Risk factors for 2-year mortality in patients with prolonged disorders of consciousness: An international multicentre study

Anna Estraneo1,2 | Alfonso Magliacano1,3 | Salvatore Fiorenza4 | Rita Formisano5 | Antonello Grippi1 | Efthymios Angelakis6 | Helena Cassol7 | Aurore Thibaut7 | Olivia Gossières7 | Gianfranco Lamberti8 | Enrique Noé9 | Sergio Bagnato10 | Brian L. Edlow11 | Camille Chatelle11 | Nicolas Lejeune12 | Vigneswaran Veeramuthu13 | Michelangelo Bartolo14 | Donatella Mattia5 | Jlenia Toppi15 | Nathan Zasler16 | Caroline Schnakers17 | Luigi Trojano3

1Don Carlo Gnocchi Foundation, Scientific Institute for Research and Health Care, Florence, Italy
2Neurology Unit, Santa Maria della Pietà General Hospital, Nola, Italy
3Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
4Maugeri Clinical Scientific Institutes, Scientific Institute for Research and Health Care, Laboratory for the Multimodal Evaluation of Disorders of Consciousness, Telese Terme, Italy
5Santa Lucia Foundation, Scientific Institute for Research and Health Care, Rome, Italy
6Neurosurgery Department, University of Athens Medical School, Athens, Greece
7Coma Science Group, GIGA Consciousness, University and University Hospital of Liège, Liège, Belgium
8Neurorehabilitation and Vegetative State Unit E. Viglietta, Cuneo, Italy
9NEUROHRB–Neurorehabilitation Service of Vithas Hospitals, Valencia, Spain
10Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, Cefalù, Italy
11Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
12Centre Hospitalier Neurologique William Lennox, Ottignies-Louvain-la-Neuve, Belgium
13Department of Psychology, University of Reading Malaysia, Iskandar Puteri, Malaysia
14Neurorehabilitation Unit, HABILITA Zingonia/Ciserano, Bergamo, Italy
15Department of Computer, Control, and Management Engineering, Sapienza University of Rome, Rome, Italy
16Concussion Care Centre of Virginia, Richmond, Virginia, USA
17Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, California, USA

Abstract

Background and purpose: Patients with prolonged disorders of consciousness (pDoC) have a high mortality rate due to medical complications. Because an accurate prognosis is essential for decision-making on patients’ management, we analysed data from an international multicentre prospective cohort study to evaluate 2-year mortality rate and bedside predictors of mortality.

Methods: We enrolled adult patients in prolonged vegetative state/unresponsive wakefulness syndrome (VS/UWS) or minimally conscious state (MCS) after traumatic and non-traumatic brain injury within 3 months postinjury. At enrolment, we collected demographic (age, sex), anamnestic (aetiology, time postinjury), clinical (Coma Recovery Scale–Revised [CRS–R]), Disability Rating Scale, Nociception Coma Scale–Revised), and neurophysiologic
INTRODUCTION

After severe acquired brain injury, survivors can remain in prolonged (>28 days from onset) disorders of consciousness (pDoC) [1]. Following a period of coma, patients who recover eyes opening (spontaneously or in response to stimuli) but do not demonstrate signs of awareness are defined as being in vegetative state/unresponsive wakefulness syndrome (VS/UWS) [2], whereas the minimally conscious state (MCS) [3] is defined by the appearance of inconsistent but reproducible intentional behaviours (e.g., visual pursuit, localization to pain, command following).

Patients in MCS and, less frequently, those in VS/UWS can regain full consciousness [4], in some cases even years after the injury [5]. However, a variable but substantial proportion of patients with pDoC (even up to 74%) [4] die within 12 months of brain injury, most often due to severe medical complications such as pneumonia or cardiac failure, with lowest mortality rates following trauma [6–8].

The main predictors for mortality are older age, nontraumatic aetiology, short time postinjury, and diagnosis of VS/UWS compared to MCS [4,7,9]. Moreover, recent studies highlighted that additional clinical variables, such as the Coma Recovery Scale–Revised (CRS-R) [10] total score [7], and electrophysiological markers, such as the absence of somatosensory evoked potentials (SEPs) [11] or event-related potentials (ERPs) [12], and worse electroencephalographic background activity [13,14], could predict poor outcome, including mortality, in patients with pDoC. However, most of these prognostic studies evaluated a limited number of predictors, thus precluding detection of the independent predictive value of each variable [15]. Moreover, most studies showed limits in generalization of the results, mainly due to single-centre design and sampling bias.

As an accurate prognostication is essential for assisting clinicians and patients’ relatives in decision-making on care and life-sustaining treatment [16], we analysed data from a multicentre longitudinal study on a large cohort of patients with pDoC to evaluate the role of demographic, anamnestic, clinical, and neurophysiological factors in predicting mortality up to 24 months postinjury. This study was initiated by the Special Interest Group on DoC of the International Brain Injury Association (see www.internationalbrain.org).

METHODS

Study design and participants

This study is part of a multicentre prospective project whose goal is to evaluate clinical evolution and identify prognostic factors in a large sample of patients with pDoC [17]. The international framework involved 12 medical centres (intensive care unit, n = 2; intensive specialized rehabilitation unit for postacute patients, n = 8, neurology department, n = 2) with expertise in diagnosis and care of adults with severe acquired brain injury, located in Europe (n = 10), North America (n = 1), and Asia (n = 1). All the participating centres enrolled a sample of patients with pDoC between January and December 2017, and collected longitudinal data on mortality up to 24 months after brain injury (until December 2019).

Inclusion criteria were (i) age ≥ 18 years; (ii) clinical diagnosis of VS/UWS or MCS, according to standard diagnostic criteria [3]; (iii) traumatic or nontraumatic (i.e., vascular or anoxic) aetiology; and (iv) time postinjury (TPI) ranging from 28 days to 3 months. Exclusion criteria were (i) previous history of acquired brain injury, or psychiatric or neurodegenerative diseases; and (ii) coexisting neoplasms, severe organ dysfunction, or unstable clinical condition (e.g., hemodynamic instability or severe respiratory failure).
Of 194 patients screened for the study, 147 patients with pDoC fulfilled the selection criteria.

After hospital discharge, patients were transferred to long-term facilities or home-based care and were followed up to gather data on outcome and mortality at 24 months after brain injury.

Clinical and neurophysiological variables

Based on recent practice guidelines [1], we focused on clinical and electrophysiological markers that could be easily collected in most medical settings. At study entry, each centre collected patient demographic data (i.e., age, sex) and information about medical history (i.e., aetiology, TPI). Within 1 week from study entry, repeated CRS-R assessments (at least three times within a 1-week period) were performed for all patients by skilled investigators to confirm the patients’ clinical diagnosis. The CRS-R with the best total score was considered for the statistical analyses [18]. Patients’ behavioural responses to nociceptive stimuli were assessed with the Noicception Coma Scale–Revised (NCS-R) [19] and functional disability level with the Disability Rating Scale (DRS) [20].

Multimodal neurophysiological data, including standard EEG, SEPs, and ERPs, were recorded within 2 weeks from study entry. Data were analysed by skilled neurophysiologists blind to the patient’s clinical diagnosis.

EEG background activity was classified into five severity patterns (normal, mildly abnormal, moderately abnormal, diffuse slowing, low voltage) according to a recent proposal of EEG categorization for patients with pDoC [21]. For the purpose of multivariate analysis (see below) and based on the previous observation that even residual alpha rhythms on EEG were strongly associated with a high level of intentional behaviour [21], we grouped EEG background activity patterns into two categories. In the first category, we included the normal, mildly abnormal, and moderately abnormal patterns, which showed at least a small percentage of alpha rhythm (8–13 Hz) on posterior regions, whereas we included in the second the diffuse slowing and low-voltage patterns, lacking alpha rhythm.

We also collected EEG reactivity to five types of external stimuli: (i) eye opening and (forced) eye closing; (ii) tactile stimuli (wiping on the back of right and left forearm with cotton wool); (iii) noxious stimulation (pressing fingernail beds on each hand, according to the standardized procedure included in the CRS-R and NCS-R); (iv) acoustic stimulation (hand clapping); and (v) intermittent photic stimulation by 1-, 3-, 6-, 9-, 12-, 15-, 18-, and 21-Hz flashes in 10-s trains presented through closed eyelids with a 5-s interval between two trains. Presence of reactivity was defined as a clear and reproducible change in frequency and/or amplitude in cerebral activity in the 3 s after stimulus onset. SEPs were recorded during bilateral median nerve electrical stimulation, and classified as present if the N20 cortical component was recorded on at least one side [22]. Finally, ERPs were obtained by means of an auditory oddball paradigm [23], during which patients were asked to keep a mental count of the rare (target) tones while ignoring the frequent (nontarget) tones, regardless of level of consciousness. The presence of the P300 component was assessed. Full details about collection of clinical and neurophysiological variables have been previously reported [17].

Statistical analyses

Statistical analyses were performed by the coordinator researcher group (A.E., A.M., L.T.). The cumulative rate of survival for each group (overall sample, VS/UWS, MCS) was calculated using the Kaplan–Meier method. Thereafter, a log-rank (Mantel–Cox) test across strata was used for comparing variables between survivors and deceased. For this purpose, within each group continuous variables were dichotomized based on the median value, and EEG background patterns were grouped into two categories. Variables with a significance level of \(p < 0.05 \) on the log-rank test were selected, and the independent association of these factors with survival at 24 months postinjury was examined by a multivariate Cox regression analysis (with 95% confidence intervals [CIs]). Missing data were handled by listwise deletion.

Prior to the Cox regression analysis, multicollinearity was tested among the predictors by checking for the variance inflation factor (VIF) and tolerance.

Statistical analyses were performed with SPSS v25 (IBM), with \(p < 0.05 \) (two-tailed) considered statistically significant.

Ethics

The institutional review board of the coordinating centre and of each centre involved in the study reviewed and approved the same outline of the project, shared by all centres and translated into their respective languages. This study was approved by the ethical standards committee of the coordinator centre (Protocol 2/16 OSS) and each centre involved in the study, as well as its later amendments. The study was conducted according to the ethical standards of the Declaration of Helsinki (1964). The legal surrogate of all patients enrolled in the study provided their written informed consent after a semiformalized interview in which the purposes, procedures, and time points of the longitudinal study were clearly explained. The original forms were collected and stored at each participant centre in accordance with national regulation on the protection of personal data, and anonymized data were then centralized in one secured database for the analysis.

RESULTS

Two-year follow-up was completed and information on mortality was available for 143 of 147 patients (97.3% of the sample; 68 in VS/UWS, 75 in MCS; 41 females; 55 traumatic; mean age = 48.9 ± 19.8 years; mean TPI = 60.0 ± 25.3 days). One patient was lost to follow-up, one dropped out from the study because of withdrawal of life-sustaining
TABLE 1
Demographic, anamnestic, and clinical characteristics at baseline of included patients as a function of 24-month outcome

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Overall sample</th>
<th>Deceased, n = 129</th>
<th>Survivors, n = 143</th>
<th>Deceased, n = 29</th>
<th>Survivors, n = 54</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>44(19.8)</td>
<td>41(19.5)</td>
<td>43.6(18.7)</td>
<td>43.6(18.5)</td>
<td>43.6(18.9)</td>
</tr>
<tr>
<td>Sex, F/M</td>
<td>41/102</td>
<td>19/22</td>
<td>23/45</td>
<td>12/4</td>
<td>22/80</td>
</tr>
<tr>
<td>TPI, days</td>
<td>60(25.3)</td>
<td>64(25.5)</td>
<td>67.8(26.1)</td>
<td>62.6(24.9)</td>
<td>61.8(20.9)</td>
</tr>
<tr>
<td>Aetiology, TBI</td>
<td>55/88</td>
<td>59/12</td>
<td>59.3(27.6)</td>
<td>58.3(24.5)</td>
<td>56.0(24.9)</td>
</tr>
<tr>
<td>CRS-R, total score</td>
<td>7(7)</td>
<td>5(2)</td>
<td>5(2)</td>
<td>4(2)</td>
<td>4(2)</td>
</tr>
<tr>
<td>NCS-R, total score</td>
<td>3(2)</td>
<td>3(2)</td>
<td>3(2)</td>
<td>3(2)</td>
<td>3(2)</td>
</tr>
<tr>
<td>DRS, total score</td>
<td>24(4)</td>
<td>25(2)</td>
<td>25(2)</td>
<td>25(2)</td>
<td>25(2)</td>
</tr>
</tbody>
</table>
| Note: Descriptive data are reported as mean (SD) for continuous variables, as median for ordinal variables, and as counts of patients for each level of categorical variables. Univariate statistics are based upon the log-rank (Mantel–Cox) test. Abbreviations: CRS-R, Coma Recovery Scale–Revised; DRS, Disability Rating Scale; F, female; M, male; MCS, minimally conscious state; NCS-R, Nociception Coma Scale–Revised; TBI, traumatic brain injury.

Within the overall sample, the log-rank test showed that, beyond clinical diagnosis, nontraumatic aetiology \(\chi^2 = 13.2; p < 0.001 \), and older age \(\chi^2 = 21.7; p < 0.001 \), lower CRS-R total score \(\chi^2 = 15.3; p < 0.001 \), higher DRS total score \(\chi^2 = 4.2; p = 0.04 \), and female sex \(\chi^2 = 10.2; p = 0.001 \) and the lack of alpha rhythm on EEG \(\chi^2 = 14.3; p < 0.001 \) were significant risk factors for mortality (Tables 1 and 2). As no collinearity was identified among the selected predictors (VIF range = 1.06–3.86; tolerance range = 0.25–0.94), we performed a Cox regression analysis on the 135 patients (40 deceased) in whom all data were collected. The analysis provided a significant final model \(\chi^2 = 43.9, df = 7; p < 0.001 \) in which only older age (risk ratio [RR] = 2.8, 95% CI = 1.1–7.0; \(p = 0.027 \)) and female sex (RR = 2.5, 95% CI = 1.3–4.8; \(p = 0.004 \)) were significantly associated with a higher risk of mortality (Figure 1).

Within the VS/UWS subgroup, the log-rank test showed that older age \(\chi^2 = 9.3; p = 0.002 \), nontraumatic aetiology \(\chi^2 = 5.3; p = 0.02 \), and lower CRS-R \(\chi^2 = 6.7; p = 0.01 \) and NCS-R \(\chi^2 = 5.0; p = 0.02 \) total scores were significant risk factors for mortality (Table 1). VIF among these predictors ranged from 1.00 to 1.38; tolerance ranged from 0.73 to 0.99. Cox regression analysis on all patients of the VS/UWS subgroup provided a significant final model \(\chi^2 = 20.3, df = 4; p < 0.001 \). In this model, older age \(RR = 3.2, 95\% CI = 1.2–8.4; p = 0.017 \) and lower CRS-R total score \(RR = 2.6, 95\% CI = 1.2–5.8; p = 0.019 \) were significantly associated with a higher mortality risk (Figure 2). Within the MCS subgroup, the log-rank test showed that older age \(\chi^2 = 6.9; p = 0.009 \), female sex \(\chi^2 = 15.6; p < 0.001 \), nontraumatic aetiology \(\chi^2 = 6.9; p = 0.009 \), lower NCS-R total score

therapy, and for two further patients the legal guardians revoked their consent for study participation. Due to logistical issues, neurophysiological findings were not recorded in all patients (available EEG = 94.4%, SEPs = 58.7%, ERPs = 51.7%). Most patients of the study sample had been enrolled in specialized postacute rehabilitation units (112/143, 78.3%), whereas 24 of 143 (16.8%) and seven of 143 (4.9%) had been enrolled in neurology departments and intensive care units, respectively.

Patients in MCS did not differ from patients in VS/UWS in terms of age, sex, aetiology, or TPI (all \(p > 0.05 \)); full demographic, anamnestic, clinical, and neurophysiological data at study entry were reported elsewhere [17].

The 24-month mortality was 28.7% in the whole sample (41/143 deceased) and was significantly higher in the VS/UWS group (29/68 patients, 42.6%) than in the MCS group (12/75 patients, 16.0%; log-rank test, \(\chi^2 = 12.5; p < 0.001 \)). In both groups, most patients died within 12 months after onset (VS/UWS: 22/29 deceased patients, 75.9%; MCS: 8/12 deceased patients, 66.7%). Mean time of death did not differ between patients in VS/UWS (296.0 ± 75.9%; MCS: 8/12 deceased patients, 12 (5%) deceased, 12 (4%) deceased) and was significantly higher in the VS/UWS group (29/68 deceased) and was significantly higher in the VS/UWS group (29/68 deceased, 29.5%; neurology departments: 8/24 deceased, 33.3%; intensive care: 0/7 deceased, 0%). The most frequent causes of death were severe medical complications related to immobility (e.g., sepsis, pneumonia).
Table 2: Available neurophysiological data at baseline, including EEG (n = 135), SEPs (n = 84), and ERPs (n = 74), as a function of 24-month outcome

<table>
<thead>
<tr>
<th>EEG background activity pattern</th>
<th>Overall sample</th>
<th>VS/UWS</th>
<th>MCS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Deceased</td>
<td>Survivors</td>
</tr>
<tr>
<td>Normal</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Mildly abnormal</td>
<td>26</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>Moderately abnormal</td>
<td>35</td>
<td>8</td>
<td>27</td>
</tr>
<tr>
<td>Diffuse slowing</td>
<td>43</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Low voltage</td>
<td>25</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>Alpha rhythm on EEG, P/A</td>
<td>67/68</td>
<td>10/30</td>
<td>57/38</td>
</tr>
<tr>
<td>Reactivity to eye opening, P/A</td>
<td>43/91</td>
<td>9/31</td>
<td>34/60</td>
</tr>
<tr>
<td>Reactivity to tactile s., P/A</td>
<td>19/107</td>
<td>6/34</td>
<td>13/73</td>
</tr>
<tr>
<td>Reactivity to acoustic s., P/A</td>
<td>34/102</td>
<td>9/31</td>
<td>25/71</td>
</tr>
<tr>
<td>Reactivity to nociceptive s., P/A</td>
<td>32/93</td>
<td>11/29</td>
<td>21/64</td>
</tr>
<tr>
<td>Reactivity to IPS, P/A</td>
<td>25/104</td>
<td>11/29</td>
<td>14/75</td>
</tr>
<tr>
<td>N20 on SEPs, P/A</td>
<td>64/20</td>
<td>20/5</td>
<td>44/15</td>
</tr>
<tr>
<td>P300 on ERPs, P/A</td>
<td>39/35</td>
<td>7/12</td>
<td>32/23</td>
</tr>
</tbody>
</table>

Note: Data relative to EEG background activity are reported as absolute counts; data for the remaining variables are expressed as counts of patients showing/not showing the respective feature. For the purpose of multivariate analyses, EEG background activity patterns have been classified into two categories: presence of alpha rhythm (including normal, mildly abnormal, and moderately abnormal patterns) and absence of alpha rhythm (including diffuse slowing and low-voltage patterns). Univariate statistics are based upon the log-rank (Mantel-Cox) test. The distribution of EEG background activity patterns significantly differed between survivors and deceased in the whole sample (p = 0.002) but not in the two subsamples (p > 0.1).

Abbreviations: EEG, electroencephalogram; ERP, event-related potential; IPS, intermittent photic stimulation; MCS, minimally conscious state; P/A, present/absent; s., stimuli; SEP, somatosensory evoked potentials; VS/UWS, vegetative state/unresponsive wakefulness syndrome.

^aStatistically significant.
and absence of alpha rhythm on EEG ($\chi^2 = 5.0; p = 0.02$) were significant mortality risk factors (Table 2). VIF among these predictors ranged from 1.02 to 1.55; tolerance ranged from 0.64 to 0.98. Cox regression analysis on the MCS subgroup was performed on 69 patients (11 deceased and six with incomplete data). The analysis provided a significant final model ($\chi^2 = 2739, df = 5; p < 0.001$), in which female sex (RR = 7.5, 95% CI = 1.5–36.5; $p = 0.013$) and absence of alpha rhythm on EEG (RR = 3.7, 95% CI = 1.1–12.8; $p = 0.040$) were significantly associated with a higher risk of mortality (Figure 3).

DISCUSSION

In this multicentre, large-cohort, longitudinal study on patients in pDoC, we examined the mortality rate and the predictors of
mortality within 24 months after severe acquired brain injury. The mortality rate was higher in the VS/UWS group than in the MCS group, consistent with prior studies indicating that clinical outcome is worse in patients with a lower level of consciousness [4,7,12,24]. In both diagnostic groups, the mortality rate was twice as high in the first year compared to the second year after the brain injury. This finding could be ascribed to the higher medical instability during the first year postinjury [25,26]. Although the likelihood of survival was significantly higher for MCS patients compared to VS/UWS patients in the univariate analysis, in the Cox regression analysis on the overall sample, the predictive role of diagnosis at study entry for MCS was not significant and only older age and female sex were significant predictors of mortality. This finding is in contrast with previous studies reporting an association of diagnosis at study entry with mortality [7,24] or with clinical outcome [12]. However, the relationship between clinical diagnosis and mortality (and clinical outcome) in such studies was significant on univariate analyses. Only one study [4] performed a multivariate analysis supporting the association of diagnosis with mortality risk, and it was based on data from patients in intensive care units with a shorter time postinjury who cannot be compared to those included in the present sample of patients in pDoC. Our study recruited most patients (almost 80%) in a postacute rehabilitation setting, at 1–3 months after onset. Our findings suggested that the predictive value of age and sex could reduce the weight of the clinical diagnosis in predicting long-term mortality, but these issues should be addressed by further longitudinal studies. It is worth noting that in our study the mortality rate did not differ as a function of enrolment setting (intensive care vs. postacute rehabilitation or neurology units). Although this finding should be treated with caution because of the large disproportion of enrolments in different settings, it seems to be consistent with previous investigations in pDoC suggesting that the type of care received after discharge in long-term care facilities or at home could affect long-term mortality more than the enrolment setting [24].

The prognostic value of older age and female sex did not apply to the same extent in the two diagnostic groups. The analysis on patients in VS/UWS revealed that older age together with lower CRS-R total score significantly predicted higher mortality rates. The impact of age on mortality rates is likely due to frailty and higher occurrence of coexisting or premorbid medical illnesses in the elderly [27], and is consistent with several previous investigations [4,9,12,24]. The significant predictive value of the lower CRS-R total score on mortality at 24 months is a relatively novel finding, as previous studies investigated the predictive role of the CRS-R total score for general clinical improvement but not specifically for survival [7,11,17,28]. The CRS-R total score reflects the sum of the scores of six subscales, in which items are organized hierarchically so that higher scores correspond to higher-level neurologic functioning [29]. As a consequence, the CRS-R total score, which has no diagnostic value, might be considered an indirect index of severity of brain injury [10,29].

In contrast, in the sample of patients in MCS, female sex and absence of alpha rhythm on EEG background activity were significant predictors of mortality. The association of female sex with higher risk of mortality was not observed in previous investigations. Previous prognostic studies in DoC found no differences in mortality rates between sexes [24] or reported a higher risk of mortality for males [6]. Similarly, conflicting data have been reported on patients with moderate and severe traumatic brain injury, with some studies observing a higher mortality risk for men.
MCS specifically, is a relatively novel finding. Previous investigations on potential sex-related factors (e.g., influence of sex hormones, differences in haemostasis and inflammatory response, interaction between pharmacological treatment and endocrine or metabolic differences [31]) are needed to clarify the potential role of sex differences in mortality in patients with DoC.

The prognostic value of the EEG dominant background activity for clinical outcomes has been demonstrated in several studies on DoC [13–15,36,37]. However, the association between abnormal EEG background activity and mortality in pDoC, and in patients in MCS specifically, is a relatively novel finding. Previous investigations suggested that slow-wave EEG activity is associated with severe encephalopathy and/or structural lesions [38], and with higher risk of mortality in acute coma [39], but this issue has not been comprehensively addressed in patients with pDoC [38]. Conversely, the presence of residual alpha rhythm could be considered to be an electrophysiological sign of at least relatively preserved thalamocortical connectivity, a system related to cognitive processing [40] and consciousness [41]. Our results suggested that the absence of alpha rhythm on posterior regions with preserved anterior–posterior gradient could have a predictive value for mortality in MCS too, in which reorganization of EEG background activity tends to occur, differently from VS/UWS [21,42]. However, further studies are warranted for confirming and clarifying this finding. Moreover, the analysis conducted on patients in MCS should be interpreted cautiously, because of the low number of deceased patients in this diagnostic group (15.9%). Future studies should enrol a larger MCS sample to confirm these results and to perform subgroup analyses for patients in MCS as a function of complexity of their clinical behaviour (i.e., in MCS+ and MCS− separately [43]).

Of note, here we did not find a significant value of EEG reactivity in predicting long-term mortality. Previous investigations [14,15,17,44] found that presence of EEG reactivity to different stimulation could predict the transition from VS/UWS to MCS and recovery of consciousness. Other studies showed that lack of EEG reactivity in comatose patients was associated with mortality up to 1 year following discharge from the intensive care unit [45]. To our knowledge, no previous studies assessed the predictive value of EEG reactivity for long-term mortality in patients with pDoC. Our findings would suggest that when clinical conditions are stabilized in pDoC, EEG reactivity represents a predictor of clinical improvement, but additional variables could be more strongly related to mortality than EEG reactivity (e.g., older age, presence of comorbidities and complications), and even than SEPs and ERPs, which have been shown to predict recovery of consciousness [11,46].

It is also possible that the lack of predictive value of EEG reactivity in some cases might depend on the particular stimulus used for eliciting reactivity. Here, we administered a standardized noxious stimulus used in the clinical evaluation of nociceptive responsiveness by means of CRS-R and NCS-R, but previous investigations suggested that other noxious stimuli could evoke different EEG and behavioural responses in comatose [47] and in pDoC [48] patients. The comparison of the effect of different stimulation methods on EEG reactivity has to be addressed by specifically designed studies.

The present study has several limitations. First, the relatively low number of deceased patients in the present sample probably accounted for the wide CIs for RRs of the significant predictors, age and sex, in the VS/UWS and in MCS groups, respectively. Wide CIs indicate that further information is needed, but we would emphasize that in the present study sample, no patients died because of withdrawal of life-sustaining therapy; thus, our data outlined the natural clinical history of pDoC patients. Second, neurophysiological findings (i.e., SEPs and ERPs) were not available for all enrolled patients due to logistical constraints or to patients’ movement artefacts that hampered analysis. Only a few studies on DoC have collected multimodal clinical and neurophysiological findings in a multicentre longitudinal design [17]. Third, as this study was based on clinical diagnosis and did not have a complete neuroimaging workup, we could not search for signs of covert cognition [49] and analyse mortality in patients showing such signs. Fourth, the multicentre design of the present study made it possible to reduce the sampling biases and idiosyncrasies of single-centre studies, but we could not analyse our data stratified for country, as samples were too small to be representative. Lastly, we could not investigate the impact of therapeutic interventions and of clinical complications that could influence survival of such complex patients [6,25].

Notwithstanding these limitations, this study has provided evidence that demographic (i.e., age and sex), clinical (i.e., CRS-R total score), and neurophysiological (i.e., EEG background activity) factors, which are feasible to collect at most centres in the postacute phase in a standardized manner, have a predictive value for long-term mortality in patients in pDoC. These multimodal clinical and neurophysiological findings can help clinicians to identify patients with pDoC at higher risk of mortality and can guide clinical decision-making and management, providing patients’ families with evidence-based prognostic information.

ACKNOWLEDGEMENTS

The authors thank Ginger Vazquez for organizing Special Interest Group on DoC of the International Brain Injury Association teleconferences; Orsola Masotta, Maenia Scarpino, Marta Aloisi, Joan Ferri, Cristina Boccagni, Yelena Bodien, Sara Schiattone, Devaraj Pancharatnam, Hend Aabid, Didier Ledoux, and Bernard Sadzot for their help in collecting/interpreting data; and patients and their legal guardians for participation in the project.

CONFLICT OF INTEREST

All authors declare no conflict of interest regarding the content of this article.
AUTHOR CONTRIBUTIONS
Anna Estraneo: Conceptualization (lead), data curation (lead), methodology (lead), project administration (lead), resources (equal), supervision (equal), writing—review & editing (equal). Alfonso Magliacano: Data curation (equal), formal analysis (equal), methodology (supporting), validation (equal), visualization (equal), writing—original draft (lead). Salvatore Fiorenza: Data curation (equal), investigation (equal), methodology (equal). Rita Formisano: Investigation (equal), resources (equal), writing—review & editing (equal). Antonello Grippa: Investigation (equal), resources (equal), writing—review & editing (equal). Efthymios Angelakis: Investigation (equal), resources (equal), writing—review & editing (equal). Helena Cassol: Investigation (equal), resources (equal), writing—review & editing (equal). Aurore Thibaut: Investigation (equal), resources (equal), writing—review & editing (equal). Gianfranco Lamberti: Investigation (equal), resources (equal), writing—review & editing (equal). Enrique Noé: Investigation (equal), resources (equal), writing—review & editing (equal). Sergio Bagnato: Investigation (equal), resources (equal), writing—review & editing (equal). Brian L. Edlow: Investigation (equal), resources (equal), writing—review & editing (equal). Camille Chatelle: Investigation (equal), resources (equal), writing—review & editing (equal). Anna Estraneo: Investigation (equal), resources (equal), writing—review & editing (equal). Michelangelo Bartolo: Investigation (equal), resources (equal), writing—review & editing (equal). Donatella Mattia: Investigation (equal), resources (equal), writing—review & editing (equal). Jienia Topp: Investigation (equal), resources (equal), writing—review & editing (equal). Nathan Zasler: Investigation (equal), resources (equal), writing—review & editing (equal). Caroline Schnakers: Investigation (equal), resources (equal), writing—review & editing (equal). Luigi Trojano: Formal analysis (equal), methodology (equal), supervision (supporting), writing—original draft (equal).

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Anna Estraneo https://orcid.org/0000-0001-6646-6526
Alfonso Magliacano https://orcid.org/0000-0003-3834-6392
Rita Formisano https://orcid.org/0000-0002-2516-0540
Aurore Thibaut https://orcid.org/0000-0001-5991-1747
Luigi Trojano https://orcid.org/0000-0002-0328-9642

REFERENCES
19. Chatelle C, Majerus S, Whyte J, Laureys S, Schnakers C. A sensitive scale to assess nociceptive pain in patients with disorders of

