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Results from numerous studies indicate that
opioids produce effects through activation of re-
ceptors located in the central nervous system at
spinal and supraspinal levels. However, opioids
may also possess peripheral analgesic activity. Be-
havioral studies conducted in animals indicate
that mu, kappa, and delta selective opioids pos-
sess significant antinociceptive activity after injec-
tion into hyperalgesic tissue by activation of a
peripheral mechanism(s). These effects appear to
be predominantly receptor-selective since they are
dose-related, stereospecific, and blocked by ad-
ministration of receptor antagonists. Recent clini-
cal trials suggest that opioids activate a peripher-
ally mediated analgesic mechanism in clinical
models of pain due to inflammation. These resuits
suggest that peripherally administered opioids or
development of peripherally selective opioids may
provide clinical analgesia without the develop-
ment of traditional central nervous system me-
diated side effects. Key words: analgesia,
opioids, pharmacology, pain, inflammation

he analgesic efficacy of opicids has been
well established in numerous clinical and an-
imal studies. Less clear, however, are their
precise mechanisms of action and loci of ac-
tivity. It is well recognized that opioids produce anal-
gesia through activation of receptors located in the
central nervous system (CNS) at both spinal and su-
praspinal tevels.®®® However, recent studies suggest
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that opicids also may activate targets in inflamed tis-
sue, resulting in a peripherally mediated suppression
of sensitized nociceptors.

PERIPHERAL EFFECTS OF OPIOIDS:
ANIMAL AND CLINICAL STUDIES

The hypothesis for a peripheral site of opioid action
was received initially with caution, because classical
studies suggesied that opioids are active only in the
CNS. For example, Lim et al. used a cross-perfused
spleen preparation in which the splenic blood supply
was isolated from the rest of the dog’s blood supply
via splenic cannulas attached to another dog.>® This
type of surgical preparation allowed drugs to be in-
jected into either the “periphery” (via injection into
the isolated splenic circulation) or “centrally”’ (via
injection into the rest of the dog’s circulation). The
paradigm used electrical or chemical stimulation of
the spleen to elicit nocifensive behavior and
recorded vocalization or splenic nerve activity as the
dependent measure. Inspection of their data indi-
cates that propoxyphene had substantiai peripheral
activity, while morphine appeared to have some pe-
ripheral effects. However, the major component of
morphine antinociception was observed following
“gentral" injection and, based on these results, the
authors concluded that opicids are “'centrally acting
analgesics.” The concept of opioids having only a
CNS site of action was not seriously challenged for
the next 10—-15 years.

tn the mid-1970s, Collier and Roy published a se-
ries of papers indicating that prostaglandins in-
crease cyclic adenosine monophosphate (CAMP) in
various CNS tissues, and that opioids suppress cAMP
levels; these findings led to their suggestion that the
mechanism for opioid analgesia is inhibition of ade-
nylate cyclase.?22® Based on these findings, and on
other studies demonstrating that prostanoids induce
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hyperalgesia, Ferreira and Nakamura evaluated
whether opioids have peripheral effects for sup-
pressing prostaglandin-induced mechanical hyper-
algesia.®® 7 In their experimental design, the test
opioid was injected either into the hyperaigesic paw
or into the contralateral control paw. A peripheral
opioid effect was interpreted to be present if the anti-
nociception was observed following an ipsilateral
but not a contralateral injection. Using this approach,
morphine was shown to have a peripheral site of ac-
tion for blocking hyperalgesia due to intraplantar in-
jection of PGE., prostacyclin, isoprenaline, BaCas,,
and A23187 {a caicium ionophore), but the opioid
had no effect on hyperalgesia due to injection of di-
butyrl cAMP.2% Additional studies demonstrated that
morphine, pentazocine, [Metlenkephalin, [Leulen-
kephalin, nalorphine, and naloxone all produced
dose-dependent peripherally mediated antinocicep-
tion in hyperalgesic tissue with doses of 3—30 nmol/
paw. In contrast, lidocaine required doses of about
1,000 nmol/paw to produce a peripheral effect.?® Col-
lectively, these results indicate that peripheral opioid
analgesia has the following characteristics: (1) it is
present when opioids are injected into hyperalgesic
tissue; (2) it is not evident when opioids are injected
into “normal” tissue; and (3) it may be due, in part,
to inhibition of the adenylaie cyclase system. This
last conclusion was supported by the finding that
opioids blocked hyperalgesia due to injection of
agents that elevate cAMP (e.g., PGEz, prostacyclin,
isoprenaline), but had no effect on hyperalgesia due
to administration of dibutyrl cAMP .28

Numerous studies have since extended these find-
ings of peripheral opioid-induced antinaciception
(Table 1). An important ocbservation was that periph-
eral opioid antinociception was not restricted to
PGEz-induced hyperalgesia, but was also evident in
actual models of tissue inflammation. For example,
the rat carrageenan model of inflammation® has
been used to evaluate peripheral opioid antinocicep-
tion to thermal stimuli.*® In these studies, both hind-
paws were injected with carrageenan; 90 minutes
later one paw was injected with the test opioid, while
the contralateral paw was injected with saline, using
a randomized, double-blind, counterbalanced exper-
imental design. This type of within-animal control
permits interpretation of drug effects as due to acti-
vation of a peripheral target (i.e., analgesia in the opi-
oid injected paw only) or to a systemic target (i.e.,
anatgesia in both inflamed hind paws). These studies
demonstrated that both fentanyl and ethylketocycla-
zocine had prolonged peripheral antinociceptive ef-
fects in blocking carrageenan-induced hyperaigesia
to thermal stimuli. In addition, levorphanol produced

a dose-related antinociception that was stereospe-
cific (i.e., dextrorphan had no effect).*® Additional be-
havioral studies indicate that opioids act peripherally
to block the hyperalgesia that accompanies PGE: in-
jection 282858 pradykinin injection,?® abdominal wri-
thing,®5* or actual tissue inflammation due to injec-
tion of carrageenan®-2846.7¢ or complete Freund's
adjuvant.®5-87

But is peripherally located opioid antinociception
due to activation of a receptor-selective mechanism?
The generally accepted criteria for evaluating a re-
ceptor-selective mechanism is demonstration of a
dose-related, stereospecific, antagonist reversible
effect. Although these criteria have not been evalu-
ated in all peripheral opioid studies, they have been
generally satisfied when tested (Table 1). Stein et
al.57 conducted an elegant series of studies evaluat-
ing the receptor selectivity of peripherally injected
opioids. They demonstrated that dose-related, pe-
ripheral opioid antinociception was evident follow
ing intraplantar injection of mu (DAGO), kappa
{(Us0,488H)}, and delta (DPDPE) selective agonists,
and that the antinociception for each agonist was
biocked only by administration of the respective mu
(CTAP), kappa {(nor-BNI), or delta (IC1 174,864) antag-
onist.

However, not all data supports a receptor-selective
mechanism. For example, dextrerphan, an inactive
stereoisomer, has activity in the writhing test,® but
not in carrageenan-induced thermal hyperalgesia.*®
In addition, peripheral administration of the opioid
antagonist naloxone has been reported o produce
antinociception in some, 2788 put not all stud-
ies.B8588 Although it has been suggested that the pe-
ripheral natoxone-induced antinociception may be
due to metabolic conversion of the antagonist to an
agonist,”® there is currently little biochemical data to
support this hypothesis. [t appears unlikely, however,
that peripheral opioid antinociception is due to -
nonselective local anesthetic-like action since pe-
ripherally administered opioids have little to no activ-
ity when injected into normal tissue.5%85-87 Taken to-
gether, the majority of reported studies indicate that
peripheral opioid antinociception is due to activation
of a receptor-selective mechanism (Table 1), al-
though the possibility exists that a concurrent nonse-
lective or unique petipheral mechanism (i.e., meta-
bolic conversion) contributes to the effect.

Collectively, these animal studies indicate that
opioids have a peripheral site of action for blocking
behavioral hyperalgesia. In contrast to this wealth of
animal data, there is a relative paucity of data col-
lected in clinical models of inflammation. A review of
the clinical literature reveals several anecdotal re-



Table 1. Summary of behavioral studies evaluating peripheral antinociceptive effects of opioids

: Hyperalgesia Dependent Dose Receptor Sterec-
Opioid Animal  Model” Stimulus Measure Response?t Antagonist?  specific?  Ref.
MU opioids
Codeine Mouse AAW Spontaneous Stretch reflex 1.9 nmol/kg — — 7
DAMGO Rat CFA Mechanical Paw withdrawal 1 Yes — 80
DAMGOC Rat Bradykinin Mechanical Paw withdrawal t Yes — 82
DAMGO Rat PGE: Mechanical Paw withdrawal by — — 52
Bextrorphan Mouse AAW Spontaneous Stretch reflex 1.8 nmolikg — No 7
Dextrorphan Rat Carrageenan  Thermal Paw withdrawal A — Yes 40
Fentanyl Rat Carrageenan  Thermal Paw withdrawal — — — 40
Fentanyl Rat CFA Mechanical Paw withdrawat I Yes — 78
L.evorphanol Rat Carrageenan  Thermal Paw withdrawal — — _Yes 40
Levorphanol Mouse AAW Spontaneous Stretch reflex 2.1 nmol/kg 7
Morphiceptin Rat PGE: Mechanicai Paw withdrawal 1 — — 52
Morphine Mouse AAW Spontaneous Stretch reflex 5.9 nmol/kg Yes — 7
Morphine Mouse CW Spontaneous Stretch reflex 0.2 mg/kg — — 77
Morphine Rat CFA Mechanical Paw withdrawal t Yes — 79
Morphine Rat CFA Mechanical Paw withdrawal ¥ — Yes 80
Morghine Rat PGE. Mechanical Freezing behavior 14.2 nmolpaw  No — 21
Morphine Rat PGE: Mechanical Paw withdrawal 1 Yes — 52
N-methyl morphine Mouse CW Spontaneous Stretch reflex 12.4 mg/kg — — 77
N-methyl morphine  Rat Carrageenan  Mechanical Freezing behavior — — — 23
N-methyl morphine  Rat PGE; Mechanical Freezing behavior — —_ — 23
N-methyl nalorphine Mouse CW Spontaneous Stretch reflex 2.7 mg/kg — — 77
N-methyl nalorphine HRat Carrageenan  Mechanical Freezing behavior — — — 23
‘N-methyl nalorphine Rat PGE. Mechanical Freezing behavior — — —— 23
"Normorphine Mouse AAW Spontaneous Stretch reflex 1.3 nmol/kg — — 7
Oxymorphene Mouse AAW Spontaneous Stretch refiex 2.6 nmol/kg — — 7
Propoxyphene Mouse OW Spontaneous Stretch reflex 1.8 mg/kg — — 77
Propoxyphene Dog Spleen Electrical Vocalization — e —_ 53
Tifluadom Rat CFA Mechanical Paw withdrawal b — Yes 80
Delta opioids
BW180c Rat PGE: Mechanical Freezing behavior — — e 22
BW180c Rat Carrageenan  Mechanical Freezing behavior — — — 22
DPDPE Rat Bradykinin Mechanical Paw withdrawal 1 Yes — 82
DPDPE Rat CFA Mechanical Paw withdrawal 1 Yes — 80
DPDPE Rat PGE: Mechanical Paw withdrawal 1A — — 52
DSLET Rat PGE> Mechanical Paw withdrawal 1A — — 52
[Leulenkephalin Rat PGE> Mechanical Freezing behavior 266 nmol/paw  — —— 21
[Leulenkephalin Mouse AAW Spontaneous Stretch reflex — No — 7
[Metlenkephalin Rat PGE, Mechanical Freezing behavior 74.5 nmol/paw — — 21
[Metjenkephalin Mouse AAW Spontanecus Stretch reflex — Yes — 7
Kappa opioids
Ethylketocyclazocine Rat Carrageenan  Thermal Paw withdrawal — — —_ 40
Ketocyclazocine Mouse AAW Spontanecus Stretch reflex 0.1 nmol/kg No — 7
U50,488H Rat Bradykinin Mechanical Paw withdrawal b Yes — 82
Us0,488H Rat CFA Mechanical Paw withdrawai b Yes -— 79
U50,488H Rat CFA Mechanical Paw withdrawai 1 Yes — 80
U50,488H Rat PGE2 Mechanical Paw withdrawal 1A — — &2
‘ixed agonist-antagonists
- Nalorphine Rat PGE: Mechanical Freezing behavior 17.8 nmol/paw  — —_ 20
Pentazocine Mouse AAW Spontaneous Stretch reflex 229 nmol/kg — — 7
Pentazocine Rat PGE; Mechanical Freezing behavior 22.4 nmollpaw — — 21
Pentazocine Rat PGE;z Mechanical Freezing behavoir — — — 21
Opioid antagonisis
CTAP Rat CFA Mechanical Paw withdrawal 1A — — 80
ICH 174,864 Rat CFA Mechanical Paw withdrawal 1A — — 80
Natoxone Mouse CW Spontaneous Streich reflex 23.2 mg/kg — — 77
Natoxone Rat Carrageenan  Mechanical Paw withdrawal — — — 69
MNaloxone Rat PGE, Mechanical Freezing behavior 20.4 nmol/paw  — —_ 21
Naloxcne Rat Carrageenan  Mechanical Paw withdrawal 1A — — 77
Naloxone Mouse AAW Spontaneous Stretch reflex 1A — — 7
Naltrexone Mouse CW Spontaneous Stretch reflex 20.6 mg/kg — — 77
Naltrexone Mouse PBQ Spontaneous Stretch reflex 1A — — 77
Nor-BNI Rat CFA Mechanical Paw withdrawal 1A — — 80

* Model to produce behavioral hyperalgesia. AAW, acetic acid writhing test; CFA, complete Freund's adjuvant; CW, carbacyclin writhing
test; PBQ, phenyl-b-benzoquinone writhing test.

+ ED50 values are given for dose response studies; §, dose response studies conducted but ED58 values not provided. A, inactive drug
under examined experimental conditions.

—, parameter not examined.
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ports suggesting a peripheral site of action for opioid
analgesia. For example, in the mid-1800s, local ad-
ministration of relatively small doses of morphine
was reported to have analgesic efiects in dental
pulp,'® blisters,®® and other painful lesions.?® More
recent studies suggest that peripheral opiocids pro-
duce analgesia for acute pain after application to ex-
posed dentai pulp™ and for chronic sympathetically
maintained pain via stellate blocks.3'63%4 However,
these studies are limited since they did not exclude
systemic sites of action, were not double-blinded, or
did not demonstrate opioid specificity.

Several recent randomized, double-blind clinical
trials have tested the clinical utility of the peripheral
opiate analgesia hypothesis. Stein et al. have demon-
strated peripheral morphine analgesia in a double-
blind experimental design using patients following
arthroscopic knee surgery.® Patients were permitted
to receive concurrent analgesic medication in addi-
tion to the test drugs. Patients receiving peripheral
(intraarticular) injection of morphine (1 mg) reported
significantly less pain and consumed significantly
tess concurrent analgesics than patients receiving
systemic (intravenous) injection of the same dose of
morphine. The peripheral opiate anaigesia was at
least transiently blocked by naloxone administration.
However, not all studies have detected peripheral
morphine analgesia after arthroscopic knee sur-
gery,”® suggesting that other experimental param-
eters may influence the ability to detect peripheral
opioid analgesia. Another recently published clinical
trial tested the peripheral opioid hypothesis in end-
odontic patients who were diagnosed as having mod-
erate to severe pain due to acute dental infection.*©
Patients were randomly administered, on a double-
blind basis, either morphine sulfate (0.4 mg), a posi-
tive control (0.4 mL of 2% lidocaine with 1:100,000
epinephrine}, or a placebo control (0.4 mL of saling)
via peripheral injections into the periodontal liga-
ment space (intraligamentary injections). Patients
did not receive any concurrent medication. Bioassay
sensitivity was demonstrated by a significant separa-
tion of the positive contrel from the placebo control
for pain relief over the 30-minute test period. impor-
tantly, patients given a peripheral injection of mor-
phine suifate also reported significant amounts of
pain relief over the observation period. The opiate
analgesia was most probably peripherally mediated
since the 0.4 mg dose is only 1/10 of a threshold sys-
temic dose of morphine for relieving dental pain.®
Together, these preliminary clinical frials suggest
that peripheral opioid analgesia may have clinical
utility for managing pain due to inflammation.

POSSIBLE MECHANISMS OF ACTION FOR
PERIPHERAL EFFECTS OF OPIOIDS

In contrast to their effects when administered into
inflamed tissue, opioids injected into uninjured tis-
sue or administered perineurally produce little to no
behavioral'®8586 or electrophysiological®’-1%? ef-
fects. This finding is consistent with the observation
that opioids possess greater antinociceptive activity
in rats having inflamed hindpaws as compared to un-
injured controls.*>*888 The lack of peripherally me-
diated antinociception when opioids are injected
into normal tissue suggests that the mechanism for
peripheral opioid antinociception is due to blockade
of some process related to the development of in-
flammation (e.q., sensitization of nociceptors, activa-
tion of leukocytes, release of inflammatory media-
tors, eic.). Several mechanisms have been proposed
for mediating peripheral opioid-mediated antinoci-
ception. ;

One possible target site is opioid receptors lc

- cated on peripheral terminals of primary afferent fi-

bers. Mu, delta, and kappa opioid bindings sites have
been reported on dorsal root ganglion celis and on
peripheral axonal shafts.30:50.6298 Many of these re-
ceptors are located on capsaicin-sensitive afferent
fibers where they underge peripherally directed axo-
nal transport.®**% These opioid receptors appear to
be physiclogically active, since opioids suppress cal-
cium entry into dorsal root ganglion somata® and
inhibit the peripheral release of immunoreactive sub-
stance P due to inflammation,®” antidromic nerve
stimulation,1*®° or capsaicin administration.® In ad-
dition, local intraarterial injection of opioids reduces
the spontaneous activity of sensitized small-diameter
afferent fibers.”® Following the classic studies by Col-
lier and Roy,?22% it has been suggested that opioids
produce peripheral antinociception by inhibiting
cAMP-induced hyperalgesia. Although specific bio[-
chemical data from primary afferent terminals is stii.
lacking, the results from recent behavioral studies
are consistent with the hypothesis that peripheral mu
opioid antinociception is due to activation of a G;
protein, leading to inhibition of the adenylate cyclase
system and suppression of primary afferent sensiti-
zation.>®

It is possible that these receptors could mediate
the analgesic and antiinflammatory effects374° of
opioids since activation of primary nociceptive fibers
appears capable of altering inflammation. In support
of this point, interventions including capsaicin treat-
ment, denervation and administration of substance
P antagonists suppress the development of inflam-
mation in severa|®9.:32.:41.44.55.81.66.75.80 1t not all®® an-



imal models. These afferent fibers are thought to pe-
ripherally secrete neuropeptides such as substance
P and calcitonin gene-related peptide, leading to the
development of plasma extravasation and other ef-
fects.32:81

A second potential site is opioid receptors re-
ported to be located on leukocytes. Several studies
have demonstrated that opioids can alter chemotac-
tic and functional activity of leukocytes via activation
of opioid receptors®77:82.90: however, the selectivity
of these effects has been questioned.®® Although the
great majority of these studies are conducted in vitro,
recent in vivo studies are consistent with opioid alter-
ation of leukocyte function.'?4 For example, opioids
such as morphine have been shown to inhibit the free
radical production of stimulated neutrophils.®s It is
possible that opiocid modulation of leukocyte func-
tion could contribute to their peripheral effects since
interventions that either chemically (methotrexate)
. *surgically (cannulation of the thoracic duct) sup-

press immune function have profound effects on in-

hibiting the development of inflammation.?34.53.54.5¢

A third potential target is opioid receptors located
on sympathetic fibers; various tissues have been re-
ported to contain delta, kappa, or mu opioid recep-
tors located on postganglionic sympathetic fi-
bers.'"-™* Moreover, activation of opioid receptors
alters ‘stimulation-evoked release of norepineph-
rine.'27274 In support of this hypothesis, Taiwo and
Levine have reported that kappa and delta opioids
suppress sympathetically dependent hyperalgesia
induced by bradykinin injection,®” 8 although the se-
lectivity of this model has been questioned.*9.65

The basis for sympathetic regulation of inflamma-
tion may be due to an alteration in the synthesis or
release of inflammatory mediators since activation of
the sympathetic nervous system {or administration of
norepinephrine) stimulates the release of prostaglan-
"“ns from vascular tissue'%22® where they may acti-
, vate nearby leukocytes or sensitize nocicep-

tors.%”57.71 In addition, chemical sympathectomy, by
administration of either guanethidine or reserpine,
reduces the magnitude of inflammation.56:68

In addition to peripherally mediated antinocicep-
tion, opioids also suppress several peripheral vascu-
lar responses (i.e., plasma extravasation or edema)
to antidromic nerve stimulation55284 or tissue in-
jury.1538.78.87 Thegg effects appear to be mediated by
a receptor-specific mechanism since opioid suppres-
sion of carrageenan-induced edema and hyperther-
mia is dose-related, stereospecific, and naltrexone-
reversible.*® A reduction in plasma extravasation by
a single injection of an opioid may reduce acute hy-
peralgesia by inhibiting bradykinin release {aithough
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chronic morphine administration may delay heal-
ing).?" Plasma extravasation and the release of brad-
ykinin from the vascular compartment are primarily
due to increases in endothelial permeability and vas-
cular tone. Opioids may modulate endothelial perme-
ability either through direct actions on endothe-
lium® or by indirect actions via inhibiting the release
of inflammatory mediators that stimulate extravasa-
tion {(e.g.. substance P}. In addition, opioids suppress
the evoked release of bioactive bradykinin from both
dental pulp*® and cutaneous tissue.*® Recent studies
conducted have extended these observations by
demonstrating the stereospecificity of opioid
suppression of immunoreactive bradykinin release in
the rat carrageenan model of inflammation using im-
planted microdialysis probes.®’ in these studies, ad-
ministration of levorphano!, but not dextrorphan,
suppressed carrageenan-induced release of immu-
noreactive bradykinin by nearly 50%.

However, not all peripheral opioid effects need be
mediated by peripherally located receptors. For ex-
ample, opioids administered intracerebroventricu-
larly inhibit edema® as well as radiographic indices
of arthritic joint lesions®® in rats. It has been pro-
posed that this centrally induced opioid effect may
be due to inhibition of sympathetic outflow,*” thereby
altering the vascular response to inflammation. An
additional alternative central mechanism is stimula-
tion of the pituitary-adrenal axis. Opioids can stimu-
late the pituitary-adrenal axis in rats, and it has been
reported that kappa agonists, evaluated 3.5 hours
after administration, reduce edema via a corticoste-
rone-dependent mechanism,®

ttis important to note that these alternative mecha-
nisms for peripheral opioid effects are not mutualiy
exclusive. Additional research may well indicate that
the relative contribution of these mechanisms is de-
pendent upon the model of inflammation examined,
the host tissue, and the stage. of the inflammatory
process.

CONCLUSIONS

The hypothesis of a peripheral analgesic mechanism
for opioids has several scientific and therapeutic im-
plications. The scientific issues relate to: (1) deter-
mining the biochemical mechanisms mediating this
peripheral opioid effect; {2) determining whether en-
dogenous opioids can activate these peripheral re-
ceptors®988; and (3) evaluating whether a defect in
this peripheral opioid system contribuies to the de-
velopment of chronic inflammation and pain.

The therapeutic issues relate to the observation
that the clinical use of opioid drugs, especially in am-
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bulatory outpatient settings, is dose-restricted due to
CNS-mediated side effects such as respiratory
depression, nausea, sedation, tolerance etc.'” Thus
selective activation of peripheral opioid receptors,
either by route of injection or by drug design, may
provide effective analgesia without the manifestation
of traditional opioid-like side effects. Interestingly,
several groups have reported recently on the devel-
opment of peripherally selective opioids that are
either quaternary®®®* or hydrophilic analogs®* 1338
of apioid compounds. Future studies are required to
determine the ultimate clinical utility of peripherally
selective opioid analgesics.
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