

The Peripheral Analgesic Effects of Opioids

Kenneth M. Hargreaves* and Jean L. Joris†

Results from numerous studies indicate that opioids produce effects through activation of receptors located in the central nervous system at spinal and supraspinal levels. However, opioids may also possess peripheral analgesic activity. Behavioral studies conducted in animals indicate that mu, kappa, and delta selective opioids possess significant antinociceptive activity after injection into hyperalgesic tissue by activation of a peripheral mechanism(s). These effects appear to be predominantly receptor-selective since they are dose-related, stereospecific, and blocked by administration of receptor antagonists. Recent clinical trials suggest that opioids activate a peripherally mediated analgesic mechanism in clinical models of pain due to inflammation. These results suggest that peripherally administered opioids or development of peripherally selective opioids may provide clinical analgesia without the development of traditional central nervous system mediated side effects. **Key words:** *analgesia, opioids, pharmacology, pain, inflammation*

The analgesic efficacy of opioids has been well established in numerous clinical and animal studies. Less clear, however, are their precise mechanisms of action and loci of activity. It is well recognized that opioids produce analgesia through activation of receptors located in the central nervous system (CNS) at both spinal and supraspinal levels.^{6,95} However, recent studies suggest

that opioids also may activate targets in inflamed tissue, resulting in a peripherally mediated suppression of sensitized nociceptors.

PERIPHERAL EFFECTS OF OPIOIDS: ANIMAL AND CLINICAL STUDIES

The hypothesis for a peripheral site of opioid action was received initially with caution, because classical studies suggested that opioids are active only in the CNS. For example, Lim et al. used a cross-perfused spleen preparation in which the splenic blood supply was isolated from the rest of the dog's blood supply via splenic cannulas attached to another dog.⁵⁹ This type of surgical preparation allowed drugs to be injected into either the "periphery" (via injection into the isolated splenic circulation) or "centrally" (via injection into the rest of the dog's circulation). The paradigm used electrical or chemical stimulation of the spleen to elicit nocifensive behavior and recorded vocalization or splenic nerve activity as the dependent measure. Inspection of their data indicates that propoxyphene had substantial peripheral activity, while morphine appeared to have some peripheral effects. However, the major component of morphine antinociception was observed following "central" injection and, based on these results, the authors concluded that opioids are "centrally acting analgesics." The concept of opioids having only a CNS site of action was not seriously challenged for the next 10–15 years.

In the mid-1970s, Collier and Roy published a series of papers indicating that prostaglandins increase cyclic adenosine monophosphate (cAMP) in various CNS tissues, and that opioids suppress cAMP levels; these findings led to their suggestion that the mechanism for opioid analgesia is inhibition of adenylyl cyclase.^{22,23} Based on these findings, and on other studies demonstrating that prostanoids induce

From the *University of Minnesota, Schools of Dentistry and Medicine, Departments of Restorative Sciences and Pharmacology, Minneapolis, Minnesota and † University of Liege, Department of Anesthesiology, Liege, Belgium.

Reprint requests: Dr. Kenneth M. Hargreaves, University of Minnesota School of Dentistry, Division of Endodontics, 8-166 Moos Tower, Minneapolis, MN 55455.

hyperalgesia, Ferreira and Nakamura evaluated whether opioids have peripheral effects for suppressing prostaglandin-induced mechanical hyperalgesia.²⁵⁻²⁷ In their experimental design, the test opioid was injected either into the hyperalgesic paw or into the contralateral control paw. A peripheral opioid effect was interpreted to be present if the antinociception was observed following an ipsilateral but not a contralateral injection. Using this approach, morphine was shown to have a peripheral site of action for blocking hyperalgesia due to intraplantar injection of PGE₂, prostacyclin, isoprenaline, BaCa₂, and A23187 (a calcium ionophore), but the opioid had no effect on hyperalgesia due to injection of dibutyryl cAMP.²⁶ Additional studies demonstrated that morphine, pentazocine, [Met]enkephalin, [Leu]enkephalin, nalorphine, and naloxone all produced dose-dependent peripherally mediated antinociception in hyperalgesic tissue with doses of 3–30 nmol/paw. In contrast, lidocaine required doses of about 1,000 nmol/paw to produce a peripheral effect.²⁶ Collectively, these results indicate that peripheral opioid analgesia has the following characteristics: (1) it is present when opioids are injected into hyperalgesic tissue; (2) it is not evident when opioids are injected into "normal" tissue; and (3) it may be due, in part, to inhibition of the adenylate cyclase system. This last conclusion was supported by the finding that opioids blocked hyperalgesia due to injection of agents that elevate cAMP (e.g., PGE₂, prostacyclin, isoprenaline), but had no effect on hyperalgesia due to administration of dibutyryl cAMP.²⁶

Numerous studies have since extended these findings of peripheral opioid-induced antinociception (Table 1). An important observation was that peripheral opioid antinociception was not restricted to PGE₂-induced hyperalgesia, but was also evident in actual models of tissue inflammation. For example, the rat carrageenan model of inflammation³⁸ has been used to evaluate peripheral opioid antinociception to thermal stimuli.⁴⁶ In these studies, both hind-paws were injected with carrageenan; 90 minutes later one paw was injected with the test opioid, while the contralateral paw was injected with saline, using a randomized, double-blind, counterbalanced experimental design. This type of within-animal control permits interpretation of drug effects as due to activation of a peripheral target (i.e., analgesia in the opioid injected paw only) or to a systemic target (i.e., analgesia in both inflamed hind paws). These studies demonstrated that both fentanyl and ethylketocyclazocine had prolonged peripheral antinociceptive effects in blocking carrageenan-induced hyperalgesia to thermal stimuli. In addition, levorphanol produced

a dose-related antinociception that was stereospecific (i.e., dextrophan had no effect).⁴⁶ Additional behavioral studies indicate that opioids act peripherally to block the hyperalgesia that accompanies PGE₂ injection,^{26,28,58} bradykinin injection,⁸⁹ abdominal writhing,^{8,84} or actual tissue inflammation due to injection of carrageenan^{27,28,46,76} or complete Freund's adjuvant.⁸⁵⁻⁸⁷

But is peripherally located opioid antinociception due to activation of a receptor-selective mechanism? The generally accepted criteria for evaluating a receptor-selective mechanism is demonstration of a dose-related, stereospecific, antagonist reversible effect. Although these criteria have not been evaluated in all peripheral opioid studies, they have been generally satisfied when tested (Table 1). Stein et al.⁸⁷ conducted an elegant series of studies evaluating the receptor selectivity of peripherally injected opioids. They demonstrated that dose-related, peripheral opioid antinociception was evident following intraplantar injection of mu (DAGO), kappa (U50,488H), and delta (DPDPE) selective agonists, and that the antinociception for each agonist was blocked only by administration of the respective mu (CTAP), kappa (nor-BNI), or delta (ICI 174,864) antagonist.

However, not all data supports a receptor-selective mechanism. For example, dextrophan, an inactive stereoisomer, has activity in the writhing test,⁸ but not in carrageenan-induced thermal hyperalgesia.⁴⁶ In addition, peripheral administration of the opioid antagonist naloxone has been reported to produce antinociception in some,^{26,76,84} but not all studies.^{8,85,86} Although it has been suggested that the peripheral naloxone-induced antinociception may be due to metabolic conversion of the antagonist to an agonist,⁷⁶ there is currently little biochemical data to support this hypothesis. It appears unlikely, however, that peripheral opioid antinociception is due to a nonselective local anesthetic-like action since peripherally administered opioids have little to no activity when injected into normal tissue.^{58,85-87} Taken together, the majority of reported studies indicate that peripheral opioid antinociception is due to activation of a receptor-selective mechanism (Table 1), although the possibility exists that a concurrent nonselective or unique peripheral mechanism (i.e., metabolic conversion) contributes to the effect.

Collectively, these animal studies indicate that opioids have a peripheral site of action for blocking behavioral hyperalgesia. In contrast to this wealth of animal data, there is a relative paucity of data collected in clinical models of inflammation. A review of the clinical literature reveals several anecdotal re-

Table 1. Summary of behavioral studies evaluating peripheral antinociceptive effects of opioids

Opioid	Animal	Hyperalgesia Model*	Stimulus	Dependent Measure	Dose Response?†	Receptor Antagonist?	Stereo-specific?	Ref.
<i>MU opioids</i>								
Codeine	Mouse	AAW	Spontaneous	Stretch reflex	1.9 nmol/kg	—	—	7
DAMGO	Rat	CFA	Mechanical	Paw withdrawal	‡	Yes	—	80
DAMGO	Rat	Bradykinin	Mechanical	Paw withdrawal	‡	Yes	—	82
DAMGO	Rat	PGE ₂	Mechanical	Paw withdrawal	‡	—	—	52
Dextrorphan	Mouse	AAW	Spontaneous	Stretch reflex	1.8 nmol/kg	—	No	7
Dextrorphan	Rat	Carrageenan	Thermal	Paw withdrawal	IA	—	Yes	40
Fentanyl	Rat	Carrageenan	Thermal	Paw withdrawal	—	—	—	40
Fentanyl	Rat	CFA	Mechanical	Paw withdrawal	‡	Yes	—	78
Levorphanol	Rat	Carrageenan	Thermal	Paw withdrawal	—	—	Yes	40
Levorphanol	Mouse	AAW	Spontaneous	Stretch reflex	2.1 nmol/kg	—	—	7
Morphiceptin	Rat	PGE ₂	Mechanical	Paw withdrawal	‡	—	—	52
Morphine	Mouse	AAW	Spontaneous	Stretch reflex	5.9 nmol/kg	Yes	—	7
Morphine	Mouse	CW	Spontaneous	Stretch reflex	0.2 mg/kg	—	—	77
Morphine	Rat	CFA	Mechanical	Paw withdrawal	‡	Yes	—	79
Morphine	Rat	CFA	Mechanical	Paw withdrawal	‡	—	Yes	80
Morphine	Rat	PGE ₂	Mechanical	Freezing behavior	14.2 nmol/paw	No	—	21
Morphine	Rat	PGE ₂	Mechanical	Paw withdrawal	‡	Yes	—	52
N-methyl morphine	Mouse	CW	Spontaneous	Stretch reflex	12.4 mg/kg	—	—	77
N-methyl morphine	Rat	Carrageenan	Mechanical	Freezing behavior	—	—	—	23
N-methyl morphine	Rat	PGE ₂	Mechanical	Freezing behavior	—	—	—	23
N-methyl nalorphine	Mouse	CW	Spontaneous	Stretch reflex	2.7 mg/kg	—	—	77
N-methyl nalorphine	Rat	Carrageenan	Mechanical	Freezing behavior	—	—	—	23
N-methyl nalorphine	Rat	PGE ₂	Mechanical	Freezing behavior	—	—	—	23
Normorphine	Mouse	AAW	Spontaneous	Stretch reflex	1.3 nmol/kg	—	—	7
Oxymorphone	Mouse	AAW	Spontaneous	Stretch reflex	2.6 nmol/kg	—	—	7
Propoxyphene	Mouse	CW	Spontaneous	Stretch reflex	1.8 mg/kg	—	—	77
Propoxyphene	Dog	Spleen	Electrical	Vocalization	—	—	—	53
Tifluadom	Rat	CFA	Mechanical	Paw withdrawal	‡	—	Yes	80
<i>Delta opioids</i>								
BW180c	Rat	PGE ₂	Mechanical	Freezing behavior	—	—	—	22
BW180c	Rat	Carrageenan	Mechanical	Freezing behavior	—	—	—	22
DPDPE	Rat	Bradykinin	Mechanical	Paw withdrawal	‡	Yes	—	82
DPDPE	Rat	CFA	Mechanical	Paw withdrawal	‡	Yes	—	80
DPDPE	Rat	PGE ₂	Mechanical	Paw withdrawal	IA	—	—	52
DSLET	Rat	PGE ₂	Mechanical	Paw withdrawal	IA	—	—	52
[Leu]enkephalin	Rat	PGE ₂	Mechanical	Freezing behavior	266 nmol/paw	—	—	21
[Leu]enkephalin	Mouse	AAW	Spontaneous	Stretch reflex	—	No	—	7
[Met]enkephalin	Rat	PGE ₂	Mechanical	Freezing behavior	74.5 nmol/paw	—	—	21
[Met]enkephalin	Mouse	AAW	Spontaneous	Stretch reflex	—	Yes	—	7
<i>Kappa opioids</i>								
Ethylketocyclazocine	Rat	Carrageenan	Thermal	Paw withdrawal	—	—	—	40
Ketocyclazocine	Mouse	AAW	Spontaneous	Stretch reflex	0.1 nmol/kg	No	—	7
U50,488H	Rat	Bradykinin	Mechanical	Paw withdrawal	‡	Yes	—	82
U50,488H	Rat	CFA	Mechanical	Paw withdrawal	‡	Yes	—	79
U50,488H	Rat	CFA	Mechanical	Paw withdrawal	‡	Yes	—	80
U50,488H	Rat	PGE ₂	Mechanical	Paw withdrawal	IA	—	—	52
<i>Fixed agonist-antagonists</i>								
Nalorphine	Rat	PGE ₂	Mechanical	Freezing behavior	17.8 nmol/paw	—	—	20
Pentazocine	Mouse	AAW	Spontaneous	Stretch reflex	229 nmol/kg	—	—	7
Pentazocine	Rat	PGE ₂	Mechanical	Freezing behavior	22.4 nmol/paw	—	—	21
Pentazocine	Rat	PGE ₂	Mechanical	Freezing behavior	—	—	—	21
<i>Opioid antagonists</i>								
CTAP	Rat	CFA	Mechanical	Paw withdrawal	IA	—	—	80
ICI 174,864	Rat	CFA	Mechanical	Paw withdrawal	IA	—	—	80
Naloxone	Mouse	CW	Spontaneous	Stretch reflex	23.2 mg/kg	—	—	77
Naloxone	Rat	Carrageenan	Mechanical	Paw withdrawal	—	—	—	69
Naloxone	Rat	PGE ₂	Mechanical	Freezing behavior	20.4 nmol/paw	—	—	21
Naloxone	Rat	Carrageenan	Mechanical	Paw withdrawal	IA	—	—	77
Naloxone	Mouse	AAW	Spontaneous	Stretch reflex	IA	—	—	7
Naltrexone	Mouse	CW	Spontaneous	Stretch reflex	20.6 mg/kg	—	—	77
Naltrexone	Mouse	PBQ	Spontaneous	Stretch reflex	IA	—	—	77
Nor-BNI	Rat	CFA	Mechanical	Paw withdrawal	IA	—	—	80

* Model to produce behavioral hyperalgesia. AAW, acetic acid writhing test; CFA, complete Freund's adjuvant; CW, carbacyclin writhing test; PBQ, phenyl-b-benzoquinone writhing test.

† ED50 values are given for dose response studies; ‡, dose response studies conducted but ED50 values not provided. IA, inactive drug under examined experimental conditions.

—, parameter not examined.

ports suggesting a peripheral site of action for opioid analgesia. For example, in the mid-1800s, local administration of relatively small doses of morphine was reported to have analgesic effects in dental pulp,¹⁹ blisters,⁹³ and other painful lesions.²⁰ More recent studies suggest that peripheral opioids produce analgesia for acute pain after application to exposed dental pulp⁷⁰ and for chronic sympathetically maintained pain via stellate blocks.^{31,63,64} However, these studies are limited since they did not exclude systemic sites of action, were not double-blinded, or did not demonstrate opioid specificity.

Several recent randomized, double-blind clinical trials have tested the clinical utility of the peripheral opiate analgesia hypothesis. Stein et al. have demonstrated peripheral morphine analgesia in a double-blind experimental design using patients following arthroscopic knee surgery.⁸⁸ Patients were permitted to receive concurrent analgesic medication in addition to the test drugs. Patients receiving peripheral (intraarticular) injection of morphine (1 mg) reported significantly less pain and consumed significantly less concurrent analgesics than patients receiving systemic (intravenous) injection of the same dose of morphine. The peripheral opiate analgesia was at least transiently blocked by naloxone administration. However, not all studies have detected peripheral morphine analgesia after arthroscopic knee surgery,⁷³ suggesting that other experimental parameters may influence the ability to detect peripheral opioid analgesia. Another recently published clinical trial tested the peripheral opioid hypothesis in endodontic patients who were diagnosed as having moderate to severe pain due to acute dental infection.⁴⁰ Patients were randomly administered, on a double-blind basis, either morphine sulfate (0.4 mg), a positive control (0.4 mL of 2% lidocaine with 1:100,000 epinephrine), or a placebo control (0.4 mL of saline) via peripheral injections into the periodontal ligament space (intraligamentary injections). Patients did not receive any concurrent medication. Bioassay sensitivity was demonstrated by a significant separation of the positive control from the placebo control for pain relief over the 30-minute test period. Importantly, patients given a peripheral injection of morphine sulfate also reported significant amounts of pain relief over the observation period. The opiate analgesia was most probably peripherally mediated since the 0.4 mg dose is only 1/10 of a threshold systemic dose of morphine for relieving dental pain.⁵¹ Together, these preliminary clinical trials suggest that peripheral opioid analgesia may have clinical utility for managing pain due to inflammation.

POSSIBLE MECHANISMS OF ACTION FOR PERIPHERAL EFFECTS OF OPIOIDS

In contrast to their effects when administered into inflamed tissue, opioids injected into uninjured tissue or administered perineurally produce little to no behavioral^{16,85,86} or electrophysiological^{81,100} effects. This finding is consistent with the observation that opioids possess greater antinociceptive activity in rats having inflamed hindpaws as compared to uninjured controls.^{45,48,86} The lack of peripherally mediated antinociception when opioids are injected into normal tissue suggests that the mechanism for peripheral opioid antinociception is due to blockade of some process related to the development of inflammation (e.g., sensitization of nociceptors, activation of leukocytes, release of inflammatory mediators, etc.). Several mechanisms have been proposed for mediating peripheral opioid-mediated antinociception.

One possible target site is opioid receptors located on peripheral terminals of primary afferent fibers. Mu, delta, and kappa opioid binding sites have been reported on dorsal root ganglion cells and on peripheral axonal shafts.^{30,50,69,98} Many of these receptors are located on capsaicin-sensitive afferent fibers where they undergo peripherally directed axonal transport.^{50,98} These opioid receptors appear to be physiologically active, since opioids suppress calcium entry into dorsal root ganglion somata⁹² and inhibit the peripheral release of immunoreactive substance P due to inflammation,⁹⁷ antidromic nerve stimulation,^{14,95} or capsaicin administration.⁹⁵ In addition, local intraarterial injection of opioids reduces the spontaneous activity of sensitized small-diameter afferent fibers.⁷⁹ Following the classic studies by Collier and Roy,^{22,23} it has been suggested that opioids produce peripheral antinociception by inhibiting cAMP-induced hyperalgesia. Although specific biochemical data from primary afferent terminals is still lacking, the results from recent behavioral studies are consistent with the hypothesis that peripheral mu opioid antinociception is due to activation of a G_i protein, leading to inhibition of the adenylate cyclase system and suppression of primary afferent sensitization.⁵⁸

It is possible that these receptors could mediate the analgesic and antiinflammatory effects^{37,45} of opioids since activation of primary nociceptive fibers appears capable of altering inflammation. In support of this point, interventions including capsaicin treatment, denervation and administration of substance P antagonists suppress the development of inflammation in several^{29,32,41,44,55,61,66,75,80} but not all³³ an-

imal models. These afferent fibers are thought to peripherally secrete neuropeptides such as substance P and calcitonin gene-related peptide, leading to the development of plasma extravasation and other effects.^{32,61}

A second potential site is opioid receptors reported to be located on leukocytes. Several studies have demonstrated that opioids can alter chemotactic and functional activity of leukocytes via activation of opioid receptors^{60,77,82,90}; however, the selectivity of these effects has been questioned.⁸³ Although the great majority of these studies are conducted *in vitro*, recent *in vivo* studies are consistent with opioid alteration of leukocyte function.^{11,24} For example, opioids such as morphine have been shown to inhibit the free radical production of stimulated neutrophils.³⁵ It is possible that opioid modulation of leukocyte function could contribute to their peripheral effects since interventions that either chemically (methotrexate)

or surgically (cannulation of the thoracic duct) suppress immune function have profound effects on inhibiting the development of inflammation.^{2,34,53,54,56}

A third potential target is opioid receptors located on sympathetic fibers; various tissues have been reported to contain delta, kappa, or mu opioid receptors located on postganglionic sympathetic fibers.^{17,74} Moreover, activation of opioid receptors alters stimulation-evoked release of norepinephrine.^{12,72,74} In support of this hypothesis, Taiwo and Levine have reported that kappa and delta opioids suppress sympathetically dependent hyperalgesia induced by bradykinin injection,^{57,89} although the selectivity of this model has been questioned.^{49,65}

The basis for sympathetic regulation of inflammation may be due to an alteration in the synthesis or release of inflammatory mediators since activation of the sympathetic nervous system (or administration of norepinephrine) stimulates the release of prostaglandins from vascular tissue^{10,62,99} where they may activate nearby leukocytes or sensitize nociceptors.^{57,67,71} In addition, chemical sympathectomy, by administration of either guanethidine or reserpine, reduces the magnitude of inflammation.^{56,68}

In addition to peripherally mediated antinociception, opioids also suppress several peripheral vascular responses (i.e., plasma extravasation or edema) to antidromic nerve stimulation^{5,52,84} or tissue injury.^{15,38,78,97} These effects appear to be mediated by a receptor-specific mechanism since opioid suppression of carrageenan-induced edema and hyperthermia is dose-related, stereospecific, and naltrexone-reversible.⁴⁵ A reduction in plasma extravasation by a single injection of an opioid may reduce acute hyperalgesia by inhibiting bradykinin release (although

chronic morphine administration may delay healing).²¹ Plasma extravasation and the release of bradykinin from the vascular compartment are primarily due to increases in endothelial permeability and vascular tone. Opioids may modulate endothelial permeability either through direct actions on endothelium⁹⁶ or by indirect actions via inhibiting the release of inflammatory mediators that stimulate extravasation (e.g., substance P). In addition, opioids suppress the evoked release of bioactive bradykinin from both dental pulp⁴³ and cutaneous tissue.⁴² Recent studies conducted have extended these observations by demonstrating the stereospecificity of opioid suppression of immunoreactive bradykinin release in the rat carrageenan model of inflammation using implanted microdialysis probes.⁹¹ In these studies, administration of levorphanol, but not dextrophan, suppressed carrageenan-induced release of immunoreactive bradykinin by nearly 50%.

However, not all peripheral opioid effects need be mediated by peripherally located receptors. For example, opioids administered intracerebroventricularly inhibit edema⁹ as well as radiographic indices of arthritic joint lesions⁵⁵ in rats. It has been proposed that this centrally induced opioid effect may be due to inhibition of sympathetic outflow,⁴⁷ thereby altering the vascular response to inflammation. An additional alternative central mechanism is stimulation of the pituitary-adrenal axis. Opioids can stimulate the pituitary-adrenal axis in rats, and it has been reported that kappa agonists, evaluated 3.5 hours after administration, reduce edema via a corticosterone-dependent mechanism.¹⁸

It is important to note that these alternative mechanisms for peripheral opioid effects are not mutually exclusive. Additional research may well indicate that the relative contribution of these mechanisms is dependent upon the model of inflammation examined, the host tissue, and the stage of the inflammatory process.

CONCLUSIONS

The hypothesis of a peripheral analgesic mechanism for opioids has several scientific and therapeutic implications. The scientific issues relate to: (1) determining the biochemical mechanisms mediating this peripheral opioid effect; (2) determining whether endogenous opioids can activate these peripheral receptors^{39,88}; and (3) evaluating whether a defect in this peripheral opioid system contributes to the development of chronic inflammation and pain.

The therapeutic issues relate to the observation that the clinical use of opioid drugs, especially in am-

bulatory outpatient settings, is dose-restricted due to CNS-mediated side effects such as respiratory depression, nausea, sedation, tolerance etc.^{1,7} Thus selective activation of peripheral opioid receptors, either by route of injection or by drug design, may provide effective analgesia without the manifestation of traditional opioid-like side effects. Interestingly, several groups have reported recently on the development of peripherally selective opioids that are either quaternary^{28,84} or hydrophilic analogs^{3,4,13,36} of opioid compounds. Future studies are required to determine the ultimate clinical utility of peripherally selective opioid analgesics.

Acknowledgment The authors wish to thank Drs. Mary Garry, Douglass Jackson, and Mark Roszkowski for their helpful comments on the manuscript.

References

1. Acute Pain Management Guideline Panel. Acute pain management: operative or medical procedures and trauma. Clinical practice guideline. AHCPR Pub. No. 92-0032. AHCPR, PHS, HHS, Rockville, MD, 1992
2. Almeida A, Bayer B, Horakova Z, Beaven M: Influence of indomethacin and other antiinflammatory drugs on mobilization and production of neutrophils: studies with carrageenan-induced inflammation in rats. *J Pharm Exp Ther* 214:74-79, 1980
3. Barber A, Gottschlich R, Harting J et al: Pharmacological characterization of the peripherally-selective kappa-opioid agonists EMD 60400 and ICI 204448. *Nauyn Schmiedebergs Arch Pharmacol* 345:S456, 1992
4. Barber A, Gottschlich R: Opiate receptor agonists and antagonists: an evaluation of their peripheral effects on inflammation. *Medicinal Res* 12:525-562, 1992
5. Bartho L, Szolcsanyi J: Opiate agonists inhibit neurogenic plasma extravasation in the rat. *Eur J Pharmacol* 73:101-104, 1981
6. Basbaum A, Fields H: Endogenous pain control systems; brainstem spinal pathways and endorphin circuitry. *Annu Rev Neurosci* 7:309-338, 1984
7. Basbaum AI, Levine JD: Opiate analgesia: how central is a peripheral target? *N Engl J Med* 325: 1168-1169, 1991
8. Bentley G, Newton S, Star J: Evidence for an action of morphine and the enkephalins on sensory nerve endings of the mouse peritoneum. *Br J Pharmacol* 73:325-332, 1981
9. Bhattacharya S, Gupta G: Central modulation of peripheral inflammation. *Int J Exp Biol* 26:77-84, 1988
10. Boeynaems J, Demolle D, Galand N: Adrenergic stimulation of vascular prostacyclin: role of alpha1-adrenergic receptors in smooth muscle cells. *Eur J Pharmacol* 144:193-200, 1987
11. Boogaert M, Vermylen J, Deckmyn H et al: Enkephalins modify granulocyte-endothelial interactions by stimulating prostacyclin production. *Thromb Haemost* 50:572-575, 1983
12. Bosnajak Z, Seagard J, Roerig D et al: The effects of morphine on sympathetic transmission in the stellate ganglion of the cat. *Can J Physiol Pharmacol* 64: 940-946, 1986
13. Botros S, Lipkowski A, Larson D et al: Opioid agonist and antagonist activities of peripherally selective derivatives of naltrexamine and oxymorphone. *J Med Chem* 32:2068-2071, 1989
14. Brodin E, Gazeius B, Panopoulos P, Olgart L: Morphine inhibits substance P release from peripheral sensory nerve endings. *Acta Physiol Scand* 117: 567-570, 1983
15. Brown J, Kissel J, Lish P: Studies on the acute inflammatory response. I. Involvement of the central nervous system in certain models of inflammation. *J Pharmacol Exp Ther* 160:231-242, 1968
16. Bullingham R, O'Sullivan G, McQuay H et al: Perineural injection of morphine fail to relieve postoperative pain in humans. *Anesth Analg* 62:164-167, 1983
17. Cairnie A, Kosterlitz H, Taylor D: Effect of morphine on some sympathetically innervated effectors. *Br J Pharmacol* 17:539-551, 1961
18. Carey F, Haworth D, Stone M et al: Involvement of corticosterone in the anti-inflammatory activity of the opioid kappa agonists trifluadom and U50,488. *Br J Pharmacol* 92:629P, 1987
19. Chase H: Sensitive dentine. *Dental Cosmos* 8: 635-637, 1867
20. Chouppe: Sur le mode d'action des injections sous-cutanées de chlorhydrate de morphine. *Compt. rend. Soc. de Biol.* 26:265, 280. *BMJ* 1:480, 1875
21. Coderre T, Chan A, Helms C et al: Increasing sympathetic nerve terminal-dependent plasma extravasation correlates with decreased arthritic injury in rats. *Neuroscience* 40:185-189, 1991
22. Collier H, Roy A: Inhibition of E-prostaglandin sensitive adenylyl cyclase as the mechanism of morphine analgesia. *Life Sci* 7:361-376, 1974
23. Collier H, Roy A: Morphine-like drugs inhibit the stimulation by E prostaglandins of cAMP formation by r brain homogenate. *Nature* 248:24-27, 1974
24. Dunn AJ: Psychoneuroimmunology for the psychoneuroendocrinologist: a review of animal studies of nervous system-immune system interactions. *Psychoneuroendocrinology* 14:251-274, 1989
25. Ferreira S, Nakamura M: I-Prostaglandin hyperalgesia, a cAMP/Ca²⁺ dependent process. *Prostaglandins* 18:179-189, 1979
26. Ferreira S, Nakamura M: Prostaglandin hyperalgesia, II: the peripheral analgesic activity of morphine, enkephalins and opioid antagonists. *Prostaglandins* 23: 53-60, 1979
27. Ferreira S, Nakamura M: III: Prostaglandin hyperalgesia: relevance of the peripheral effect for the analgesic action of opioid-antagonists. *Prostaglandins* 18: 201-208, 1979

28. Ferreira S, Lorenzetti B, Rae G: Is methylnalorphinium the prototype of an ideal peripheral analgesic? *Eur J Pharmacol* 99:23–29, 1984
29. Ferrell W, Russell N: Extravasation in the knee induced by antidromic stimulation of articular C fiber afferents of the anesthetized cat. *J Physiol* 379: 407–416, 1986
30. Fields HL, Emson P, Leigh B et al: Multiple opiate receptor sites on primary afferent fibers. *Nature* 284: 351–353, 1980
31. Fine P, Ashburn M: Effect of stellate ganglion block with fentanyl on post-herpetic neuralgia with a sympathetic component. *Anesth Analg* 67:897–899, 1988
32. Fitzgerald M: Capsaicin and sensory neurons: a review. *Pain* 15:109–130, 1983
33. Gamillscheg A, Holzer P, Donnerer J, Lembeck F: Effect of neonatal treatment with capsaicin on carrageenan-induced paw edema in the rat. *Arch Pharmacol* 326:340–342, 1984
34. Garcia Leme J, Bechara G et al: A proinflammatory factor in lymphocytes. Its role in the development of acute, non-immunologic inflammatory reactions. *Br J Exp Pathol* 57:377–386, 1976
35. Gyires K, Budavari I, Furst S, Molnar I: Morphine inhibits the carrageenan-induced oedema and the chemoluminescence of leucocytes stimulated by zymosan. *J Pharm Pharmacol* 37:100–104, 1985
36. Hardy G, Lowe L, Mills G et al: Peripherally acting enkephalin analogues. 2. Polar tri- and tetrapeptides. *J Med Chem* 32:1108–1118, 1989
37. Hargreaves KM, Dubner R, Joris J: Peripheral action of opiates in the blockade of carrageenan-induced inflammation. pp. 55–60. In Dubner R, Gebhart G, Bono M (eds): *Pain research and clinical management*. Vol. 3. Elsevier, Amsterdam, 1988
38. Hargreaves K, Dubner R, Brown F et al: A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. *Pain* 32:77–88, 1988
39. Hargreaves KM, Flores C, Dionne R, Mueller G: The role of pituitary β -endorphin in mediating corticotropin releasing factor (CRF) induced antinociception. *Am J Physiol* 258:E235–E242, 1990
40. Hargreaves KM, Keating K, Cathers S, Dionne R: Analgesic effects of morphine after PDL injection in endodontic patients. *J Dent Res* 70:445, 1991
41. Hua X: Tachykinins and CGRP in relation to peripheral function of capsaicin-sensitive sensory neurons. *Acta Physiol Scand* 127(suppl 551):4–45, 1986
42. Inoki R, Hayashi T, Kudo T et al: Effects of morphine and acetylsalicylic acid on kinin forming enzyme in rat paw. *Arch Int Pharmacodyn Ther* 228:126–135, 1977
43. Inoki R, Toyoda T, Yamamoto I: Elaboration of a bradykinin-like substance in dog canine pulp and its inhibition by narcotic and non-narcotic analgesics. *Arch Pharmacol* 279:387–398, 1973
44. Jansco G, Obal F, Toth I et al: The modulation of cutaneous inflammatory reactions by peptide-containing sensory nerves. *Int J Tissue React* 7:449–457, 1985
45. Joris J, Costello A, Dubner R, Hargreaves K: Opiates suppress carrageenan-induced edema and hyperthermia at doses that inhibit hyperalgesia. *Pain* 43: 95–101, 1990
46. Joris J, Dubner R, Hargreaves KM: Opioid analgesia at peripheral sites: a target for opioids released during stress and inflammation? *Anesth Analg* 66: 1277–1281, 1987
47. Karoum F, Commissione J, Wyatt R: Effect of morphine on norepinephrine turnover in various functional regions of rat spinal cord. *Biochem Pharmacol* 31:3141–3143, 1982
48. Kayser V, Guilbaud G: The analgesic effects of morphine, but not those of the enkephalinase inhibitor thiorphan, are enhanced in arthritis rats. *Brain Res* 267:131–138, 1983
49. Koltzenburg M, Kress M, Reeh PW: The nociceptor sensitization by bradykinin does not depend on sympathetic neurons. *Neuroscience* 46:465–73, 1992
50. Laduron P: Axonal transport of opiate receptors in the capsaicin sensitive neurones. *Brain Res* 294: 157–160, 1984
51. Lavigne G, Hargreaves K, Schmidt E, Dionne R: Proglumide potentiates morphine analgesia for post-operative pain. *Clin Pharmacol Ther* 45:666–673, 1989
52. Lembeck F, Donnerer J, Bartho L: Inhibition of neurogenic vasodilation and plasma extravasation by substance P antagonists, somatostatin and (D-Met₂, Pro₅) enkephalinamide. *Eur J Pharmacol* 85: 171–176, 1982
53. Levine J, Lau W, Kwiat G, Goetzl E: Leukotriene B₄ produces hyperalgesia that is dependent on polymorphonuclear leukocytes. *Science* 225:743–745, 1984
54. Levine J, Gooding J, Donatoin P et al: The role of the polymorphonuclear leukocyte in hyperalgesia. *J Neurosci* 5:3025–3029, 1985
55. Levine J, Dardick S, Roizen M et al: Contribution of sensory afferents and sympathetic efferents to joint injury in experimental arthritis. *J Neurosci* 6: 3423–3429, 1986
56. Levine J, Lam D, Taiwo Y et al: Hyperalgesic properties of 15-lipoxygenase products of arachidonic acid. *Proc Natl Acad Sci* 83:5331–5334, 1986
57. Levine J, Taiwo Y, Collins S, Tam J: Noradrenaline hyperalgesia is mediated through interactions with sympathetic post-ganglionic neurone terminals rather than activation of primary afferent nociceptors. *Nature* 323:158–160, 1986
58. Levine J, Taiwo Y: Involvement of the mu-opiate receptor in peripheral analgesia. *Neuroscience* 32: 571–575, 1989
59. Lim RKS, Guzman F, Rodgers DW et al: Site of action of narcotic and non-narcotic analgesics determined by blocking bradykinin-evoked visceral pain. *Arch Int Pharmacodyn Ther* 152:25–58, 1964
60. Lopker A, Abood L, Hoss W, Lionetti F: Stereoselective muscarinic acetylcholine and opiate receptors in human phagocytic leukocytes. *Biochem Pharmacol* 29:1361, 1980

61. Lynn B: Capsaicin: Actions on nociceptive C-fibers and therapeutic potential. *Pain* 41:61–69, 1990
62. Malik K: Interaction of arachidonic acid metabolites and adrenergic nervous system. *Am J Med Sci* 295: 280–286, 1988
63. Mays K, North W, Schnapp M: Stellate ganglion blocks with morphine in sympathetic type pain. *J Neurol Neurosurg Psychiatr* 44:189–190, 1981
64. Mays K, Lipman J, Schnapp M: Local analgesia without anesthesia using peripheral perineural morphine injections. *Anesth Analg* 66:417–420, 1987
65. Meyer R, Davis K, Raja S, Campbell J: Sympathectomy does not abolish bradykinin-induced hyperalgesia to heat in humans. *Abstr Soc Neurosci* 17:293, 1991
66. Morton C, Chal L: Indirect evidence for the importance of axonal transport in maintenance of stores of the mediator of neurogenic edema. *Arch Pharmacol* 314:277–280, 1980
67. Nielson C: Beta adrenergic modulation of the polymorphonuclear leukocyte respiratory burst is dependent upon the mechanism of cell activation. *J Immunol* 139:2392–2397, 1987
68. Niemegeers C, Verbruggen F, Janssen P: Effect of various drugs on carrageenan-induced edema in the rat hind paw. *J Pharm Pharmacol* 16:810–816, 1964
69. Ninkovic M, Hunt S, Gleave J: Localization of opiate and histamine H1 receptors in the primate sensory ganglia and spinal cord. *Brain Res* 241:197–206, 1982
70. Pacheco M, Briseno J: Analgesic effectiveness of topically applied dynorphin on human dental pulp. *Proc West Pharmacol Soc* 29:175–177, 1986
71. Panosian J, Marinetti G: Alpha2-adrenergic receptors in human polymorphonuclear leukocyte membranes. *Biochem Pharmacol* 32:2243–2247, 1983
72. Prosdocimi M, Finesso M, Gorio A: Enkephalin modulation of neural transmission in the cat stellate ganglion: pharmacological actions of exogenous opiates. *J Auton Nerv Syst* 17:217–230, 1986
73. Raja S, Dickstein R, Johnson C: Intra-articular bupivacaine and morphine: comparison of analgesia following arthroscopic knee surgery. *Am Pain Soc Abstr* 10: 137, 1991
74. Ramme D, Illes P, Spath L, Starke K: Blockade of alpha-2-adrenoceptors permits the operation of otherwise silent kappa receptors at the sympathetic axons of rabbit jejunal arteries. *Naunyn Schmiedebergs Arch Pharmacol* 334:48–55, 1986
75. Raulino-Filho M, Garcia Leme J: Participation of sensory nervous structures in the development of inflammatory reactions. *Br J Exp Pathol* 58:124–129, 1977
76. Rios L, Jacobs J: Local inhibition of inflammatory pain by naloxone and its N-methyl quaternary analog. *Eur J Pharmacol* 96:277–283, 1983
77. Ruff M, Wahl S, Mergenhagen S, Pert C: Opiate receptor-mediated chemotaxis of human monocytes. *Neuropeptides* 5:363, 1985
78. Russell N, Jamieson A, Callen T, Rance M: Peripheral opioid effects upon neurogenic plasma extravasation and inflammation. *Br J Pharmacol* 86:788P, 1985
79. Russell N, Schaible H-G, Schmidt R: Opiates inhibit the discharges of fine afferent units from inflamed knee joint of the cat. *Neurosci Lett* 76:107–112, 1987
80. Saria A: Substance P in sensory nerve fibers contributes to the development of edema in the rat hind paw after thermal injury. *Br J Pharmacol* 82:217–222, 1984
81. Senami M, Aoki M, Kitahata L et al: Lack of opiate effects on cat C polymodal nociceptive fibers. *Pain* 27:81–90, 1986
82. Sharp B, Keane W, Suh H et al: Opioid peptides rapidly stimulate superoxide production by human polymorphonuclear leukocytes and macrophages. *Endocrinology* 117:793, 1985
83. Sibbinga N, Goldstein A: Opioid peptides and opioid receptors in cells of the immune system. *Ann Rev Immunol* 6:219–249, 1988
84. Smith TW, Follenfant RL, Ferreira SH: Antinociceptive models displaying peripheral opioid activity. *Int J Tissue React* 8:61–67, 1985
85. Stein C, Millan M, Shippenberg T, Herz A: Peripheral effects of fentanyl upon nociception in inflamed tissue of the rat. *Neurosci Lett* 84:225–228, 1988
86. Stein C, Millan M, Yassouridis A, Herz A: Antinociceptive effects of mu and kappa agonists in inflammation are enhanced by a peripheral opioid receptor-specific mechanism. *Eur J Pharmacol* 155:255–264, 1988
87. Stein C, Millan M, Shippenberg T et al: Peripheral opioid receptors mediating antinociception in inflammation: evidence for involvement of mu, delta and kappa receptors. *J Pharmacol Exp Ther* 248:1269–1275, 1989
88. Stein C, Comisel K, Haimerl E et al: Analgesic effect of intraarticular morphine after arthroscopic knee surgery. *N Engl J Med* 325:1123–6, 1991
89. Taiwo Y, Levine J: Kappa and delta opioids block sympathetically dependent hyperalgesia. *J Neurosci* 11:928–932, 1991
90. Van Epps D, Saland D: Beta endorphin and met-enkephalin stimulate human peripheral blood mononuclear cell chemotaxis. *J Immunol* 132:3046–3051, 1984
91. Wells L, Solodkin A, Hargreaves KM: Opiates inhibit release of immunoreactive bradykinin from inflamed tissue, as evaluated by peripheral microdialysis probes. *Soc Neurosci Abstr* 15:148, 1989
92. Werz MA, Grega DS, MacDonald RL: Actions of Mu, delta and kappa opioid agonists and antagonists on mouse primary afferent neurons in culture. *J Pharmacol Exp Ther* 242:258–263, 1987
93. Wood A: New method of treating neuralgia by the direct application of opioids to the painful points. *Edinb Med Surg J* 82:265–281, 1855
94. Yaksh T, Noueihed R: The physiology and pharmacology of spinal opiates. *Annu Rev Pharmacol Toxicol* 25:433–462, 1985
95. Yaksh T: Substance P release from knee joint afferent

terminals: modulation by opioids. *Brain Res* 458: 319-324, 1988

96. Yamamoto Y, Hotta K, Matsuda T: Effect of met-enkephalin on the spontaneous activity of the smooth muscle of the rat portal vein. *Life Sci* 34:993-999, 1984

97. Yonehara N, Iami Y, Inoki R: Effects of opioids on the heat stimulus-evoked substance P release and thermal edema in the rat hind paw. *Eur J Pharmacol* 151: 381-387, 1988

98. Young W, Wamsley J, Zaren M, Kumar M: Opioid receptors undergo axonal flow. *Science* 210:76-78, 1980

99. Yousufzai S, Gracy R, Aboul-Khair H, Abdel-Latif A: In vivo electrical stimulation of the sympathetic nerve of the eye increases inositol phosphate production and prostaglandin release in the rabbit iris muscle. *J Neurochem* 50:752-758, 1988

100. Yuge O, Matsumoto M, Kitahata L et al: Direct opioid application to peripheral nerve does not alter compound action potentials. *Anesth Analg* 64:667-671, 1985