François Chollet. “Xception: Deep learning with depthwise
separable convolutions.” In: arXiv preprint (2016).

[40] François Chollet et al. Keras. 2015.

[41] Yann Claes et al. “Deep Learning for the Classification and
Detection of Animals in Artworks.” In: (2021).

[42] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex
Lamb, Kazuaki Yamamoto, and David Ha. “Deep learning for
classical japanese literature.” In: arXiv preprint arXiv:1812.01718
(2018).

[43] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-
iter. “Fast and accurate deep network learning by exponential
linear units (elus).” In: arXiv preprint arXiv:1511.07289 (2015).

[44] Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. “Self-
taught clustering.” In: Proceedings of the 25th international con-
ference on Machine learning. 2008, pp. 200–207.

[45] Navneet Dalal and Bill Triggs. “Histograms of oriented gra-
dients for human detection.” In: 2005 IEEE computer society
conference on computer vision and pattern recognition (CVPR’05).
Vol. 1. Ieee. 2005, pp. 886–893.

[46] Li Deng, Geoffrey Hinton, and Brian Kingsbury. “New types
of deep neural network learning for speech recognition and
related applications: An overview.” In: 2013 IEEE international
conference on acoustics, speech and signal processing. IEEE. 2013,
pp. 8599–8603.

[47] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding.” In: arXiv preprint arXiv:1810.04805 (2018).

[48] Emily I Dolan. MIMO: Musical Instrument Museums Online. 2017.

bibliography 185

[49] H Domínguez Sánchez, M Huertas-Company, M Bernardi, S
Kaviraj, JL Fischer, TMC Abbott, FB Abdalla, J Annis, S Avila,
D Brooks, et al. “Transfer learning for galaxy morphology
from one survey to another.” In: Monthly Notices of the Royal
Astronomical Society 484.1 (2019), pp. 93–100.

[50] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning
Zhang, Eric Tzeng, and Trevor Darrell. “Decaf: A deep convo-
lutional activation feature for generic visual recognition.” In:
International conference on machine learning. PMLR. 2014, pp. 647–
655.

[51] Xin Dong, Shangyu Chen, and Sinno Pan. “Learning to prune
deep neural networks via layer-wise optimal brain surgeon.”
In: Advances in Neural Information Processing Systems. 2017, pp. 4857–
4867.

[52] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa De-
hghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et
al. “An image is worth 16x16 words: Transformers for image
recognition at scale.” In: arXiv preprint arXiv:2010.11929 (2020).

[53] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive sub-
gradient methods for online learning and stochastic optimiza-
tion.” In: Journal of machine learning research 12.7 (2011).

[54] Stamatatos Efstathios. “A survey of modern authorship attri-
bution methods.” In: Journal of the American Society for Informa-
tion Science and Technology 3 (2009), pp. 538–556. doi: 10.1002/
asi.21001.

[55] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. “The pascal visual object
classes (voc) challenge.” In: International journal of computer vi-
sion 88.2 (2010), pp. 303–338.

[56] Jesse Farebrother, Marlos C Machado, and Michael Bowling.
“Generalization and regularization in DQN.” In: arXiv preprint
arXiv:1810.00123 (2018).

[57] William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua
Bengio, Hugo Larochelle, Mark Rowland, and Will Dabney.
“Revisiting fundamentals of experience replay.” In: International
Conference on Machine Learning. PMLR. 2020, pp. 3061–3071.

[58] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Ja-
cob Menick, Ian Osband, Alex Graves, Vlad Mnih, Remi Munos,
Demis Hassabis, Olivier Pietquin, et al. “Noisy networks for
exploration.” In: arXiv preprint arXiv:1706.10295 (2017).

https://doi.org/10.1002/asi.21001
https://doi.org/10.1002/asi.21001

186 bibliography

[59] Vincent François-Lavet, Raphaël Fonteneau, and Damien Ernst.
“How to Discount Deep Reinforcement Learning: Towards New
Dynamic Strategies.” In: NIPS 2015 Workshop on Deep Reinforce-
ment Learning. 2015.

[60] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc
G Bellemare, and Joelle Pineau. “An introduction to deep rein-
forcement learning.” In: arXiv preprint arXiv:1811.12560 (2018).

[61] Jonathan Frankle and Michael Carbin. “The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks.” In: arXiv
preprint arXiv:1803.03635 (2018).

[62] Jonathan Frankle, G Karolina Dziugaite, DM Roy, and M Carbin.
“Stabilizing the Lottery Ticket Hypothesis.” In: arXiv preprint
arXiv:1903.01611 (2019).

[63] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy,
and Michael Carbin. “Linear mode connectivity and the lot-
tery ticket hypothesis.” In: arXiv preprint arXiv:1912.05671 (2019).

[64] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. The
elements of statistical learning. Vol. 1. 10. Springer series in statis-
tics New York, 2001.

[65] Scott Fujimoto, Edoardo Conti, Mohammad Ghavamzadeh, and
Joelle Pineau. “Benchmarking Batch Deep Reinforcement Learn-
ing Algorithms.” In: arXiv preprint arXiv:1910.01708 (2019).

[66] Scott Fujimoto, Herke Hoof, and David Meger. “Addressing
function approximation error in actor-critic methods.” In: In-
ternational Conference on Machine Learning. PMLR. 2018, pp. 1587–
1596.

[67] Matthieu Geist, Bruno Scherrer, et al. “Off-policy learning with
eligibility traces: a survey.” In: J. Mach. Learn. Res. 15.1 (2014),
pp. 289–333.

[68] Daniel George, Hongyu Shen, and EA Huerta. “Deep Transfer
Learning: A new deep learning glitch classification method for
advanced LIGO.” In: arXiv preprint arXiv:1706.07446 (2017).

[69] Pierre Geurts. “Contributions to decision tree induction: bias/-
variance tradeoff and time series classification.” PhD thesis.
ULiège-University of Liège, 2002.

[70] Ross Girshick. “Fast r-cnn.” In: Proceedings of the IEEE interna-
tional conference on computer vision. 2015, pp. 1440–1448.

[71] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Ma-
lik. “Rich feature hierarchies for accurate object detection and
semantic segmentation.” In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2014, pp. 580–587.

bibliography 187

[72] Varun Gohil, S Deepak Narayanan, and Atishay Jain. “One
ticket to win them all: generalizing lottery ticket initializations
across datasets and optimizers.” In: ReScience-C (2020).

[73] Nicolas Gonthier, Yann Gousseau, Said Ladjal, and Olivier
Bonfait. “Weakly supervised object detection in artworks.” In:
Proceedings of the European Conference on Computer Vision (ECCV)
Workshops. 2018, pp. 0–0.

[74] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
learning. MIT press, 2016.

[75] Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville,
and Yoshua Bengio. “Maxout networks.” In: International con-
ference on machine learning. PMLR. 2013, pp. 1319–1327.

[76] Alex Graves, Santiago Fernández, Faustino Gomez, and Jür-
gen Schmidhuber. “Connectionist temporal classification: la-
belling unsegmented sequence data with recurrent neural net-
works.” In: Proceedings of the 23rd international conference on Ma-
chine learning. 2006, pp. 369–376.

[77] Alan Green and Sean Ferguson. “RIdIM: cataloguing music
iconography since 1971.” In: Fontes artis musicae (2013), pp. 1–
8.

[78] David Ha and Jürgen Schmidhuber. “World models.” In: arXiv
preprint arXiv:1803.10122 (2018).

[79] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey
Levine. “Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor.” In: Interna-
tional Conference on Machine Learning. PMLR. 2018, pp. 1861–
1870.

[80] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Moham-
mad Norouzi. “Dream to control: Learning behaviors by latent
imagination.” In: arXiv preprint arXiv:1912.01603 (2019).

[81] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas,
David Ha, Honglak Lee, and James Davidson. “Learning la-
tent dynamics for planning from pixels.” In: International Con-
ference on Machine Learning. PMLR. 2019, pp. 2555–2565.

[82] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and
Jimmy Ba. “Mastering atari with discrete world models.” In:
arXiv preprint arXiv:2010.02193 (2020).

[83] Travis Hammond, Dirk Jelle Schaap, Matthia Sabatelli, and
Marco A Wiering. “Forest Fire Control with Learning from
Demonstration and Reinforcement Learning.” In: 2020 Interna-
tional Joint Conference on Neural Networks (IJCNN). IEEE. 2020,
pp. 1–8.

188 bibliography

[84] Song Han, Huizi Mao, and William J Dally. “Deep compres-
sion: Compressing deep neural networks with pruning, trained
quantization and huffman coding.” In: arXiv preprint arXiv:1510.00149
(2015).

[85] Song Han, Jeff Pool, John Tran, and William Dally. “Learning
both weights and connections for efficient neural network.” In:
Advances in neural information processing systems. 2015, pp. 1135–
1143.

[86] Hado Philip van Hasselt. Insights in reinforcement rearning: for-
mal analysis and empirical evaluation of temporal-difference learn-
ing algorithms. Utrecht University, 2011.

[87] Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li
Deng, and Mari Ostendorf. “Deep reinforcement learning with
a natural language action space.” In: arXiv preprint arXiv:1511.04636
(2015).

[88] Kaiming He, Ross Girshick, and Piotr Dollár. “Rethinking im-
agenet pre-training.” In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. 2019, pp. 4918–4927.

[89] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick.
“Mask r-cnn.” In: Proceedings of the IEEE international conference
on computer vision. 2017, pp. 2961–2969.

[90] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
“Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification.” In: Proceedings of the IEEE
international conference on computer vision. 2015, pp. 1026–1034.

[91] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
“Deep residual learning for image recognition.” In: Proceedings
of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778.

[92] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau,
Doina Precup, and David Meger. “Deep reinforcement learn-
ing that matters.” In: Thirty-Second AAAI Conference on Artifi-
cial Intelligence. 2018.

[93] Kevin Hernandez-Diaz, Fernando Alonso-Fernandez, and Josef
Bigun. “Periocular recognition using CNN features off-the-shelf.”
In: 2018 International conference of the biometrics special interest
group (BIOSIG). IEEE. 2018, pp. 1–5.

[94] J Fernando Hernandez-Garcia and Richard S Sutton. “Under-
standing Multi-Step Deep Reinforcement Learning: A System-
atic Study of the DQN Target.” In: arXiv preprint arXiv:1901.07510
(2019).

[95] Matteo Hessel, Hado van Hasselt, Joseph Modayil, and David
Silver. “On inductive biases in deep reinforcement learning.”
In: arXiv preprint arXiv:1907.02908 (2019).

bibliography 189

[96] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul,
Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mo-
hammad Azar, and David Silver. “Rainbow: Combining im-
provements in deep reinforcement learning.” In: Thirty-Second
AAAI Conference on Artificial Intelligence. 2018.

[97] Namgyu Ho and Yoon-Chul Kim. “Evaluation of transfer learn-
ing in deep convolutional neural network models for cardiac
short axis slice classification.” In: Scientific reports 11.1 (2021),
pp. 1–11.

[98] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term
memory.” In: Neural computation 9.8 (1997), pp. 1735–1780.

[99] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. “Parameter-efficient transfer learn-
ing for NLP.” In: International Conference on Machine Learning.
PMLR. 2019, pp. 2790–2799.

[100] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen,
Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming
Pang, Vijay Vasudevan, et al. “Searching for mobilenetv3.” In:
Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2019, pp. 1314–1324.

[101] Jeremy Howard and Sebastian Ruder. “Universal language
model fine-tuning for text classification.” In: arXiv preprint arXiv:1801.06146
(2018).

[102] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens
van der Maaten. “Densely connected convolutional networks.”
In: Proceedings of the IEEE conference on computer vision and pat-
tern recognition. Vol. 1. 2. 2017.

[103] Rachel Huang, Jonathan Pedoeem, and Cuixian Chen. “YOLO-
LITE: a real-time object detection algorithm optimized for non-
GPU computers.” In: 2018 IEEE International Conference on Big
Data (Big Data). IEEE. 2018, pp. 2503–2510.

[104] Minyoung Huh, Pulkit Agrawal, and Alexei A Efros. “What
makes ImageNet good for transfer learning?” In: arXiv preprint
arXiv:1608.08614 (2016).

[105] Tommi Jaakkola, Satinder P Singh, and Michael I Jordan. “Re-
inforcement learning algorithm for partially observable Markov
decision problems.” In: Advances in neural information process-
ing systems (1995), pp. 345–352.

[106] Licheng Jiao, Fan Zhang, Fang Liu, Shuyuan Yang, Lingling Li,
Zhixi Feng, and Rong Qu. “A survey of deep learning-based
object detection.” In: IEEE access 7 (2019), pp. 128837–128868.

190 bibliography

[107] Ou Jin, Nathan N Liu, Kai Zhao, Yong Yu, and Qiang Yang.
“Transferring topical knowledge from auxiliary long texts for
short text clustering.” In: Proceedings of the 20th ACM interna-
tional conference on Information and knowledge management. 2011,
pp. 775–784.

[108] Philipp Kainz, Harald Burgsteiner, Martin Asslaber, and Hel-
mut Ahammer. “Training echo state networks for rotation-invariant
bone marrow cell classification.” In: Neural Computing and Ap-
plications 28.6 (2017), pp. 1277–1292.

[109] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej
Osinski, Roy H Campbell, Konrad Czechowski, Dumitru Er-
han, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. “Model-
based reinforcement learning for atari.” In: arXiv preprint arXiv:1903.00374
(2019).

[110] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexan-
der Herzog, Eric Jang, Deirdre Quillen, Ethan Holly, Mrinal
Kalakrishnan, Vincent Vanhoucke, et al. “Qt-opt: Scalable deep
reinforcement learning for vision-based robotic manipulation.”
In: arXiv preprint arXiv:1806.10293 (2018).

[111] Ibrahem Kandel and Mauro Castelli. “The effect of batch size
on the generalizability of the convolutional neural networks
on a histopathology dataset.” In: ICT express 6.4 (2020), pp. 312–
315.

[112] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal,
Mikhail Smelyanskiy, and Ping Tak Peter Tang. “On large-
batch training for deep learning: Generalization gap and sharp
minima.” In: arXiv preprint arXiv:1609.04836 (2016).

[113] Seungchan Kim, Kavosh Asadi, Michael Littman, and George
Konidaris. “Deepmellow: removing the need for a target net-
work in deep Q-learning.” In: Proceedings of the Twenty Eighth
International Joint Conference on Artificial Intelligence. 2019.

[114] Diederik P Kingma and Jimmy Ba. “Adam: A method for
stochastic optimization.” In: arXiv preprint arXiv:1412.6980 (2014).

[115] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Ve-
ness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan,
John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et
al. “Overcoming catastrophic forgetting in neural networks.”
In: Proceedings of the national academy of sciences 114.13 (2017),
pp. 3521–3526.

[116] Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu
Wang, and Mark D Plumbley. “Panns: Large-scale pretrained
audio neural networks for audio pattern recognition.” In: IEEE/ACM
Transactions on Audio, Speech, and Language Processing 28 (2020),
pp. 2880–2894.

bibliography 191

[117] George Konidaris and Andrew Barto. “Autonomous shaping:
Knowledge transfer in reinforcement learning.” In: Proceed-
ings of the 23rd international conference on Machine learning. 2006,
pp. 489–496.

[118] Simon Kornblith, Jonathon Shlens, and Quoc V Le. “Do Better
ImageNet Models Transfer Better?” In: arXiv preprint arXiv:1805.08974
(2018).

[119] Simon Kornblith, Jonathon Shlens, and Quoc V Le. “Do better
imagenet models transfer better?” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2019, pp. 2661–
2671.

[120] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Ima-
genet classification with deep convolutional neural networks.”
In: Advances in neural information processing systems. 2012, pp. 1097–
1105.

[121] Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine.
“Stabilizing off-policy q-learning via bootstrapping error re-
duction.” In: arXiv preprint arXiv:1906.00949 (2019).

[122] Nicholas C Landolfi, Garrett Thomas, and Tengyu Ma. “A
Model-based Approach for Sample-efficient Multi-task Rein-
forcement Learning.” In: arXiv preprint arXiv:1907.04964 (2019).

[123] Stephen H Lane, David A Handelman, and Jack J Gelfand.
“Theory and development of higher-order CMAC neural net-
works.” In: IEEE Control Systems Magazine 12.2 (1992), pp. 23–
30.

[124] Pat Langley. “Transfer of knowledge in cognitive systems.”
In: Talk, workshop on Structural Knowledge Transfer for Machine
Learning at the Twenty-Third International Conference on Machine
Learning. 2006.

[125] Romain Laroche and Merwan Barlier. “Transfer reinforcement
learning with shared dynamics.” In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 31. 1. 2017.

[126] Alessandro Lazaric. “Transfer in reinforcement learning: a frame-
work and a survey.” In: Reinforcement Learning. Springer, 2012,
pp. 143–173.

[127] Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini.
“Reinforcement learning in continuous action spaces through
sequential monte carlo methods.” In: Advances in neural infor-
mation processing systems 20 (2007), pp. 833–840.

[128] Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini.
“Transfer of samples in batch reinforcement learning.” In: Pro-
ceedings of the 25th international conference on Machine learning.
2008, pp. 544–551.

192 bibliography

[129] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learn-
ing.” In: nature 521.7553 (2015), p. 436.

[130] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
“Gradient-based learning applied to document recognition.”
In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[131] Yann LeCun, Corinna Cortes, and Christopher J. C. Burges.
The MNIST database of handwritten digits. http://yann.lecun.
com/exdb/mnist/, 1994. 1996.

[132] Donghun Lee, Boris Defourny, and Warren B Powell. “Bias-
corrected q-learning to control max-operator bias in q-learning.”
In: 2013 IEEE Symposium on Adaptive Dynamic Programming and
Reinforcement Learning (ADPRL). IEEE. 2013, pp. 93–99.

[133] Donghun Lee and Warren B Powell. “Bias-corrected Q-learning
with multistate extension.” In: IEEE Transactions on Automatic
Control 64.10 (2019), pp. 4011–4023.

[134] Pascal Leroy, Damien Ernst, Pierre Geurts, Gilles Louppe, Jonathan
Pisane, and Matthia Sabatelli. “QVMix and QVMix-Max: Ex-
tending the Deep Quality-Value Family of Algorithms to Co-
operative Multi-Agent Reinforcement Learning.” In: Proceed-
ings of the AAAI-21 Workshop on Reinforcement Learning in Games,
p. 8.

[135] Yuxi Li. “Deep reinforcement learning: An overview.” In: arXiv
preprint arXiv:1701.07274 (2017).

[136] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nico-
las Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wier-
stra. “Continuous control with deep reinforcement learning.”
In: arXiv preprint arXiv:1509.02971 (2015).

[137] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. “Runtime neu-
ral pruning.” In: Advances in Neural Information Processing Sys-
tems. 2017, pp. 2181–2191.

[138] Long-Ji Lin. “Self-improving reactive agents based on rein-
forcement learning, planning and teaching.” In: Machine learn-
ing 8.3-4 (1992), pp. 293–321.

[139] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick.
“Microsoft coco: Common objects in context.” In: European con-
ference on computer vision. Springer. 2014, pp. 740–755.

[140] Seppo Linnainmaa. “The representation of the cumulative round-
ing error of an algorithm as a Taylor expansion of the local
rounding errors.” In: Master’s Thesis (in Finnish), Univ. Helsinki
(1970), pp. 6–7.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

bibliography 193

[141] Jun S Liu and Rong Chen. “Sequential Monte Carlo methods
for dynamic systems.” In: Journal of the American statistical as-
sociation 93.443 (1998), pp. 1032–1044.

[142] Libin Liu and Jessica Hodgins. “Learning to schedule control
fragments for physics-based characters using deep q-learning.”
In: ACM Transactions on Graphics (TOG) 36.3 (2017), pp. 1–14.

[143] Yahui Liu, Enver Sangineto, Wei Bi, Nicu Sebe, Bruno Lepri,
and Marco Nadai. “Efficient Training of Visual Transformers
with Small Datasets.” In: Advances in Neural Information Pro-
cessing Systems 34 (2021).

[144] Gilles Louppe. “Understanding random forests: From theory
to practice.” In: arXiv preprint arXiv:1407.7502 (2014).

[145] David G Lowe. “Distinctive image features from scale-invariant
keypoints.” In: International journal of computer vision 60.2 (2004),
pp. 91–110.

[146] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. “Rec-
tifier nonlinearities improve neural network acoustic models.”
In: Proc. icml. Vol. 30. 1. Citeseer. 2013, p. 3.

[147] Gary Marcus. “Deep learning: A critical appraisal.” In: arXiv
preprint arXiv:1801.00631 (2018).

[148] Raphaël Marée, Loïc Rollus, Benjamin Stévens, Renaud Hoy-
oux, Gilles Louppe, Rémy Vandaele, Jean-Michel Begon, Philipp
Kainz, Pierre Geurts, and Louis Wehenkel. “Collaborative anal-
ysis of multi-gigapixel imaging data using Cytomine.” In: Bioin-
formatics 32.9 (2016), pp. 1395–1401.

[149] Henrik Marklund, Suraj Nair, and Chelsea Finn. “Exact (Then
Approximate) Dynamic Programming for Deep Reinforcement
Learning.” In: ().

[150] Dominic Masters and Carlo Luschi. “Revisiting Small Batch
Training for Deep Neural Networks.” In: arXiv preprint arXiv:1804.07612
(2018).

[151] Warren S McCulloch and Walter Pitts. “A logical calculus of
the ideas immanent in nervous activity.” In: The bulletin of
mathematical biophysics 5.4 (1943), pp. 115–133.

[152] Neville Mehta, Sriraam Natarajan, Prasad Tadepalli, and Alan
Fern. “Transfer in variable-reward hierarchical reinforcement
learning.” In: Machine Learning 73.3 (2008), p. 289.

[153] Rahul Mehta. “Sparse Transfer Learning via Winning Lottery
Tickets.” In: arXiv preprint arXiv:1905.07785 (2019).

[154] Thomas Mensink, Jasper Uijlings, Alina Kuznetsova, Michael
Gygli, and Vittorio Ferrari. “Factors of Influence for Trans-
fer Learning across Diverse Appearance Domains and Task
Types.” In: arXiv preprint arXiv:2103.13318 (2021).

194 bibliography

[155] Thomas Mensink and Jan Van Gemert. “The rijksmuseum chal-
lenge: Museum-centered visual recognition.” In: Proceedings of
International Conference on Multimedia Retrieval. 2014, pp. 451–
454.

[156] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
“Efficient estimation of word representations in vector space.”
In: arXiv preprint arXiv:1301.3781 (2013).

[157] Shervin Minaee, Yuri Y Boykov, Fatih Porikli, Antonio J Plaza,
Nasser Kehtarnavaz, and Demetri Terzopoulos. “Image seg-
mentation using deep learning: A survey.” In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (2021).

[158] Tom M Mitchell et al. “Machine learning.” In: (1997).

[159] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,
Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and
Koray Kavukcuoglu. “Asynchronous methods for deep rein-
forcement learning.” In: International conference on machine learn-
ing. 2016, pp. 1928–1937.

[160] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. “Recur-
rent models of visual attention.” In: Advances in neural informa-
tion processing systems. 2014, pp. 2204–2212.

[161] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller.
“Playing atari with deep reinforcement learning.” In: arXiv
preprint arXiv:1312.5602 (2013).

[162] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei
A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Mar-
tin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
“Human-level control through deep reinforcement learning.”
In: Nature 518.7540 (2015), p. 529.

[163] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and
Jan Kautz. “Pruning convolutional neural networks for resource
efficient inference.” In: arXiv preprint arXiv:1611.06440 (2016).

[164] Ari Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian.
“One ticket to win them all: generalizing lottery ticket initial-
izations across datasets and optimizers.” In: Advances in Neural
Information Processing Systems. 2019, pp. 4933–4943.

[165] Romain Mormont, Pierre Geurts, and Raphaël Marée. “Com-
parison of deep transfer learning strategies for digital pathol-
ogy.” In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops. 2018, pp. 2262–2271.

[166] Romain Mormont, Pierre Geurts, and Raphaël Marée. “Multi-
task pre-training of deep neural networks for digital pathol-
ogy.” In: IEEE journal of biomedical and health informatics (2020).

bibliography 195

[167] Alex Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra,
and Danilo J Rezende. “Towards interpretable reinforcement
learning using attention augmented agents.” In: arXiv preprint
arXiv:1906.02500 (2019).

[168] Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. “Lan-
guage understanding for text-based games using deep rein-
forcement learning.” In: arXiv preprint arXiv:1506.08941 (2015).

[169] Yurii E Nesterov. “A method for solving the convex program-
ming problem with convergence rate O (1/kˆ 2).” In: Dokl. akad.
nauk Sssr. Vol. 269. 1983, pp. 543–547.

[170] Kien Nguyen, Clinton Fookes, Arun Ross, and Sridha Srid-
haran. “Iris recognition with off-the-shelf CNN features: A
deep learning perspective.” In: IEEE Access 6 (2017), pp. 18848–
18855.

[171] Johan S Obando-Ceron and Pablo Samuel Castro. “Revisiting
Rainbow: Promoting more insightful and inclusive deep rein-
forcement learning research.” In: arXiv preprint arXiv:2011.14826
(2020).

[172] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic.
“Learning and transferring mid-level image representations
using convolutional neural networks.” In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2014,
pp. 1717–1724.

[173] Michela Paganini and Jessica Zosa Forde. “Bespoke vs. Prêt-
à-Porter Lottery Tickets: Exploiting Mask Similarity for Train-
able Sub-Network Finding.” In: arXiv preprint arXiv:2007.04091
(2020).

[174] Sinno Jialin Pan and Qiang Yang. “A survey on transfer learn-
ing.” In: IEEE Transactions on knowledge and data engineering
22.10 (2009), pp. 1345–1359.

[175] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov.
“Actor-mimic: Deep multitask and transfer reinforcement learn-
ing.” In: arXiv preprint arXiv:1511.06342 (2015).

[176] Jooyoung Park and Irwin W Sandberg. “Approximation and
radial-basis-function networks.” In: Neural computation 5.2 (1993),
pp. 305–316.

[177] Ross Parry. “Digital heritage and the rise of theory in museum
computing.” In: Museum management and Curatorship (2005),
pp. 333–348.

[178] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan,
Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison,
Luca Antiga, and Adam Lerer. “Automatic differentiation in
pytorch.” In: (2017).

196 bibliography

[179] Devdhar Patel, Hananel Hazan, Daniel J Saunders, Hava T
Siegelmann, and Robert Kozma. “Improved robustness of re-
inforcement learning policies upon conversion to spiking neu-
ronal network platforms applied to Atari Breakout game.” In:
Neural Networks 120 (2019), pp. 108–115.

[180] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vin-
cent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel,
Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. “Scikit-
learn: Machine learning in Python.” In: Journal of machine learn-
ing research 12.Oct (2011), pp. 2825–2830.

[181] Jing Peng and Ronald J Williams. “Incremental multi-step Q-
learning.” In: Machine Learning Proceedings 1994. Elsevier, 1994,
pp. 226–232.

[182] Andreas Pentaliotis and Marco Wiering. “Variation-resistant
Q-learning: Controlling and Utilizing Estimation Bias in Rein-
forcement Learning for Better Performance.” In: (2021).

[183] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gard-
ner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer.
“Deep contextualized word representations.” In: arXiv preprint
arXiv:1802.05365 (2018).

[184] Matthew E Peters, Sebastian Ruder, and Noah A Smith. “To
tune or not to tune? adapting pretrained representations to
diverse tasks.” In: arXiv preprint arXiv:1903.05987 (2019).

[185] Fred Phillips and Brandy Mackintosh. “Wiki Art Gallery, Inc.:
A case for critical thinking.” In: Issues in Accounting Education
26.3 (2011), pp. 593–608.

[186] Alexandre Piché, Joseph Marino, Gian Maria Marconi, Christo-
pher Pal, and Mohammad Emtiyaz Khan. “Beyond Target Net-
works: Improving Deep Q-learning with Functional Regular-
ization.” In: arXiv preprint arXiv:2106.02613 (2021).

[187] Martin L Puterman. “Markov decision processes.” In: Hand-
books in operations research and management science 2 (1990), pp. 331–
434.

[188] Martin L Puterman. Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons, 2014.

[189] Pengjiang Qian, Yizhang Jiang, Zhaohong Deng, Lingzhi Hu,
Shouwei Sun, Shitong Wang, and Raymond F Muzic. “Clus-
ter prototypes and fuzzy memberships jointly leveraged cross-
domain maximum entropy clustering.” In: IEEE transactions on
cybernetics 46.1 (2015), pp. 181–193.

[190] Pavlo M Radiuk et al. “Impact of training set batch size on
the performance of convolutional neural networks for diverse
datasets.” In: Information Technology and Management Science
20.1 (2017), pp. 20–24.

bibliography 197

[191] Aniruddh Raghu, Matthieu Komorowski, Leo Anthony Celi,
Peter Szolovits, and Marzyeh Ghassemi. “Continuous state-
space models for optimal sepsis treatment: a deep reinforce-
ment learning approach.” In: Machine Learning for Healthcare
Conference. PMLR. 2017, pp. 147–163.

[192] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi.
“You only look once: Unified, real-time object detection.” In:
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 779–788.

[193] Joseph Redmon and Ali Farhadi. “YOLO9000: better, faster,
stronger.” In: Proceedings of the IEEE conference on computer vi-
sion and pattern recognition. 2017, pp. 7263–7271.

[194] Joseph Redmon and Ali Farhadi. “Yolov3: An incremental im-
provement.” In: arXiv preprint arXiv:1804.02767 (2018).

[195] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. “Faster
r-cnn: Towards real-time object detection with region proposal
networks.” In: Advances in neural information processing systems
28 (2015), pp. 91–99.

[196] Frank Rosenblatt. “The perceptron: a probabilistic model for
information storage and organization in the brain.” In: Psycho-
logical review 65.6 (1958), p. 386.

[197] Corby Rosset, Chenyan Xiong, Minh Phan, Xia Song, Paul
Bennett, and Saurabh Tiwary. “Knowledge-Aware Language
Model Pretraining.” In: arXiv preprint arXiv:2007.00655 (2020).

[198] Sebastian Ruder. “An overview of gradient descent optimiza-
tion algorithms.” In: arXiv preprint arXiv:1609.04747 (2016).

[199] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
“Learning representations by back-propagating errors.” In: na-
ture 323.6088 (1986), pp. 533–536.

[200] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning
using connectionist systems. Vol. 37. University of Cambridge,
Department of Engineering Cambridge, England, 1994.

[201] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya
Khosla, Michael Bernstein, et al. “Imagenet large scale visual
recognition challenge.” In: International journal of computer vi-
sion 115.3 (2015), pp. 211–252.

[202] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hu-
bert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan
Pascanu, and Raia Hadsell. “Progressive neural networks.” In:
arXiv preprint arXiv:1606.04671 (2016).

198 bibliography

[203] Matthia Sabatelli. Learning to Play Chess with Minimal Lookahead
and Deep Value Neural Networks. Tech. rep. Faculty of Science
and Engineering, 2017.

[204] Matthia Sabatelli, Nikolay Banar, Marie Cocriamont, Eva Coudyzer,
Karine Lasaracina, Walter Daelemans, Pierre Geurts, and Mike
Kestemont. “Advances in Digital Music Iconography: Bench-
marking the detection of musical instruments in unrestricted,
non-photorealistic images from the artistic domain.” In: DHQ:
Digital Humanities Quarterly 15.1 (2021).

[205] Matthia Sabatelli, Francesco Bidoia, Valeriu Codreanu, and
Marco Wiering. “Learning to Evaluate Chess Positions with
Deep Neural Networks and Limited Lookahead.” In: 7th Inter-
national Conference on Pattern Recognition Applications and Meth-
ods. 2018.

[206] Matthia Sabatelli and Pierre Geurts. “On The Transferability of
Deep-Q Networks.” In: Deep Reinforcement Learning Workshop
of the 35th Conference on Neural Information Processing Systems.
2021.

[207] Matthia Sabatelli, Mike Kestemont, Walter Daelemans, and
Pierre Geurts. “Deep transfer learning for art classification
problems.” In: Proceedings of the European Conference on Com-
puter Vision (ECCV) Workshops. 2018, pp. 631–646.

[208] Matthia Sabatelli, Mike Kestemont, and Pierre Geurts. “On the
transferability of winning tickets in non-natural image datasets.”
In: Proceedings of the 16th International Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory and Applica-
tions (VISAPP). SciTePress, 2021, pp. 59–69.

[209] Matthia Sabatelli, Gilles Louppe, Pierre Geurts, and Marco
A Wiering. “Approximating two value functions instead of
one: towards characterizing a new family of Deep Reinforce-
ment Learning algorithms.” In: arXiv preprint arXiv:1909.01779
(2019).

[210] Matthia Sabatelli, Gilles Louppe, Pierre Geurts, and Marco
A Wiering. “The deep quality-value family of deep reinforce-
ment learning algorithms.” In: 2020 International Joint Confer-
ence on Neural Networks (IJCNN). IEEE. 2020, pp. 1–8.

[211] Matthia Sabatelli, Gilles Louppe, Pierre Geurts, and Marco
Wiering. “Deep Quality-Value (DQV) Learning.” In: Advances
in Neural Information Processing Systems, Deep Reinforcement Learn-
ing Workshop. Montreal. 2018.

[212] Iman Sajedian, Heon Lee, and Junsuk Rho. “Design of high
transmission color filters for solar cells directed by deep Q-
learning.” In: Solar Energy 195 (2020), pp. 670–676.

bibliography 199

[213] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. “Mobilenetv2: Inverted resid-
uals and linear bottlenecks.” In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 2018, pp. 4510–
4520.

[214] Adriel Saporta, Xiaotong Gui, Ashwin Agrawal, Anuj Pareek,
Steven QH Truong, Chanh DT Nguyen, Van-Doan Ngo, Jayne
Seekins, Francis G Blankenberg, Andrew Ng, et al. “Deep learn-
ing saliency maps do not accurately highlight diagnostically
relevant regions for medical image interpretation.” In: medRxiv
(2021).

[215] Remo Sasso, Matthia Sabatelli, and Marco A Wiering. “Frac-
tional Transfer Learning for Deep Model-Based Reinforcement
Learning.” In: arXiv preprint arXiv:2108.06526 (2021).

[216] Stefan Schaal, Auke Jan Ijspeert, Aude Billard, Sethu Vijayaku-
mar, and Jean-Arcady Meyer. “Estimating future reward in re-
inforcement learning animats using associative learning.” In:
(2004).

[217] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver.
“Prioritized experience replay.” In: arXiv preprint arXiv:1511.05952
(2015).

[218] Juergen Schmidhuber. “Reinforcement Learning Upside Down:
Don’t Predict Rewards–Just Map Them to Actions.” In: arXiv
preprint arXiv:1912.02875 (2019).

[219] Robin M Schmidt, Frank Schneider, and Philipp Hennig. “De-
scending through a Crowded Valley–Benchmarking Deep Learn-
ing Optimizers.” In: arXiv preprint arXiv:2007.01547 (2020).

[220] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan,
and Philipp Moritz. “Trust region policy optimization.” In: In-
ternational conference on machine learning. PMLR. 2015, pp. 1889–
1897.

[221] John Schulman, Philipp Moritz, Sergey Levine, Michael Jor-
dan, and Pieter Abbeel. “High-dimensional continuous con-
trol using generalized advantage estimation.” In: arXiv preprint
arXiv:1506.02438 (2015).

[222] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov. “Proximal policy optimization algorithms.”
In: arXiv preprint arXiv:1707.06347 (2017).

[223] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. “Grad-
cam: Visual explanations from deep networks via gradient-
based localization.” In: Proceedings of the IEEE international con-
ference on computer vision. 2017, pp. 618–626.

200 bibliography

[224] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu,
Rob Fergus, and Yann LeCun. “Overfeat: Integrated recogni-
tion, localization and detection using convolutional networks.”
In: arXiv preprint arXiv:1312.6229 (2013).

[225] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and
Stefan Carlsson. “CNN features off-the-shelf: an astounding
baseline for recognition.” In: Proceedings of the IEEE conference
on computer vision and pattern recognition workshops. 2014, pp. 806–
813.

[226] Arjun Sharma et al. “Adapting off-the-shelf CNNs for word
spotting & recognition.” In: 2015 13th International Conference
on Document Analysis and Recognition (ICDAR). IEEE. 2015, pp. 986–
990.

[227] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas
Baker, Matthew Lai, Adrian Bolton, et al. “Mastering the game
of go without human knowledge.” In: nature 550.7676 (2017),
pp. 354–359.

[228] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep
inside convolutional networks: Visualising image classification
models and saliency maps.” In: arXiv preprint arXiv:1312.6034
(2013).

[229] Karen Simonyan and Andrew Zisserman. “Very deep convo-
lutional networks for large-scale image recognition.” In: arXiv
preprint arXiv:1409.1556 (2014).

[230] Satinder Singh, Andrew G Barto, and Nuttapong Chentanez.
Intrinsically motivated reinforcement learning. Tech. rep. MAS-
SACHUSETTS UNIV AMHERST DEPT OF COMPUTER SCI-
ENCE, 2005.

[231] Satinder Singh, Tommi Jaakkola, Michael L Littman, and Csaba
Szepesvári. “Convergence results for single-step on-policy reinforcement-
learning algorithms.” In: Machine learning 38.3 (2000), pp. 287–
308.

[232] James E Smith and Robert L Winkler. “The optimizer’s curse:
Skepticism and postdecision surprise in decision analysis.” In:
Management Science 52.3 (2006), pp. 311–322.

[233] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. “Dropout: a simple way to prevent
neural networks from overfitting.” In: The journal of machine
learning research 15.1 (2014), pp. 1929–1958.

[234] Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wo-
jciech Jaśkowski, and Jürgen Schmidhuber. “Training agents
using upside-down reinforcement learning.” In: arXiv preprint
arXiv:1912.02877 (2019).

bibliography 201

[235] Eric Van den Steen. “Rational overoptimism (and other bi-
ases).” In: American Economic Review 94.4 (2004), pp. 1141–1151.

[236] Gjorgji Strezoski and Marcel Worring. “Omniart: a large-scale
artistic benchmark.” In: ACM Transactions on Multimedia Com-
puting, Communications, and Applications (TOMM) 14.4 (2018),
pp. 1–21.

[237] Tianxiang Sun, Yunfan Shao, Xiaonan Li, Pengfei Liu, Hang
Yan, Xipeng Qiu, and Xuanjing Huang. “Learning Sparse Shar-
ing Architectures for Multiple Tasks.” In: arXiv preprint arXiv:1911.05034
(2019).

[238] Richard S Sutton. “Learning to predict by the methods of tem-
poral differences.” In: Machine learning 3.1 (1988), pp. 9–44.

[239] Richard S Sutton. “Generalization in reinforcement learning:
Successful examples using sparse coarse coding.” In: Advances
in neural information processing systems. 1996, pp. 1038–1044.

[240] Richard S Sutton and Andrew G Barto. Reinforcement learning:
An introduction. MIT press, 2018.

[241] Richard S Sutton, David A McAllester, Satinder P Singh, Yishay
Mansour, et al. “Policy gradient methods for reinforcement
learning with function approximation.” In: NIPs. Vol. 99. Cite-
seer. 1999, pp. 1057–1063.

[242] Richard Stuart Sutton. “Temporal credit assignment in rein-
forcement learning.” In: (1984).

[243] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexan-
der A Alemi. “Inception-v4, inception-resnet and the impact of
residual connections on learning.” In: Thirty-first AAAI confer-
ence on artificial intelligence. 2017.

[244] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Van-
houcke, and Andrew Rabinovich. “Going deeper with convo-
lutions.” In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015, pp. 1–9.

[245] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens,
and Zbigniew Wojna. “Rethinking the inception architecture
for computer vision.” In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2016, pp. 2818–2826.

[246] Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd
Hurst, Christopher B Kendall, Michael B Gotway, and Jian-
ming Liang. “Convolutional neural networks for medical im-
age analysis: Full training or fine tuning?” In: IEEE transactions
on medical imaging 35.5 (2016), pp. 1299–1312.

202 bibliography

[247] Hong Hui Tan and King Hann Lim. “Review of second-order
optimization techniques in artificial neural networks backprop-
agation.” In: IOP Conference Series: Materials Science and Engi-
neering. Vol. 495. 1. IOP Publishing. 2019, p. 012003.

[248] Mingxing Tan and Quoc Le. “Efficientnet: Rethinking model
scaling for convolutional neural networks.” In: International
Conference on Machine Learning. PMLR. 2019, pp. 6105–6114.

[249] Matthew E Taylor, Nicholas K Jong, and Peter Stone. “Trans-
ferring instances for model-based reinforcement learning.” In:
Joint European conference on machine learning and knowledge dis-
covery in databases. Springer. 2008, pp. 488–505.

[250] Matthew E Taylor and Peter Stone. “Transfer learning for rein-
forcement learning domains: A survey.” In: Journal of Machine
Learning Research 10.7 (2009).

[251] Gerald Tesauro. “TD-Gammon, a self-teaching backgammon
program, achieves master-level play.” In: Neural computation
6.2 (1994), pp. 215–219.

[252] Sebastian Thrun and Anton Schwartz. “Issues in using func-
tion approximation for reinforcement learning.” In: Proceed-
ings of the Fourth Connectionist Models Summer School. Hillsdale,
NJ. 1993, pp. 255–263.

[253] Tijmen Tieleman and Geoffrey Hinton. “Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent magni-
tude.” In: COURSERA: Neural networks for machine learning 4.2
(2012), pp. 26–31.

[254] Andrea Tirinzoni, Rafael Rodriguez Sanchez, and Marcello
Restelli. “Transfer of value functions via variational methods.”
In: Advances in Neural Information Processing Systems. 2018, pp. 6179–
6189.

[255] Andrea Tirinzoni, Andrea Sessa, Matteo Pirotta, and Marcello
Restelli. “Importance weighted transfer of samples in reinforce-
ment learning.” In: International Conference on Machine Learning.
PMLR. 2018, pp. 4936–4945.

[256] Huan-Hsin Tseng, Yi Luo, Sunan Cui, Jen-Tzung Chien, Ran-
dall K Ten Haken, and Issam El Naqa. “Deep reinforcement
learning for automated radiation adaptation in lung cancer.”
In: Medical physics 44.12 (2017), pp. 6690–6705.

[257] John N Tsitsiklis and Benjamin Van Roy. “An analysis of temporal-
difference learning with function approximation.” In: IEEE
transactions on automatic control 42.5 (1997), pp. 674–690.

[258] Jacob Tyo and Zachary Lipton. “How transferable are the rep-
resentations learned by deep q agents?” In: arXiv preprint arXiv:2002.10021
(2020).

bibliography 203

[259] Bram Van Ginneken, Arnaud AA Setio, Colin Jacobs, and Francesco
Ciompi. “Off-the-shelf convolutional neural network features
for pulmonary nodule detection in computed tomography scans.”
In: 2015 IEEE 12th International symposium on biomedical imaging
(ISBI). IEEE. 2015, pp. 286–289.

[260] Hado Van Hasselt. “Double Q-learning.” In: Advances in Neu-
ral Information Processing Systems. 2010, pp. 2613–2621.

[261] Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel,
Nicolas Sonnerat, and Joseph Modayil. “Deep Reinforcement
Learning and the Deadly Triad.” In: arXiv preprint arXiv:1812.02648
(2018).

[262] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep re-
inforcement learning with double Q-learning.” In: Thirtieth
AAAI Conference on Artificial Intelligence. 2016.

[263] Harm Van Seijen, Mehdi Fatemi, and Arash Tavakoli. “Using a
logarithmic mapping to enable lower discount factors in rein-
forcement learning.” In: arXiv preprint arXiv:1906.00572 (2019).

[264] Ryan Van Soelen and John W Sheppard. “Using winning lot-
tery tickets in transfer learning for convolutional neural net-
works.” In: 2019 International Joint Conference on Neural Net-
works (IJCNN). IEEE. 2019, pp. 1–8.

[265] Remy Vandaele, Sarah L Dance, and Varun Ojha. “Deep learn-
ing for automated river-level monitoring through river-camera
images: an approach based on water segmentation and trans-
fer learning.” In: Hydrology and Earth System Sciences 25.8 (2021),
pp. 4435–4453.

[266] Vladimir N Vapnik and A Ya Chervonenkis. “On the uniform
convergence of relative frequencies of events to their probabil-
ities.” In: Measures of complexity. Springer, 2015, pp. 11–30.

[267] Vladimir Vapnik. “Principles of risk minimization for learning
theory.” In: Advances in neural information processing systems.
1992, pp. 831–838.

[268] Limin Wang, Yu Qiao, and Xiaoou Tang. “Action recognition
and detection by combining motion and appearance features.”
In: THUMOS14 Action Recognition Challenge 1.2 (2014), p. 2.

[269] Zheng Wang, Yangqiu Song, and Changshui Zhang. “Trans-
ferred dimensionality reduction.” In: Joint European conference
on machine learning and knowledge discovery in databases. Springer.
2008, pp. 550–565.

[270] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih,
Remi Munos, Koray Kavukcuoglu, and Nando de Freitas. “Sam-
ple efficient actor-critic with experience replay.” In: arXiv preprint
arXiv:1611.01224 (2016).

204 bibliography

[271] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt,
Marc Lanctot, and Nando Freitas. “Dueling Network Archi-
tectures for Deep Reinforcement Learning.” In: International
Conference on Machine Learning. 2016, pp. 1995–2003.

[272] Christopher JCH Watkins and Peter Dayan. “Q-learning.” In:
Machine learning 8.3-4 (1992), pp. 279–292.

[273] Qinglai Wei, Derong Liu, and Hanquan Lin. “Value iteration
adaptive dynamic programming for optimal control of discrete-
time nonlinear systems.” In: IEEE Transactions on cybernetics
46.3 (2015), pp. 840–853.

[274] Stuart Weibel, John Kunze, Carl Lagoze, and Misha Wolf. Dublin
core metadata for resource discovery. Tech. rep. 1998.

[275] Marco A Wiering. “Explorations in efficient reinforcement learn-
ing.” PhD thesis. University of Amsterdam, 1999.

[276] Marco A Wiering. “Convergence and divergence in standard
and averaging reinforcement learning.” In: European Conference
on Machine Learning. Springer. 2004, pp. 477–488.

[277] Marco A Wiering. “QV (lambda)-learning: A new on-policy re-
inforcement learning algorithm.” In: Proceedings of the 7th Eu-
ropean Workshop on Reinforcement Learning. 2005, pp. 17–18.

[278] Marco A Wiering and Hado Van Hasselt. “The QV family com-
pared to other reinforcement learning algorithms.” In: Adap-
tive Dynamic Programming and Reinforcement Learning, 2009. AD-
PRL’09. IEEE Symposium on. IEEE. 2009, pp. 101–108.

[279] Marco Wiering and Jürgen Schmidhuber. “Speeding up Q (λ)-
learning.” In: European Conference on Machine Learning. Springer.
1998, pp. 352–363.

[280] Ronald J Williams. “Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning.” In: Machine
learning 8.3-4 (1992), pp. 229–256.

[281] Jos van de Wolfshaar. “Deep Reinforcement Learnig of Video
Games.” PhD thesis. Faculty of Science and Engineering, 2017.

[282] Jos van de Wolfshaar, Mahir F Karaaba, and Marco A Wiering.
“Deep convolutional neural networks and support vector ma-
chines for gender recognition.” In: Computational Intelligence,
2015 IEEE Symposium Series on. IEEE. 2015, pp. 188–195.

[283] Jos van de Wolfshaar, Marco A Wiering, and Lambert Schomaker.
“Deep Learning Policy Quantization.” In: 2018.

[284] R. Wollheim. On Art and the Mind. Essays and Lectures. Allen
Lane, 1972.

[285] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-mnist:
a novel image dataset for benchmarking machine learning al-
gorithms.” In: arXiv preprint arXiv:1708.07747 (2017).

bibliography 205

[286] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. “Aggregated residual transformations for deep
neural networks.” In: Computer Vision and Pattern Recognition
(CVPR), 2017 IEEE Conference on. IEEE. 2017, pp. 5987–5995.

[287] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.
“How transferable are features in deep neural networks?” In:
arXiv preprint arXiv:1411.1792 (2014).

[288] Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S Morcos.
“Playing the lottery with rewards and multiple languages: lot-
tery tickets in RL and NLP.” In: arXiv preprint arXiv:1906.02768
(2019).

[289] Guido Zarrella and Amy Marsh. “Mitre at semeval-2016 task
6: Transfer learning for stance detection.” In: arXiv preprint
arXiv:1606.03784 (2016).

[290] Matthew D Zeiler and Rob Fergus. “Visualizing and under-
standing convolutional networks.” In: European conference on
computer vision. Springer. 2014, pp. 818–833.

[291] Dongbin Zhao, Haitao Wang, Kun Shao, and Yuanheng Zhu.
“Deep reinforcement learning with experience replay based on
SARSA.” In: 2016 IEEE Symposium Series on Computational In-
telligence (SSCI). IEEE. 2016, pp. 1–6.

[292] Yufan Zhao, Donglin Zeng, Mark A Socinski, and Michael
R Kosorok. “Reinforcement learning strategies for clinical tri-
als in nonsmall cell lung cancer.” In: Biometrics 67.4 (2011),
pp. 1422–1433.

[293] Sheng-hua Zhong, Xingsheng Huang, and Zhijiao Xiao. “Fine-
art painting classification via two-channel dual path networks.”
In: International Journal of Machine Learning and Cybernetics 11.1
(2020), pp. 137–152.

[294] Yang Zhong, Josephine Sullivan, and Haibo Li. “Face attribute
prediction using off-the-shelf CNN features.” In: 2016 Interna-
tional Conference on Biometrics (ICB). IEEE. 2016, pp. 1–7.

[295] Yi-Tong Zhou and Rama Chellappa. “Computation of optical
flow using a neural network.” In: ICNN. 1988, pp. 71–78.

[296] Rong Zhu and Mattia Rigotti. “Self-correcting Q-Learning.” In:
arXiv preprint arXiv:2012.01100 (2020).

[297] Xiaofeng Zhu, Zi Huang, Yang Yang, Heng Tao Shen, Chang-
sheng Xu, and Jiebo Luo. “Self-taught dimensionality reduc-
tion on the high-dimensional small-sized data.” In: Pattern
Recognition 46.1 (2013), pp. 215–229.

206 bibliography

[298] Xiaofeng Zhu, Xuelong Li, Shichao Zhang, Chunhua Ju, and
Xindong Wu. “Robust joint graph sparse coding for unsuper-
vised spectral feature selection.” In: IEEE transactions on neural
networks and learning systems 28.6 (2016), pp. 1263–1275.

[299] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhi-
nav Gupta, Li Fei-Fei, and Ali Farhadi. “Target-driven visual
navigation in indoor scenes using deep reinforcement learn-
ing.” In: 2017 IEEE international conference on robotics and au-
tomation (ICRA). IEEE. 2017, pp. 3357–3364.

[300] Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. “Transfer Learn-
ing in Deep Reinforcement Learning: A Survey.” In: arXiv preprint
arXiv:2009.07888 (2020).

[301] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,
Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu. “Discrimination-
aware channel pruning for deep neural networks.” In: Advances
in Neural Information Processing Systems. 2018, pp. 875–886.

	Jury Members
	Dedication
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Machine Learning
	1.2 Objectives and Research Questions
	1.3 Outline of the Dissertation
	1.4 Publications

	Preliminaries
	2 Supervised Learning and Deep Neural Networks
	2.1 Introduction
	2.2 Statistical Learning
	2.3 Neural Networks
	2.3.1 Multilayer Perceptrons
	2.3.2 Stochastic Gradient Descent
	2.3.3 Backpropagation
	2.3.4 Loss Functions
	2.3.5 Vanishing Gradients and Activation Functions

	2.4 Convolutional Neural Networks
	2.4.1 Mathematical Operations
	2.4.2 Popular Architectures

	2.5 Conclusion

	3 Reinforcement Learning and Deep Neural Networks
	3.1 Introduction
	3.2 Markov Decision Processes
	3.3 Goals and Returns
	3.4 Value Functions
	3.5 Learning Value Functions
	3.5.1 Monte Carlo Methods
	3.5.2 Temporal Difference Learning

	3.6 Function Approximators
	3.6.1 Linear Functions

	3.7 Deep Reinforcement Learning
	3.8 The Deadly Triad of Deep Reinforcement Learning

	4 Transfer Learning
	4.1 Introduction
	4.1.1 Transfer Learning in Machine Learning

	4.2 Transfer Learning in Practice
	4.3 Mathematical Definitions
	4.3.1 Supervised Learning
	4.3.2 Reinforcement Learning

	4.4 Deep Transfer Learning
	4.4.1 General Framework
	4.4.2 Literature Review

	4.5 Relevance for this Dissertation

	Transfer Learning for Deep Supervised Learning
	5 On the Transferability of Convolutional Networks
	5.1 A First Empirical Study
	5.2 Methodology
	5.2.1 Transfer Learning
	5.2.2 Datasets and Target Tasks TT
	5.2.3 Convolutional Networks and Training Approaches

	5.3 Results
	5.3.1 From Natural to Non Natural Images
	5.3.2 Discussion
	5.3.3 From One Target Domain DT to Another
	5.3.4 Selective Attention

	5.4 Conclusion

	6 Novel Datasets for Transfer Learning
	6.1 Challenges of Modern Computer Vision
	6.2 The MINERVA Dataset
	6.2.1 Data Collection
	6.2.2 Annotation Process
	6.2.3 Versions and Splits

	6.3 Benchmarking
	6.3.1 Classification
	6.3.2 Object Detection

	6.4 Results
	6.4.1 Quantitative Analysis
	6.4.2 Qualitative Analysis

	6.5 Discussion and Critical Analysis
	6.6 Future Work: towards more benchmarks

	7 On the Transferability of Lottery Winners
	7.1 The Lottery Ticket Hypothesis
	7.2 Datasets
	7.3 Experimental Setup
	7.4 Results
	7.4.1 On the Importance of Finding Winning Initializations
	7.4.2 On the Generalization Properties of Lottery Winners

	7.5 Additional Studies
	7.5.1 Lottery Tickets VS fine-tuned pruned models
	7.5.2 Transferring tickets from similar non-natural domains
	7.5.3 On the size of the training set

	7.6 Related Work
	7.7 Conclusion

	Transfer Learning for Deep Reinforcement Learning
	8 The Deep Quality-Value Learning Family of Algorithms
	8.1 Motivation
	8.2 A Novel Family of Deep Reinforcement Learning Algorithms
	8.2.1 DQV-Learning
	8.2.2 DQV-Learning with Multilayer Perceptrons
	8.2.3 DQV-Max Learning

	8.3 Results
	8.3.1 Global Evaluation
	8.3.2 Convergence Time
	8.3.3 Quality of the Learned Value Functions

	8.4 Additional Studies
	8.5 Discussion and Conclusion

	9 On the Transferability of Deep-Q Networks
	9.1 Introduction
	9.2 A large-scale Empirical Study
	9.2.1 The Atari Environments
	9.2.2 Experimental Setup
	9.2.3 Results

	9.3 Control Experiments
	9.3.1 The Catch Environments
	9.3.2 From one Catch to Another
	9.3.3 Self-Transfer

	9.4 The Two Learning Phases of Deep-Q Networks
	9.5 Related Work & Conclusion

	10 Concluding Remarks
	10.1 Answers to the Original Research Questions
	10.2 Critical Discussion & Future Perspectives
	10.2.1 Deep Supervised Learning
	10.2.2 Deep Reinforcement Learning

	Appendix
	A How to Identify Lottery Winners
	B The Deep Quality-Value Learning Algorithms
	C Reinforcement Learning Upside Down
	Bibliography

