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Abstract

Dendric shifts are defined by combinatorial restrictions of the extensions of the words
in their languages. This family generalizes well-known families of shifts such as Sturmian
shifts, Arnoux-Rauzy shifts and codings of interval exchange transformations. It is known
that any minimal dendric shift has a primitive S-adic representation where the morphisms
in S are positive tame automorphisms of the free group generated by the alphabet. In
this paper we investigate those S-adic representations, heading towards an S-adic charac-
terization of this family. We obtain such a characterization in the ternary case, involving
a directed graph with 2 vertices.

1 Introduction

Dendric shifts are defined in terms of extension graphs that describe the left and right exten-
sions of their factors. Extension graphs are bipartite graphs that can roughly be described as
follows: if u is a word in the language L(X) of the shift space X, one puts an edge between
the left and right copies of letters a and b such that aub is in L(X). A shift space is then
said to be dendric if the extension graph of every word of its language is a tree. These shift
spaces were initially defined through their languages under the name of tree sets [BDFD+15a]
and were studied in a series of papers. They generalize classical families of shift spaces such
as Sturmian shifts [MH40], Arnoux-Rauzy shifts [AR91], codings of regular interval exchange
transformations [Ose66, Arn63] (IET) or else shift spaces arising from the application of the
Cassaigne multidimensional continued fraction algorithm [CLL17] (MCF).

Minimal dendric shifts exhibit striking algebraic [BDFD+15a, BDFD+15b], combinato-
rial [BDFD+15c, BDD+18], and ergodic properties [BBD+ar]. They for instance have factor
complexity #(L(X)∩An) = (#A−1)n+1 [BDFD+15a] and topological rank #A [BBD+ar],
where A is the alphabet of the shift space. They also fall into the class of shift spaces satis-
fying the regular bispecial condition [DF20], which implies that the number of their ergodic
measures is at most #A/2. An important property for our work is that the derived shift of a
minimal dendric shift is again a minimal dendric shift on the same alphabet, where derivation
is here understood as derivation by return words (see Section 3 for definitions). This allows to
give S-adic representations of such shift spaces [Fer96], i.e., to define a set S of endomorphisms
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of the free monoid A∗ and a sequence σ = (σn)n≥1 ∈ SN, called an S-adic representation,
such that

X = {x ∈ AZ | u ∈ L(x)⇒ ∃n ∈ N, a ∈ A : u ∈ L(σ1σ2 · · ·σn(a))}.

S-adic representations are a classical tool that allows to study several properties of shift
spaces such as factor complexity [DLR13, DDMP20], the number of ergodic measures [BD14,
BHL21, BHL20], the dimension group and topological rank [BBD+ar] or yet the automorphism
group [EM20]. In the case of minimal dendric shifts, the involved endomorphisms are particu-
lar tame automorphisms of the free group generated by the alphabet [BDFD+15c, BDD+18].
This in particular allows to prove that minimal dendric shifts have topological rank equal to
the cardinality of the alphabet and that ergodic measures are completely determined by the
measures of the letter cylinders [BBD+ar, BHL20].

An important open problem concerning S-adic representations is the S-adic conjecture
whose goal is to give an S-adic characterization of shift spaces with at most linear complex-
ity [Ler12], i.e., to find a stronger notion of S-adicity such that a shift space has an at most
linear factor complexity if and only if it is “strongly S-adic”. Our work goes one step further
towards this conjecture by studying S-adic representations of minimal dendric shifts. Our
main result is the following that gives an Σ3S3Σ3-adic characterization of minimal dendric
shifts over a ternary alphabet, where S3 is defined in Section 5.1 and Σ3 is the symmetric
group. It involves a labeled directed graph G with 2 vertices and which is non-deterministic,
i.e., a given morphism may label several edges leaving a given vertex.

Theorem 1.1. A shift space (X,S) is a minimal dendric shift over A3 = {1, 2, 3} if and only
if it has a primitive Σ3S3Σ3-adic representation σ ∈ (Σ3S3Σ3)N that labels a path in the graph
G represented in Figure 7.

We then characterize, within this graph, the well-known families of Arnoux-Rauzy shifts
and of coding of regular 3-IET (Theorem 6.13). We also show that shift spaces arising from
the Cassaigne MCF are never Arnoux-Rauzy shifts, nor codings of regular 3-IET (Proposi-
tion 6.14). Observe that minimal ternary dendric shifts have factor complexity 2n + 1 and
another S-adic characterization could be deduced from [Ler14]. This other S-adic characteri-
zation would also involve a labeled graph, but with 9 vertices.

Observe that we do not focus only on the ternary case. We investigate the S-adic repre-
sentations of minimal dendric shifts over any alphabet obtained when considering derivation
by return words to letters. We for instance show that when taking the image Y of a shift space
X under a morphism in S, the extension graphs of long enough factors of Y are the image of
the extension graph of factors of X under some graph homomorphism (Proposition 4.7). This
allows us to introduce the notion of dendric preserving morphism for X which is the funda-
mental notion for the construction of the graph G. We also characterize the morphisms σ of
S that are dendric preserving for all X using Arnoux-Rauzy morphisms (Proposition 4.11).

The paper is organized as follows. We start by giving, in Section 2, the basic definitions
for the study of shift spaces. We introduce the notion of extension graph of a word, of dendric
shift and of S-adic representation of a shift space.

In Section 3, we recall the existence of an S-adic representation using return words for
minimal shift spaces (Theorem 3.1) and the link between return words and Rauzy graph.

In Section 4, we then study the relation between words in a shift space and in its image
by a strongly left proper morphism (Proposition 4.1). We deduce from it a link between the
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extension graphs (Proposition 4.7) using graph morphisms and we prove that the injective and
strongly left proper morphisms that preserve dendricity can be characterized using Arnoux-
Rauzy morphisms (Proposition 4.11).

In Section 5, we study the notions and results of Section 4 in the case of a ternary al-
phabet. We then prove the main result of this paper (Theorem 1.1) which gives an S-adic
characterization of ternary minimal dendric shifts using infinite paths in a graph.

Finally, in Section 6, we focus on three sub-families of dendric shifts: Arnoux-Rauzy shifts,
interval exchanges and Cassaigne shifts. For interval exchanges, we first recall the associated
definitions and basic properties, then provide an S-adic characterization (Theorem 6.13) in
the ternary case using a subgraph of the graph obtained in the dendric case. We also prove
that the families of Cassaigne shifts, of Arnoux-Rauzy shifts and of regular interval exchanges
are disjoint.

2 Preliminaries

2.1 Words, languages and shift spaces

Let A be a finite alphabet of cardinality d ≥ 2. Let us denote by ε the empty word of the
free monoid A∗ (endowed with concatenation), and by AZ the set of bi-infinite words over A.
For a word w = w1 · · ·w` ∈ A`, its length is denoted |w| and equals `. We say that a word u
is a factor of a word w if there exist words p, s such that w = pus. If p = ε (resp., s = ε) we
say that u is a prefix (resp., suffix) of w. For a word u ∈ A∗, an index 1 ≤ j ≤ ` such that
wj · · ·wj+|u|−1 = u is called an occurrence of u in w and we use the same term for bi-infinite
word in AZ. The number of occurrences of a word u ∈ A∗ in a finite word w is denoted as
|w|u.

The set AZ endowed with the product topology of the discrete topology on each copy
of A is topologically a Cantor set. The shift map S defined by S ((xn)n∈Z) = (xn+1)n∈Z is
a homeomorphism of AZ. A shift space is a pair (X,S) where X is a closed shift-invariant
subset of some AZ. It is thus a topological dynamical system. It is minimal if the only closed
shift-invariant subset Y ⊂ X are ∅ and X. Equivalently, (X,S) is minimal if and only if the
orbit of every x ∈ X is dense in X. Usually we say that the set X is itself a shift space.

The language of a sequence x ∈ AZ is its set of factors and is denoted L(x). For a shift
space X, its language L(X) is ∪x∈XL(x) and we set Ln(X) = L(X) ∩ An, n ∈ N. Its factor
complexity is the function pX : N→ N defined by pX(n) = #Ln(X). We say that a shift space
X is over A if L1(X) = A.

2.2 Extension graphs and dendric shifts

Dendric shifts are defined with respect to combinatorial properties of their language expressed
in terms of extension graphs. Let F be a set of finite words on the alphabet A which is
factorial, i.e., if u ∈ F and v is a factor of u, then v ∈ F . For w ∈ F , we define the sets of
left, right and bi-extensions of w by

E−F (w) = {a ∈ A | aw ∈ F};
E+
F (w) = {b ∈ A | wb ∈ F};

EF (w) = {(a, b) ∈ A×A | awb ∈ F}.
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The elements of E−F (w), E+
F (w) and E−F (w) are respectively called the left extensions, the

right extensions and the bi-extensions of w in F . If X is a shift space over A, we will use
the terminology extensions in X instead of extensions in L(X) and the index L(X) will be
replaced by X or even omitted if the context is clear. Observe that as X ⊂ AZ, the set EX(w)
completely determines E−X(w) and E+

X(w). A word w is said to be right special (resp., left
special) if #(E+(w)) ≥ 2 (resp., #(E−(w)) ≥ 2). It is bispecial if it is both left and right
special. The factor complexity of a shift space is completely governed by the extensions of its
special factors. In particular, we have the following result.

Proposition 2.1 (Cassaigne and Nicolas [CN10]). Let X be a shift space. For all n, we have

pX(n+ 1)− pX(n) =
∑

w∈Ln(X)

(#E+(w)− 1)

=
∑

w∈Ln(X)

(#E−(w)− 1)

In addition, if for every bispecial factor w ∈ L(X), one has

#E(w)−#E−(w)−#E+(w) + 1 = 0, (2.1)

then pX(n) = (pX(1)− 1)n+ 1 for every n.

A classical family of bispecial factors satisfying Equation (2.1) is made of the ordinary
bispecial factors that are defined by E(w) ⊂ ({a}×A)∪ (A×{b}) for some (a, b) ∈ E(w). A
larger family of bispecial factors also satisfying Equation (2.1) are the dendric bispecial factors
defined below.

For a word w ∈ F , we consider the undirected bipartite graph EF (w) called its extension
graph with respect to F and defined as follows: its set of vertices is the disjoint union of E−F (w)
and E+

F (w) and its edges are the pairs (a, b) ∈ E−F (w) × E+
F (w) such that awb ∈ F . For an

illustration, see Example 2.2 below. We say that w is dendric if E(w) is a tree. We then say
that a shift space X is a dendric shift if all its factors are dendric in L(X). Note that every
non-bispecial word and every ordinary bispecial word is trivially dendric. In particular, the
Arnoux-Rauzy shift spaces are dendric (recall that Arnoux-Rauzy shift spaces are the minimal
shift spaces having exactly one left-special factor un and one right-special factor vn of each
length n and such that E−(un) = A = E+(vn); all bispecial factors of an Arnoux-Rauzy shift
are ordinary). By Proposition 2.1, we deduce that any dendric shift has factor complexity
pX(n) = (pX(1)− 1)n+ 1 for every n.

Example 2.2. Let σ be the Fibonacci substitution defined over the alphabet {0, 1} by σ : 0 7→
01, 1 7→ 0 and consider the shift space generated by σ (i.e., the set of bi-infinite words over
{0, 1} whose factors are factors of some σn(0)). The extension graphs of the empty word and
of the two letters 0 and 1 are represented in Figure 1.

2.3 S-adicity

Let A,B be finite alphabets with cardinality at least 2. By a morphism σ : A∗ → B∗, we
mean a non-erasing monoid homomorphism (also called a substitution when A = B). By
non-erasing, we mean that the image of any letter is a non-empty word. We stress the fact
that all morphisms are assumed to be non-erasing in the following. Using concatenation, we
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Figure 1: The extension graphs of ε (on the left), 0 (in the center) and 1 (on the right) are
trees.

extend σ to AN and AZ. In particular, if X is a shift space over A, the image of X under σ
is the shift space

Y = {Skσ(x) | x ∈ X, 0 ≤ k < |σ(x0)|}.

The incidence matrix of σ is the matrix Mσ ∈ NB×A such that (Mσ)b,a = |σ(a)|b for any
a ∈ A, b ∈ B.

The morphism σ is said to be left proper (resp., right proper) when there exists a letter
` ∈ B such that for all a ∈ A, σ(a) starts with ` (resp., ends with `). It is strongly left proper
(resp., strongly right proper) if it is left proper (resp., right proper) and the starting letter
(resp., ending letter) ` only occurs once in each image σ(a), a ∈ A. It is said to be proper if
it is both left and right proper. With a left proper morphism σ : A∗ → B∗ with first letter `,
we associate a right proper morphism σ̄ : A∗ → B∗ by

σ(a)` = `σ̄(a), ∀a ∈ A.

Let σ = (σn : A∗n+1 → A∗n)n≥1 be a sequence of morphisms such that maxa∈An |σ1 ◦ · · · ◦
σn−1(a)| goes to infinity when n increases. We assume that all the alphabets An are minimal,
in the sense that for all n ∈ N and b ∈ An, there exists a ∈ An+1 such that b is a factor of
σn(a). For 1 ≤ n < N , we define the morphism σ[n,N) = σn ◦ σn+1 ◦ · · · ◦ σN−1. For n ≥ 1,
the language L(n)(σ) of level n associated with σ is defined by

L(n)(σ) =
{
w ∈ A∗n | w occurs in σ[n,N)(a) for some a ∈ AN and N > n

}
.

As maxa∈An |σ[1,n)(a)| goes to infinity when n increases, L(n)(σ) defines a non-empty shift
space X(n)

σ that we call the shift space generated by L(n)(σ). More precisely, X(n)
σ is the set

of points x ∈ AZ
n such that L(x) ⊆ L(n)(σ). Note that it may happen that L(X

(n)
σ ) is strictly

contained in L(n)(σ). Also observe that for all n, X(n)
σ is the image of X(n+1)

σ under σn.
We set L(σ) = L(1)(σ), Xσ = X

(1)
σ and call Xσ the S-adic shift generated by the directive

sequence σ. We also say that the directive sequence σ is an S-adic representation of Xσ.
We say that σ is primitive if, for any n ≥ 1, there exists N > n such that for all (a, b) ∈

An ×AN , a occurs in σ[n,N)(b). Observe that if σ is primitive, then mina∈An |σ[1,n)(a)| goes
to infinity when n increases, L(X

(n)
σ ) = L(n)(σ), and X

(n)
σ is a minimal shift space (see for

instance [Dur00, Lemma 7]).
We say that σ is ((strongly) left, (strongly) right) proper whenever each morphism σn is

((strongly) left, (strongly) right) proper. We also say that σ is injective if each morphism
σn is injective (seen as an application from A∗n+1 to A∗n). By abuse of language, we say
that a shift space is a (strongly left or right proper, primitive, injective) S-adic shift if there
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exists a (strongly left or right proper, primitive, injective) sequence of morphisms σ such that
X = Xσ.

3 S-adicity using return words and shapes of Rauzy graphs

3.1 S-adicity using return words and derived shifts

Let X be a minimal shift space over the alphabet A and let w ∈ L(X) be a non-empty word.
A return word to w in X is a non-empty word r such that w is a prefix of rw and, rw ∈ L(X)
and rw contains exactly two occurrences of w (one as a prefix and one as a suffix). We let
RX(w) denote the set of return words to w in X and we omit the subscript X whenever it is
clear from the context. The shift space X being minimal, R(w) is always finite.

Let w ∈ L(X) be a non-empty word and write RX(w) = {1, . . . ,#(RX(w))}. A morphism
σ : R(w)∗ → A∗ is a coding morphism associated with w if σ(R(w)) = R(w). It is trivially
injective. Let us consider the set Dw(X) = {x ∈ R(w)Z | σ(x) ∈ X}. It is a minimal
shift space, called the derived shift of X (with respect to w). We now show that derivation
of minimal shift spaces allows to build left proper and primitive S-adic representations. We
inductively define the sequences (an)n≥1, (Rn)n≥1, (Xn)n≥1 and (σn)n≥1 by

• X1 = X, R1 = A and a1 ∈ A;

• for all n, Rn+1 = RXn(an), σn : R∗n+1 → R∗n is a coding morphism associated with an,
Xn+1 = Dan(Xn) and an+1 ∈ Rn+1.

Observe that the sequence (an)n≥1 is not uniquely defined as well as the morphism σn
(even if an is fixed). However, to avoid heavy considerations when we deal with sequences
of morphisms obtained in this way, we will speak about “the” sequence (σn)n≥1 and it is
understood that we may consider any such sequence. Also observe that as we consider derived
shifts with respect to letters, each coding morphism σn is strongly left proper. It is furthermore
a characterization: a morphism σ : {1, . . . , n}∗ → A∗ is injective and strongly left proper (with
first letter `) if and only if there is a shift space X over A such that σ is a coding morphism
associated with `.

Theorem 3.1 (Durand [Dur98]). Let X be a minimal shift space. Using the notation defined
above, the sequence of morphisms σ = (σn : R∗n+1 → R∗n)n≥1 is a strongly left proper, primitive
and injective S-adic representation of X. In particular, for all n, we have Xn = X

(n)
σ .

In the case of minimal dendric shifts, the S-adic representation σ can be made stronger.
This is summarized by the following result. Recall that if FA is the free group generated by A,
an automorphism α of FA is tame if it belongs to the monoid generated by the permutations
of A and by the elementary automorphisms{

a 7→ ab,

c 7→ c, for c 6= a,
and

{
a 7→ ba,

c 7→ c, for c 6= a.

Theorem 3.2 (Berthé et al. [BDFD+15c]). Let X be a minimal dendric shift over the alphabet
A = {1, . . . , d}. For any w ∈ L(X), Dw(X) is a minimal dendric shift over A and the coding
morphism associated with w is a tame automorphism of FA. As a consequence, if σ = (σn)n≥1

is the primitive directive sequence of Theorem 3.1, then all morphisms σn are strongly left
proper tame automorphisms of FA.
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3.2 Rauzy graphs

Let X be a shift space over an alphabet A. The Rauzy graph of order n of X, is the directed
graph Gn(X) whose set of vertices is Ln(X) and there is an edge from u to v if there are
letters a, b such that ub = av ∈ L(X); this edge is sometimes labeled by a.

Assuming that X is minimal, any Rauzy graph Gn(X) is strongly connected. It is also
easily seen that any return word to a non-empty word w ∈ L(X) labels a path from w to w
in G|w|(X) in which no internal vertex is w. As a consequence, the shape of the Rauzy graph
G1(X) provides restrictions on the possible return words to a letter a in X. Furthermore, the
extension graph of the empty word having for edges the pairs (a, b) ∈ EX(ε), it completely
determines L2(X), hence the Rauzy graph G1(X). Therefore, the extension graph EX(ε)
provides restrictions on the possible return words to letters in X.

Example 3.3. The Rauzy graph of order 2 of the shift space X generated by the Fibonacci
substitution is given in Figure 2. The word 00100 belongs to L(X), so that 001 is a return
word to 00 and it labels the circuit (00, 01, 10, 00). The converse however does not hold, i.e.,
there might exist paths from w to w whose label is not a return word. For any n ≥ 1, the
word 0(01)n labels a path from 00 to 00 but does not belong to L(X) when n ≥ 3.

00

01 10

0

0

1
1

Figure 2: Rauzy graph of order 2 for the Fibonacci shift

4 Bispecial factors in S-adic shifts

4.1 Description of bispecial factors in injective strongly left proper S-adic
shifts

Our aim is to describe bispecial factors and their bi-extensions in an S-adic shift Xσ. A
classical way to do this is to “desubstitute” a bispecial factor u, i.e., to find the set of “minimal”
factors vi in L(X

(k)
σ ) such that u is a factor of the words σ[1,k)(vi) and then to deduce the

extensions of u from those of the vi’s. The set of such vi’s can be easily described when σ is
an injective and strongly left proper sequence of morphisms.

Proposition 4.1. Let X be a shift space over A, σ : A∗ → B∗ be an injective and strongly
left proper morphism (with first letter `), Y the image of X under σ and u a non-empty word
in L(Y ). If ` does not occur in u, then there exists b ∈ A such that u is a non-prefix factor of
σ(b). Otherwise, there is a unique triplet (s, v, p) ∈ B∗ × L(X) × B∗ for which there exists a
pair (a, b) ∈ EX(v) such that u = sσ(v)p with

1. s a proper suffix of σ(a);

2. p is a non-empty prefix of σ(b).
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In the case where ` occurs in u, the left, right and bi-extensions of u are governed by those
of v through the equation

EY (u) = {(a′, b′) ∈ B × B | ∃(a, b) ∈ EX(v) : σ(a) ∈ B∗a′s ∧ σ(b)` ∈ pb′B∗}. (4.1)

Proof. Since u is a word in L(Y ), it is a factor of σ(w) for some w ∈ L(X). The word u being
non-empty, any such w is non-empty as well. We say that w is covering u if u is a factor of
σ(w) and for any proper factor w′ of w, u is not a factor of σ(w′). Recall that ` is the first
letter of σ(a) for all a ∈ A. Thus, if |u|` = 0, then any word w covering u is a letter and u is
a non-prefix factor of σ(w).

Now assume that |u|` ≥ 1 and let u = su′p with |s|` = 0, p ∈ `(A\{`})∗ and u′ ∈ {ε}∪`A∗.
As the letter ` occurs only as a prefix in any image σ(a), a ∈ A, any word w covering u is of
the form xv′y with x ∈ A ∪ {ε} and y ∈ A, where one has σ(v′) = u′, s is a suffix of σ(x)
(which is proper if x 6= ε) and p is a prefix of σ(y). In particular, the triplet (s, v, p) satisfies
the requirements of the result (take b = y and a = x if x 6= ε or any a ∈ E−(vy) if x = ε).

Let us show the uniqueness of (s, v, p). Assume that (s′, v′, p′) is a triplet satisfying the
requirements with the extension (a′, b′) ∈ E(v′). As u = s′σ(v′)p′, where s′ is a proper suffix
of σ(a′) and p′ is a non-empty proper prefix of σ(b′)`, we have |s′|` = 0, p′ ∈ `(A \ {`})∗ and
σ(v′) ∈ {ε} ∪ `A∗. This implies that (s′, σ(v′), p′) = (s, σ(v), p) and, as σ is injective, that
(s′, v′, p′) = (s, v, p).

Let us now prove Equation (4.1). The inclusion

EY (u) ⊃ {(a′, b′) ∈ B × B | ∃(a, b) ∈ EX(v) : σ(a) ∈ B∗a′s ∧ σ(b)` ∈ pb′B∗}

is trivial. For the other one, assume that (a′, b′) is in EY (u). Thus we have a′ub′ ∈ L(Y ). Let
w ∈ L(X) be a covering word for a′ub′. By definition of v, v is a factor of w, thus one has
w = xvy for some words x, y. We then have a′ub′ = a′sσ(v)pb′, with a′s a suffix of σ(x) and
pb′ a prefix of σ(y)`. In particular, x and y are non-empty. Let a be the last letter of x and b
be the first letter of y. We have (a, b) ∈ EX(v) and, as |s|` = 0, s is a proper suffix of σ(a),
from which we have σ(a) ∈ B∗a′s. We also have that p is a prefix of σ(b). If it is proper, then
pb′ is a prefix of σ(b) so that σ(b)` ∈ pb′B∗. Otherwise, p = σ(b), y has length at least 2 and
b′ is the first letter of σ(c), where c is such that bc is prefix of y. Otherwise stated, b′ = ` and
we indeed have σ(b)` ∈ pb′B∗.

Motivated by the previous result, if X is a shift space over A and σ : A∗ → B∗ is a strongly
left proper morphism (with first letter `), then for any words v ∈ L(X) and x, y ∈ B∗, we
define the sets

E−X,x(v) = {a ∈ E−X(v) | σ(a) ∈ B∗x};
E+
X,y(v) = {b ∈ E+

X(v) | σ(b)` ∈ yB∗};
EX,x,y(v) = EX(v) ∩ (E−X,x(v)× E+

X,y(v)).

Thus Equation (4.1) can be written

EY (u) = {(a′, b′) ∈ B × B | ∃(a, b) ∈ EX,a′s,pb′(v)}.

Remark 4.2. Observe that, as we have seen in the previous proof (and using the same notation),
as s is a proper suffix of σ(a), the letter ` does not occur in it. As a consequence, for any
a′ ∈ E−X,s(v), s is a proper suffix of σ(a′).
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Whenever u and v are as in the previous proposition with |u|` ≥ 1, the word v is called the
antecedent of u under σ and u is said to be an extended image of v. Thus, the antecedent is
defined only for words containing an occurrence of the letter ` and an extended image always
contains an occurrence of `. Whenever u is a bispecial factor, the next result gives additional
information about s and p. We first need to define the following notation. If σ : A∗ → B∗ is
a morphism and a1, a2 ∈ A, let us denote by s(a1, a2) (resp., p(a1, a2)) the longest common
suffix (resp., prefix) between σ(a1) and σ(a2).

Corollary 4.3. Let X be a shift space over A, σ : A∗ → B∗ be an injective and strongly left
proper morphism (with first letter `), Y the image of X under σ and v a word in L(X). A
word u is a bispecial extended image of v if and only if there exist (a1, b1), (a2, b2) ∈ EX(v)
with a1 6= a2, b1 6= b2 and u = s(a1, a2)σ(v)p(b1, b2). In particular, the antecedent v of a
bispecial word u is bispecial.

Proof. First assume that there exist (a1, b1), (a2, b2) ∈ EX(v) with a1 6= a2, b1 6= b2 and
u = s(a1, a2)σ(v)p(b1, b2). Let us fix s = s(a1, a2) and p = p(b1, b2). Since σ is injective,
σ(a1) 6= σ(a2), hence s is a proper suffix of one of them. Thus, as σ is strongly left proper, s
does not contain any occurrence of the letter `. As a consequence, s is a proper suffix of both
σ(a1) and σ(a2). In particular, u is left special. The same reasoning shows that p is a proper
prefix of σ(bi) for some i ∈ {1, 2} and that u is right special, hence bispecial. Furthermore, p
is non-empty since it admits ` as a prefix. The pair (ai, bi) thus satisfies Proposition 4.1.

Now assume that u is a bispecial extended image of v with u = sσ(v)p. Since u is bispecial,
there exist (a′1, b

′
1), (a′2, b

′
2) ∈ EY (u) with a′1 6= a′2 and b′1 6= b′2. From Equation 4.1, there exist

(a1, b1), (a2, b2) ∈ EX,s,p(v) such that

σ(ai) ∈ B∗a′is and σ(bi)` ∈ pb′iB∗

for all i ∈ {1, 2}. We deduce that s = s(a1, a2) and a1 6= a2. As b′1 and b′2 cannot be
simultaneously equal to `, we deduce that b1 6= b2 and that p = p(b1, b2).

Example 4.4. Consider the morphism

δ :


1 7→ 1

2 7→ 123

3 7→ 1233

that will appear again in Section 5. Assume that v is a bispecial factor of X ⊂ {1, 2, 3}Z
whose extension graph is

1

2

3

1

2

By Corollary 4.3, the word v admits δ(v)1 and 3δ(v)1 as bispecial extended images. Using
Proposition 4.1, their extension graphs are given in Figure 3.

Assume that Xσ is an S-adic shift where the directive sequence σ = (σn : A∗n+1 →
A∗n)n≥1 is primitive and contains only strongly left proper injective morphisms. The directive
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E(δ(v)1)

1

3

1

2

E(3δ(v)1)

2

3

1

2

Figure 3: Extension graphs of the bispecial extended images of v

sequence σ being primitive, the sequence (mina∈An |σ[1,n)(a)|)n≥1 goes to infinity. Hence,
iterating Proposition 4.1, with any word u ∈ L(Xσ) one can associate a unique finite sequence
(u1, u2, . . . , uk) such that u1 = u, uk ∈ L(X

(k)
σ ) does not have any antecedent under σk and,

for i < k, ui+1 ∈ L(X
(i+1)
σ ) is the antecedent of ui under σi. We say that u is a descendant of

each ui, 1 ≤ i ≤ k, and, reciprocally, that each ui, 1 ≤ i ≤ k, is an ancestor of u. The word
uk ∈ L(X

(k)
σ ) is its oldest ancestor and it is either empty or a non-prefix factor of σk(b) for

some letter b ∈ Ak+1. Observe that with our definition, u is an ancestor and a descendant of
itself.

Let X be an S-adic shift with a strongly left proper and injective S-adic representation σ.
Let u be a bispecial factor of X. From Corollary 4.3, all ancestors of u are bispecial factors
of some X(k)

σ . From Proposition 4.1, the extensions of u are completely governed by those of
its oldest ancestor. More precisely, we have the following direct corollary.

Corollary 4.5. For all k ≥ 1, there is a finite number of bispecial factors of X(k)
σ that do not

have an antecedent under σk. They are called initial bispecial factors of order k. Furthermore,
for any bispecial factor u of X, there is a unique k ≥ 1 and a unique initial bispecial factor
v ∈ L(X

(k)
σ ) such that u is a descendant of v. Finally, EX(u) depends only on E

X
(k)
σ

(v), i.e.,
if Y is a shift space such that EY (v) = E

X
(k)
σ

(v) and if Z is the image of Y under σ[1,k), then
EZ(u) = EX(u).

4.2 Action of morphisms on extension graphs

Proposition 4.1 shows that whenever v is the antecedent of u under σ, the extension graph
EY (u) is the image under a graph morphism of a subgraph of EX(v) (where by subgraph we
mean the subgraph generated by a subset of edges). In particular, if #(E−Y (u)) = #(E−X(v))
and #(E+

Y (u)) = #(E+
X(v)), then EY (u) and EX(v) are isomorphic. In this section, we

formalize this observation and study the behavior of a tree structure when we consider the
extension graphs of bispecial extended images.

In this section, X is a shift space over A, σ : A∗ → B∗ an injective and strongly left proper
morphism (with first letter `), Y the image of X under σ and v a bispecial word in L(X). By
Corollary 4.3, the bispecial extended images of v under σ are the words u of the form sσ(v)p
where s = s(a1, a2) and p = p(b1, b2) for some (a1, b1), (a2, b2) ∈ EX(v) such that a1 6= a2 and
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b1 6= b2. For any such σ and v, we introduce the following notations:

T −(σ) = {s(a1, a2) | a1, a2 ∈ A, a1 6= a2};
T +(σ) = {p(b1, b2) | b1, b2 ∈ A, b1 6= b2};
T −v (σ) = {s(a1, a2) | a1, a2 ∈ E−X(v), a1 6= a2};
T +
v (σ) = {p(b1, b2) | b1, b2 ∈ E+

X(v), b1 6= b2};

T −v (σ) = T −v (σ) ∪ σ(E−X(v));

T +
v (σ) = T +

v (σ) ∪ σ(E+
X(v))`.

The prefix strict order (resp., suffix strict order) defines a tree structure called radix tree
on T +

v (σ) (resp., on T −v (σ)), where the root p0 (resp., s0) is the shortest word of the set. In
particular, E−X,s0(v) = E−X(v) and E+

X,p0
(v) = E+

X(v). Furthermore, the leafs of T +
v (σ) (resp.,

T −v (σ)) are exactly the elements of σ(E+
X(v))` (resp., σ(E−X(v))) and every internal node (i.e.,

every element of T +
v (σ) or T −v (σ)) has at least two children.

For (s, p) ∈ T −v (σ)× T +
v (σ), we define the subgraph EX,s,p(v) of EX(v) whose vertices are

those involved by the edges in EX,s,p(v). Observe that the sets of left and right vertices of
EX,s,p(v) are respectively included in E−X,s(v) and E+

X,p(v). Furthermore, if s′ ∈ T −v (σ) (resp.,

p′ ∈ T +
v (σ)) is a child of s (resp., of p), then EX,s′,p(v) (resp., EX,s,p′(v)) is a subgraph of

EX,s,p(v).

Example 4.6. Using the notations from Example 4.4, we have the following radix trees:

T −v (δ)

ε

1 3

123 1233

T +
v (δ)

1

11 1231

These structures help us understand the construction of the extension graphs of Figure 3. Let
s ∈ T −v (σ) and p ∈ T +

v (σ) be such that u = sσ(v)p. The extension graph of u can be obtained
from the extension graph of v as follows:

1. Start by selecting the elements of E−X,s(v) and E+
X,p(v) (see Table 1). These elements

are the letters such that the corresponding leaf in T −v (σ) (resp., T +
v (σ)) is in the subtree

with root s (resp., p).

2. Take the subgraph of EX(v) with only the vertices which are in these two sets and remove
the isolated vertices that were created. This gives the graph EX,s,p(v) (see Figure 4).

3. For any letter a ∈ A, merge the vertices b on the left side such that σ(b) ∈ A∗as into
a new left vertex labeled by a. In other words, for any left vertex b, map it to the left
vertex labeled by the letter a such that the leaf corresponding to b is in the subtree
whose root is the only child of s ending by as. Do the same on the right side with the
vertices b such that σ(b)` ∈ paA∗ (see Table 2).
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δ(v)1 3δ(v)1

E−X,ε(v) = {1, 2, 3} E−X,3(v) = {2, 3}
E+
X,1(v) = {1, 2} E+

X,1(v) = {1, 2}

Table 1: Step 1

EX,ε,1(v) EX,3,1(v)

1

2

3

1

2

2

3

1

2

Figure 4: Step 2

The next result gives a more formal description of this construction and directly follows
from Equation (4.1).

Proposition 4.7. If (s, p) ∈ T −v (σ) × T +
v (σ) is such that u = sσ(v)p is an extended image

of v, the extension graph of u is the image of EX,s,p(v) under the graph morphism ϕv,s,p :
EX,s,p(v)→ EY (u) that

• for every child s′ of s in T −v (σ), maps all vertices of E−X,s′(v) to the left vertex with label
a ∈ B such that s′ ∈ B∗as;

• for every child p′ of p in T +
v (σ), maps all vertices of E+

X,p′(v) to the right vertex with
label b ∈ B such that p′ ∈ pbB∗.

In particular, if T −v (σ) = {s0} and T +
v (σ) = {p0}, then v has a unique bispecial extended

image u and the associated morphism ϕv,s,p is an isomorphism.

Observe that the morphism ϕv,s,p of the previous result acts independently on the left
and right vertices of EX,s,p(v), i.e. it can be seen as the composition of two commuting graph
morphisms ϕ−v,s and ϕ+

v,p, where ϕ−v,s acts only on the left vertices of EX,s,p(v) and ϕ+
v,p acts

only on the right vertices of EX,s,p(v). Furthermore, if a letter a belongs to E−X,s(v)∩E−X,s(v′)
(resp., to E+

X,p(v) ∩ E+
X,p(v

′)) then ϕ−v,s(a) = ϕ−v′,s(a) (resp., ϕ+
v,p(a) = ϕ+

v′,p(a)). Thus we
can define partial maps ϕ−s , ϕ+

p : A → B by ϕ−s (a) = ϕ−ε,s(a) whenever a ∈ E−X,s(ε) and by
ϕ+
p (a) = ϕ+

ε,p(a) whenever a ∈ E+
X,p(ε).

4.3 Stability of dendricity

In this section, we use the results and notations of the previous section to understand under
which conditions a dendric bispecial factor only has dendric bispecial extended images under
some morphism. We then characterize the morphisms for which every dendric bispecial factor
only has dendric bispecial extended images.

If X is a shift space over A and v is a dendric bispecial factor of X, we say that an
injective and strongly left proper morphism σ : A∗ → B∗ is dendric preserving for v ∈ L(X)
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Left side Right side

δ(v)1
1 7→ 1
2 7→ 3
3 7→ 3

1 7→ 1
2 7→ 2

3δ(v)1
2 7→ 2
3 7→ 3

1 7→ 1
2 7→ 2

Table 2: Step 3

if all bispecial extended images of v under σ are dendric. We extend this definition by saying
that a morphism is dendric preserving for a shift space X if it is dendric preserving for all
v ∈ L(X).

Proposition 4.8. Let X be a shift space over A and v ∈ L(X) be a dendric bispecial factor.
An injective and strongly left proper morphism σ : A∗ → B∗ is dendric preserving for v if and
only if the following conditions are satisfied

1. for every s ∈ T −v (σ) \ {s0}, EX,s,p0(v) is a tree;

2. for every p ∈ T +
v (σ) \ {p0}, EX,s0,p(v) is a tree.

Proof. Let us first assume that every bispecial extended image of v is dendric. We show item 2,
the other one being symmetric. Consider p ∈ T +

v (σ). The graph EX,s0,p(v) is a subgraph of
EX(v), which is a tree. Thus, EX,s0,p(v) is acyclic. Let us show that it is connected. As there
is no isolated vertex, it suffices to show that for all distinct right vertices b1, b2 of EX,s0,p(v),
there is a path in EX,s0,p(v) from b1 to b2. Assume by contrary that there exist two right
vertices b1, b2 of EX,s0,p(v) that are not connected.

For i ∈ {1, 2}, let Ai denote the set of left vertices of EX,s0,p(v) that are connected to bi.
Consider a maximal word s′ (for the suffix order) in {s(a1, a2) | a1 ∈ A1, a2 ∈ A2}. Let also
Bi, i ∈ {1, 2}, denote the set of right vertices of EX,s′,p(v) that are connected to vertices of Ai
and consider a maximal word p′ (for the prefix order) in {p(b′1, b′2) | b′1 ∈ B1, b

′
2 ∈ B2}. We

claim that the extension graph of the bispecial extended image u = s′σ(v)p′ is not connected.
Let Y be the image of X under σ and let ϕ be the morphism from EX,s′,p′(v) to EY (u) given

by Proposition 4.7. By maximality of s′ and p′, the morphism ϕ identifies two left vertices
a, a′ (resp., right vertices b, b′) only if they belong to the same Ai (resp., Bi). This implies
that EY (u) is not connected, which is a contradiction.

Let us now show that, under the hypothesis 1 and 2, any bispecial extended image of v is
dendric. By Corollary 4.3, the bispecial extended images of v are of the form sσ(v)p ∈ L(Y )
where s is in T −v (σ) and p is in T +

v (σ).
For any such pair (s, p), we first show that the graph EX,s,p(v) is a tree. It is trivially

acyclic as it is a subgraph of EX,s,p0(v), which is assumed to be a tree. Let us show that it is
connected. Let b1, b2 be right vertices of EX,s,p(v). As EX,s,p(v) is a subgraph of both EX,s0,p(v)
and EX,s,p0(v) which are trees, there exist a path q in EX,s0,p(v) and a path q′ in EX,s,p0(v)
connecting b1 and b2. In particular, the right vertices occurring in q belong to E+

X,p(v) and the
left vertices occurring in q′ belong to E−X,s(v). As EX,s0,p(v) and EX,s,p0(v) are both subgraphs
of EX,s0,p0(v), which is a tree, the paths q and q′ coincide. It means that this path only goes
through left vertices belonging to E−X,s(v) and through right vertices belonging to E+

X,p(v).
This implies that it is a path of EX,s,p(v), hence that b1 and b2 are connected in EX,s,p(v).
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We now show that if u = sσ(v)p is an extended image of v, then it is dendric. By
Proposition 4.7, EY (u) is the image of EX,s,p(v) under some graph morphism ϕ, hence it
is connected. We proceed by contradiction to show that it is acyclic. Assume that c =
(a1, b1, a2, b2, . . . , an, bn, a1), n ≥ 2, is a non-trivial cycle in EY (u), where a1, . . . , an are left
vertices and b1, . . . , bn are right vertices. Again by Proposition 4.7, for every i ≤ n, there exist

• a child si of s in T −v (σ);

• a child pi of p in T +
v (σ);

• left vertices a′i, a
′′
i of EX,s,p(v), belonging to E−X,si(v);

• right vertices b′i, b
′′
i of EX,s,p(v), belonging to E+

X,pi
(v);

such that ϕ(a′i) = ϕ(a′′i ) = ai, ϕ(b′i) = ϕ(b′′i ) = bi and such that the pairs

(a′j , b
′
j), (a

′′
j+1, b

′′
j ), j < n,

(a′n, b
′
n), (a′′1, b

′′
n),

are edges of EX,s,p(v).
Observe that as EX,s,p(v) is a tree, for each i ≤ n there is a unique simple path qi from a′′i

to a′i and a unique simple path q′i from b′i to b
′′
i . In EX,s,p(v), we thus have the circuit

c′ = (a′′1, . . . , a
′
1︸ ︷︷ ︸

q1

, b′1, . . . , b
′′
1︸ ︷︷ ︸

q′1

, a′′2, . . . , a
′
2︸ ︷︷ ︸

q2

, b′2, . . . , b
′′
2︸ ︷︷ ︸

q′2

, . . . , a′′n, . . . , a
′
n︸ ︷︷ ︸

qn

, b′n, . . . , b
′′
n︸ ︷︷ ︸

q′n

, a′′1).

We will now prove that the image of c′ by ϕ reduces to the non trivial cycle c of EY (u).
By reducing, we mean that we remove consecutive redundant edges, i.e. every occurrence of
a, b, a in the path is replaced by a. This will imply that c′ is not trivial and contradict the
fact that EX,s,p(v) is a tree, which will end the proof.

As EX,si,p(v) is a sub-tree of EX,s,p(v), the path qi is a path of EX,si,p(v), otherwise this
would contradict the fact that EX,s,p(v) is acyclic. In particular, the only left vertex of ϕ(qi) is
ai thus ϕ(qi) reduces to the length-0 path ai in EY (u). Similarly, q′i is a path of EX,s,pi(v) thus
ϕ(q′i) reduces to the length-0 path bi. This concludes the proof that ϕ(c′) reduces to c.

Corollary 4.9. If v is an ordinary bispecial factor of a shift space over A, then any injective
and strongly left proper morphism σ : A∗ → B∗ is dendric preserving for v. In particular, the
image under σ of an Arnoux-Rauzy shift space over A is a minimal dendric shift.

The previous result is illustrated in the preceding examples. Indeed, for δ and v as in
Example 4.4, we have T −v (δ) = {3, ε} and T +

v (δ) = {1} = {p0}. The extension graph EX,3,1(v)
in Figure 4 being a tree, v has only dendric bispecial extended images, as already observed in
Figure 3.

Another consequence of Proposition 4.8 is given by the following corollary.

Corollary 4.10. Let σ : A∗ → B∗ be an injective and strongly left proper morphism. The
following properties are equivalent.

1. The sets T −(σ) and T +(σ) both only contain one element.

14



2. For any shift space X on the alphabet A and any dendric bispecial factor v ∈ L(X), σ
is dendric preserving for v.

Proof. If T −(σ) = {s0} and T +(σ) = {p0}, the fact that σ is dendric preserving for any
dendric bispecial word v is a direct consequence of Proposition 4.8 since T −v (σ) ⊂ T −(σ) and
T +
v (σ) ⊂ T +(σ).

To prove the other implication, let us assume that s0, s1 ∈ T −(σ), where s0 is the root of
T −(σ) and s1 6= s0. Let a, b be such that s1 = s(a, b). As s0 ∈ T −(σ), there exists c such
that s1 is not a suffix of σ(c). In particular, we have #A ≥ 3.

Let a1, . . . , an be the elements of A\{a, b, c}. Let us denote by X the shift space coding the
interval exchange transformation represented below (for precise definitions and more details
about interval exchanges, see Subsection 6.2).

c b a1 a2 . . . a

a c b a2
. . . a1

The extension graph of the word ε is given by

a

c

b
a2

...
a1

c

b
a1

a2

...
a

It is a tree thus ε is dendric bispecial. However, the graph EX,s1,p0(ε) is not connected as it
does not contain the vertex c on the left but both a and b are left vertices. By Proposition 4.8,
σ is not dendric preserving for ε. This proves that T −(σ) must contain exactly one element.
Similarly, T +(σ) also contains exactly one element.

The previous result characterizes injective and strongly left proper morphisms for which
every dendric bispecial factor has only dendric bispecial extended images. However, the con-
dition does not imply that the image of a dendric shift by such a morphism σ is again dendric.
Indeed, the result gives information only on the bispecial factors that are extended images
under σ, i.e., that have an antecedent. The next result characterizes those morphisms σ for
which even the new initial bispecial factors are dendric. For any letter a ∈ A, let αa and ᾱa
denote the so-called Arnoux-Rauzy morphisms

αa(b) =

{
a if b = a,

ab otherwise,
ᾱa(b) =

{
a if b = a,

ba otherwise.

Proposition 4.11. The injective and strongly left proper morphisms preserving dendricity,
i.e. such that the image of any dendric shift is a dendric shift, are exactly the morphisms

ᾱa1 ◦ · · · ◦ ᾱan ◦ α` ◦ π

for any n ≥ 0, any a1, . . . , an ∈ A \ {`} and any permutation π of A.
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Proof. Using Corollary 4.10, an injective and strongly left proper morphism σ for the letter `
preserves dendricity if and only if the following conditions are satisfied:

1. the sets T −(σ) and T +(σ) both only contain one element;

2. if Fσ is the set
Fσ = Fac ({σ(a)` : a ∈ A}) ,

then any word w ∈ Fσ such that |w|` = 0 is dendric in Fσ.

Let σ = ᾱa1 ◦ · · · ◦ ᾱan ◦ α` ◦ π for a1, . . . , an ∈ A \ {`}. It is easily verified that σ is injective
and strongly left proper for the letter `. As conditions 1 and 2 only depend on the set σ(A),
one can assume that π = id. For any letter c, `c is a prefix of α`(c)` thus

(ᾱa1 ◦ · · · ◦ ᾱan(`)) c

is a prefix of σ(c)`. This shows that

T +(σ) = {ᾱa1 ◦ · · · ◦ ᾱan(`)}.

Similarly, c` is a suffix of `ᾱ`(c) thus

c (αa1 ◦ · · · ◦ αan(`))

is a suffix of

` (αa1 ◦ · · · ◦ αan ◦ ᾱ`(c)) = (ᾱa1 ◦ · · · ◦ ᾱan ◦ α`(c)) ` = σ(c)`

thus T −(σ) only contains one element and σ satisfies the condition 1. To prove condition 2,
let us proceed by induction on n. If n = 0, then the only bispecial word is ε and it is easy to
verify that it is dendric. If σ′ = ᾱa2 ◦ · · · ◦ ᾱan ◦α` satisfies condition 2, then simple adaptions
of Proposition 4.1 and of Proposition 4.8 tell us that, as ᾱa1 is strongly right proper for the
letter a1 and the images of letters by ᾱa1 have a unique longest common suffix and a unique
longest common prefix, it suffices to prove that the words w ∈ Fσ such that |w|a1 = 0 are
dendric. These words are the elements of {ε} ∪ A \ {a1}, of which only ε is bispecial. The
conclusion follows.

Let us now assume that σ′ is a strongly left proper morphism for the letter ` which satisfies
conditions 1 and 2. As S(σ′) = {s0}, for any letter a ∈ A, as0 is suffix of some σ′(b). In
particular, for a = `, this implies that there exists b ∈ A such that `s0 = σ′(b) and that, for
any letter c 6= b, σ′(c) is strictly longer than σ′(b). Similarly, p0` is prefix of some σ(b′)` thus
σ′(b′) = p0 and, as σ′(b′) must be strictly shorter than any other σ′(a), we obtain b = b′ and
p0 = `s0. We can thus assume that σ′ = σ ◦ π where π is a permutation of A such that `s0a
is a prefix of σ(a)` for all a ∈ A. In particular, σ(`) = `s0. We have

Fσ = Fσ′ .

By construction, for any prefix u of s0` and any suffix v of `s0,

E−Fσ(u) = A and E+
Fσ

= A.

In particular, if s0` ∈ aA∗ and `s0 ∈ A∗b, then

EFσ(ε) = (A× {a}) ∪ ({b} × A)
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because ε is dendric in EFσ . Thus, any occurrence of c 6= b in Fσ can only be followed by an
occurrence of a. Let us use this observation to prove that σ = ᾱa1 ◦ · · · ◦ ᾱan ◦ α` for some
letters a1, . . . , an ∈ A \ {`}. If s0 = ε, then a = b = ` thus σ(c) = `c for all c ∈ A \ {`} and
σ = α`. If s0 is not empty, then a is the first letter of s0 and b the last one. In particular,
a and b cannot be the letter ` and, as s0` is an element of Fσ, a cannot only be followed by
occurrences of a thus a must be equal to b. For any letter c ∈ A, we know that σ(c) begins
with ` and that any letter d 6= a in σ(c) is followed by an a thus

σ(c) ∈ `a ({a} ∪ (A \ {`})a)∗ .

Let us define the morphism τ such that

σ(c) = ᾱa ◦ τ(c).

This morphism is unique and τ(c) is obtained by removing an occurrence of a after each letter
d 6= a in σ(c). By construction, τ is injective and strongly left proper for the letter `. In
addition, s0 begins and ends with the letter a thus there exists s′0 ∈ A∗ such that

aᾱa(s
′
0) = s0.

It is easy to check that, as `s0c is a prefix of σ(c)`, `s′0c is a prefix of τ(c)` and that, as cs0 is
a suffix of σ(c), cs′0 is a suffix of τ(c) for all c ∈ A. Thus, S(τ) and P(τ) both contain only
one element and τ satisfies the condition 1. In addition, for all w ∈ Fτ and all c, d ∈ A

cwd ∈ Fτ ⇔ caᾱa(w)d ∈ Fσ.

Indeed, this equivalence is direct if c 6= a and, for c = a, it derives from the fact that a 6= `
thus, if awd ∈ Fτ , then there exists c′ such that c′awd ∈ Fτ . As a consequence, the extension
graph of w in Fτ is the same as the extension graph of aᾱa(w) in Fσ and τ satisfies the
condition 2. By construction, we have |s′0| < |s0| thus we can conclude by iterating the proof
on τ .

5 The case of ternary minimal dendric shifts

In Section 3, we showed that any minimal dendric shift X over the alphabet A is S-adic with
S a set of tame automorphisms of FA, a directive sequence of X being given by Theorem 3.1.
In this section, we give an S-adic characterization of minimal dendric shifts over the alphabet
A3 = {1, 2, 3}. More precisely, we strengthen Theorem 3.1 by exhibiting a set S (several
choices are possible) and a subset D ⊂ SN such that a ternary subshift is minimal dendric if
and only if it has an S-adic representation in D.

5.1 Return morphisms in the ternary case

Let us start with an example. Assume that X is a minimal dendric shift over A3 and that the
extension graph of ε in X is

1

2

3

1

2

3
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The associated Rauzy graph G1(X) is

1

2 3

From it, we deduce that

• the return words to 1 are 1, 12 and 132;

• the return words to 2 are of the form 21k or 21k3 with k ≥ 1;

• the return words to 3 belong to 3(21+)+.

An additional restriction concerning the powers of 1 occurring in the return words to 2 can be
deduced from the fact that X is dendric. We claim that if 21k is a return word to 2, then the
other return words cannot be of the form 21` for some ` ≥ k+ 2. Indeed, if both 21k and 21`,
k ≥ 1, ` ≥ k + 2, are return words, then by definition of return words, the words 21k2, 21`2
belong to L(X). This implies that there is a cycle in the extension graph of 1k, contradicting
the fact that X is dendric. In addition, the third return word cannot be of the form 21n3
with n ≥ min{k, `}+ 2 for the same reason. Similarly, if 21k3 and 21`3 are return word to 2
then |k − `| ≤ 1 and the third return word is 21n with n ≤ min{k, `}+ 1. Therefore, the set
of return words to 2 is one of the following for some k ≥ 1 and some 1 ≤ ` ≤ k + 1:

{21k, 21k+1, 21`3}, {21`, 21k3, 21k+13}.

Return words to 3 are less easily described. Since R(3) ⊂ 3(21+)+ and #(R(3)) = 3, the
set R(3) is determined by three sequences (k

(j)
i )1≤i≤nj , j ∈ {1, 2, 3} such that

R(3) = {321k
(j)
1 21k

(j)
2 · · · 21

k
(j)
nj | j ∈ {1, 2, 3}}.

Similar arguments show that there exist inequality constraints between the k(j)
i , but precisely

describing the three sequences (k
(j)
i )1≤i≤nj , j ∈ {1, 2, 3}, is much more tricky. The main

reason for this difference is that the letter 3 is not left special in X. If u is the smallest left
special factor having 3 as a suffix, then writing u = v3, we have vR(3) = R(u)v. To better
understand the possible sequences (k

(j)
i )1≤i≤nj , we thus need the Rauzy graph of order |u| of

X and not just G1(X).
With the notation of Theorem 3.1, any choice of sequence of letters (an)n≥1 leads to a

directive sequence of X. Consequently, in the sequel we will only consider return words to left
special letters with the “simplest” return words. In other words, if the extension graph of the
empty word in X is as in the previous example, we will only consider the coding morphisms
associated with the left special letter 1.

Up to a permutation on A3, the possible extension graphs of the empty word for minimal
dendric shifts on A3 are given in Figures 5 and 6. They must satisfy two conditions: E(ε) must
be a tree and the associated Rauzy graph G1(X) must be strongly connected (by minimality
of X). We always assume that 1 is a left special letter and we present these associated Rauzy
graph of order 1 as well as coding morphisms associated with R(1). Whenever some power
appear in an image, we always have k ≥ 1. The reason why we only have k and k + 1
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as exponent is the same as in the previous example: a bigger difference would contradict
dendricity by inducing a cycle in some extension graph. We denote the set

S3 = {α, β, γ, η} ∪ {δ(k), ζ(k) | k ≥ 1}

of morphisms as defined in Figures 5 and 6.

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2 3

1

2 3

1

2 3

α :


1 7→ 1

2 7→ 12

3 7→ 13

β :


1 7→ 1

2 7→ 12

3 7→ 132

γ :


1 7→ 1

2 7→ 12

3 7→ 123

Figure 5: The cases with a unique left special letter and/or a unique right special letter

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2 3

1

2 3

1

2 3

δ(k) :


1 7→ 1

2 7→ 123k

3 7→ 123k+1

ζ(k) :


1 7→ 13k

2 7→ 12

3 7→ 13k+1

η :


1 7→ 13

2 7→ 12

3 7→ 123

Figure 6: The cases with two left special letters and two right special letters

Let Σ3 be the symmetric group on A3 = {1, 2, 3}. If A3 = {a, b, c}, we let πabc ∈ Σ3 denote
the permutation 1 7→ a, 2 7→ b, 3 7→ c.

Proposition 5.1. Any ternary minimal dendric shift X has a primitive Σ3S3Σ3-adic repre-
sentation σ and, for each such representation, X(n)

σ is a ternary minimal dendric shift for
each n.

Proof. For the existence, we consider the construction of a directive sequence following The-
orem 3.1 where at each step, we choose the left special letter an for which σn is in Σ3S3Σ3.
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Using Theorem 3.1 and Theorem 3.2, we obtain that for each Σ3S3Σ3-adic representation σ

and each n, X(n)
σ is a ternary minimal dendric shift.

Note that the previous result is also true when considering Σ3S3-adic representations but,
for our results, Σ3S3Σ− 3-adic representations are more convenient.

While Proposition 5.1 deals with Σ3S3Σ3-adic representations, it is obvious that only the
morphisms in S3 really matter. In the next sections, we essentially focus on them and we
involve permutations only when it is needed.

5.2 Conditions for having only dendric bispecial extended images

Assume that X is a minimal shift space over A and that v ∈ L(X) is a bispecial factor and let
Y be the image of X under some injective and strongly left proper morphism σ : A∗ → B∗.
Recall from Section 4.2 (and, in particular, Proposition 4.7) that the extension graph of any
bispecial extended image of v under σ is the image under two consecutive graph morphisms
ϕ−s and ϕ+

p of a subgraph of EX(v). In this section, we determine those graph morphisms when
σ is a morphism in S3 and we give necessary and sufficient conditions on the extension graph
of v ∈ L(X) so that v only has dendric bispecial extended images. In this particular case,
since the alphabet has cardinality 3, T +(σ) and T −(σ) have cardinality at most 2. Tables 3
and 4 define the (possibly partial) maps ϕ−s , ϕ+

p : A3 → A3 associated with each morphism
σ ∈ S3.

σ T −(σ) ϕ−s T +(σ) ϕ+
p

α {ε} id {1} id

β {ε, 2} ϕ−ε :

{
1 7→ 1

2, 3 7→ 2
{1} id

ϕ−2 :

{
2 7→ 1

3 7→ 3

γ {ε} id {1, 12} ϕ+
1 :

{
1 7→ 1

2, 3 7→ 2

ϕ+
12 :

{
2 7→ 1

3 7→ 3

Table 3: Definition of the graph morphisms ϕ−s and ϕ+
p associated with the morphisms α, β

and γ

A direct application of Proposition 4.8 shows that whenever v is dendric, then v has only
dendric bispecial extended images if and only if the following conditions are satisfied:

1. either T −v (σ) = {s0}, or both T −v (σ) = {s0, s} and EX,s,p0(v) is a tree;

2. either T +
v (σ) = {p0}, or both T +

v (σ) = {p0, p} and EX,s0,p(v) is a tree.

We first give a handier interpretation of these conditions. Observe that for convenience, we
actually characterize the dendric bispecial factors v ∈ L(X) that have a non-dendric bispecial
extended image. When considering a letter a ∈ A3 as a vertex of E(v), we respectively write
a− or a+ to emphasize that a is considered as a left or right vertex.
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σ T −(σ) ϕs T +(σ) ϕp

δ(k) {ε, 3k} ϕ−ε :

{
1 7→ 1

2, 3 7→ 3
{1, 123k} ϕ+

1 :

{
1 7→ 1

2, 3 7→ 2

ϕ−
3k

:

{
2 7→ 2

3 7→ 3
ϕ+

123k
:

{
2 7→ 1

3 7→ 3

ζ(k) {ε, 3k} ϕ−ε :

{
1, 3 7→ 3

2 7→ 2
{1, 13k} ϕ+

1 :

{
1, 3 7→ 3

2 7→ 2

ϕ−
3k

:

{
1 7→ 1

3 7→ 3
ϕ+

13k
:

{
1 7→ 1

3 7→ 3

η {ε, 3} ϕ−ε :

{
1, 3 7→ 3

2 7→ 2
{1, 12} ϕ+

1 :

{
1 7→ 3

2, 3 7→ 2

ϕ−3 :

{
1 7→ 1

3 7→ 2
ϕ+

12 :

{
2 7→ 1

3 7→ 3

Table 4: Definition of the graph morphisms ϕ−s and ϕ+
p associated with the morphisms δ(k),

ζ(k) and η

For v ∈ L(X), we define C−X(v) (resp., C+
X(v)) as the set of letters a ∈ A such that the

subgraph of EX(v) obtained by removing the vertex a− (resp., a+) and all the induced isolated
vertices (if any) is not connected. When the context is clear, the subscript X will be omitted.

Remark 5.2. If v ∈ L(X) is a dendric factor, then a ∈ C−(v) if and only if a− has at least two
neighbors that are not leaves, i.e., that have degree at least 2. In particular, v is bispecial.
Observe also that as E(v) is a tree, this implies that the left side of E(v) contains three vertices.
Hence, another equivalent condition when E(v) is a tree is that, writing A3 = {a, b, c}, the
path from b− to c− has length 4.

Proposition 5.3. Let X be a shift space over A3 and σ be a morphism in S3.
If v ∈ L(X) is a dendric bispecial factor, then v has a non-dendric bispecial extended image

under σ if and only if one of the following conditions is satisfied:

1. 1 ∈ C−X(v) and σ ∈ {β, δ(k) | k ≥ 1};

2. 2 ∈ C−X(v) and σ ∈ {ζ(k), η | k ≥ 1};

3. 1 ∈ C+
X(v) and σ ∈ {γ, δ(k), η | k ≥ 1};

4. 2 ∈ C+
X(v) and σ ∈ {ζ(k) | k ≥ 1}.

Proof. The negation of item 1 of Proposition 4.8 is equivalent to “there exists a ∈ E−X(v) such
that EX,s(b,c),p0(v) is not a tree”. As EX,s(b,c),p0(v) is a subgraph of E(v), it is acyclic and, if
s(b, c) is a suffix of σ(a) it is also connected (indeed, we then have EX,s(b,c),p0(v) = EX,s0,p0(v) =
E(v)). Thus, the first condition of Proposition 4.8 is not satisfied if and only if there exists
a permutation {a, b, c} of A3 such that s(b, c) is not a prefix of σ(a) and a ∈ C−(v). Using
Figures 5 and 6, we see that it is equivalent to condition 1 or 2. We proceed in a similar way
to show that the second condition of Proposition 4.8 is not satisfied if and only if one of the
conditions 3 and 4 above is.
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Example 5.4. Assume that v is a dendric bispecial factor in some minimal ternary shift space
X with extension graph

1

2

3

1

2

3

Thus we have 3 ∈ C−(v) and 1 ∈ C+(v). If Y1 is the image of X under β, the bispecial
extended images of v in Y1 are u1 = β(v)1 and u2 = 2β(v)1 and they have the following
extension graphs:

EY1(u1) EY1(u2)

1

2

1

2

3

1

3

1

3

Similarly, if Y2 is the image of X under γ, the bispecial extended images of v in Y2 are
w1 = γ(v)1 and w2 = γ(v)12 and they have the following extension graphs:

EY2(w1) EY2(w2)

1

2

3

1

2

1

2

3

1

3

5.3 Ternary dendric preserving morphisms

Assuming that v ∈ L(X) is a dendric bispecial factor, Proposition 5.3 characterizes under
which conditions v has a non-dendric bispecial extended image under σ ∈ S3 or, in other
words, under which conditions σ ∈ S3 is not dendric preserving for v. As we consider the
ternary case, we denote by DP(v) the set of dendric preserving morphisms for v in S3.

When X is a ternary dendric shift, we extend the notations C− and C+ and set

C−(X) =
⋃

v∈L(X)

C−X(v);

C+(X) =
⋃

v∈L(X)

C+
X(v);

DP(X) =
⋂

v∈L(X)

DP(v).

Using Proposition 5.3, the sets C−(X) and C+(X) completely determine the set DP(X) of
all morphisms in S3 that are dendric preserving for X. In this section, we in particular show
that C−(X) and C+(X) contain at most one letter and we show that, when Y is the image
of X under σ ∈ DP(X), C−(Y ) (resp., C+(Y )) is completely determined by C−(X) (resp.,
C+(X)) and σ. The next lemma is a trivial consequence of Remark 5.2.

Lemma 5.5. Let X be a shift space over A3. For every dendric bispecial factor v ∈ L(X),
C−X(v) (resp., C+

X(v)) contains at most one letter.
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σ α β γ δ(k) ζ(k) η

C−(ε) ∅ {1} ∅ {3} {3} {2}
C+(ε) ∅ ∅ {1} {1} {3} {3}

Table 5: Sets C−X(ε) and C+
X(ε) whenever X is the image under σ of a shift space over A3.

Lemma 5.6. Let X be a shift space over A3 which is the image under σ ∈ S3 of another shift
space Z over A3. The sets C−X(ε) and C+

X(ε) are given in Table 5.

Proof. Indeed, the morphism σ completely determines the extension graph EX(ε). The result
thus directly follows from the definition of C−X(ε) and C+

X(ε).

Lemma 5.7. If X is a ternary dendric shift and if Y is the image of X under some morphism
σ ∈ S3, then Y is dendric if and only if σ ∈ DP(X).

Proof. Indeed, if σ ∈ DP(X), every bispecial extended image of a bispecial factor of X is
dendric by definition of DP(X). Any other bispecial factor of Y is the empty word or a non-
prefix factor of an image σ(a), a ∈ A3 (by Proposition 4.1). It suffices to check that any such
bispecial factor is dendric when σ belongs to S3 to prove that Y is dendric.

Assume now that Y is dendric. If σ is not in DP(X) then there exists v ∈ L(X) such that
σ /∈ DP(v) thus v has an extended image in Y which is not dendric.

We say that a morphism σ ∈ S3 is left-invariant (resp., right-invariant) if T −(σ) (resp.,
T +(σ)) is a singleton, i.e. T −(σ) = {s0} (resp., T +(σ) = {p0}). The next lemma directly
follows from the definition of the morphisms in S3.

Lemma 5.8. 1. α is both left-invariant and right-invariant;

2. β is right-invariant, but not left-invariant;

3. γ is left-invariant, but not right-invariant;

4. δ(k), ζ(k) and η neither are left-invariant, nor right-invariant.

We let SLI and SRI respectively denote the left-invariant and right-invariant morphisms,
i.e.,

SLI = {α, γ} and SRI = {α, β}.

Observe that if σ ∈ SLI (resp., σ ∈ SRI), then the associated graph morphism ϕ−s0 (resp., ϕ+
p0)

is the identity. Moreover, from Table 5, a morphism σ belongs to SLI (resp., to SRI) if and
only if C−X(ε) (resp., C+

X(ε)) is empty, where X is the image under σ of a shift over A3.

Lemma 5.9. Let X be a shift space over A3, σ ∈ S3 a non left-invariant (resp., non right-
invariant) morphism and Y the image of X under σ. If v ∈ L(X) is a dendric bispecial factor,
then any dendric extended image u of v is such that C−Y (u) = ∅ (resp., C+

Y (u) = ∅).
In particular, if X is dendric and σ is in DP(X), then C−(Y ) = C−Y (ε) 6= ∅ (resp.,

C+(Y ) = C+
Y (ε) 6= ∅).

Proof. Let us show the result for a non-left-invariant morphism, the other case being sym-
metric. By definition of left-invariance, T −(σ) contains two elements s0 and s1. It suffices to
check in Tables 3 and 4 that for each of them, the range of the associated graph morphism ϕ−si
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has cardinality 2. As the left vertices of EY (u) are images of the left vertices of EX(v), EY (u)
contains at most two left vertices. By Remark 5.2, C−Y (u) is empty.

Now assume that X is dendric and that σ belongs to DP(X). By Lemma 5.7, Y is a
dendric shift. Let u be a non-empty factor of Y . By Proposition 4.1, either u is a non-prefix
factor of σ(a) for some letter a ∈ A3, or u is an extended image of a factor v ∈ L(X). In
the first case, it suffices to check that #(E−Y (u)) ≤ 2, which implies that C−Y (u) = ∅. In the
second case, as X is dendric, v is also dendric so by the first part of the lemma, C−Y (u) = ∅.
Thus C−(Y ) = C−Y (ε) and, by Lemma 5.6, it is non-empty.

Lemma 5.10. Let X be a shift space over A3, σ ∈ S3 a left-invariant (resp., right-invariant)
morphism and Y the image of X under σ. If v ∈ L(X) is a dendric bispecial factor, then

C−X(v) =
⋃

u bispecial extended image of v

C−Y (u) (5.1)

(resp., C+
X(v) =

⋃
u bispecial extended image of v

C+
Y (u)).

In particular, if X is dendric and σ is in DP (X), then C−(Y ) = C−(X) (resp., C+(Y ) =
C+(X)).

Proof. Let us assume that σ is left-invariant, the other case is symmetric. We first show
that if u is a bispecial extended image of v, then C−Y (u) ⊂ C−X(v). As T −(σ) = {s0}, there
exists p ∈ T +(σ) such that u = s0σ(v)p. Assume that a ∈ C−Y (u). Writing A3 = {a, b, c},
Remark 5.2 states that the path q from b− to c− in EY (u) has length 4. This path q is the
image under ϕs0,p of a path q′ of length at least 4 in EX(v). As EX(v) is a tree with at most
6 vertices and the extremities of q′ are left vertices, the path has length exactly 4. As ϕ−s0
is the identity, we conclude that q′ is a path of length 4 from b− to c− in EX(v), hence that
a ∈ C−X(v).

If C−X(v) = ∅, then Equality (5.1) is direct. Thus we only need to prove it when C−X(v) 6= ∅.
As σ is left-invariant, we have by Lemma 5.8 that σ = α or σ = γ.

If σ = α, then as α is also right-invariant (see Lemma 5.8), Proposition 4.7 implies that u
is the unique bispecial extended image of v and that EY (u) = EX(v) (the graph morphism is
the identity), hence that C−Y (u) = C−X(v).

If σ = γ, then as T +(σ) = {1, 12}, (see Table 3), Corollary 4.3 implies that v has at most
two bispecial extended images u1 = σ(v)1 and u2 = σ(v)12. Let ϕ = ϕε,1 and ϕ′ = ϕε,12. The
morphism ϕ−ε is the identity thus we have ϕ = ϕ+

1 and ϕ′ = ϕ+
12.

As C−X(v) 6= ∅, by Lemma 5.5 there is a letter a ∈ A3 such that C−X(v) = {a}. Using Re-
mark 5.2, the path q from b− to c− has length 4 in EX(v). Let us write q = (b−, x+, a−, y+, c−),
with x, y ∈ A3.

If 1 ∈ {x, y}, we assume without loss of generality that 1 = x. Then we have ϕ(q) =
(b−, 1+, a−, 2+, c−) which is a path of length 4 from b− to c− in EY (u1). By Remark 5.2 and
Lemma 5.5, one has C−Y (u1) = {a}. As C−Y (u2) ⊂ C−X(v) by the first part of the proof, we get
C−Y (u1) ∪ C−Y (u2) = C−X(v).

If {x, y} = {2, 3}, we assume without loss of generality that (x, y) = (2, 3). Then we
have ϕ′(q) = (b−, 1+, a−, 3+, c−) which is a path of length 4 from b− to c− in EY (u2). By
Remark 5.2 and Lemma 5.5, one has C−Y (u2) = {a}. As C−Y (u1) ⊂ C−X(v) by the first part of
the proof, we also get C−Y (u1) ∪ C−Y (u2) = C−X(v).
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Let us finally show that C−(Y ) = C−(X). With σ ∈ {α, γ}, the non-prefix factor of σ(a),
a ∈ A3, are not bispecial. Hence, using Proposition 4.1, a bispecial factor u ∈ L(Y ) is either
empty, or a bispecial extended image of some bispecial factor v ∈ L(X). As σ is left-invariant,
we have C−Y (ε) = ∅ by Lemma 5.6. Using Equation (5.1), we get

C−(Y ) =
⋃

v∈L(X), bispecial

⋃
u bispecial extended image of v

C−Y (u)

=
⋃

v∈L(X), bispecial

C−X(v)

= C−(X),

which ends the proof.

The following corollary is a direct consequence of Lemmas 5.9 and 5.10.

Corollary 5.11. Let X be a dendric shift over A3, σ ∈ DP(X) and Y the image of X under
σ. If C−(Y ) = ∅, then C−(X) = ∅ and σ is left-invariant. Respectively, if C+(Y ) = ∅, then
C+(X) = ∅ and σ is right-invariant.

Proposition 5.12. Let X be a ternary minimal dendric shift. Then C−(X) and C+(X)
contain at most one letter. Moreover, if σ = (σn)n≥1 is a Σ3S3Σ3-adic representation of X,
then

1. C−(X) = ∅ if and only if σ belongs to (Σ3SLIΣ3)N, if and only if X has a unique left
special factor of each length;

2. C+(X) = ∅ if and only if σ belongs to (Σ3SRIΣ3)N, if and only if X has a unique right
special factor of each length.

Proof. Using the notation of Section 2.3, we have X = Xσ and for each n ≥ 1, X(n)
σ is

dendric by Proposition 5.1. Let σn = πnσ
′
nπ
′
n with πn, π′n ∈ Σ3 and σ′n ∈ S3. The shift spaces

π′n(X
(n+1)
σ ) and π−1

n (X
(n)
σ ) are dendric and π−1

n (X
(n)
σ ) is the image of π′n(X

(n+1)
σ ) under σ′n.

Thus σ′n ∈ DP(π′n(X
(n+1)
σ )) by Lemma 5.7. We first show item 1.

Assume that C−(X) = ∅. We have, by induction using Corollary 5.11, that C−(π′n(X
(n)
σ )) =

∅ and σ′n ∈ SLI for all n thus σ ∈ (Σ3SLIΣ3)N.
Now assuming that σ belongs to (Σ3SLIΣ3)N, we deduce that any bispecial factor of

X is a descendant of the empty word in some X(n)
σ . Using Figure 5, the bispecial factor

v = ε ∈ L(X
(n)
σ ) has a unique right extension va, a ∈ A3, which is left special and it

satisfies E−
X

(n)
σ

(va) = A3. It then suffices to observe, using Proposition 4.1, that this property
is preserved by taking bispecial extended images under some morphism σ ∈ Σ3SLIΣ3. This
shows that any bispecial factor u, and hence any left special factor, of X satisfies E−X(u) = A3.
Proposition 2.1 then implies that X has a unique left special factor of each length.

Finally assume that X has a unique left special factor un of each length n. By Proposi-
tion 2.1, we have E−X(un) = A3. Using Remark 5.2, the set C−X(un) is non-empty if and only if
there are two letters x, y ∈ A3 such that both unx and uny are left special factors of X. This
implies that C−X(un) = ∅. Any non-left-special factor u is such that C−X(u) = ∅ by Remark 5.2,
hence C−(X) = ∅.

The proof of item 2 is symmetric.
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We finish the proof by showing that C−(X) and C+(X) contain at most one letter. Assume
by contrary that a, b ∈ C−(X) for some different letters a and b. By Lemmas 5.5, 5.9 and 5.10,
all morphisms σ′n are left-invariant. But then item 1 implies that C−(X) = ∅.

5.4 S3-adic characterization of minimal ternary dendric shifts

By Proposition 5.12, any ternary minimal dendric shift X satisfies #C−(X),#C+(X) ≤ 1.
To alleviate notations in what follows, we consider the alphabet A0 = A3 ∪ {0} and we write
C−(X) = a instead of C−(X) = {a} and C−(X) = 0 instead of C−(X) = ∅ (and similarly
for C+(X)). We then define the equivalence relation ∼ on the set of minimal ternary dendric
shifts by

X ∼ Y ⇔ (C−(X), C+(X)) = (C−(Y ), C+(Y )).

For all l, r ∈ A0, we let [l, r] denote the equivalence class of all minimal ternary dendric shifts
satisfying (C−(X), C+(X)) = (l, r).

Lemma 5.13. Let X and Y be minimal ternary dendric shifts. We have X ∼ Y if and only
if DP(X) = DP(Y ). Furthermore, if X ∼ Y , if σ ∈ DP(X) ∪ Σ3 and if X ′ and Y ′ are the
respective images of X and Y under σ, then X ′ ∼ Y ′.

Proof. The equivalence between X ∼ Y and DP(X) = DP(Y ) follows from Proposition 5.3.
The second part of the statement follows from Lemma 5.9 and Lemma 5.10.

Lemma 5.14. For each l, r ∈ A0, the equivalence class [l, r] is non empty.

Proof. Let X be an Arnoux-Rauzy shift space. By Corollary 4.9, the image of X under any
morphism σ ∈ Σ3S3 is dendric. More precisely C−(X) and C+(X) are both empty. Using
Lemmas 5.6, 5.9 and 5.10, we can then choose such a morphism σ to X to obtain an element
of any equivalence class.

Using the previous lemmas, we can define, for each equivalence class C = [l, r], the set

DPP(C) = {πσπ′ | π, π′ ∈ Σ3, σ ∈ DP(π′(X))},

where X ∈ C. Thus it corresponds to the set of morphisms in Σ3S3Σ3 that are dendric
preserving for X (DPP stands for dendric preserving with permutations). Furthermore, for
any σ ∈ DPP(C), there is a unique equivalence class C ′ such that when X ∈ C and Y is the
image of X under σ, then Y ∈ C ′. We call C ′ the image of C under σ.

For each morphism σ ∈ S3, the classes C such that σ ∈ DPP(C) and their images are
summarized in Table 6. They are computed using Proposition 5.3 (to determine the allowed
classes C) and Table 5, Lemmas 5.9 and 5.10 (to determine the corresponding image).

Up to permutations, we can distinguish five types of set DPP([l, r]), depending on whether
l or r is 0 and on whether l = r or not. We thus build the following directed graph G′, whose
set of vertices is V = {[0, 0], [0, 3], [3, 0], [3, 2], [3, 3]}. For each vertex, there is an incoming
edge labeled by each permutation and, for every vertices C,C ′ ∈ V and every morphism
σ ∈ Σ3S3Σ3, there is an edge from C to C ′ with label σ if σ ∈ DPP(C ′) and C is the image of
C ′ under σ. In other words, we have an edge labeled by πσ′π′, π, π′ ∈ Σ3, σ′ ∈ S3, from [l, r]
to [l′, r′] if the class [π′(l′), π′(r′)]1 is in Table 6 for σ′ and its image is the class [π−1(l), π−1(r)].

1We take as convention that, if π is a permutation on A3, then π(0) = 0.
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Morphism Class C Image of C Conditions
α [l, r] [l, r] none
β [l, r] [1, r] l 6= 1

γ [l, r] [l, 1] r 6= 1

δ(k) [l, r] [3, 1] l, r 6= 1

ζ(k) [l, r] [3, 3] l, r 6= 2

η [l, r] [2, 3] l 6= 2, r 6= 1

Table 6: Images of classes under the morphisms of S3

This graph is a co-deterministic automaton, i.e., for every vertex C and every morphism σ,
there is at most one edge with label σ reaching C. It gives a first Σ3S3Σ3-adic characterization
of minimal dendric shifts.

Theorem 5.15. A shift space X is a minimal dendric shift over A3 if and only if it has a
primitive S-adic representation labeling an infinite path in G′.

Proof. Assume that X is a minimal ternary dendric shift. By Proposition 5.1, X has a
primitive Σ3S3Σ3-adic representation σ where for each n, X(n)

σ is a ternary minimal dendric
shift. In addition, up to changing the permutations and considering a permutation of X
instead of X itself, we can assume that, for all n, the equivalence class of X(n)

σ is an element
of V . By construction, X(n)

σ and X(n+1)
σ are dendric thus σn is dendric preserving for X(n+1)

σ

and P = ([C−(X
(n)
σ ), C+(X

(n)
σ )])n≥1 is a path in G′ with label σ.

Now consider a primitive sequence σ labeling a path ([C−n , C+
n ])n≥1 in G′ and let us show

that the shift space Xσ is minimal and dendric. It is minimal by primitiveness of σ. If it is not
dendric, there exists a bispecial factor u ∈ L(Xσ) which is not dendric. Using Corollary 4.5,
there is a unique k ≥ 1 and a unique initial bispecial factor v in L(X

(k)
σ ) such that u is a

descendant of v and EX(u) depends only on E
X

(k)
σ

(v). By definition of initial bispecial factors,
v is either the empty word or a non-prefix factor of σk(a) for some letter a. Moreover, by
Lemma 5.14 there is a dendric shift space Y such that Y ∈ [C−k+1, C

+
k+1]. Thus, if Z is the

image of Y by σk, Z ∈ [C−k , C
+
k ] and, as E

X
(k)
σ

(v) is completely determined by σk, we have
E
X

(k)
σ

(v) = EZ(v). By definition of the edges of G′, the morphism σ[1,k) is dendric preserving
for v. Thus u is a dendric bispecial factor of X, which is a contradiction.

We now improve the previous result by considering a smaller graph. We will need the
following lemma.

Lemma 5.16. Let σ = πσ′π′ with π, π′ ∈ Σ3, σ′ ∈ S3. Let l, r, l′, r′ ∈ A0 be such that
σ ∈ DPP([l, r]) and the image of [l, r] under σ is [l′, r′].

1. If σ′ is left-invariant, then for all λ ∈ A0, we have σ ∈ DPP([λ, r]) and the image of
[λ, r] under σ is [ππ′(λ), r′].

2. If σ′ is not left-invariant, then l′ 6= 0, there is a unique λ ∈ A3 such that σ /∈ DPP([λ, r])
and for all other λ′ ∈ A0, the image of [λ′, r] under σ is [l′, r′].
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3. If σ′ is right-invariant, then for all ρ ∈ A0, we have σ ∈ DPP([l, ρ]) and the image of
[l, ρ] under σ is [l′, ππ′(ρ)].

4. If σ′ is not right-invariant, then r′ 6= 0, there is a unique ρ ∈ A3 such that σ /∈ DPP([l, ρ])
and for all other ρ′ ∈ A0, the image of [l, ρ′] under σ is [l′, r′].

Proof. It follows from Table 6

We are now ready to prove Theorem 1.1. We say that two sequences (σn)n∈N and (τn)n∈N
are equivalent if, for all n, there exist a permutation πn on the alphabet such that

σ1 . . . σnπn = τ1 . . . τn.

It is then clear that (σn)n∈N is a primitive S-adic representation of a shift space X if and only
if (τn)n∈N also is.

[3, 2] [3, 3]

Σ3 Σ3
α, π213απ213, π321απ321,

π321β, π312βπ132,
π213γ, π231γπ132,

π213δ
(k), π213δ

(k)π132

π132η, π132ηπ231, π132ηπ321

α, π213απ213, π321απ321,
ζ(k)π213, π213ζ

(k)π213,
ζ(k)π231, π213ζ

(k)π231

π312βπ213, π321βπ312,
π213γ, π231γπ132,

π213δ
(k), π213δ

(k)π132

π132η

π312βπ213, π321βπ213,
π312βπ312, π321βπ312,
π312γπ231, π321γπ231,
π312γπ321, π321γπ321,
ζ(k)π213, π213ζ

(k)π213,
ζ(k)π231, π213ζ

(k)π231

Figure 7: A shift space on A3 is minimal and dendric if and only if it has a primitive Σ3S3Σ3-
adic representation labeling an infinite path in this graph denoted G.

Proof of Theorem 1.1. Let G be the subgraph of G′ obtained by deleting the vertices [0, 0],
[0, 3] and [3, 0]. By definition of the edges of G′, for each edge incoming in [3, 3] and labeled by
σ, there is also an edge incoming in [3, 3] labeled by σπ213 (for instance, [3, 2] is the image of
[3, 3] under both π132η and π132ηπ213). In G, for each such pair, we only keep one of the two
edges. The choice is made so as to reduce the total number of different morphisms labeling
an edge in the graph. This subgraph contains 2 vertices and is represented in Figure 7.

We show that for each infinite path P in G′ labeled by σ = (σn)n∈N, there is an equivalent
path in G, i.e. a path labeled by a sequence τ = (τn)n∈N equivalent to σ.

We thus consider a path P = ([ln, rn])n≥1 in G′ with label σ = (σn)n≥1 (hence σn labels
the edge from [ln, rn] to [ln+1, rn+1]). For all n ≥ 1, let σn = πnσ

′
nπ
′
n with πn, π

′
n ∈ Σ3,

σ′n ∈ S3.
We first prove that we can delete the vertices [0, 0], [0, 3] and [3, 0]. If P goes through one

of the deleted vertices, then there exists N such that lN or rN is 0. Assume that N is the
smallest integer such that lN = 0. By Corollary 5.11, we deduce that for all n ≥ N , σ′n is
left-invariant and ln = 0.
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We prove by induction that there exist a sequence (ψn)n≥1 of permutations and a sequence
(l′n)n≥1 ∈ AN

3 such that ψ1 = id and for all n ≥ 1, the morphism τn = ψnσnψ
−1
n+1 labels an

edge from [l′n, ψn(rn)] to [l′n+1, ψn+1(rn+1)] in G′. The sequence (τn)n∈N is trivially equivalent
to σ.

If N = 1, we take l′1 = 3. If N > 1, we take ψn = id and l′n = ln for all n ≤ N −1. Assume
that we have found such ψn and l′n for n ≥ min{N − 1, 1} and let us find ψn+1 and l′n+1.
We first show that we can find l′ ∈ A3 such that ψnσn ∈ DPP([l′, rn+1]) and the image of
[l′, rn+1] under ψnσn is [l′n, ψn(rn)]. Recall that ψnσn is in DPP([0, rn+1]) and that the image
of [0, rn+1] under ψnσn is [ψn(ln), ψn(rn)].

For n = N − 1 (with N > 1), by Lemma 5.10, σ′N−1 is not left-invariant. Thus, since
l′N−1 = lN−1 = ψN−1(lN−1), we can choose such an l′ ∈ A3 by Lemma 5.16. If n ≥ N ,
σ′n is left-invariant thus, by Lemma 5.16, for any l′ ∈ A3, ψnσn is in DPP([l′, rn+1]) and, in
particular, if l′ = (ψnπnπ

′
n)−1(l′n), then the image of [l′, rn+1] under ψnσn is [l′n, ψn(rn)].

Let ψn+1 be a permutation such that [ψn+1(l′), ψn+1(rn+1)] is a vertex of G′ and let l′n+1 =
ψn+1(l′). The morphism ψnσnψ

−1
n+1 then labels an edge from [l′n, ψn(rn)] to [l′n+1, ψn+1(rn+1)].

We have thus found a path P ′ = ([l′n, ψn(rn)])n≥1 equivalent to P and that does not go
through vertices of the form [0, r]. Note that for all n, ψn(rn) = 0 if and only if rn = 0.

Starting from P or P ′, we similarly find another path P ′′ equivalent to P. This path P ′′
does not go through the vertices [0, 0], [0, 3] or [3, 0].

We now show that we can delete half of the edges incoming in [3, 3], as explained in
the beginning of the proof. It follows from the fact that if [ln+1, rn+1] = [3, 3], then τn =
σnπ213 labels an edge from [ln, rn] to [3, 3] and τn+1 = π213σn+1 labels an edge from [3, 3]
to [ln+2, rn+2]. Replacing σn by τn and σn+1 by τn+1 then gives an equivalent path. This
concludes the proof.

We can make several observations regarding equivalent sequences in (Σ3S3Σ3)N. The
first one is that, if σ = (πnσ

′
nπ
′
n)n∈N and τ = (ψnτ

′
nψ
′
n)n∈N, with πn, π

′
n, ψn, ψ

′
n ∈ Σ3 and

σ′n, τ
′
n ∈ S3, are equivalent, then σ′n = τ ′n for all n. Indeed, let ξn be the permutation such that

σ1 . . . σn−1ξn = τ1 . . . τn−1. The morphism τ1 . . . τn−1 is injective thus τn = ξ−1
n σnξn+1. The

conclusion follows from the fact that composing a morphism of S3 with some permutations
on the left and on the right will not give a different morphism of S3.

Another observation is the following result.

Proposition 5.17. Any two Σ3S3Σ3-adic representations of a shift space are equivalent.

Proof. Let σ = (πnσ
′
nπ
′
n)n∈N and τ = (ψnτ

′
nψ
′
n)n∈N, with πn, π′n, ψn, ψ′n ∈ Σ3 and σ′n, τ ′n ∈ S3,

be two Σ3S3Σ3-adic representations of a shift space X.
We prove by induction on n ≥ 0 that there exists a permutation ξn such that σ1 . . . σn =

τ1 . . . τnξn and ξn(X
(n+1)
σ ) = X

(n+1)
τ . For n = 0, it suffices to take ξ0 = id. Assume now that

we have found such ξn−1, n ≥ 1. The shift X(n)
τ can then be seen as the image of π′n(X

(n+1)
σ )

under ξn−1πnσ
′
n or as the image of ψ′n(X

(n+1)
τ ) under ψnτ ′n.

The shape of the extension graph E
X

(n)
τ

(ε) and the lengths of the longest power of 1 (resp.,

2, 3) in L(X
(n)
τ ) uniquely determine the morphisms σ′n = τ ′n. Moreover, if σ′n 6= α, we even

have ξn−1πnσ
′
n = ψnτ

′
n thus σ1 . . . σn−1πnσ

′
n = τ1 . . . τn−1ψnτ

′
n. We then take ξn = (ψ′n)−1π′n.

If σ′n = α, then either ξn−1πn = ψn and we proceed as above, or ξn−1πn = ψnπ132. In
that case, ξn−1πnσ

′
n = ψnτ

′
nπ132. Let ψ′′n = π132ψ

′
n. We then take ξn = (ψ′′n)−1π′n and the

conclusion follows as in the previous case.
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6 Descriptions in G of well-known families of minimal ternary
dendric shifts

The class of minimal ternary dendric shifts contains several classes of well-known families of
shift spaces, namely Arnoux-Rauzy shifts, codings of regular 3-interval exchange transforma-
tions and Cassaigne shifts. In this section, we study the Σ3S3Σ3-adic representations of these
particular families in the light of G.

6.1 Arnoux-Rauzy shifts

A shift space X ⊂ AZ
3 is an Arnoux-Rauzy shift if it is a minimal shift space with fac-

tor complexity p(n) = 2n + 1 that has exactly one left and one right special factor of
each length. Another equivalent definition is that X admits a primitive representation σ ∈
{α, π213απ213, π321απ321}N [AR91]. This equivalence is also a consequence of Proposition 5.12
and Theorem 1.1.

6.2 Interval exchange shifts

Let us recall the definition of an interval exchange transformation. We use the terminology
of [FZ08] with two permutations. Let I = [l, r) be a semi-interval, λ = (λ1, . . . , λd) be
a positive d-dimensional vector such that ‖λ‖1 = r − l and (π0, π1) be two permutations
of {1, 2, . . . , d}. The two permutations induce some partitions of I by semi-intervals whose
lengths are given by the vector λ and that are ordered according to π0 and π1 respectively.
More precisely, we consider the partitions I = {I1, . . . , Id} and J = {J1, . . . , Jd}, where for
each i,

Ii =

l +
∑

π−1
0 (j)<π−1

0 (i)

λj , l +
∑

π−1
0 (j)≤π−1

0 (i)

λj

 and

Ji =

l +
∑

π−1
1 (j)<π−1

1 (i)

λj , l +
∑

π−1
1 (j)≤π−1

1 (i)

λj


are semi-intervals of length λi. Setting µ0 = ν0 = l and, for every i ∈ {1, . . . , d}, µi =
l +
∑

π−1
0 (j)≤i λj and νi = l +

∑
π−1
1 (j)≤i λj , we have Iπ0(i) = [µi−1, µi) and Jπ1(i) = [νi−1, νi)

for all i.

µ0 π0(1) µ1 π0(2) µ2 µd−1 π0(d) µd

ν0 π1(1) ν1 π1(2) ν2 π1(d) νd

The interval exchange transformation (IET) on I associated with (λ, π0, π1) is the piecewise
translation Tλ,π0,π1 : I → I such that Tλ,π0,π1(Ii) = Ji for every i. Thus it is the bijection
defined by

Tλ,π0,π1(x) = x−
∑

π−1
0 (j)<π−1

0 (i)

λj +
∑

π−1
1 (j)<π−1

1 (i)

λj , if x ∈ Ii
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When we want to emphasize the number of intervals, we talk about d-interval exchange trans-
formations and when the context is clear, we write T instead of Tλ,π0,π1 . Obviously, up to
translation and rescaling, we can always assume that I = [0, 1). More precisely, we define the
normalized IET associated with T by T̄ : [0, 1) → [0, 1) by T̄ (x) = 1

r−l (T ((r − l)x + l) − l).
Observe that if τ is the permutation of {1, . . . , d} defined by τ(i) = d+ 1− i, then replacing
π0 and π1 by π0 ◦ τ and π1 ◦ τ respectively defines another interval exchange transformation
which is also conjugate to Tλ,π0,π1 ; we denote it by T̃λ,π0,π1 .

We let
(π0(1)π0(2)···π0(d)
π1(1)π1(2)···π1(d)

)
denote the pair of permutations (π0, π1).

Example 6.1. A 3-interval exchange transformation on [0, 1) with pair of permutations
(

123
231

)
.

It is the rotation R : [0, 1)→ [0, 1), x 7→ x+ λ2 + λ3 mod 1.

0 1 2 3 1

0 2 3 1 1

6.2.1 Regular interval exchange transformations

Let T be an interval exchange transformation on I. The orbit of a point x ∈ I is the set
{Tn(x) | n ∈ Z}. The transformation T is said to be minimal if, for any x ∈ I, the orbit of x
is dense in I.

A d-interval exchange transformation is said to be regular if the orbits of the points µi,
1 ≤ i < d, are infinite and disjoint. A regular interval exchange transformation is also said
to be without connections or to satisfy the idoc condition (where idoc stands for infinite
disjoint orbit condition). As an example, any non-trivial 2-interval exchange transformation is
a rotation and, if normalized, it is regular if and only if the angle of the rotation is irrational.
The following result is due to Keane.

Theorem 6.2 (Keane [Kea75]). A regular interval exchange transformation is minimal.

The converse is not true. Indeed, consider the rotation of angle α with 0 < α < 1/2
irrational, as a 3-interval exchange transformation with λ = (1 − 2α, α, α) and permutations(

123
312

)
. The transformation is minimal as any rotation of irrational angle but it is not regular

since µ1 = 1− 2α, µ2 = 1− α and thus µ2 = T (µ1).
The following necessary condition for minimality of an interval exchange transformation

is useful. If an interval exchange transformation T = Tλ,π0,π1 is minimal, then the pair of
permutations (π0, π1) is indecomposable, that is, π0({1, . . . , k}) 6= π1({1, . . . , k}) for every
k < d. When d = 3, any interval exchange transformation with indecomposable pair of
permutation is conjugate to a 3-IET with pair of permutations

(
123
231

)
or
(

132
231

)
.

6.2.2 Codings of IET

Let T = Tλ,π0,π1 be a d-interval exchange transformation and let A = {1, . . . , d}. We say that
a word w = b0b1 · · · bm−1 ∈ A∗ is admissible for T if the set

Iw = Ib0 ∩ T−1(Ib1) ∩ . . . ∩ T−m+1(Ibm−1)

is non-empty. The language of T is the set LT of admissible words for T . It uniquely defines
the shift space

XT = {x ∈ AZ | L(x) ⊂ LT }
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that we call as the natural coding of T . If T is regular, then XT is minimal, hence XT = {x ∈
AZ | L(x) = LT }. Of course, XT is invariant under normalization and reflection, i.e., we have
XT = XT̃ = XT̄ .

6.2.3 Derivation and induction

The Σ3S3Σ3-adic representations of minimal dendric subshifts that we consider are based on
derivation by return words. In the context of codings of IET, this derivation can be understood
through induced transformations and in particular Rauzy inductions [Rau79].

Let T = Tλ,π0,π1 be a d-IET on I. A semi-interval I ′ ⊂ I is said to be recurrent for T if for
all x ∈ I ′, there exists n > 0 such that Tn(x) ∈ I ′. In that case, the transformation induced
by T on I ′ is the map TI′ : I ′ → I ′, x 7→ T rI′ (x)(x), where rI′(x) = min{n > 0 | Tn(x) ∈ I ′}.
The following result is classical (for a proof, see for instance [DP17]).

Proposition 6.3. If T is a regular d-interval exchange transformation. Then for every non-
empty word w ∈ LT , the transformation induced by T on Iw is a regular d-interval exchange
transformation T ′ and one has XT ′ = Dw(XT ).

Induced transformations on Iw can be obtained by the (left or right) Rauzy induction. Set
l′ = min{µ1, ν1}, r′ = max{µd−1, νd−1}, IL = [l′, r) and IR = [l, r′). Observe that IL (resp.,
IR) is recurrent and, for all x ∈ IL, rIL(x) ≤ 2 (resp., for all x ∈ IR, rIR(x) ≤ 2). The left
Rauzy induction and right Rauzy induction of T are then the transformations induced by T
on IL and IR respectively. We denote them L(T ) and R(T ).

A d-IET T = Tλ,π0,π1 is said to be L-inducible (resp., R-inducible) if λπ0(1) 6= λπ1(1)

(resp., λπ0(d) 6= λπ1(d)). Observe that if T is L-inducible (resp., R-inducible), then L(T )
(resp., R(T )) is a d-IET. A word F1 · · ·Fn over {L,R} is said to be valid for T if it defines
a sequence (T0, T1, . . . , Tn) of d-IET by T0 = T and for all k < n, Tk is Fn−k-inducible and
Tk+1 = Fn−k(Tk).

Lemma 6.4. Let T be a d-IET and let F1 · · ·Fn be a word over {L,R} which is valid for T .
Then Tn is a d-interval exchange transformation on a semi-interval I ′ ⊂ I recurrent for T
and we have Tn = TI′.

Proof. It suffices to prove it for n = 2. The general case will follow by induction. As F1F2

is valid for T , T1 and T2 are d-interval exchange transformations on I1 ⊂ I and I2 ⊂ I1

respectively. Let x ∈ I2. By definition, for all k ≥ 0, T k1 (x) = Tnk(x) for a strictly increasing
sequence (nk)k≥0 such that n0 = 0 and, if nk < i < nk+1, then T i(x) /∈ I1. Let r = min{k >
0 | T k1 (x) ∈ I2}. As I1 ⊂ I2, nr is the smallest exponent k > 0 such that T k(x) ∈ I2 thus
T2(x) = T r1 (x) = Tnr(x) = TI2(x).

The next result summarizes several classical results concerning Rauzy inductions [Rau79,
DP17].

Theorem 6.5. Let T = Tλ,π0,π1 be a 3-interval exchange transformation, where (π0, π1) ∈{(
123
231

)
,
(

132
231

)
,
(

321
132

)}
.

If λ satisfies the condition c and there is an edge from (π0, π1) to (π̃0, π̃1) labeled by
(c, (σ(1), σ(2), σ(3)) in the following graph, then L(T ) = TM−1

σ λ,π̃0,π̃1
and XT is the image

of XL(T ) under σ.
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(
123
231

) (
132
231

) (
321
132

)(λ1 < λ2,
(21, 2, 3))

(λ1 > λ2, (1, 3, 21))(λ1 < λ2, (2, 21, 3))

(λ1 > λ2, (1, 3, 21))(λ3 < λ1, (2, 1, 13))

(λ3 > λ1,
(13, 2, 3))

If λ satisfies the condition c and there is an edge from (π0, π1) to (π̃0, π̃1) labeled by
(c, (σ(1), σ(2), σ(3)) in the following graph, then R(T ) = TM−1

σ λ,π̃0,π̃1
and XT is the image

of XR(T ) under σ.

(
123
231

) (
132
231

) (
321
132

)(λ3 > λ1,
(13, 2, 3))

(λ3 < λ1, (1, 2, 13))(λ2 > λ1, (2, 3, 12))

(λ2 < λ1, (1, 12, 3))(λ1 > λ2, (3, 1, 21))

(λ1 < λ2,
(21, 2, 3))

6.2.4 S-adic representations of regular 3-interval exchange transformations

Let X[3,2] denote the set of codings of interval exchange transformations associated with the
permutations

(
123
231

)
, or equivalently, with the permutations

(
321
132

)
, and X[3,3] the set of codings

of interval exchanges with permutations
(

132
231

)
. We study the link between the two classes

using inductions.

Proposition 6.6. Let X ∈ X[3,2] and let T be the corresponding interval exchange transfor-
mation with permutations

(
123
231

)
and length vector λ. We have the following cases.

• If λ1 > λ2 + λ3, then I1 is recurrent and, if T ′ = TI1, XT ′ ∈ X[3,2] and X is the image
of XT ′ under α.

• If λ2, λ3 < λ1 < λ2 +λ3, then I1 is recurrent and, if T ′ = TI1, XT ′ ∈ X[3,2] and X is the
image of XT ′ under π132ηπ321.

• If λ2 < λ1 < λ3, then I3 is recurrent and, if T ′ = TI3 , XT ′ ∈ X[3,3] and X is the image
of XT ′ under π312βπ213.

• If λ3 < λ1 < λ2, then I2 is recurrent and, if T ′ = TI2 , XT ′ ∈ X[3,2] and X is the image
of XT ′ under π213γ.

• If λ1 < λ2, λ3 and kλ1 < λ3 < (k + 1)λ1 for some integer k ≥ 1, then I2 is recurrent
and, if T ′ = TI2 , XT ′ ∈ X[3,3] and X is the image of XT ′ under π213δ

(k).

Moreover, the vector of interval lengths in T ′ is equal to M−1
σ λ where σ is the morphism given

by the cases above.

Proof. It follows from Lemma 6.4 by applying Theorem 6.5 several times until we obtain the
induction on the given interval. Let us detail the steps for the third case.

Assume that λ2 < λ1 < λ3 and assume that T is normalized. We start by applying a
left Rauzy induction and, as λ1 > λ2, by Theorem 6.5, T1 := L(T ) is the interval exchange
transformation on [λ2, 1[ with permutations

(
132
231

)
and length vector (λ1−λ2, λ3, λ2). Moreover,

X is the image of XT1 under the morphism σ1 : 1 7→ 1, 2 7→ 3, 3 7→ 21. We then apply another
left Rauzy induction on T1. As λ1 − λ2 < λ1 < λ3, this gives the transformation T2 on [λ1, 1[
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with permutations
(

321
132

)
and interval lengths (λ2 + λ3 − λ1, λ1 − λ2, λ2). The shift XT1 is the

image of XT2 under the morphism σ2 : 1 7→ 2, 2 7→ 21, 3 7→ 3. We apply a third left Rauzy
induction on T2 to obtain the transformation T3 on [λ1 + λ2, 1[= I3. Since λ2 < λ2 + λ3 − λ1,
the associated permutations are

(
132
231

)
. Moreover, XT2 is the image of XT3 under σ3 : 1 7→ 2,

2 7→ 1, 3 7→ 13. By construction, XT ′ = XT3 is in X[3,3], the lengths of the intervals in T ′ are
given by M−1

σ1σ2σ3λ and X is the image of XT ′ under the morphism σ1σ2σ3 = π312βπ213.
For the other cases, we simply give the steps and leave the details to the reader.

• If λ1 > λ2 + λ3, then we do two consecutive right Rauzy inductions.

• If λ2, λ3 < λ1 < λ2 + λ3, we do three right Rauzy inductions.

• If λ3 < λ1 < λ2, we apply a left and a right Rauzy induction then swap the letters 1
and 2.

• If λ1 < λ2, λ3 and kλ1 < λ3 < (k + 1)λ1, we apply a left Rauzy induction and k + 1
right Rauzy inductions then swap the letters 1 and 2.

The proof of the next result is similar.

Proposition 6.7. Let X ∈ X[3,3] and let T be the corresponding interval exchange transfor-
mation with permutations

(
132
231

)
and length vector λ. We have the following cases.

• If λ1 > λ2 + λ3, then I1 is recurrent and, if T ′ = TI1 , XT ′ ∈ X[3,3] and X is the image
of XT ′ under α.

• If λ2 > λ1 + λ3, then I2 is recurrent and, if T ′ = TI2 , XT ′ ∈ X[3,3] and X is the image
of XT ′ under π213απ213.

• If λ2 < λ1 < λ2 +λ3 and k(λ1−λ2) < λ3 < (k+1)(λ1−λ2) for some integer k ≥ 1, then
I1 is recurrent and, if T ′ = TI1, XT ′ ∈ X[3,3] and X is the image of XT ′ under ζ(k)π213.

• If λ1 < λ2 < λ1 + λ3 and k(λ2 − λ1) < λ3 < (k + 1)(λ2 − λ1) for some integer k ≥ 1,
then I2 is recurrent and, if T ′ = TI2, XT ′ ∈ X[3,3] and X is the image of XT ′ under
π213ζ

(k)π213.

Moreover, the vector of interval lengths in T ′ is equal to M−1
σ λ where σ is the morphism given

by the cases above.

Remark 6.8. If X ∈ X[3,2] ∪ X[3,3] is the coding of a regular interval exchange transformation,
then it satisfies one of the cases of Proposition 6.6 or Proposition 6.7 and, by Proposition 6.3,
XT ′ is also the coding of a regular interval exchange.

Using Propositions 6.6 and 6.7, we can define the graph GIET represented in Figure 8.
It has two vertices [3, 2] and [3, 3] and, for each of the cases of Proposition 6.6 (resp., of
Proposition 6.7), it has an edge leaving [3, 2] (resp., [3, 3]) going to the vertex C such that
XT ′ ∈ XC and labeled by the morphism σ such that X is the image of XT ′ under σ. Moreover,
we add incoming edges labeled by each of the permutations. Remark that it is a subgraph of
the graph G represented in Figure 7 used to characterize ternary dendric shifts.
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[3, 2] [3, 3]

Σ3 Σ3

α, π132ηπ321
α, π213απ213,

ζ(k)π213, π213ζ
(k)π213

π312βπ213,
π213γ, π213δ

(k)

Figure 8: A shift space on A3 is the coding of a regular interval exchange if and only if it has
a primitive Σ3S3Σ3-adic representation labeling an infinite path in this graph denoted GIET.

Before using this graph to give a S-adic characterization of regular interval exchanges, we
recall the notion of letter frequency.

A shift space X over A is said to have letter frequencies if for all a ∈ A, there exists λa ∈
[0, 1] such that for all x ∈ X, limn

|x1x2···xn|a
n = λa. A classical result of Boshernitzan [Bos85]

shows that minimal dendric shift spaces over A3 (hence codings of regular 3-IET) are uniquely
ergodic and thus have letter frequencies that are given by the measure of the letter cylinders.
In particular, when X is the coding of a regular 3-IET, then the letter frequencies are given by
the lengths of the intervals. The following result is a direct consequence of [BD14, Theorem
5.7].

Proposition 6.9. Let X be a uniquely ergodic shift space with primitive S-adic representation
σ. For all n, if fn is the vector of letter frequencies in X

(n)
σ , then f1 is proportional to

Mσ[1,n)fn.

Lemma 6.10. Let X be a minimal ternary dendric shift space, σ = (σn)n∈N a primi-
tive Σ3S3Σ3-adic representation of X and λ1, λ2, λ3 the letter frequencies in X. If σ1 ∈
{α, π132ηπ321, π312βπ213, π213γ} ∪ {π213δ

(k) | k ≥ 1}, then σ1 is determined by λ1, λ2 and λ3

in the following way:

• λ1 > λ2 + λ3 if and only if σ1 = α;

• λ2, λ3 < λ1 < λ2 + λ3 if and only if σ1 = π132ηπ321;

• λ2 < λ1 < λ3 if and only if σ1 = π312βπ213;

• λ3 < λ1 < λ2 if and only if σ1 = π213γ;

• λ1 < λ2, λ3 and kλ1 < λ3 < (k + 1)λ1 if and only if σ1 = π213δ
(k).

Proof. Let µ1, µ2, µ3 be the letter frequencies in X(2)
σ . The vector (λ1 λ2 λ3)t is proportional

to Mσ1(µ1 µ2 µ3)t and, by minimality, the letter frequencies in X(2)
σ are positive. Thus, given

σ1, the inequalities follow. As λ1, λ2, λ3 can satisfy at most one (and exactly one) set of
inequalities, we have the equivalences.

Lemma 6.11. Let X be a minimal ternary dendric shift space, σ = (σn)n∈N a primi-
tive Σ3S3Σ3-adic representation of X and λ1, λ2, λ3 the letter frequencies in X. If σ1 ∈
{α, π213απ213} ∪ {ζ(k)π213, π213ζ

(k)π213 | k ≥ 1}, then σ1 is determined by λ1, λ2 and λ3 in
the following way:

• λ1 > λ2 + λ3 if and only if σ1 = α;
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• λ2 > λ1 + λ3 if and only if σ1 = π213απ213;

• λ2 < λ1 < λ2 + λ3 and k(λ1 − λ2) < λ3 < (k + 1)(λ1 − λ2) if and only if σ1 = ζ(k)π213;

• λ1 < λ2 < λ1+λ3 and k(λ2−λ1) < λ3 < (k+1)(λ2−λ1) if and only if σ1 = π213ζ
(k)π213.

We will also need the following result. The proof can, for example, be found in [Del15].

Proposition 6.12. Let X be the coding of a d-interval exchange transformation. If pX(n) =
(d− 1)n+ 1 then the interval exchange transformation is regular.

Theorem 6.13. A shift space X is the coding of a regular 3-interval exchange transformation
if and only if it has a primitive Σ3S3Σ3-adic representation labeling a path in the graph GIET

represented in Figure 8.

Proof. First assume that X is the coding of a regular 3-interval exchange transformation.
Possibly starting the representation with a permutation, we can assume that X ∈ X[3,2] ∪
X[3,3]. The sequence obtained by iterating Propositions 6.6 and 6.7 gives a Σ3S3Σ3-adic
representation σ of X and, if X(n)

σ ∈ Cn, then σ labels the path (XCn)n∈N by construction of
the graph. Using Theorem 3.1 and Proposition 6.3, the sequence is primitive.

It remains to prove that if X has a primitive Σ3S3Σ3-adic representation σ = (σn)n∈N
labeling a path (Cn)n∈N in the GIET, then X is the coding of a regular 3-interval exchange
transformation. We can assume that the initial permutation is the identity. As GIET is a
subgraph of the graph G, X is minimal dendric by Theorem 1.1 and the letter frequencies
exist by [Bos85]. Similarly, for all n ∈ N, the letter frequencies exist in X(n)

σ . Let λ(n) denote
the vector of frequencies in X(n)

σ . By Proposition 6.9, λ(n+1) is proportional to M−1
σn λ

(n).
For every n, let Yn ∈ XCn be the coding of the interval exchange transformation whose

vector of interval lengths is λ(n). We prove that Yn is the image of Yn+1 under σn. This will
prove that σ is a primitive Σ3S3Σ3-adic representation of Y1, hence that X = Y1. The fact
that the underlying IET is regular then follows from Proposition 6.12.

If Cn = [3, 2], then σn ∈ {α, π132ηπ321, π312βπ213, π213γ} ∪ {π213δ
(k) | k ≥ 1}. By

Lemma 6.10, the vector λ(n) satisfies some inequalities that make Yn fall into one of the
cases of Proposition 6.6. By checking the different cases, we deduce from this result that Yn
is indeed the image of Yn+1 under σn. The proof is similar if Cn = [3, 3], using Lemma 6.11
and Proposition 6.7 instead.

6.3 Cassaigne shifts

A shift space X over A3 is a Cassaigne shift if it has a primitive C-adic representation, where
C = {c1, c2} and

c1 :


1 7→ 1

2 7→ 13

3 7→ 2

and c2 :


1 7→ 2

2 7→ 13

3 7→ 3

.

Cassaigne shifts are minimal ternary dendric shifts and a directive sequence (σn)n≥1 ∈ CN is
primitive if and only if it cannot be eventually factorized over {c2

1, c
2
2}, i.e., there is no N ∈ N

such that for all n ≥ N , cN+2n = cN+2n+1 [CLL17].
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By considering products of morphisms, we obtain that a shift space is a Cassaigne shift if
and only if it has a primitive C′-adic representation where C′ = {c11, c22, c122, c211, c121, c212}
and

c11 = c2
1 :


1 7→ 1

2 7→ 12

3 7→ 13

; c122 = c1c
2
2 :


1 7→ 12

2 7→ 132

3 7→ 2

; c121 = c1c2c1 :


1 7→ 13

2 7→ 132

3 7→ 12

;

c22 = c2
2 :


1 7→ 13

2 7→ 23

3 7→ 3

; c211 = c2c
2
1 :


1 7→ 2

2 7→ 213

3 7→ 23

; c212 = c2c1c2 :


1 7→ 23

2 7→ 213

3 7→ 13

.

Thus a shift space is a Cassaigne shift if and only if it has a primitive S-adic representation
using morphisms from the set

{α, π321απ321, π213γπ231, π231βπ132, π132ηπ231, π321ηπ231}

or, equivalently, if and only if it has a primitive SC-adic representation where

SC = {α, π321απ321, π213γπ231, π231βπ132, π132ηπ231, π321ηπ231}.

Proposition 6.14. There is no Cassaigne shift which is an Arnoux-Rauzy or the coding of a
regular interval exchange.

Proof. Let X be a Cassaigne shift and σ = (σn)n≥1 be a primitive SC-adic representation
of X. Firstly, it is clear that X is not an Arnoux-Rauzy shift. Using Proposition 5.12, it
would indeed require σ to only use left-invariant and right-invariant morphisms from S3,
hence to be in {α, π321απ321}N. It then suffices to observe that there is no primitive sequence
in {α, π321απ321}N.

By Proposition 5.17 and Theorem 6.13, if X is the coding of a regular interval exchange,
then σ is equivalent to a primitive sequence τ ∈ (Σ3S3Σ3)N (preceded by a permutation
ψ0) labeling an infinite path in the graph GIET. Let σn = πnσ

′
nπ
′
n and τn = ψnτ

′
nψ
′
n with

πn, π
′
n, ψn, ψ

′
n ∈ Σ3 and σ′n, τ ′n ∈ S3.

As σ and τ are equivalent, σ′n = τ ′n thus, τn /∈ {π213δ
(k), ζ(k)π213, π213ζ

(k)π213 | k ≥ 1}.
Since τ is primitive, it cannot belong to (Σ3S3Σ3)∗{α, π213απ213}N thus the path labeled by
τ stays in the vertex [3, 2] and τ ∈ {α, π132ηπ321}N. Moreover, there exists N such that
τN = π132ηπ321.

Let us show that we obtain a contradiction. Let ξn be the permutation such that ψ0τ1 . . . τn−1 =
σ1 . . . σn−1ξn. Since ψ0τ1 . . . τn−1 is injective, τn = ξ−1

n σnξn+1 for all n ≥ 1. For n = N , this
equality becomes

π132ηπ321 = ξ−1
N πNηπ231ξN+1

thus, π321 = π231ξN+1 and ξN+1 = π213. If τN+1 = α, then we have

α = π213πN+1απN+1ξN+2.

This is impossible as πN+1 is either the identity or π321. If τN+1 = π132ηπ321, then

π132ηπ321 = π213πN+1ηπ231ξN+2

which is also impossible since πN+1 ∈ {π132, π321}.
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7 Further work

The problem of finding an S-adic characterization of minimal dendric shift over larger alpha-
bets is still open. It is likely that, for any fixed alphabet Ak = {1, 2, . . . , k}, there exists a
graph Gk that allows to extend Theorem 1.1, but its definition is more tricky. We will attack
this problem in a future work.

In particular, for Lebesgue almost every 3-dimensional probability vector λ, there is a
Cassaigne shift X with vector of letter frequencies λ and with the additional property of
being finitely balanced [CLL21], that is, there is a constant K such that for every a ∈ A3

and every n ∈ N, supu,v∈Ln(X) |u|a − |v|a ≤ K. It is an open problem to generalize Cassaigne
shifts over larger alphabets and it seems reasonable to look for such a generalization among
minimal dendric shifts. Better understanding the S-adic representations of minimal dendric
shifts could thus be helpful.

Another interesting question would be to study the S-adic representations obtained by
factorizing the morphisms of S3 into elementary automorphisms. Such factorizations always
exist (see Theorem 3.2) and therefore yield to another graph where the edges are labeled by
elementary automorphisms of FA3 .
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