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1 Introduction

Since the outbreak of the financial- and sovereign debt crisis, the effects of macroe-

conomic uncertainty have been documented in a growing theoretical and empirical lit-

erature. For example, Bloom (2009) or Jurado et al. (2015) investigate the influence

of uncertainty on real economic activity. Bloom (2009) explains this linkage through

investment decisions of firms, which can be affected by the uncertainty regarding the fu-

ture payoffs of physical investment projects. Early contributions with an explicit focus

on uncertainty about future inflation are Okun (1971) and Friedman (1977). Fried-

man (1977) highlights the detrimental effects of inflation uncertainty (IU in the fol-

lowing) on aggregate investment and output. One reason for the sustained interest in

IU might be the ongoing dispute about the sources of the so-called Great Moderation.

The Great Moderation describes a secular containment of inflation fluctuations that has

been observed through recent decades across industrialised economies (McConnel and

Perez-Quiros 2000, Benati 2008, Herrera and Pesavento 2009, Lahiri and Sheng, 2010).

However, empirical studies on the causes and effects of IU face the problem that IU is

unobservable.

The aim of this study is to evaluate a broad range of currently employed measures of

IU. Conceptually, most IU statistics are either derived from dynamic specifications like,

e.g., (G)ARCH and stochastic volatility (SV) models, or from the information provided

by forecast surveys (Zarnowitz and Lambros 1987, Giordani and Söderlind 2003, Lahiri

and Sheng 2010). Representatives of the former category draw upon the historical time

series information. In survey-based approaches, in contrast, IU is often approximated by

the cross sectional dispersion of point forecasts or by the average over survey participants’

individual uncertainty as it is derived from density forecasts (Giordani and Söderlind

2003, Rich and Tracy 2003). The high predictive content of survey based point forecasts

for inflation is documented, e.g., by Ang et al. (2007). Hence, this approach seems also

promising as a means to quantify IU. Clements (2014) compares measures of ex ante

forecast uncertainties derived from survey based density forecasts of inflation and output

growth with ex post, i.e. realised, uncertainties that are derived from forecast errors.

The magnitude of ex-ante IU as compared to ex-post IU is interpreted as a metric of

over- or underconfidence. Clements (2014) finds that ex ante and ex post uncertainty

are only weakly related, in particular at short forecast horizons. Since survey- and time

series methods aggregate information in distinct ways (Batchelor and Dua 1996; Mankiw

and Reis 2004), they will often provide diverging estimates of IU. Moreover, as argued

by Lahiri and Sheng (2010), choosing between these two approaches might become most
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difficult during turbulent periods.

In this study, IU statistics from both the survey- and the time series category are

assessed according to their performance as predictor variables. Similar to Clements

(2014), ex ante IU is related to ex post IU. The ex post, i.e. realised, IU obtains as

squared inflation forecast errors. We then forecast ex post IU by alternative ex ante IU

measures and rank them in terms of their predictive content. To improve comparability

between time series and disparity type IU statistics, inflation expectations from surveyed

experts are represented by the predictions of various econometric forecasting models.

The first advantage of this approach is that differences in the predictive content cannot

arise due to distinct information sets. Both the time series based approaches and the

dispersion statistics rely on the same historical time series information. Second, the

consideration of a larger cross section of economies is facilitated, since for sufficiently

long time periods, survey data on IU are only available for the Euro area and the

US. Similarly, Brock and Hommes (1997) or Branch (2004) model the heterogeneity

of expectations in terms of a finite number of prediction models. In contrast to other

studies which evaluate alternative IU statistics, our investigation is based on a large

scale international data set, covering 18 industrialised economies and the sample period

between 1997 and 2014. This allows to compare the features and relative performance

of IU measures during the time after the onset of the financial- and sovereign debt crisis

in 2007 as well as during the less turbulent period before.

We find that IU predictions which are based on the average uncertainty of alterna-

tive models are most accurate to predict ex post squared inflation forecast errors. In

a descriptive analysis of the proposed IU statistics, correlation coefficients reveal that

IU estimates belonging to either the time series- or the dispersion category process in-

formation in a similar way. However, each quantification of IU also shows idiosyncratic

characteristics, which might explain the superior predictive performance of the aver-

age uncertainty statistic. Moreover, to enable the comparison with the model based

IU statistics, we compute the disagreement among forecasters from the Consensus Eco-

nomics survey with regard to their inflation expectations. The disagreement derived

from Consensus Economics data is positively correlated with the model based disagree-

ment and the average uncertainty implied by the individual models. For all IU quan-

tifications, a strong increase of uncertainty is observed at the breakout of the global

financial crisis. Interestingly, we do not find evidence for a substantial decline of IU

after 2009 in high inflation economies, as it is the case for countries characterized by

relatively low inflation rates.
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In Section 2 we introduce six competing IU metrics. In Section 3 we describe the

relationship between ex ante and ex post IU that is employed to assess the predictive

content of alternative IU statistics. Moreover, the data set and the IU measures are

described. An introduction of the forecasting design and the discussion of the forecast

comparisons follows in Section 4. Section 5 summarises and concludes. The alternative

forecasting models used to substitute survey forecasts are outlined in the Appendix.

2 Measuring IU

There is no unique way to define or quantify IU. Thus, we seek to determine the ex

ante IU statistic that has the highest predictive content among a set of alternatives that

have been proposed in the literature. We evaluate IU measures which mimic commonly

used dynamic and disparity approaches. Following, e.g., Hamilton (1985), Brock and

Hommes (1997) or Branch (2004), we compute measures of disparity by substituting

survey expectations with forecasts that are derived from a variety of econometric (time

series) models. This procedure allows to analyse a larger cross section of economies,

since typical forecast surveys such as the Survey of Professional Forecasters are only

available for the US or the Euro area. Moreover, this approach guarantees an equal

timing of information sets underlying both time series based and disparity type IU

measures. In the following, six distinct IU statistics are reviewed. We firstly consider

time series based methods, which include GARCH and stochastic volatility (SV) models,

and subsequently illustrate approaches which are based on the dispersion of individual

forecasts. All measures are ex ante quantifications of IU. Several of the IU statistics

discussed below are based (at least partly) on the linear autoregressive (AR) model, a

frequently used specification for inflation forecasting. The comparably strong predictive

performance of AR and random walk specifications for inflation processes is documented

in several empirical studies, including Canova (2007) or Stock and Watson (2007, 2008).

The AR scheme is formulated as

πt+` = µ+ α11(L)πt + εt+`, t = τ −B + 1, ..., τ. (1)

In (1), εt+` ∼ (0, σ2
ε), L denotes the lag operator, i.e. Lnπt = πt−n, and α11(L) =

α11,0 + α11,1L + · · · + α11,PL
P . The lag order P is selected by means of the AIC, with

maximum order set to Pmax = 12. We consider the forecast horizons ` ∈ {1, 3, 6, 12}
and alternative lengths of a (rolling) estimation sample B ∈ {72, 108}. Out-of-sample

forecasts implied by (1) are denoted π̂τ+`|τ , where τ = T0− `− P, ..., T − ` is the rolling
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forecast origin. The time instances T0 and T delimit the evaluation sample which is

employed in the comparative evaluation of IU measures. Note that the estimation of the

dynamic model in (1) requires Pmax ‘presample’ observations.

1. Measuring IU by means of dynamic specifications

1.1 Predictive standard deviation

At forecast origin τ , the estimated predictive error standard deviation is

σ̂τ+`|τ = σ̃ε
√

(1 + z′τ (Z
′
τZτ )

−1zτ ), (2)

where σ̃ε is the OLS estimator of σε in (1), Zτ is the autoregressive design matrix and

zτ are the most recent observations on which out-of-sample forecasts are based. The

statistic in (2) is composed of time-local expressions of the variance of inflation surprises

and estimation uncertainty.

1.2 GARCH(1,1)

Since the studies of Engle (1982, 1983) and Bollerslev (1986), (G)ARCH models have

been widely used to measure IU. In this framework, the conditional variance of the

inflation disturbances filtered by the autoregressive scheme in (1) reads as

ĥ2t = ω + γε2t−1 + βĥ2t−1, (3)

with ω > 0, γ > 0, β > 0, and γ + β < 1. The GARCH(1,1) specification has been

found to be particularly suitable for out-of-sample forecasting (cf. Akgiray 1989, Knight

and Satchell 2007). The coefficients in (3) are estimated by means of (quasi-) maximum

likelihood estimation within rolling windows of fixed size B ∈ {72, 108}. Out-of-sample

forecasts of the conditional volatility of the filtered residuals can be obtained as

ĥG,τ+`|τ =

√
h2 + (γ + β)`−1(ĥ2τ+1 − h2), (4)

where E[h2t ] := h2 = ω/(1− γ − β).

1.3 Unobserved components stochastic volatility (UCSV)

According to the UCSV model (Stock and Watson, 2007), IU is modeled as the sum of

uncertainties induced by a transitory shock ηt on the observed inflation rate πt and a
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shock εt affecting the trend inflation $t. The UCSV model is specified as

πt+1 = $t+1 + ηt+1, ηt+1 = ση,t+1ζη,t+1,

$t+1 = $t + εt+1, εt+1 = σε,t+1ζε,t+1.

By assumption, the conditional log variances follow independent random walks, i.e.

ln σ2
η,t+1 = ln σ2

η,t + νη,t+1 and ln σ2
ε,t+1 = ln σ2

ε,t + νε,t+1.

The variances σ2
η,t+1 and σ2

ε,t+1 represent the transitory and the permanent component

of inflation fluctuations, respectively. The innovations ζt+1 = (ζη,t+1, ζε,t+1) are assumed

to satisfy N(0, I2). Moreover, we presume that νt+1 = (νη,t+1, νε,t+1) ∼ N(0, θI2), where

the parameter θ governs the smoothness of the variance processes. The error terms ζτ+1

and ντ+1 are assumed to be mutually independent. The UCSV model is estimated by

means of Gibbs sampling. The variance parameter is set to θ = (0.2/3)2 following the

specification in Dovern et al. (2012). We assess the overall uncertainty about inflation

as

ĥSV,τ+`|τ =
√
σ2
η,τ+`|τ + σ2

ε,τ+`|τ . (5)

Forecasts of ĥSV,τ+`|τ for ` > 1 are calculated similar to the ex ante forecast uncertainty

for the UCSV Model in Clements and Galvão (2014).1

2. Measuring IU by means of disparity

A common way of measuring uncertainty is to exploit the variation across individual

forecasts. We consider a range of forecasts from J = 14 alternative model specifications,

namely the AR scheme in (1) and an extended version of (1) obtained by incorporating

the deviation of inflation from its long run trend. Moreover, an adaptive expectations

specification proposed by Branch (2004), and a set of distinct vector autoregressive

(VAR) schemes is incorporated. These forecasting models are listed in the Appendix.

2.1 Disagreement among expectations

In the absence of density forecasts or statements about individual uncertainty of surveyed

experts, the disagreement among forecasts or expectations is often used as an indicator

of uncertainty (Rich et al. 2012). Based on rival predictions of inflation, denoted

1However, in our case there is no need to include the weighting factor that is adopted by Clements
and Galvão (2014) for annual data.
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π̂j,τ+`|τ , j = 1, ..., J, with J = 14, the disagreement obtains as

ŝτ+`|τ =

√√√√ 1

J − 1

J∑
j=1

(π̂j,τ+`|τ − πτ+`|τ )2, (6)

where πτ+`|τ = (1/J)
∑J

j=1 π̂j,τ+`|τ . Mankiw and Reis (2004) argue that disagreement

about inflation expectations plays a crucial role for macroeconomic dynamics. Capistrán

and Ramos-Francia (2010) or Dovern et al. (2012) investigate the determinants of dis-

agreement among forecasters’ inflation expectations. Diether et al. (2002) or Yu (2011)

explain the variation of a cross section of stock returns by means of the disagreement

among financial market analysts. Mokinski et al. (2015) provide a comprehensive eval-

uation of alternative ways to derive disagreement statistics based on qualitative and

quantitative expectations.

2.2 Average uncertainty

The popularity of the disagreement statistic in (6) might be partly due to the fact that

it only requires the availability of point forecasts. However, disagreement as such is

difficult to interpret. First, it is not directly linked to idiosyncratic uncertainty. Second,

disagreement may be only one component of aggregate uncertainty, e.g., if the latter is

derived from a set of density forecasts (Lahiri et al. 1988; Lahiri and Liu 2005; Wallis

2005; Boero et al. 2008). Empirically, D’Amico and Orphanides (2008) and Rich et al.

(2012) find only a weak relation between the disagreement obtained from the Survey of

Professional Forecasters and aggregate IU. As an alternative to a disagreement statistic

akin to (6), Zarnowitz and Lambros (1987) propose to average individual predictive

standard deviations to quantify IU. Such a metric is given by

σ̄τ+`|τ =
1

J

J∑
j=1

σ̂j,τ+`|τ , (7)

with σ̂j,τ+`|τ denoting model specific predictive standard deviations obtained, e.g., ac-

cording to (2) for the AR scheme in (1). The statistic σ̄τ+`|τ is regarded as a dispersion

measure like ŝτ+`|τ , since both entail characteristics which only arise as a matter of

pooling. However, as a forecast combination, σ̄τ+`|τ is less likely to obtain an ‘eccen-

tric’ assessment of IU than each of its individual components (Zarnowitz and Lambros

1987).
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2.3 Joint uncertainty

The IU statistics σ̄τ+`|τ and ŝτ+`|τ may be interpreted as two components of the ag-

gregated IU of a cross section of forecasters (Lahiri et al. 1988). Moreover, Lahiri et

al. (2014) show that a quantification of the aggregate uncertainty of a combined fore-

cast should incorporate both the average individual uncertainty and the disagreement

of point predictors. Therefore, it appears tempting to join the measures described in

(6) and (7). Forecast combination strategies for conditional second order moments have

been evaluated by Becker and Clements (2008) or Patton and Sheppard (2009), who

investigate volatility forecasts for the S&P500 index and IBM stock returns, respec-

tively. In both cases, averages of single model based volatility forecasts are found to

have higher predictive accuracy than competing prediction schemes. The combined ex

ante uncertainty statistic reads as

ςτ+`|τ = 0.5(ŝτ+`|τ + σ̄τ+`|τ ). (8)

3 Empirical evaluation of inflation uncertainty

The evaluation of alternative IU quantifications proceeds by means of a forecast compar-

ison which ranks IU statistics according to their predictive content. Similar to Clements

(2014), we compare ex ante IU measures with ex post IU that reads as

e2τ+` = (πτ+` − ¯̂πτ+`|τ )
2, (9)

where ¯̂πτ+`|τ = (1/J)
∑J

j=1 π̂j,τ+`|τ is a forecast combination based on inflation forecasts

from (1) and the models (15) to (19) that are outlined in the Appendix. To determine

the IU measure that delivers the highest predictive content, we employ the alternative

IU statistics as predictor variables. The relation to assess IU metrics reads as

ln(e2τ+`) = δ0 + δ1(L) ln(e2τ ) + δ2(L)IU•τ+`|τ + ϑ•τ+`, ϑ•τ+` ∼ (0, σ2
ϑ), (10)

where the log transformation in (10) ensures positiveness of predictions for e2τ+`. More-

over, τ = T0−`, ..., T −` and δk(L) = δk,0+δk,1L+ · · ·+δk,PLP , k = 1, 2, and Pmax = 12.

The ‘•’ notation indicates that IU•τ+`|τ ∈ {σ̂τ+`|τ , ĥG,τ+`|τ , ĥSV,τ+`|τ , ŝτ+`|τ , σ̄τ+`|τ , ςτ+`|τ}
represents one out of the alternative IU measures listed in (2) to (8). To evaluate

the improvement in prediction accuracy that is provided by single IU estimates, fore-

casts from (10) are compared with the ones where IU is omitted from (10), i.e. for
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δ2,0 = δ2,1 = ... = δ2,P = 0.

3.1 Data

The data set comprises monthly observations for 18 developed economies, namely Aus-

tria (AU), Belgium (BE), Canada (CA), Denmark (DK), Finland (FI), France (FR),

Germany (GER), Ireland (IR), Italy (IT), Japan (JP), the Netherlands (NL), Norway

(NOR), Portugal (PT), Spain (SP), Sweden (SWE), Switzerland (SWI), the UK and

the US for the time period January 1997 to December 2014. Based on consumer prices,

denoted CPIt, we obtain inflation series as monthly year-on-year price changes, i.e.

πt = ln(CPIt/CPIt−12). Similarly, real activity as the year-on-year change in the indus-

trial production index is determined as ỹt = ln(IPt/IPt−12). Further data series that are

employed in prediction models are described in the Appendix. These are the respective

economies’ central bank target rate, Rt, oil prices in local currency, oilt, a monetary

aggregate, mt, and the unemployment rate unempt. All series are seasonally adjusted

and drawn from Datastream.

3.2 Descriptive analysis of IU measures

Before assessing the predictive content of the competing IU estimates, descriptive fea-

tures like their relative magnitudes, mutual correlations and graphical displays are ex-

amined. The boxplots in Figure 1 show the size and variation of the IU approximations

for the cross section of 18 economies, separated into two groups of high2 and low3 infla-

tion economies. This distinction is drawn by separating economies with average inflation

rates above and below the cross sectional median. As it turns out, the relative mag-

nitudes of the IU statistics considered in this study are similar to those reported by

Batchelor and Dua (1996) or Bomberger (1996). The displays for ` = 1 depict averages

of IUτ+1|τ over the period between January 1997 and December 2014 for the full cross

section. For this horizon, we observe only minor variations among IU measures. In case

of the high inflation economies, the variation is slightly larger for dispersion statistics

in comparison with time series based IU metrics. Both the size and the variation of

average IU estimates across economies increase for ` = 12 compared with ` = 1. The

increase is most notable for the disagreement statistic ŝτ+`|τ . In contrast to the short

horizon statistics (` = 1), there is a remarkable difference in the size and variation of the

2High inflation economies: FI, IR, IT, NOR, PT, SP, SWE, UK, US.
3Low inflation economies: AU, BE, CA, DK, FR, GER, JP, NL, SWI.
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dispersion statistics between low and high inflation economies. In contrast, time series

based IU statistics differ markedly less across low and high inflation economies.

1 2 3 4 5 6
0

0.002

0.004

0.006

0.008

0.01

` = 1, low inflation economies

1 2 3 4 5 6
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0.002

0.004

0.006

0.008
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` = 1, high inflation economies

1 2 3 4 5 6
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` = 12, low inflation economies

1 2 3 4 5 6
0

0.01
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0.03

0.04

` = 12, high inflation economies

Figure 1: Boxplots for average IU over the time period 1997M1 to 2014M12 in low

and high inflation economies. The numbers from 1.) to 6.) refer to the following IU

measures: 1.) σ̂τ+`|τ , 2.) ĥG,τ+`|τ , 3.) ĥSV,τ+`|τ , 4.) ŝτ+`|τ , 5.) σ̄τ+`|τ , 6.) ςτ+`|τ . The

scales of IU graphs for ` = 1 and ` = 12 differ to facilitate the visual inspection of

variation in the IU statistics.

We further assess the similarity between the model based disagreement statistics and

a commonly used survey-based estimate of IU. To determine the survey-based measure,

we make use of the data set provided by Consensus Economics. This monthly survey

of expert forecasters elicits inflation expectations for the current and the next calendar

year for a subset of the countries and the time span we consider.4

4The reduced sample consists of CA, FR, GER, IT, JP, NL, NOR, SP, SWI, the UK and the US,
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To facilitate the comparison with the fixed horizon IU statistics in (2) to (8), we

transform the expectations from the Consensus Economics data set. The rolling horizon

structure of the survey expectations is converted by means of a weighted average of

predictions for the current and the next year. This approximation should resemble the

fixed horizon structure more closely and is, e.g., suggested by Dovern et al. (2012). The

disagreement of j = 1, ...,J Consensus Economics forecasts is obtained in analogy to

ŝτ+`|τ in (6) as

uτ+12|τ =

√√√√ 1

J − 1

J∑
j=1

(π̂j,τ+12|τ − πτ+12|τ )2, (11)

with πτ+12|τ = (1/J )
∑J

j=1 π̂j,τ+12|τ . The number of available inflation forecasts varies

across time instances and economies. On average, uτ+12|τ is estimated on the basis of

approximately 20 forecasts.

Figure 2 shows the magnitude and variation of the alternative IU quantifications

including the disagreement statistic uτ+12|τ for ` = 12. To ensure comparability, the

calculations are based on the reduced sample for all IU statistics. For the low inflation

economies, the magnitude of IU estimate uτ+12|τ is higher than for the model based IU

metrics. The amount of variation of uτ+12|τ is similar to the disagreement measure ŝτ+`|τ ,

especially for the low inflation economies. For the remaining IU metrics, both the size

and the cross sectional variation are larger for the disparity measures than for the time

series quantifications. The considerable differences across IU approximations exemplify

that they supply idiosyncratic information.

for the period from 1999M6 to 2014M12.
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Figure 2: Boxplots for average IU over the time period 1999M6 to 2014M12 in low and

high inflation economies for ` = 12. The numbers from 1.) to 7.) refer to the following IU

measures: 1.) σ̂τ+`|τ , 2.) ĥG,τ+`|τ , 3.) ĥSV,τ+`|τ , 4.) ŝτ+`|τ , 5.) σ̄τ+`|τ , 6.) ςτ+`|τ , 7.) uτ+12|τ

To provide an indication of the extent of common information in the IU metrics, we

next examine their mutual correlations. As noted by Lahiri and Sheng (2010), the degree

to which characteristics of IU measures differ might depend on the level of inflation.

Therefore, the average correlation coefficients for the two horizons ` = 1, 12 are reported

separately for low and high inflation economies in Tables 1 and 2, respectively.
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Table 1: Mutual correlations of IU measures at the short horizon

σ̂τ+1|τ ĥG,τ+1|τ ĥSV,τ+1|τ ŝτ+1|τ σ̄τ+1|τ

High inflation economies

ĥG,τ+1|τ 0.59 · · · ·
ĥSV,τ+1|τ 0.41 0.72 · · ·

ŝτ+1|τ 0.57 0.35 0.38 · ·
σ̄τ+1|τ 0.85 0.45 0.34 0.72 ·
ςτ+1|τ 0.68 0.41 0.40 0.98 0.84

Low inflation economies

ĥG,τ+1|τ 0.56 · · · ·
hSV,τ+1|τ 0.39 0.71 · · ·

ŝτ+1|τ 0.36 0.29 0.36 · ·
σ̄τ+1|τ 0.77 0.53 0.47 0.56 ·
ςτ+1|τ 0.49 0.38 0.41 0.98 0.72

Note: The upper panel contains correlation coefficients between IU measures for nine
high inflation economies, while the lower part refers to nine low inflation economies.

The overall impression for both high and low inflation economies is that mutual

correlations are stronger within than between the two categories of IU quantifications.

Particularly high correlations are found among the dispersion measures ŝτ+`|τ and ςτ+`|τ .

The disagreement statistic uτ+12|τ exhibits positive correlations especially with the dis-

parity statistic σ̄τ+`|τ and the dynamic measures ĥSV,τ+`|τ and ĥG,τ+1|τ (see Table 2).
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Table 2: Mutual correlations of IU measures at the long horizon

σ̂τ+12|τ ĥG,τ+12|τ ĥSV,τ+12|τ ŝτ+12|τ σ̄τ+12|τ ςτ+12|τ

High inflation economies

ĥG,τ+12|τ 0.39 · · · · ·
ĥSV,τ+12|τ 0.26 0.56 · · · ·

ŝτ+12|τ 0.47 0.31 0.43 · · ·
σ̄τ+12|τ 0.78 0.46 0.55 0.69 · ·
ςτ+12|τ 0.56 0.36 0.46 0.99 0.80 ·
uτ+12|τ 0.10 0.29 0.42 0.11 0.22 0.14

Low inflation economies

ĥG,τ+12|τ −0.12 · · · · ·
ĥSV,τ+12|τ −0.22 0.47 · · · ·

ŝτ+12|τ 0.25 0.19 0.39 · · ·
σ̄τ+12|τ 0.44 0.16 0.40 0.64 · ·
ςτ+12|τ 0.31 0.19 0.38 0.98 0.76 ·
uτ+12|τ −0.15 0.21 0.33 0.09 0.18 0.11

Note: The upper panel documents correlation coefficients between IU measures for six
high inflation economies, while the lower part refers to the low inflation economies.
Computations are based on the sample ranging from 1999M6 to 2014M12.

Figures 3 and 4 display the median of the IU realizations to illustrate their dynamic

behaviour. At the short forecast horizon (` = 1, Figure 3), IU metrics differ only slightly

between low and high inflation economies. These differences mainly emerge at the end

of the 1990s and in the immediate aftermath of the global financial crisis around 2009.

For all estimates the relatively stable evolution of IU before 2008 resembles the timing of

the Great Moderation (Benati 2008). During the breakout of the global financial crisis

all IU metrics except σ̂τ+`|τ increase remarkably. This peak, however, is largely reversed

before 2010. For σ̂τ+`|τ , in contrast, a minor rise is notable in 2008 which essentially

persists until the end of the sample.

At the long horizon (` = 12, Figure 4), we diagnose substantial deviations of IU

statistics between high and low inflation economies. The most sizeable deviations be-

tween high and low inflation economies are observed for the disparity measures ŝτ+`|τ ,

σ̄τ+`|τ , ςτ+`|τ and the dynamic measure σ̂τ+`|τ . Following the substantial rise of IU after

2009, low inflation economies experience a reduction towards the pre-crisis level. For

high inflation economies, IU decreases around 2012 but remains on an increased level

14



1997 2000 2003 2006 2009 2012 2015
0

0.2

0.4

0.6

σ̂τ+`|τ

1997 2000 2003 2006 2009 2012 2015
0

0.2

0.4

0.6
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Figure 3: The graphs show the median of distinct IU approximations at the anticipation
horizon ` = 1 for low (solid line) and high inflation (dashed) economies. The scale of
the IU measures has been multiplied by 100 in this figure to facilitate visual inspection.

until the end of the sample period.

Similarly, the Consensus Economics based disagreement uτ+12|τ displays a relatively

stable evolution before 2008 and a strong peak for all economies at the breakout of the

global financial crisis. For both high and low inflation economies and ` = 12, upward

shifts in IU are more pronounced for the disparity measures than for the time series

approximations of IU.

The preliminary data analysis in this Section confirms that model based uncertainty

statistics like ŝτ+`|τ and the widely used survey based disagreement evolve in a broadly

similar way. Moreover, the empirical correlations highlight the distinct features of time

series vs. dispersion metrics of IU on the one hand, and the similarities within these

groups on the other hand. This complementarity suggests that the quantification of IU

might gain by combining time series and cross sectional information. Therefore, joint
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Figure 4: The graphs show the median of distinct IU approximations at the anticipation
horizon ` = 12. For further notes see Figure 2. The upper right graph for ŝτ+`|τ
additionally includes the trajectory for uτ+12|τ (grey dotted line). The IU measures have
been individually rescaled to facilitate the visual inspection of their trajectories.

statistics such as σ̄τ+`|τ or ςτ+`|τ might offer advantages in terms of predictive content.

To compare the relative merits of dynamic and dispersion IU metrics, we next devise an

out-of-sample forecasting assessment.

4 The relation between ex ante and ex post IU

The comparative forecast evaluation of IU measures proceeds by means of a pseudo

out-of-sample cross validation. Each realised squared forecast error, ln(e2τ+`), τ = T0 −
`, ..., T − `, is predicted `-steps ahead by means of a respective leave-one-out estimate.

The computation of `-steps ahead predictions is straightforward due to the linear relation

between ln(e2τ+`) and the explanatory variables which are conditional on information that

is available in period τ (Chevillon 2005). Subset modelling is implemented in terms of
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the Akaike information criterion (AIC) for each lag polynomial of the predictor variables

in (10) and at each cross-validation step.5

4.1 The ranking of forecasts

From the predictions l̂n(e2)
•

τ+`|τ that are based on distinct IU quantifications included in

(10) and the benchmark excluding IU, (i.e. δ2,0 = δ2,1 = ... = δ2,P = 0 in (10)), we derive

rankings of forecast performance. The ranking schemes are introduced below. Loss

statistics are aggregated across economies, hence, we introduce the index i = 1, ..., N ,

where N = 18.

4.1.1 Performance criteria

To assess the robustness of the out-of-sample findings, we report results for three dis-

tinct loss functions. Note that the forecasting model for ex post squared errors in (10)

with distinct IU statistics and the respective specification without IU term are in most

instances non-nested specifications due to the lag-selection step that is carried out be-

fore forecasts are computed. Thus, corresponding RMSE statistics can be compared by

means of the Diebold-Mariano (DM) test statistic for ` = 1 (Diebold and Mariano 1995)

and the adjusted DM test (Harvey et al. 1997) for ` > 1.

1. Root mean squared error (RMSE)

The RMSE of the prediction error from (10) (ϑ•i,τ+`|τ ) reads as

RMSE• =

√√√√(1/((T − T0 + 1)× 18))
T−∑̀

τ=T0−`

18∑
i=1

(
ϑ•i,τ+`|τ

)2
. (12)

2. Directional accuracy (DA)

As a second criterion, we employ the DA loss function, given by

DA• = (1/((T − T0 + 1)× 18))
T−∑̀

τ=T0−`

18∑
i=1

I((π̂•i,τ+`|τ − πi,τ )(πi,τ+` − πi,τ ) > 0), (13)

5Results are qualitatively similar if the BIC is considered.
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where I(·) denotes an indicator function. Though DA• does not make use of the infor-

mation regarding the size of ϑ•i,τ+`|τ , an advantage of DA• is its robustness with respect

to the occurrence of extreme prediction errors. The close association with economic

profits (Leitch and Tanner 1991, Swanson and White 1995) is a further advantage of

DA. Blaskowitz and Herwartz (2014) provide a discussion of the economic value of di-

rectionally accurate predictions.

3. Top ranking frequency (TOP2)

Similar to Stock and Watson (1999), we consider as a further criterion how often the

squared forecast error for a particular IU metric
(
ϑ•i,τ+`|τ

)2
is among the two smallest

of all alternative forecasting specifications. Then, the average TOP2• statistic is given

by

TOP2• = (1/((T − T0 + 1)× 18))
T−∑̀

τ=T0−`

18∑
i=1

I
((
ϑ•i,τ+`|τ

)2 ≤ ϑ2
(2)i,τ+`

)
, (14)

where ϑ2
(2),i,τ+`|τ is the 2nd-smallest squared forecast error obtained from six competing

specifications including IU and one without IU.

4.1.2 Predictive accuracy in subsamples

The predictive content provided by individual IU quantifications might not be constant

across time periods or economies. Lahiri and Sheng (2010) discuss situations in which

alternative IU statistics are likely to feature distinct behavior. Moreover, the IU tra-

jectories shown in Figures 3 and 4 highlight that time series and dispersion measures

obtain particularly distinct IU estimates after 2008.

Thus, we first compare RMSE•-statistics separately for either turbulent or tranquil

subperiods. Such periods are distinguished by means of the standard deviation over the

IU metrics in (2) to (8) at each forecasting step τ = T0−`, ..., T−`, denoted as SDi,τ+`|τ .

Forecast rankings are then determined by computing the average RMSE• separately for

sample observations above and below SDτ+`|τ , the median of SDi,τ+`|τ across economies.

Second, the explanatory content of alternative IU statistics might depend on historical

experiences of distinct economies with respect to the level of inflation. Therefore, we

evaluate the predictive content of candidate IU measures separately for high- and low

inflation economies.
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4.2 Forecasting ex post uncertainty

Based on the alternative IU quantifications from (2) to (8), we obtain distinct forecasts

l̂n(e2)
•

τ+`|τ . Table 3 provides the corresponding RMSE statistics. The disparity statistic

σ̄τ+`|τ yields the most accurate forecasts. The predictive content of this IU metric is

particularly visible for short anticipation horizons ` = 1 to ` = 6. We find consider-

able variation of the relative predictive performance of distinct measures of IU across

forecast horizons `. Since σ̄τ+`|τ can be thought of as a combination of the IU statistics

σ̂j,τ+`|τ , j = 1, ..., J , the success of this IU metric might result from the potential to

average out individual disadvantages of these alternative IU statistics. The result also

underscores the results in Becker and Clements (2008) for volatility forecasts. The right-

most column of the Tables 3 to 7 (labelled ‘δ2,k = 0,∀k’) documents the loss statistics

that are obtained from the specification without IU. In almost all cases, forecasts are

more accurate if ex ante IU metrics are employed than otherwise, i.e. for δ2,k = 0,∀k.

Table 3: RMSE statistics

σ̂τ+`|τ ĥG,τ+`|τ ĥSV,τ+`|τ ŝτ+`|τ σ̄τ+`|τ ςτ+`|τ δ2,k = 0,∀k

` B = 72

1 2.32 2.32 2.32 2.32 2.28 2.32 2.31
3 2.33 2.32 2.32 2.31 2.25 2.30 2.31
6 2.31 2.31 2.31 2.29 2.26 2.30 2.32
12 2.43 2.44 2.44 2.47 2.45 2.46 2.44

B = 108

1 2.25 2.25 2.25 2.24 2.24 2.24 2.23
3 2.39 2.38 2.39 2.37 2.35 2.38 2.38
6 2.31 2.30 2.30 2.30 2.29 2.31 2.32
12 2.23 2.23 2.22 2.26 2.27 2.26 2.22

NOTE: Cell entries document RMSE statistics, where the average is taken over N = 18
economies and forecast origins τ = T0− `, ..., T − `, i.e. for the period between 1997M01
and 2014M12. The columns refer to the RMSE of forecasts based on the IU measures in
(2) to (8). The estimation of these IU statistics is based on rolling samples of alternative
length B = {72, 108}. The rightmost column (‘δ2,k = 0,∀k’) shows the RMSE for
predictions obtained by omitting IU from the forecasting specification, which serves as a
benchmark device for the IU•-based forecasts. Each row contains results for one forecast
horizon ` ∈ {1, 3, 6, 12}. The smallest RMSE in each row is given in boldface.

Moreover, we find that the disagreement statistic ŝτ+`|τ is less informative than the

average uncertainty σ̄τ+`|τ . This is remarkable since disagreement is a particularly widely
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employed measure of IU (Lahiri and Sheng, 2010). Sample specific forecast rankings of

the IU statistics are reported in Table 4. In most cases, the lead of σ̄τ+`|τ over other

IU measures is strongest at short to medium forecast horizons. However, the predictive

accuracy of σ̄τ+`|τ is not restricted to a particular subsample. In line with the full-sample

results, the findings based on subsamples show that the disparity measure σ̄τ+`|τ is more

informative as a predictor variable for ex post IU than its time series based counterparts.

Similarly, the distinction of turbulent and quiescent periods enables to draw clear-cut

distinctions among the forecasts that are based on alternative IU metrics.
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Table 4: RMSE statistics for subsamples (B = 72)

σ̂τ+`|τ ĥG,τ+`|τ ĥSV,τ+`|τ ŝτ+`|τ σ̄τ+`|τ ςτ+`|τ δ2,k = 0,∀k

` Turbulent periods

1 2.29 2.29 2.30 2.29 2.27 2.28 2.27
3 2.29 2.28 2.28 2.27 2.25 2.28 2.27
6 2.29 2.31 2.30 2.25 2.25 2.25 2.30
12 2.47 2.48 2.48 2.51 2.51 2.50 2.47

Quiescent periods

1 2.35 2.34 2.34 2.34 2.30 2.35 2.35
3 2.37 2.36 2.36 2.35 2.25 2.32 2.36
6 2.32 2.32 2.32 2.34 2.28 2.34 2.34
12 2.40 2.41 2.41 2.44 2.40 2.42 2.41

High inflation economies

1 2.34 2.33 2.33 2.32 2.29 2.32 2.32
3 2.34 2.34 2.33 2.33 2.26 2.31 2.33
6 2.30 2.30 2.30 2.29 2.25 2.30 2.31
12 2.39 2.41 2.40 2.43 2.41 2.41 2.39

Low inflation economies

1 2.30 2.31 2.31 2.31 2.27 2.32 2.30
3 2.32 2.31 2.30 2.29 2.24 2.29 2.30
6 2.31 2.32 2.32 2.30 2.28 2.30 2.33
12 2.48 2.48 2.49 2.51 2.50 2.50 2.48

NOTE: Cell entries document RMSE statistics as described in Table 3 for subsamples,
where each time instance τ = T0 − `, ..., T − ` is classified as a turbulent (quiescent)
period if the standard deviation over all IU metrics from (2) to (8) lies above (below)
its unconditional median. High- and low- inflation economies, respectively, are obtained
by sorting the cross section into those economies which have an unconditional average
inflation rate above or below the cross sectional median inflation. Results for a window
length of B = 108 are qualitatively equivalent. Further details are reported in the notes
to Table 3.

The findings obtained for the RMSE criterion are confirmed by the DA statistics

documented in Table 5. In general, a DA in excess of 50% indicates that forecasts

are valuable from an economic point of view. In this respect, all IU statistics deliver

predictive content for horizons ` > 1, with σ̄τ+`|τ being the clearly most informative

predictor also in terms of the DA criterion.
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Table 5: Directional accuracy ×100

σ̂τ+`|τ ĥG,τ+`|τ ĥSV,τ+1|τ ŝτ+`|τ σ̄τ+`|τ ςτ+`|τ δ2,k = 0,∀k

` B = 72

1 51.02 49.72 49.26 49.63 51.64 49.63 48.76
3 51.79 51.41 53.30 53.95 55.68 53.86 51.57
6 58.65 58.62 57.60 57.82 58.24 57.57 58.30
12 53.57 54.50 54.07 54.53 56.38 54.89 52.58

B = 108

1 48.36 47.55 48.32 48.08 49.50 47.89 45.47
3 52.98 53.11 51.73 53.92 54.43 53.45 51.48
6 56.90 57.09 57.18 57.63 57.25 56.13 54.47
12 55.56 54.66 54.93 55.89 57.37 57.04 52.91

NOTE: Cell entries show frequencies of directionally accurate forecasts in the sense of
(13). Further details are reported in the notes to Table 3.

Moreover, the results in Table 6 show that σ̄τ+`|τ is most often among the two most

informative IU measures, in particular for anticipation horizons ` < 12. We also compare

the reported TOP2-frequencies to those obtained by drawing simulated forecasts under

the assumption of equal predictive ability. As it can be seen in the Table, the IU-metric

σ̄τ+`|τ is most often in excess of the simulated critical values.
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Table 6: TOP2 – percentages

σ̂τ+`|τ ĥG,τ+`|τ ĥSV,τ+`|τ ŝτ+`|τ σ̄τ+`|τ ςτ+`|τ δ2,k = 0,∀k

` B = 72

1 30.40* 30.34* 29.07 21.88 41.48*** 22.90 23.92
3 21.91 23.83 25.68 30.86** 40.93*** 33.55*** 23.24
6 25.40 26.20 26.39 32.87*** 35.12*** 32.47*** 21.54
12 27.62 27.50 27.69 30.65** 30.12 31.45*** 24.97

B = 108

1 28.80 28.36 28.21 26.20 35.56*** 24.72 28.15
3 27.10 26.20 25.22 29.66 40.80*** 29.88 21.14
6 25.40 24.75 26.51 31.79** 38.18*** 30.62** 22.75
12 26.30 26.23 26.94 31.27*** 35.06*** 33.36*** 20.83

NOTE: Cell entries document frequencies by which IU measures are among the ‘best
2’in terms of lowest RMSE statistics, as detailed in (14). The highest percentage in
each row is in boldface. The significance of the TOP2-statistics is assessed by means
of simulation where 10000 draws of squared forecast errors and corresponding TOP2-
statistics are generated under the null hypothesis of equal predictive accuracy. Asterisks
(*,**,***) denote the significance of the respective TOP2-numbers at the 10%, 5% and
the 1%-level, respectively. Further details are reported in Table 3.

Table 7 documents in a further way how often inflation forecasts based on alternative

IU measures differ significantly from each other. As for the results documented in Tables

3 to 6, differences in predictive accuracy are evaluated in terms of squared forecast errors,

DA and the TOP2 criterion. The results show that consideration of the IU metric

σ̄τ+`|τ provides the highest number of cases where competing forecasts are significantly

outperformed, especially at short- to medium forecast horizons.

To summarize, σ̄τ+`|τ is the most informative predictor variable. The findings suggest

that the accuracy of σ̄τ+`|τ is not necessarily tied to the additional information provided

by survey data, which is typically used to compute this type of IU statistics. Rather, this

IU metric offers in many cases higher predictive content than its time series counterparts.

As the results in this study suggest, the relative advantage of σ̄τ+`|τ can also be found

if alternative IU metrics are based on publicly available information with equal timing.

Moreover, the documented findings are rather robust. The ranking of IU metrics is

qualitatively identical for three distinct performance criteria. Similarly, σ̄τ+`|τ remains

the most informative IU statistic if the sample is split into subsets along the time series

or the cross section dimension.
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Table 7: Diebold and Mariano (1995) test results (B = 72)

σ̂τ+`|τ ĥG,τ+`|τ ĥSV,τ+`|τ ŝτ+`|τ σ̄τ+`|τ ςτ+`|τ δ2,k = 0,∀k

RMSE
`

1 1 0 1 0 6 0 0
3 2 0 2 0 5 1 0
6 3 2 2 0 2 1 2
12 2 0 2 0 2 1 2

DA
`

1 0 1 2 0 2 1 0
3 0 0 0 4 4 4 0
6 0 0 0 0 0 1 0
12 1 0 0 0 1 0 0

TOP2
`

1 3 3 4 1 6 0 0
3 1 1 1 4 6 4 0
6 3 1 1 4 5 5 0
12 2 0 0 3 3 3 0

NOTE: Cell entries document for a particular model, how many of the 6 respective
alternative forecasts (i.e., 5 forecasts based on alternative IU measures in addition to
the model without ex ante IU) are significantly outperformed with 5% significance. For
` > 1, significance is evaluated by means of the adjusted DM statistic proposed by
Harvey et al. (1997).

5 Conclusions

This study provides a comparative evaluation of alternative empirical measures of infla-

tion uncertainty. In the related literature, various inflation uncertainty metrics have been

distinguished. The first category of inflation uncertainty statistics consists of time se-

ries measures, the second is based on the heterogeneity of individual inflation forecasts.

A descriptive analysis of several representatives of such ex ante measures of inflation

uncertainty confirms this categorisation. Correlation statistics show that the relations

among the members of both categories are stronger than across categories. We evaluate

the alternative measures of inflation uncertainty by means of a performance compari-
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son, where alternative metrics are considered as explanatory variables. The results show

that, as a representative of the dispersion family, the average over individual uncertain-

ties is the most preferable predictor. This result is in line with theoretical arguments

of Lahiri and Sheng (2010) who compare the average individual uncertainty with the

variation across point forecasts and find that, under certain assumptions, the latter may

be regarded as an incomplete approximation of the former. The findings documented in

our forecasting study are robust with respect to the choice of the forecasting evaluation

criterion and also regarding distinct subsample choices. Furthermore, the trajectory of

distinct IU statistics reveals that all uncertainty measures uniformly indicate low in-

flation uncertainty during the so-called Great Moderation and a subsequent uprise of

inflation uncertainty around the year 2008.

Appendix

To approximate IU by means of the measures in (2) to (8), we employ a range of

models for inflation forecasting. These models are listed in the following. Similar to

Stock and Watson (2007), we extend the baseline AR in (1) with an output gap term,

x̃t = xt − x̄t. This yields the backward looking Phillips curve, i.e.

πt+` = µ+ α21(L)πt + α22(L)x̃t + εt+`, t = τ −B + 1, ..., τ, (15)

with εt+` ∼ (0, σ2
ε ), α2k(L) = α2k,0 +α2k,1L+ · · ·+α2k,PL

P , k = 1, 2, and Pmax = 12. In

(15), x̃t is estimated recursively based on observations dating in t = τ−B+1, ..., τ, B ∈
{72, 108}, by means of the Hodrick-Prescott filter with the smoothing parameter set to

14400. An alternative model in the spirit of Cogley (2002) incorporates the so-called

inflation gap, denoted π̃t = πt − π̄t, where π̄t is the HP trend in πt. The inflation gap

model is given by

πt+` = µ+ α31(L)π̃t + εt+`. (16)

In this specification, πt+` is influenced by adjustment dynamics towards its long term

trend, i.e. the relation in (16) is similar to an error correction relation.

A further model for the dynamics of inflation expectations is based on the concept of

adaptive expectations. Following Branch (2004), adaptive inflation expectations denoted

by πet+1, are computed according to the recursion

πet+1 = wπt + (1− w)πet . (17)
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The smoothing parameter w in (17) is determined by means of a grid search such that

the in-sample MSE

MSE = (1/B)
τ∑

t=τ−B+1

(πt − πet )2, B ∈ {72, 108}, (18)

is minimised at each step of the forecast recursion.

Branch (2004) also considers inflation forecasts that are obtained from vector au-

toregressive (VAR) models. We adopt this method by considering the VAR specification

yt+` = ν + A(L)yt + vt, (19)

where vt ∼ (0,Σ) and A(L) = A0+A1L+···APLP . As in (15), VAR models are estimated

in rolling samples of size B ∈ {72, 108}. We specify a variety of alternative VAR models

such that yt = (πt, x̃t, zt)
′, i.e. inflation and the output gap are in all cases incorporated.

Considering either one or two variables zt ∈ {Rt, unempt,∆
2oilt,∆m

HP
t } obtains four

three dimensional and six four dimensional VAR models.6 In sum, we consider a total

number of J = 14 inflation forecasting schemes.
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