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ABSTRACT

Context. Most of the high-contrast imaging (HCI) data-processing techniques used over the last 15 years have relied on the angular
differential imaging (ADI) observing strategy, along with subtraction of a reference point spread function (PSF) to generate exoplanet
detection maps. Recently, a new algorithm called regime switching model (RSM) map has been proposed to take advantage of these
numerous PSF-subtraction techniques; RSM uses several of these techniques to generate a single probability map. Selection of the
optimal parameters for these PSF-subtraction techniques as well as for the RSM map is not straightforward, is time consuming, and
can be biased by assumptions made as to the underlying data set.
Aims. We propose a novel optimisation procedure that can be applied to each of the PSF-subtraction techniques alone, or to the entire
RSM framework.
Methods. The optimisation procedure consists of three main steps: (i) definition of the optimal set of parameters for the PSF-
subtraction techniques using the contrast as performance metric, (ii) optimisation of the RSM algorithm, and (iii) selection of the
optimal set of PSF-subtraction techniques and ADI sequences used to generate the final RSM probability map.
Results. The optimisation procedure is applied to the data sets of the exoplanet imaging data challenge, which provides tools to com-
pare the performance of HCI data-processing techniques. The data sets consist of ADI sequences obtained with three state-of-the-art
HCI instruments: SPHERE, NIRC2, and LMIRCam. The results of our analysis demonstrate the interest of the proposed optimisa-
tion procedure, with better performance metrics compared to the earlier version of RSM, as well as to other HCI data-processing
techniques.

Key words. methods: data analysis – techniques: image processing – techniques: high angular resolution –
planets and satellites: detection

1. Introduction

In the study of exoplanets, direct imaging provides information
that is complementary to indirect detection techniques, allow-
ing wider orbits to be explored in greater detail, thus giving
access to photometric and spectral features of young massive
self-luminous companions. High-contrast imaging (HCI) is how-
ever one of the most challenging exoplanet detection techniques,
as it requires large telescopes, advanced adaptive optics, coro-
nagraphs, and sophisticated data processing to disentangle the
faint planetary signal from the bright host star. Besides the large
flux ratio between the companion and the host star, HCI tech-
niques have to deal with residual noise due to quasi-static speck-
les, which originate from the optical train of the instruments or
from uncorrected atmospheric turbulence.

In the last decade, the field of HCI has been very active
and a large number of data processing techniques have been
developed to detect and characterise planetary candidates.
The most common approach combines the angular differ-
ential imaging (ADI, Marois et al. 2006) observing strategy
with subtraction of a reference point spread function (PSF).
While the ADI observing strategy relies on angular diver-
sity to better average out quasi-static speckles, subtraction of
a reference PSF increases the sensitivity of HCI by mod-
elling and subtracting quasi-static speckles from the origi-

nal set of frames. The most popular PSF-subtraction methods
include ADI median-subtraction, locally optimised combination
of images (LOCI, Lafreniere et al. 2007), principal component
analysis (PCA/KLIP, Soummer et al. 2012; Amara & Quanz
2012), non-negative matrix factorisation (NMF, Ren et al. 2018),
and the local low rank plus sparse plus Gaussian decompo-
sition (LLSG, Gonzalez et al. 2016). Other algorithms such
as ANDROMEDA (Cantalloube et al. 2015), KLIP FMMF
(Pueyo 2016; Ruffio et al. 2017), PACO (Flasseur et al. 2018),
and TRAP (Samland et al. 2021) exploit the inverse problem
approach, which, for HCI, consists in tracking a model of the
expected planetary signal in the set of frames included in the
ADI sequence. All these methods rely on signal-to-noise ratio
(S/N) maps to detect planetary candidates. These S/N maps
are computed in a separate step for PSF-subtraction meth-
ods (using algorithms such as those described in Mawet et al.
2014; Bottom et al. 2017; Pairet et al. 2019), or are gener-
ated as a by-product of the algorithm for inverse problem
approaches. Recently, a new PSF-subtraction-based approach
was proposed to take better advantage of the numerous exist-
ing PSF-subtraction techniques. The regime-switching model
(RSM) map (Dahlqvist et al. 2020) replaces the estimation of
the S/N map by the computation of a probability map gen-
erated using one or several PSF-subtraction techniques. The
most recent version of the RSM map (Dahlqvist et al. 2021)
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accommodates up to six different PSF-subtraction techniques,
including two techniques relying on the forward modelling of an
off-axis point source PSF.

The use of one or several PSF-subtraction techniques to
generate a S/N map or a probability map via the RSM algo-
rithm, requires the definition of multiple parameters specific to
each method and potentially varying from one ADI sequence to
another. The selected set of parameters can have dramatic effects
on the final detection map, both in terms of noise and algorithm
throughput. The selection of the optimal set of parameters is usu-
ally done manually, which requires time and can lead to bias,
as the definition of the optimality of the set is driven by the
ability of the user to properly analyse the generated detection
maps. The complexity of the optimal parameter selection can be
an obstacle to the use of some HCI data-processing techniques,
and can lead to unreliable results. This also makes it difficult
to properly compare the performance of HCI data-processing
techniques, as their performance is parameter-driven to a large
extent, and therefore depends on subjective choices made by the
user. To mitigate these issues in the context of the RSM frame-
work, we propose an optimisation procedure called auto-RSM
to automatically select the best set of parameters for the PSF-
subtraction techniques, as well as for the RSM algorithm itself.
To our knowledge, such an extensive optimisation procedure has
not yet been proposed in the HCI literature, although some ear-
lier works have already partly addressed the question of param-
eter optimisation. Approaches such as S/N-based optimisation
of the number of components for PCA (Gomez Gonzalez et al.
2017) or direct optimisation of the non-linear S/N function
(Thompson & Marois 2021) focus on a single PSF-subtraction
technique, whereas here we proposed a more generic framework
applicable to most PSF-subtraction techniques.

The proposed optimisation framework can be divided into
three main steps: (i) selection of the optimal set of parameters for
the different PSF-subtraction techniques (and ADI sequences)
via Bayesian optimisation, (ii) optimal parametrisation of the
RSM algorithm, and (iii) selection of the optimal set of PSF-
subtraction techniques (and ADI sequences) to be considered
for the computation of the final RSM probability map. This
last step is motivated by the fact that, when relying on mul-
tiple PSF-subtraction techniques and multiple ADI sequences,
some sequences may be noisier while some methods may better
cope with the noise independently of their parametrisation. Spe-
cial attention should therefore be paid to the choice of the cubes
of residuals generating the final probability map. The optimi-
sation step for the PSF-subtraction technique parameters is not
limited to auto-RSM, and can be performed separately if a S/N
map is preferred to the RSM probability map. In addition to the
development of auto-RSM, we therefore propose a variant of the
algorithm adapted to the use of S/N maps instead of RSM prob-
ability maps. Auto-S/N relies on the first step of the auto-RSM
algorithm, and on a modified selection framework allowing the
optimal combination of multiple S/N maps.

The performance of both optimisation procedures is assessed
using the exoplanet imaging data challenge (EIDC), which
regroups ADI sequences generated by three state-of-the-art HCI
instruments: SPHERE, NIRC2, and LMIRCam. The aim of the
EIDC initiative is to provide tools, i.e., the data sets and per-
formance metrics, to properly compare the various HCI data
processing techniques that have been developed recently. The
EIDC first phase, which ended in October 2020, regrouped and
compared the results from 23 different submissions for the ADI
subchallenge (Cantalloube et al. 2020), making it a great tool to
assess the performance of a new approach.

The remainder of this paper is organised as follows. Section 2
describes the procedure used to optimise the parameters of the
PSF-subtraction techniques. In Sect. 3, we introduce the RSM
map framework and present the next two steps of the auto-RSM
framework: the optimal RSM parameter selection, and the selec-
tion of the optimal set of cubes of residuals used to generate the
final probability map. Section 4 is devoted to the performance
assessment of the optimisation procedure along with the compar-
ison of different versions of the optimisation procedure. Finally,
Sect. 5 concludes this work.

2. PSF-subtraction techniques optimisation

The proposed optimisation procedure relies on the concept of
inverted parallactic angles, which have already been used in the
HCI literature (e.g., Gomez Gonzalez et al. 2018; Pairet et al.
2019). The sign of the parallactic angles used to de-rotate the
ADI sequence is flipped, blurring any planetary signal while pre-
serving the noise temporal correlation and statistical properties.
The use of ADI sequences with flipped parallactic angles should
allow us to avoid biases due to the contribution from poten-
tial planetary signals during the optimisation process. Although
the inverted parallactic angles approach allows us to blur plane-
tary signals, it is not immune to potential bright artefacts, which
implies that particular attention needs to be paid to the elimina-
tion of outliers from the computed optimal parameters.

As mentioned in Sect. 1, the RSM map relies on one or
several PSF-subtraction techniques to generate a final proba-
bility map. Six different PSF-subtraction techniques are cur-
rently used with the RSM map: LOCI, annular PCA (APCA,
Gomez Gonzalez et al. 2017), KLIP, NMF, LLSG, and forward-
model versions of KLIP and LOCI (see Dahlqvist et al. 2021, for
more details). Each PSF-subtraction technique is characterised
by its own set of parameters, which strongly affect the quality
of the reference PSF modelling. Table 1 presents the parameters
that we have identified as the most relevant for the optimisation
of the six considered PSF-subtraction techniques. Other parame-
ters, such as the annulus width, were tested during the auto-RSM
development, but were discarded from the optimisation frame-
work as their influence was found to be smaller or because of
other practical considerations.

2.1. Definition of the loss function

Parameter optimisation requires the definition of a loss function
f , which provides, for a given set of parameters p, an outcome
f (p) that can be maximised or minimised. In the case of refer-
ence PSF modelling, the loss function should quantify the ability
of the PSF-subtraction technique to remove the residual noise
contained in the ADI sequence and to identify potential plan-
etary companions. The definition of the achievable planet/star
flux ratio or contrast, for a given detection significance, is there-
fore a good candidate to measure the PSF-subtraction technique
performance. In the context of HCI, the contrast is defined as
follows (Jensen-Clem et al. 2017):

contrast =

(
factor × noise

stellar aperture photometry

) (
1

throughput

)
. (1)

The contrast is usually defined at a 5 σ level which implies
factor = 5 with noise = σ. As the parameter optimisation
is done for a single ADI sequence at a time, the stellar aper-
ture photometry does not impact the optimisation process and
is therefore irrelevant and set to 1. We rely on the procedure of
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Table 1. Set of parameters selected for the optimisation of the six considered PSF-subtraction techniques.

Parameters APCA NMF LLSG LOCI KLIP-FM LOCI-FM

Number of principal components X X X X
FOV minimal rotation X X X X
Number of azimuthal segments X X
Tolerance for error minimisation X X

Mawet et al. (2014) illustrated in Fig. 1 to determine the noise
annulus-wise. For a given annulus and for an aperture centred
on the pixel of interest, with a diameter equal to the full width
at half maximum (FWHM) of the PSF, the noise is computed by
considering the standard deviation of the fluxes in all the non-
overlapping apertures (one FWHM in diameter each) included
in this annulus. The number of apertures being relatively small
for small angular separations, the procedure implements a small
statistics correction, relying on a Student t-test to correct the
multiplicative factor for the noise.

The throughput quantifies the attenuation of the planetary
signal due to reference PSF subtraction. In practice, the through-
put is estimated by injecting a fake companion at a predefined
position and computing the ratio between the injected aperture
flux and the recovered aperture flux after the reference PSF
subtraction. Contrast curves can be computed by averaging the
sensitivity limit in terms of planet-to-star contrast obtained by
injecting several fake companions at different position angles
for a series of angular separations. Relying on several azimuthal
positions and averaging the associated contrasts reduces the
impact of the residual speckles on the estimated contrast. We fol-
low this approach, but instead of injecting individual fake com-
panions separately to compute the average contrast, we inject
several fake companions at once, which drastically reduces the
computation time. We impose a minimum separation of one
FWHM between the apertures containing the fake companions,
and a maximum of eight fake companions per annulus, in order
to limit potential cross-talk between the injected fake compan-
ions. This safety distance, as well as the small intensity of the
injected fake companions1, provides a good approximation of
the average contrast (see Appendix C for a comparison between
sequential and multiple injections) while limiting the compu-
tation time, which is crucial here as parameter optimisation
requires a large number of contrast estimations. The loss func-
tion computation may be summarised as follows:
1. Reference PSF estimation using the selected post-processing

technique and set of parameters;
2. Reference PSF subtraction from the original ADI sequence,

de-rotation of the cube of residuals, and median combination
of the resulting frames;

3. Computation of the fluxes for the entire set of apertures
within the selected annulus in the median-combined frame
obtained in step 2, and estimation of the noise relying on a
Student t-test;

4. Injection of fake companions at the selected set of azimuths
with flux value defined as five times the noise computed in
step 3;

1 Following the methodology of Gomez Gonzalez et al. (2017), the
intensity of the injected companions represents only a few percent of
the pixel intensity within the ADI sequence for a given annulus, which
limits the impact of the multiple injections on the estimation of the ref-
erence PSF.

Fig. 1. Estimation of the noise via the annulus-wise procedure proposed
by Mawet et al. (2014). The dotted white circles indicate the apertures
whose flux is used for the noise computation, while the red circular
region is centred on the pixel for which the noise needs to be estimated.

5. Computation of the cube of residuals for the ADI sequence
containing the fake companions and median combination;

6. Computation of the throughputs by comparing the aper-
ture flux of the injected companions to that of the retrieved
companions after PSF subtraction (difference between final
frame of step 5 and step 2);

7. Estimation of the contrasts via Eq. (1) and computation of
the average contrast.

2.2. Parameter selection via Bayesian optimisation

The NMF and LLSG PSF-subtraction techniques have integer
parameters that are, in practice, restricted to a small range of
possible values. One can therefore easily select their optimal
parameters by going through their entire parameter space, and
simply applying steps 1–7 to compute the contrast for each set
of parameters. The optimal set of parameters is the one that min-
imises the contrast. However, for the other PSF-subtraction tech-
niques, part of the parameter space is continuous, which prevents
exploration of the entire parameter space. A more advanced min-
imisation algorithm is therefore needed. The derivatives and con-
vexity properties of our loss function are unfortunately unknown.
However, it is expected that our loss function, i.e. the function
describing the evolution of the annulus-wise contrast in terms of
the selected parameters, is non-convex and most probably non-
linear. This implies that we cannot rely on mainstream minimi-
sation approaches (e.g., Newton-Conjugate-Gradient algorithm
or Nelder-Mead Simplex algorithm). In addition, evaluating the
annulus-wise contrast is expensive, because of the numerous
steps involved in its estimation. We therefore cannot simply rely
on Monte Carlo simulation or random searches to explore the
parameter space.
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Considering all these constraints, we decided to rely on
Bayesian optimisation to select the optimal set of parameters
for the remaining PSF-subtraction techniques. Bayesian opti-
misation is a powerful strategy to limit the number of loss
function evaluations needed to reach an extremum (see, e.g.,
Mockus et al. 1978; Jones et al. 1998). This strategy belongs to
a class of algorithms called sequential model-based optimisa-
tion (SMBO) algorithms. This class of algorithms uses previous
observations of the loss function to determine the position of
the next point inside the parameter space to be evaluated. It is
called Bayesian optimisation because it relies on Bayes’ theo-
rem to define the posterior probability of the loss function, on
which the sampling strategy is based. Bayes’ theorem states that
the posterior probability associated with a model, given a set of
observations, is proportional to the likelihood of the observations
given the model, multiplied by the prior probability of the model:

P( f | O1:t) ∝ P(O1:t | f )P( f ), (2)

where f is the loss function to optimise and O1:t =
{
p1:t, f (p1:t)

}
is the set of observations of the loss function, with p1:t being the
set of tested points (see Appendix A for a summary of all the
mathematical notions used throughout the paper). In the case of
Bayesian optimisation, we assume a Gaussian likelihood with
noise, as follows:

P(O1:t | f ) ∼ N( f (p), σ2
ε ), (3)

where Ot = f (pt) + ε with ε ∼ N(0, σ2
ε ).

Regarding the prior distribution for our loss function,
Mockus (1994) proposed relying on a Gaussian process (GP)
prior as this induces a posterior distribution over the loss func-
tion that is analytically tractable2. A GP is the generalisation of
a Gaussian distribution to a function, replacing the distribution
over random variables by a distribution over functions. A GP is
fully characterised by its mean function m(p), and its covariance
function K, where

f (p1:t) ∼ GP
(
m(p1:t), K

)
∼ N(m(p1:t), K). (4)

The GP process can be seen as a function that returns the
mean and variance of a Gaussian distribution over the possible
values of f at p, instead of returning a scalar f (p). We make
the assumption that the prior mean is the zero function m(p) = 0
and we select a commonly used covariance function, the squared
exponential function:

[K]i, j = k(pi, pj) = exp
(
−

1
2l2
‖ pi − pj ‖

2
)
, (5)

where l is the length scale of the kernel.
Having documented the posterior probability computation

for our loss function, we need to define a sampling strategy.
Bayesian optimisation relies on an acquisition function to define
how to sample the parameter space. This function is based on the
current knowledge of the loss function, i.e. the posterior proba-
bility. The acquisition function is a function of the posterior dis-
tribution over the loss function f , which provides a performance
metric for all new sets of parameters. The set of parameters with
the highest performance is then chosen as the next point of the
parameter space to be sampled. A popular acquisition function is

2 This implies that it is possible to update the posterior probability with
the observations made with a new set of parameters. This will help us
to create a continuous function to select the next point to sample in the
parameter space.

the expected improvement (EI, Mockus et al. 1978; Jones et al.
1998) which is defined as follows:

EI(pt+1) = E
[
max

{
0, f (pt+1) − f (̂p)

}]
, (6)

where E is the expected value and p̂argmaxpi∈p1:t
f (pi) is the

current optimal set of parameters. We see that in the case of
Bayesian optimisation, we look for the maximum value of the
loss function. As we are trying to minimise the contrast for a
given set of parameters, we simply define our loss function f (p)
as the inverse of the contrast averaged over the selected set of
azimuths (see Sect. 2.1).

An interesting feature of the EI is that it can be evaluated
analytically under the GP model, yielding (see Appendix B for
more details about the derivation of these expressions)

EI(pt+1)

=

{
(µ(pt+1) − f (̂p))Φ(Z) + σ(pt+1)φ(Z) if σ(pt+1) > 0
0 if σ(pt+1) = 0,

(7)

where Φ(Z) and φ(Z) are respectively the cumulative distribution
and probability density function of the Gaussian distribution,
µ(pt+1) and σ(pt+1) are the mean and variance of the Gaussian
posterior distribution, and Z =

[
µ(pt+1) − f (̂p)

]
/σ(pt+1). We see

from this last expression that the EI is high either when the
expected value of the loss µ(p) is larger than the maximum value
of the loss function f (̂p) or when the uncertainty σ(pt+1) around
the selected set of parameters pt+1 is high. The EI approach aims
to minimise the number of function evaluations by performing
a trade-off between exploitation and exploration at each step.
The EI exploits the existing set of observations by favouring the
region where the expected value of f (pt+1) is high, while it also
explores unknown regions where the uncertainty associated with
the loss function is high.

Bayesian optimisation starts with the initialisation of the pos-
terior probability by estimating the loss function for several sets
of parameters via random search in the parameter space. Once
this initial population of observations is computed, the rest of
the algorithm can be summarised as follows.

– Based on the GP model, use random search to find the pt+1
that maximises the EI, pt+1 = argmax

[
EI(pt+1)

]
;

– Compute the contrast for the new set of parameters pt+1;
– Update the posterior expectation of the contrast function

using the GP model (see Appendix B);
– Repeat the previous steps for a given number of iterations.

The number of random searches to compute the initial GP
and the number of iterations for the Bayesian optimisation
depend on the size of the parameter space associated with the
considered PSF-subtraction techniques. A specific number of
random searches and iterations are therefore selected for each
PSF-subtraction technique. At the end of the Bayesian optimi-
sation, the minimal average contrast for a given annulus a and
PSF-subtraction technique m is stored in a matrix element Ca,m,
along with the set of parameters p in another matrix Pa,m.

This first step of the auto-RSM algorithm may be used
outside the RSM framework, allowing the production of S/N
maps based on the cubes of residuals generated by optimised
PSF-subtraction techniques. A S/N-based version of the auto-
RSM framework called auto-S/N has been developed and is pre-
sented in Appendix D. Auto-S/N optimally combines S/N maps
computed from the cubes of residuals generated by the opti-
mised PSF-subtraction techniques, relying on the same greedy
approach as for auto-RSM (see Sect. 3.3). The performance of
auto-S/N is assessed in Appendix D.2 using the same metrics
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as for auto-RSM (see Sect. 4). The lower performance of auto-
S/N implies that auto-RSM should preferred, despite its longer
computation time, although the two approaches can be comple-
mentary to some extent.

3. RSM map optimisation

3.1. RSM map principles

The RSM algorithm relies on a two-state Markov chain to model
the pixel intensity evolution inside one or multiple de-rotated
cubes of residuals generated by PSF subtraction techniques
using ADI or SDI observing strategies. The cubes of residuals
are treated annulus-wise to account for the radial evolution of
the residual speckle noise statistics. For each angular separation
a, a residual time-series, xia , is built by vectorising the set of
patches centred on the annulus of radius a, first along the time
axis and then the spatial axis. The index ia ∈ {1, . . . ,T×La} gives
the position of the considered patches within the cube of resid-
uals, where La and T are respectively the number of pixels in
the annulus of radius a and the number of frames in the residu-
als cube. In the case of multiple PSF-subtraction techniques and
ADI sequences of the same object, T is defined as the sum of the
number of frames per cube multiplied by the number of consid-
ered PSF-subtraction techniques.

The set of patches xia is described by a probability-weighted
sum of the outcomes of two regimes: a noise regime, S ia = 0,
where xia is described by the statistics of the quasi-static speckle
residuals contained in the annulus; and a planetary regime, S ia =
1, where xia is described by both the residual noise and a plan-
etary signal model3. The two regimes are characterised by the
following equations:

xia = µ + βFia m + εs,ia =

{
µ + ε0,ia if S ia = 0
µ + βm + ε1,ia if S ia = 1,

(8)

where µ is the mean of the quasi-static speckle residuals, εs,ia

is their time and space varying part, which is characterised by
the quasi-static speckle residuals statistics, and β and m provide
the flux and a model of the planetary signal, respectively. The
parameter Fia = {0, 1} is a realisation of a two-state Markov
chain which implies that the probability of being in regime s
at index ia will depend on the probability at the previous step,
ia−1. This allows us to better disentangle a planetary signal from
bright speckle by providing a short-term memory to the model.
The set of patches xia are described via the probability-weighted
sum of the values generated by Eq. (8).

The probability of being in the regime s at index ia, defined
as ξs,ia , depends on the probability at the previous step, ia − 1,
on the likelihood of being currently in a given regime, ηs,ia , and
on the transition probability between the regimes given by the
matrix, pq,s. The probability ξs,ia is given by:

ξs,ia =

1∑
q=0

ηs,ia pq,s ξ1,ia−1∑1
q=0

∑1
s=0 ηs,ia pq,s ξq,ia−1

, (9)

where
∑1

q=0
∑1

s=0 ηs,ia pq,s ξq,ia−1 is a normalisation factor and ηs,ia
is the likelihood associated with the regime s, which is given for
each patch, ia, in the Gaussian case by

ηs,ia =

θ2∑
n

1
θ2

1
√

2πσ
exp

−
[
xn

ia
− (Fiaβmn − µ)

]2

2σ2

 , (10)

3 The off-axis PSF or forward-modelled PSF when using LOCI and
KLIP PSF-subtraction techniques.

where σ is the noise standard deviation (see Sect. 3.2.2 for more
details about its estimation), θ gives the size in pixels of the
planet model, m, and n is the pixel index within the patch.

As the RSM algorithm relies on a two-state Markov chain,
the computation of the probabilities requires the use of an iter-
ative procedure because of the dependence of the probabilities
on past observations. Once the probabilities of being in the two
regimes have been computed for every pixel of every annulus,
the probability of being in the planetary regime, ξ1,ia , is aver-
aged along the time axis to generate the final probability map. A
detailed description of the different steps of the RSM algorithm
may be found in Dahlqvist et al. (2020). The use of forward-
modelled PSFs, as well as the estimation of the probabilities via
a forward-backward approach replacing the forward approach
presented here, are documented in Dahlqvist et al. (2021).

3.2. Parameter selection for the RSM map

Following the optimisation of the PSF-subtraction techniques to
be used in the RSM model (Sect. 2), the next step is to consider
the parametrisation of the RSM algorithm itself. The use of the
RSM algorithm requires the definition of four main parameters.
These parameters are (i) the crop-size θ for the planetary model
m, (ii) the definition of the region of the cube of residuals con-
sidered for the computation of the noise properties, whose esti-
mation can be done (iii) empirically or via best fit, and (iv) the
method used to compute the intensity of the potential planetary
candidate β. When defining the flux parameter β as a multiple of
the noise standard deviation, an additional parameter δ has to be
used to determine how far into the noise distribution tail we are
looking for potential planetary candidates.

An optimal set of parameters for the RSM algorithm is
computed separately for each PSF-subtraction technique, and is
based on a performance metric computed using the generated
RSM map. We do not rely on multiple simultaneous injections
of fake companions at different azimuths, as done previously, as
the RSM approach assumes a single planetary signal per annu-
lus. Injecting the fake companions sequentially would largely
increase the computation time. We therefore define, annulus-
wise, a single median position in terms of noise intensity, com-
mon to all PSF-subtraction techniques. This allows a fair com-
parison between the PSF-subtraction techniques when selecting
the best set of likelihood cubes to generate the final RSM map
in the last step of the auto-RSM framework. The determination
of this median position starts with de-rotation of the original
ADI sequence and the median-combination of the resulting set
of frames. We then compute the flux of every aperture contained
in the selected annulus, each aperture centre being separated
by a single pixel in contrast with the approach of Mawet et al.
(2014), where the apertures centre are separated by one FWHM.
We define the fake companion injection position as the centre
of the aperture for which the flux is the median of all the aper-
tures fluxes. We decided to compute this median-flux position in
the original ADI sequence, as the median-flux position inside
the PSF-subtracted final frame differs from one PSF subtrac-
tion technique to the other, although a single common position is
required for the final step of the auto-RSM algorithm. Regarding
the contrast used for the optimisation of the RSM map parame-
ters, for each PSF-subtraction technique, we select the average
contrast Ca,m obtained with the optimal set of parameters. Here,
we make the assumption that taking the median-flux position
and the average contrast should provide a balanced optimised
parametrisation that works for brighter as well as fainter plane-
tary signals.
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The performance metric used for the RSM algorithm optimi-
sation is then defined as the peak probability in a circular aper-
ture with a diameter of one FWHM centred on the position of
the injected fake companion in the final RSM map divided by
the maximum probability observed in the remaining part of the
annulus of width equal to one FWHM. This allows us to account
for potential bright speckles within the probability map as well
as for the intensity of the planetary signal. Having defined the
loss function used for the RSM parameter selection, we now con-
sider the different parameters that should be optimised.

3.2.1. Crop size

The crop size θ is one of the parameters affecting the final
probability map the most. This is especially true when relying
on forward-model versions of the PSF-subtraction techniques,
where a larger crop size should be considered to take advan-
tage of the modelling of the negative side lobes appearing on
either side of the planetary signal peak, which are due to self-
subtraction associated with PSF-subtraction techniques. Self-
subtraction depends on the relative position of the planetary can-
didate compared to the host star, with stronger self-subtraction
at small angular separations and almost no self-subtraction at
large angular separations. Indeed, the apparent movement of the
planetary candidate increases linearly with the distance to the
host star as the parallactic angles remain fixed but the radius
increases. Larger apparent movement between two frames goes
along with reduced self-subtraction. This implies that the opti-
mal crop size for forward-modelled PSF should decrease with
angular separation, as the negative side lobes appearing on either
side of the planetary signal peak are replaced by noise. The
selection of the optimal crop size should account for this effect
as well as the range of parallactic angles, which is specific to
each data set and also affects self-subtraction patterns. For PSF-
subtraction techniques relying on the off-axis PSF to model the
planetary signal, we consider a smaller range of crop sizes, as
we do not take into account the distortion due to reference PSF
subtraction. A maximum size of one FWHM is considered when
relying on off-axis PSFs compared to the two FWHMs used for
foward-model PSF-subtraction techniques. The definition of a
proper crop size is nevertheless still important, because consid-
ering the shape of the PSF peak should help in disentangling
planetary signals from speckle noise.

3.2.2. Parametrisation of the noise distribution

One of the corner stones of the RSM algorithm is the proper
definition of the likelihood function associated with every patch
contained in a given annulus. Four potential noise distribution
functions are considered to compute these likelihoods, namely
the Gaussian and the Laplacian distribution, the Huber loss
(Pairet et al. 2019), and a hybrid distribution built as a weighted
sum of Gaussian and Laplacian distributions (Dahlqvist et al.
2020). The first two noise distribution functions require esti-
mation of the noise mean and variance, whereas the other two
require additional parameters. Selection of the optimal distri-
bution is done automatically within the RSM algorithm via a
best-fit approach. However, the estimation of the parameters
characterising the residual noise distribution function neces-
sitates proper definition of the set of pixels to be consid-
ered. Different approaches are tested in auto-RSM to determine
the most relevant set of pixels inside the cube of residuals.
We have selected five possible ways to evaluate the noise
properties:

– Spatio-temporal estimation: The set of pixels incorporates
the pixels inside the selected annulus4 for all the frames
contained in the cube of residuals (see ‘Spatio-temporal’ in
Fig. 2). The distribution function parameters depend solely
on the radial distance a (µa and σ2

a).
– Frame-based estimation: The set of pixels incorporates the

pixels of a given frame inside the selected annulus (see
‘Frame’ in Fig. 2). The distribution function parameters
depend on both the radial distance a and the time-frame t
(µa,t and σ2

a,t).
– Frame with mask-based estimation: The set of pixels incor-

porates the pixels of a given frame inside the selected annu-
lus, apart from a region with a diameter of one FWHM
centred on the pixels for which the likelihood is estimated
(see ‘Frame with mask’ in Fig. 2). The distribution function
parameters depend on both the radial distance a and the pix-
els index ia (µa,ia and σ2

a,ia
).

– Segment with mask-based estimation: The set of pixels
incorporates the pixels of all frames inside a section (of
length equal to three FWHMs) of the selected annulus, apart
from a region with a diameter of one FWHM centred on the
pixels for which the likelihood is estimated (see ‘Segment
with mask’ in Fig. 2). The distribution function parameters
depend on both the radial distance a and the pixels index ia
(µa,ia and σ2

a,ia
).

– Temporal estimation: The last method is inspired by the
approach developed in Flasseur et al. (2018). This approach
relies on the cube of residuals before de-rotation. For a given
patch inside the selected annulus, the pixels selected for
computation of the distribution function parameters are the
ones sharing the same position within the cube of residuals
before de-rotation but taken at different times (see ‘Tempo-
ral’ in Fig. 2). All the frames except for the frame containing
the selected patch are therefore considered. The distribution
function parameters depend on both the radial distance a and
the pixels index ia (µa,ia and σ2

a,ia
).

The use of these different methods allows us to investigate which
part of the neighbourhood around the patch is relevant in order to
correctly estimate the noise profile. This explains the wide vari-
ety of proposed methods both in terms of temporal and spatial
position.

Depending on the region selected to compute the noise prop-
erties, a specific noise distribution function and parametrisation
can be selected for a single patch, a single frame, or the entire set
of frames and patches contained in the considered annulus. The
estimation of noise distribution parameters can be done empir-
ically or via best fit. The choice between empirical estimation
and estimation via best fit represents an additional parameter to
be considered during the RSM parameter optimisation.

3.2.3. Estimation of the planetary intensity

Two different methods were proposed to compute the planetary
intensity parameter β (Dahlqvist et al. 2020, 2021). The first one
relies on an additional parameter δ to define the expected posi-
tion of the potential planetary signal intensity in the noise distri-
bution. The intensity parameter β is defined as δ multiplied by
the estimated noise standard deviation (Dahlqvist et al. 2020).
A set of δ is tested and the optimal one is selected via max-
imisation of the total likelihood associated with a given angu-
lar distance (see Eq. (10)). In the case of auto-RSM, this last

4 By selected annulus, we are referring to the annulus of one FWHM
in width centred on the radial distance of interest a.

A54, page 6 of 28



C.-H. Dahlqvist et al.: Auto-RSM: An automated parameter-selection framework for the RSM map

Spatio-temporal Frame Frame with mask Segment with mask Temporal

Fig. 2. Graphical representation of the estimation of residual noise properties using the five proposed approaches. The red circle/point indicates the
pixel for which the likelihood is estimated. White and blue circles encompass the set of pixels used for computation of the noise properties. White
circles indicate that the entire set of frames from the derotated cube are used for the computation, while blue circles indicate that the estimation is
done frame-wise. Black circles define a mask, i.e. pixels that are not considered in the estimation.

step is removed and the optimal δ is selected during the auto-
RSM optimisation process. Preliminary tests have shown that
the optimisation of δ using the auto-RSM performance metric
can significantly reduce the background noise in the RSM prob-
ability map compared to the total likelihood-based optimisation
proposed in Dahlqvist et al. (2020), while leaving planetary sig-
nals almost unaffected for δ ≤ 5.

The second approach relies on Gaussian maximum likeli-
hood to define a pixel-wise intensity (Dahlqvist et al. 2021). The
estimation of the intensity parameter β via Gaussian maximum
likelihood requires the computation of a frame-wise standard
deviation. The expression for the pixel-wise intensity is

β̃ =

∑T
j i>j mj/σ j∑T

j m>j mj/σ j
, (11)

with σ j being the noise standard deviation, i>j the observed
patch, and mj the planet model for frame j. Frame-wise compu-
tation of the standard deviation implies that the mean and vari-
ance computation described in the previous section should be
performed via the frame-based estimation, the frame with mask-
based estimation, or the temporal estimation, while for the other
intensity computation methods, all five approaches can be used.

3.2.4. Sequential parameter optimisation

While optimisation of the PSF-subtraction techniques is done
in a single step, optimisation of the RSM parameters is done
partly sequentially. The estimation of the RSM map is indeed
much slower than the estimation of the contrast. Depending on
the region considered for the estimation of the noise properties,
the computation time can further increase, especially when rely-
ing on the frame with mask-based estimation or the temporal
estimation, preventing optimisation of all the parameters in a
single step. The selection of the optimal region to compute the
noise properties is therefore treated separately. The selection of
the optimal set of RSM parameters starts with computation of
the RSM map performance metric for the two methods used to
determine the intensity parameter β using the frame-based esti-
mation of the noise properties5. For both methods, a separate
performance metric is estimated for the selected range of crop
sizes, but also for the selected range of δ for the method defin-
ing the intensity as a multiple of the noise standard deviation.
5 The frame-based estimation of the noise properties has been selected
as initial guess because it is shared by the two approaches used to com-
pute the intensity parameter β, and is much faster than the frame with
mask and the temporal estimations.

The selection of the optimal value for all three parameters (i.e.
δ, the crop size θ and the method to compute the intensity) is
performed by comparing the obtained RSM performance met-
ric. The faster computation of the RSM map when relying on
the frame-based estimation of the noise properties allows opti-
misation of these three parameters in a single step. The next step
involves the selection of the optimal region for estimation of the
noise properties. Depending on the method selected to compute
the intensity, a reduced set of regions may be considered. Opti-
misation of the RSM parameters ends by determining whether
the noise properties are optimally computed empirically or via a
best fit.

3.3. Optimal combination of the likelihood cubes

Having optimised the parameters of the PSF-subtraction tech-
niques as well as the ones of the RSM algorithm, we are now
left with a series of optimal cubes of likelihoods. One of the
most interesting features of the RSM framework is its ability
to use several cubes of residuals generated with different PSF-
subtraction techniques to maximise the planetary signal, while
minimising the residual speckle noise. The RSM algorithm takes
advantage of the diversity of noise structures in the different
cubes of residuals. This diversity is reflected in the noise proba-
bility distribution but also in the repartition of maxima and min-
ima in the different speckle fields. By taking both aspects into
account, the RSM algorithm is able to better average out the
noise and improve the ratio between potential planetary signals
and the residual speckle noise.

Despite optimisation of the parameters, some PSF-
subtraction techniques may be less suited to generating a clean
cube of residuals for some data sets. Redundancies in the infor-
mation contained in several cubes of residuals may also degrade
the performance of the RSM map by increasing the relative
importance of some speckles. When dealing with several ADI
sequences of the same object, some sequences can also be much
noisier depending on the observing conditions. All these ele-
ments necessitate proper selection of the likelihood cubes used
to generate the optimal final RSM map. We propose the inves-
tigation of two possible approaches to select the set of likeli-
hood cubes used for computation of the final probability map, a
bottom-up approach and a top-down approach, making use of a
greedy selection framework.

As the RSM algorithm relies on spatio-temporal series
of likelihoods to compute annulus-wise probabilities (see
Eq. (9)), we start by defining the set of available series
of likelihoods for a given radius a by Ya =

{
Ya

c,m,∀c ∈
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[0,Nsequence],m ∈ [0,Ntechnique]
}
. The Ya

c,m time-series corre-
sponds to the set of likelihoods ηs,ia given in the Gaussian case
by Eq. (10), generated for the cube c with the PSF-subtraction
techniques m for all pixel indices ia of the annulus a. This last
step of auto-RSM is used to define a subset Za ⊂ Ya regroup-
ing the series of likelihoods maximising the performance metric
of the RSM probability map for annulus a. This selection step
shares the same performance metric as the RSM parameters opti-
misation step. To compute the performance metric, a single fake
companion injection is used for each annulus for the entire set of
PSF-subtraction techniques6. The selected set of time-series of
likelihoods Za are then concatenated to form a single time-series
per annulus and used to compute the probabilities via Eq. (9).
The RSM performance metric, estimated based on these proba-
bilities, allows us to select the optimal set Za.

3.3.1. Bottom-up approach

When relying on a bottom-up approach, the iterative selection
algorithm starts with an empty set Za. At each iteration, the
series of likelihoods Ya

c,m that leads to the highest performance
metric increase is added to the set Za. The procedure is repeated
until no additional series of likelihoods leads to an increase in the
performance metric. The bottom-up greedy selection algorithm
can be summarised by the following steps.

– For each series of likelihood contained in Ya, compute the
corresponding RSM map performance metric using the set
of series of likelihoods Za ∪ Ya

c,m for annulus a.
– At each iteration, select the series of likelihoods provid-

ing the largest incremental performance metric increase and
include the considered series of likelihoods Ya

c∗,m∗ in the set
of selected series Za. Remove from Ya the selected series
Ya

c∗,m∗, as well as any other series included in Ya that did not
lead to an increase in the performance metric.

– Repeat the previous two steps until Ya is empty.

3.3.2. Top-down approach

In contrast with the bottom-up approach, the top-down iterative
selection algorithm starts with a set Za = Ya and relies on prun-
ing steps to reduce the number of series of likelihoods included
in Za until an optimum is reached. The steps of the top-down
greedy selection algorithm are the following.

– For each series of likelihood contained in Za, compute the
RSM map performance metric corresponding to the set of
series of likelihoods Za \ Ya

c,m for annulus a.
– At each iteration, select the series of likelihoods provid-

ing the largest incremental performance metric increase and
remove the considered series of likelihoods Ya

c∗,m∗ from the
set of selected series Za.

– Repeat the two previous steps until no more incremental per-
formance metric decrease can be observed.

Pseudo codes of both approaches are provided in Tables E.1
and E.2. The potential redundancies in the information contained
in different cubes of likelihoods, as well as the iterative proce-
dure used by the RSM algorithm to generate the final probabil-
ity map, mean that the set of series of likelihoods are not truly
independent, which prevents us from finding the global optimum
while using a greedy approach. However, these bottom-up and

6 For a given annulus a∗, the largest contrast in the set Ca∗ ,m is used
for the bottom-up approach and the smallest for the top-down, as they
provide the best performance based on tests.

Fig. 3. Graphical representation of the optimisation of the FOV min-
imal rotation for the annular PCA with the two modes of the auto-
RSM algorithm for the SPHERE 1 data set of the EIDC. The full-
frame version (illustrated in the bottom left corner) considers a set of
annuli of width equal to one FWHM to provide a single set of optimal
parameters. The annular version (top left) considers successive annuli
of width equal to one FWHM to provide annulus-wise sets of optimal
parameters.

top-down greedy selection algorithms provide a good approxi-
mation of the global optimum in a reasonable amount of time.

3.4. Practical implementation

After having presented the different steps of the proposed opti-
misation framework for the RSM map algorithm, these steps can
now be merged into a single optimisation procedure, which is
implemented in the PyRSM package7. Two different modes of
this optimisation procedure are proposed: the full-frame mode
and the annular mode. The two modes share a common structure
but their output dependence on the angular separation is differ-
ent. In the full-frame mode, there is no dependence between the
optimal set of parameters and the angular separation to the host
star, with a single set of parameters being used for every annu-
lus. In the annular mode, the frames are divided into successive
annuli of pre-defined width, and a set of optimal parameters is
defined for each annulus. As the noise distribution and parame-
ters evolve with the angular separation, this second mode accom-
modates possible evolutions of the optimal parametrisation with
the angular separation to the host star. Figure 3 provides a graph-
ical representation of the two different modes in the case of opti-
misation of the FOV minimum rotation used for the annular PCA
estimation.

As illustrated in Fig. 3, in both cases the frames are divided
into successive annuli of one FWHM8 in width. The red dotted
circles represent the centres of the selected annuli on which the
apertures for the optimisation of the PSF-subtraction techniques
are centred, and for which probabilities are computed to optimise
the parameters of the RSM algorithm and select the optimal set

7 The PyRSM package is available at GitHub: https://github.
com/chdahlqvist/RSMmap
8 A width equal to one FWHM often provides the best performance,
but other widths can be used.
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Za. We do not consider all angular separations but a subset of
them separated by one FWHM, as we expect a slow evolution
of the parameters. This should give a good representation of the
evolution of the parameters or a good overview in the case of the
full-frame mode, while reducing the computation time9.

In the case of the full-frame mode, we consider a subset
of the annuli of the annular mode, with an increasing distance
between the selected annuli as we move away from the host star.
This allows us to increase the relative weight of small angular
separations, the noisier region being located near the host star,
and reduce the estimation time. The proposed annulus selection
rule for the full-frame mode can be summarised as

∆a =


FWHM if a ∈ [FWHM, 4 FWHM]
2 FWHM if a ∈]4 FWHM, 8 FWHM]
4 FWHM if a ∈]8 FWHM, amax]

, (12)

where ∆a is the separation between two successive annuli used
in the optimisation procedure, and amax is the largest annulus
to be considered in the RSM map computation. Selection of
the optimal parameter set for the PSF-subtraction techniques in
the full-frame mode is achieved by comparing the normalised
contrasts generated with the different tested parametrisations
summed over the selected angular separations. We start by com-
puting contrasts for a common set of parametrisations10 for
each considered angular separation. For a given angular sepa-
ration, the median of the obtained contrasts is then computed
and used to normalise all the contrasts. The normalised contrasts
are finally summed over the selected angular separations pro-
vided by Eq. (12) for each considered parametrisation. The opti-
mal set of parameters is then the one that minimises the summed
normalised contrast11. As the contrast decreases with the angu-
lar separation, the normalisation allows a proper summation of
the contrasts generated at the different angular distances. A sim-
ilar approach is used for optimisation of the RSM algorithm
and selection of the optimal likelihoods, although no normal-
isation is required according to the definition of the perfor-
mance metric. As regards the annular mode, no normalisation is
required as the optimisation is done separately for each selected
annulus.

The complete auto-RSM optimisation procedures for the two
considered modes are summarised in Tables E.3 and E.4. As
can be seen from both tables, the optimisation procedures can
be divided into four main steps, (i) optimisation of the PSF-
subtraction techniques, (ii) optimisation of the RSM algorithm,
(iii) optimal combination of models and sequences, and (iv)
computation of the final RSM probability map (respectively the
opti_model, opti_RSM, opti_combination, and opti_map func-
tion of the PyRSM class). In both modes we include the esti-
mation of a background noise threshold for every annulus, by
taking, for each annulus, the maximum probability observed in
the map generated with the reversed parallactic angles. Follow-
ing subtraction of the angular separation-dependent thresholds,
we set all negative probabilities to zero to generate the final
map. The threshold subtraction should help to reduce the noise,

9 A mode considering all angular separations has been tested and pro-
vides results close to the other modes while requiring a much longer
computation time.
10 We consider all the tested parametrisations for the NMF and LLSF
and the parametrisations tested during the initialisation of the Gaussian
process for the other PSF-subtraction techniques.
11 The inverse of the normalised average contrast summed over the con-
sidered angular separation is used as loss function for the Bayesian opti-
misation.

especially near the host star where most residual speckles are
observed. However, these thresholds should not be used as detec-
tion thresholds, as the noise statistics properties of the original
ADI sequence are not exactly equivalent to the ADI sequence
with sign-flipped parallactic angles.

Considering the existence of potential bright artefacts in the
map generated with the reversed parallactic angles, we rely on
a Hampel filter and a polynomial fit to smooth the radial evolu-
tion of the thresholds in the full-frame mode. As the parametri-
sation of the RSM algorithm has a large impact on planetary
signals and background noise levels, we do not apply the thresh-
old fit for the annular mode, as the RSM parametrisation evolves
with the angular separations. However, we do apply a smooth-
ing procedure for the parameters of the PSF-subtraction tech-
niques by applying a moving average after a Hampel filter. This
helps in smoothing potential discontinuities between annuli in
the set of optimal parameters and provides a more consistent
final probability map. As computation of the residual cubes is
done annulus-wise12, we need a single set of parameters13 for a
number of angular separations equal to the width of the annulus.
However, the RSM map computation requires the definition of
a set of parameters for every considered angular separation. A
radial basis multiquadric function (RBF) is used to perform an
interpolation (Hardy 1971) of the RSM optimal parameters for
the annular mode to provide a set of parameters for each angular
distance.

4. Performance assessment

4.1. Description of the data sets

As mentioned in the introduction, we base our performance
analysis on the data set of the EIDC ADI subchallenge
(Cantalloube et al. 2020). This data set regroups nine ADI
sequences, three for each considered HCI instrument, namely
VLT/SPHERE- IRDIS (Beuzit et al. 2019), Keck/NIRC2
(Serabyn et al. 2017), and LBT/LMIRCam (Skrutskie et al.
2010). The ADI sequences were obtained in H2-band for
SPHERE and Lp-band for the two other instruments. For each
ADI sequence, a set of four fits files is provided: the temporal
cube of images, the parallactic angles variation corrected
from true north, a non-coronagraphic or non-saturated PSF of
the instrument, and the pixel scale of the detector. The ADI
sequences are pre-reduced using the dedicated pre-processing
pipeline for the three instruments (more details about the
reduction are provided by Cantalloube et al. 2020).

As the LMIRCam ADI sequences regroup between 3219
and 4838 frames, we relied on moving averages to reduce this
number to around 250 frames in order to limit the computa-
tion time. The reduction of the number of frames starts with
the de-rotation of the original cube of images using the parallac-
tic angle variations provided. A moving average is then applied
on the de-rotated cubes along the time axis with a window and
step size of 20 frames for the LMIRCam sequence 1 and 3, and
15 frames for the LMIRCam sequence 2. The same is done on
the set of parallactic angle variations. The inverse reduced par-
allactic angle variations are then used to re-rotate the resulting
ADI sequences. In addition to reducing the computation time,
the moving average allows part of the noise to be averaged out

12 An annular version of the NMF algorithm has been developed for the
annular mode of the auto-RSM. The other PSF-subtraction techniques
rely already on an annulus-wise estimation of the residuals.
13 The set of parameters that has been optimised based on the set of
apertures centred on the annulus.
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in advance. More details about the nine ADI sequences are pro-
vided in Table F.1.

To assess the performance of the HCI data-processing tech-
niques, fake companions were injected by the EIDC organisers
using the VIP package (Gomez Gonzalez et al. 2017). Between
0 and 5 point sources were injected into each ADI sequence
for a total of 20 planetary signals within the entire EIDC ADI
subchallenge data set. These point sources were injected using
the opposite parallactic angles, avoiding any interference with
potential existing planetary signals while keeping the speckle
noise statistics14. The separation, the azimuth, and the con-
trast of the injected fake companions were chosen randomly.
The contrasts range between 2σ and 8σ based on a contrast
curve computed with the regular annular PCA implemented
in the VIP package (Gomez Gonzalez et al. 2017), which is
referred to as the ‘baseline’ in the performance analysis pre-
sented in Cantalloube et al. (2020). The detection maps of the
baseline consist in S/N maps computed using the approach of
Mawet et al. (2014). The detection maps generated with the
baseline approach are used in our model comparison.

4.2. Performance metrics

The performance assessment of HCI data-processing techniques
is done via the definition of a classification problem, count-
ing detections and non-detections on a grid of FWHM-sized
apertures applied to the detection maps. A true positive (TP)
is defined as a value above the threshold provided by the user
along with the S/N or probability maps within the FWHM aper-
ture centred on the position of the injected fake companion. Any
values above the provided threshold that are not in the set of
apertures containing injected fake companions are considered as
false positives (FPs). The false negatives (FNs) regroup all the
non-detections at the position of injected fake companions, while
the true negatives (TNs) are the non-detections at any other posi-
tion. Different performance metrics are computed using these
four categories:

– True positive rate: TPR = TP
TP+FN

– False positive rate: FPR = FP
FP+TN

– False discovery rate: FDR = FP
FP+TP

– F1 score: F1 = 2TP
FP+FN+2TP

In addition to the F1 score computed at the pre-defined threshold,
we follow the same approach as in Cantalloube et al. (2020) and
also consider the area under the curve (AUC) for the TPR, FPR,
and FDR as a function of the threshold to classify the different
versions of the proposed optimisation procedure. The AUCs of
the TPR, FPR, and FDR are preferred to the values of these lat-
ter at the provided threshold, as this allows us to mitigate the
arbitrariness of the threshold selection by considering their evo-
lution for a range of thresholds. The AUC of the TPR should be
as close as possible to 1 and the AUCs of the FPR and FDR as
close as possible to zero. The F1 score being the harmonic mean
of the recall and precision of the classification problem, it ranges
between 0 and 1, with values close to 1 being favoured (perfect
recall and precision).

14 As the auto-RSM relies on reversed parallactic angles to opti-
mise the model parameters, the optimisation is done on the original
ADI sequences in the case of the EIDC data sets. However, the ADI
sequences selected for the EIDC do not contain any known planetary
candidates. The optimisation should therefore not be affected.

4.3. Results

We have now all the elements to apply the auto-RSM optimisa-
tion procedure described in Sects. 2 and 3 to the nine selected
ADI sequences. Only PSF-subtraction techniques relying on an
off-axis PSF (and not on forward models) are considered dur-
ing the optimisation procedure in order to reduce the com-
putation time, considering the large set of ADI sequences on
which the method is tested, and the numerous parametrisations
of the auto-RSM algorithm that we consider. This also allows a
fair comparison with the results of the RSM algorithm already
used in Cantalloube et al. (2020), which relied only on the PSF-
subtraction techniques based on off-axis PSFs. We note however
that the PyRSM Python package also accommodates the use of
a forward-model version of KLIP and LOCI, where a param-
eter defines the maximum angular separation above which the
forward model is no longer considered. This allows us to take
advantage of the higher performance of forward-modeled PSF-
subtraction techniques at small angular separations, while limit-
ing their impact on the computation time at larger separations.

For the Bayesian optimisation of APCA and LOCI, the con-
trast is computed for respectively 80 and 60 points of the param-
eter space to initialise the Gaussian process, while 60 iterations
of the minimum-expectation Bayesian optimisation are used to
determined the optimal set of parameters. The smaller number
of points for the initialisation of LOCI comes from its smaller
set of parameters compared to APCA. The number of points for
the initialisation and the number of iterations have been chosen
to ensure the convergence to the global optimum15. The ranges
of possible values that have been selected to define the param-
eter space for the PSF-subtraction optimisation are shown in
Table G.1. Most ADI sequences share a common range of possi-
ble values. However, differences may be found in the definition
of the parameter space boundaries for the NIRC2 ADI sequences
due to the reduced number of frames.

4.3.1. Full-frame and annular auto-RSM parametrisation

Regarding the parameters of the full-frame version of auto-RSM,
the set of selected annuli is truncated at amax = 10λ/D to favour
small angular separations during the optimisation, the region
close to the host star being more noisy16. The order of the poly-
nomial fit of the annular threshold is set to three in order to limit
the impact of small artefacts appearing in the RSM map gen-
erated with inverted parallactic angles, while keeping the main
characteristics of the angular evolution of the noise. The full-
frame (FF) auto-RSM was tested with three different parametri-
sations, allowing the comparison between the bottom-up (BU)
and top-down (TD) selection of the optimal cubes of likelihoods,
as well as the comparison between the forward (F) and forward-
backward (FB) approaches to compute the final probabilities.

The annular version of auto-RSM requires the definition of
two additional parameters: the window sizes for the Hampel fil-
ter and the moving average used to smooth the PSF-subtraction
parameters (see Table E.4). The window sizes are respectively
equal to 3 and 5, and the window is centred on the angular
distance for which the filtered value or the moving average is
computed. Two different flavours of the annular auto-RSM were
tested, one relying on the annular framework for the optimisation

15 This parametrisation of the Bayesian optimisation algorithm ensures
that the same set of optimal parameters is found when the algorithm is
applied several times to the same ADI sequence.
16 It also allows us to reduce the computation time, the larger angular
separations being computationally more expensive.
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of the entire set of parameters (A), and one using the annular
framework for the PSF-subtraction parametrisation and the full-
frame framework for the RSM parametrisation and the selection
of the optimal set of cubes of likelihoods. The hybrid approach
mixing full-frame and annular frameworks (AFF) aims to reduce
the angular variability of the background residual probabilities,
which are mainly affected by the parametrisation of the RSM
model.

4.3.2. Performance metric computation and model
comparison

Having presented the five tested parametrisations of the full-
frame and annular auto-RSM, we now turn to the estimation
of the detection maps and the computation of the performance
metrics, which will allow us to rank these parametrisations and
compare them with both the original RSM algorithm and the
baseline presented in Cantalloube et al. (2020). All parametri-
sations of the auto-RSM were applied to the nine data sets of
the EIDC. Figure 4 presents the detection maps generated with
the full-frame auto-RSM using the bottom-up greedy algorithm
to select the optimal set of cubes of likelihoods and the forward
approach to compute the probabilities (auto-RSM FF_BU_F).
The detection maps for all five parametrisations of the auto-RSM
are provided in Appendix H. As can be seen from Fig. 4, the con-
trast between detected targets and background residual probabil-
ities is very high compared to standard S/N maps, demonstrating
the ability of the proposed approach to easily disentangle plan-
etary signals from residual speckles and ease the selection of a
detection threshold. As an illustration, the ratio between the peak
probability (or S/N) of the target and the mean of the background
probabilities (or S/Ns) in the detection map of the SPHERE 1
data set is larger than 3000 for the auto-RSM FF_BU_F, and
only 2 for the baseline17.

Following the EIDC procedure, a single threshold was
selected for all data sets, for each parametrisation of the auto-
RSM. This threshold allows estimation of the F1 score. As men-
tioned in Sect. 4.2, in addition to the F1 score, the AUCs of the
TPR, FPR, and FDR are also computed. Figure 5 illustrates the
computation of the different performance metrics for the nine
data sets, relying on the detection maps generated with the auto-
RSM FF_BU_F. The TPR, FPR, and FDR are computed for dif-
ferent threshold values ranging from zero to twice the selected
threshold. The AUCs of the TPR, FPR, and FDR are computed
in this interval. Apart from the NIRC2 data sets and LMIRCam-
2, the AUC of the FDR is very small for the remaining data sets
compared to the baseline. The AUC of the FPR is close to zero
for all data sets, especially for the SPHERE data sets for which
the AUC values are below the considered 0.001 limit.

Having illustrated the computation of the performance met-
rics for the different data sets, we now consider aggregated
results to compare the performance of the five auto-RSM
parametrisations with the baseline and RSM algorithm submis-
sion to the EIDC. The different rankings for the four considered
performance metrics are shown in Fig. 6. The light, medium,
and dark colours correspond to the three instruments, with the
VLT/SPHERE-IRDIS, Keck/NIRC2, and LBT/LMIRCam data
sets, respectively. Figure 6 highlights the fact that the RSM-
based approaches largely outperform the baseline with much
higher F1 scores, a much larger AUC of the TPR, and much
lower AUCs of the FDR and FPR. Regarding the five consid-

17 In the case of the baseline S/N map, the minimum S/N value has been
added to the S/N map to have only positive values.

ered auto-RSM parametrisations, they all present a smaller F1
score compared to the RSM algorithm parametrised manually,
except for the auto-RSM FF_BU_F, which performs slightly
better. However, when considering the other performance met-
rics, the auto-RSM approach seems to perform better in most
cases, especially when considering false positives. These results
demonstrate the ability of the auto-RSM approach to better cope
with residual speckle noise, while maintaining a high detec-
tion rate. This is a key element in reducing arbitrariness in the
selection of the detection threshold. The selection of a detection
threshold is indeed often a complex task, especially when rely-
ing on S/N maps, as the noise probability distribution is often
non-Gaussian.

Looking in more detail at the five parametrisations of the
auto-RSM, we see clearly that the auto-RSM FF_BU_F leads to
the best performance metrics in most cases, and should therefore
be favoured for detection when using the auto-RSM approach.
The results for the annular and hybrid annular full-frame auto-
RSM seem to demonstrate that considering the radial evolution
of the optimal parameters does not lead to a significant improve-
ment in performance. The slightly degraded performance of the
annular mode can be explained by the fact that the auto-RSM
optimisation relies on the inverted parallactic angle approach.
The noise structure being similar but not equivalent when invert-
ing the parallactic angles, the annular optimisation is more
affected by local differences in the noise structure. These local
differences in the noise structure prevent the algorithm from
improving the overall performance. Considering the longer com-
putation time required for the annular auto-RSM, and its perfor-
mance, the full-frame version should clearly be preferred.

As regards the difference between the bottom-up and top-
down approaches, the better results obtained with the bottom-up
approach may be explained by its ability to select the cube of
likelihoods in the right order. Indeed, the probability associated
with a planetary signal increases along the temporal axis when
computing the RSM detection map. This probability increases
faster and stays high for longer when selecting first the cube
of likelihoods providing the highest probability ratio between
injected fake companion peak probability and background resid-
ual probabilities. Sorting the cubes of likelihoods in descending
order of quality leads to a higher average probability for the plan-
etary signal, while it should not affect the probability associated
with residual noise.

In addition to the automated selection of the optimal
parameters, the results obtained with the auto-RSM FF_BU_F
show a clear performance improvement compared to the set
of RSM detection maps originally submitted to the EIDC
(Cantalloube et al. 2020). We observe an overall reduction of
76% and 33% compared to the RSM submission for the AUC
of the TPR and the AUC of the FDR, respectively, as well as
an increase of 19% and 2% for the AUC of the TPR and the F1
score, respectively.

4.4. Commonalities in optimal parametrisations

The proposed auto-RSM optimisation procedure is relatively
time consuming even when relying on the full-frame mode,
which may potentially preclude its use for very large surveys.
In this section, we therefore investigate the possibility of using a
smaller set of ADI sequences to generate an optimal parametri-
sation, which could then be applied to a larger set of ADI
sequences. This requires a homogeneity in the sets of opti-
mal parameters selected for different ADI sequences gener-
ated by a given HCI instrument, as surveys generally consider
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Fig. 4. Detection maps corresponding to the nine data sets of the EIDC, generated with the full-frame version of auto-RSM using the bottom-up
approach for the selection of the optimal set of cubes of likelihoods, as well as the forward approach for the computation of the probabilities. The
yellow circles are centred on the true position of the detected targets (TP) and the red circles give the true positions of FNs.

multiple observation sequences generated by a single HCI instru-
ment. Sources of heterogeneities in the parametrisation of ADI
sequences for a common instrument can originate from the num-
ber of frames, the observing conditions, the parallactic angle
range, or the target position in the sky.

As the EIDC data set contains multiple ADI sequences gen-
erated with different instruments under different observing con-
ditions and with different characteristics (see Table F.1 for the
frames number, FOV rotation), it should allow us to estimate
the homogeneity of the parametrisations for a common instru-
ment, and potential heterogeneity between instruments. As the
full-frame version of the optimisation algorithm provides the
best performance, we rely on the set of parameters generated

by this mode to conduct our analysis. We define a heterogene-
ity metric, which differs for the PSF-subtraction techniques and
the RSM algorithm. We use the distance between parametrisa-
tions as a metric with which to gauge the performance of the
PSF-subtraction techniques. This distance is defined as the dif-
ference between the optimal values of all the parameters (see
Table I.1) for each pair of ADI sequences. For each parameter,
we normalise the absolute value of the distance between the two
considered ADI sequences with the mean of the two optimal
values used to compute the distance. This allows proper com-
parison of the relative weight of the different parameters. For
the RSM parametrisation, most parameters are non-numerical
and we therefore replace the notion of distance by the notion
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Fig. 5. True positive rate (green), false discovery rate (red) and false positive rate (dash-dotted blue line) computed for a range of thresholds
varying from zero to twice the selected threshold (represented by a dotted vertical line). These curves are computed for the nine data sets of the
EIDC, relying on the detection maps estimated with the full-frame version of auto-RSM using the bottom-up approach for the selection of the
optimal set of cubes of likelihoods, as well as the original forward approach for the computation of the probabilities. The green line representing
the TPR should be as close as possible to 1 for the entire range of thresholds, while the red and dash-dotted blue line representing respectively the
FDR and the FPR, should be as close as possible to zero.

of similarity. For a given pair of ADI sequences, as a metric for
each parameter we use the percentage of dissimilarity within the
entire set of PSF-subtraction techniques, i.e. the number of PSF-
subtraction techniques for which the parameter values are differ-
ent divided by the total number of PSF-subtraction techniques.

Figure 7 shows the cumulative normalised distances for
every pair of ADI sequences within each instrument, along with
the relative weight of all the parameters. The black line gives the
mean distance computed based on the 36 possible pairs of ADI

sequences. A cumulative distance below the back line indicates a
higher homogeneity of the parameters for the considered pair of
ADI sequences. As can be seen from Fig. 7, the ADI sequences
generated by the SPHERE and LMIRCam instruments seem to
be characterised by a relatively homogeneous set of parame-
ters, which implies that a common set of parameters could be
defined and used for larger surveys. The larger heterogeneity
for the NIRC2 samples, which seems to be mainly driven by
the NIRC2-2 sequence, may be explained by the ADI sequence
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Fig. 6. Ranking of the different parametrisations of the full-frame and annular versions of the auto-RSM along the original RSM and baseline
presented in Cantalloube et al. (2020). Panel a provides the ranking based on the F1 score obtained at the selected threshold. Panel b gives the
ranking based on the AUC of the TPR. Panel c gives the ranking based on the AUC of the FPR, while panel d provides the ranking based on
the AUC of the FDR. FF stands for full-frame, A for annular, AFF for annular full-frame (annular approach used to optimise the PSF-subtraction
parameters and full-frame approach used for the RSM parameter optimisation and the selection of the optimal set of cubes of likelihoods), and
BU, TD, F, and FB as explained in Sect. 4.3.1. The light, medium, and dark colours correspond to VLT/SPHERE-IRDIS, Keck/NIRC2, and
LBT/LMIRCam data sets, respectively.
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Fig. 7. Normalised distances between PSF-subtraction-technique
parameter sets for nine pairs of ADI sequences. The different coloured
bars provide the contribution of the different parameters to the cumu-
lative normalised distance. The considered pairs of ADI sequences are
generated by the same instrument. The black horizontal line represents
the normalised distances averaged over the 36 possible pairs of ADI
sequences.

characteristics (see Table I.1), or by differences in terms observ-
ing conditions.

Considering now the parametrisation of the RSM algorithm,
the results presented in Fig. 8, demonstrate again the larger para-
metric heterogeneity for the NIRC2 samples, with the NIRC2-3
sequence affecting the dissimilarity measures the most. This con-
firms the particularity of the NIRC2-3 sequence, which seems
to have a different noise structure compared to the other ADI
sequences. The crop size of 3 pixels as well as the use of a best-fit
approach to estimate the noise properties are common to all ADI
sequences (see Table I.1). The heterogeneity is mainly driven by
the definition of the region used for computation of the noise prop-
erties, which tends to demonstrate the advantage of considering
multiple approaches for estimation of the noise properties. We
finally consider the set of selected PSF-subtraction techniques
used to generate the final RSM map when relying on the full-frame
bottom-up auto-RSM. We see from Table 2 that the SPHERE ADI
sequences share the same set of PSF-subtraction techniques while
the set is different for the other ADI sequences.
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Table 2. Selected PSF-subtraction techniques for the computation of
the final RSM-detection map for the nine ADI sequences in the case of
the full-frame version of the auto-RSM procedure using the bottom-up
approach.

ID/Selected model APCA NMF LLSG LOCI

SPHERE 1 X X X X
SPHERE 2 X X X X
SPHERE 3 X X X X
NIRC2 1 X X
NIRC2 2 X
NIRC2 3 X X
LMIRCam 1 X X
LMIRCam 2 X X X
LMIRCam 3 X X X

In addition to the estimation of relative distances and dissim-
ilarity measures, we also applied a K-means clustering algorithm
to classify the nine ADI sequences into three clusters based on
the set of parameters used for the PSF-subtraction techniques
and the RSM algorithm, as well as the likelihood cubes selected
for the detection map computation. Using these 32 parameters to
characterise each ADI sequence18, the K-mean algorithm classi-
fied NIRC2-1 and NIRC2-3 into the first group, NIRC2-2 into
the second group, and the remaining sequences into the third
group. As expected, the NIRC2-2 is not in the same group as
the other sequences generated with the NIRC2 instrument (see
Fig. 7 and Table 2). For the other sequences, we reach the same
conclusion as before, apart from the fact that both SPHERE and
LMIRCam data sets are regrouped into a single cluster whose
centre is close to the SPHERE-1 ADI sequence. Increasing the
number of clusters does not lead to clear separation between the
SPHERE and LMIRCam instruments, demonstrating the simi-
larity of the ADI sequences generated by both instruments.

We eventually tested the feasibility of using a single set of
parameters for a given instrument, allowing us to investigate the

18 The categorical parameters such as the RSM parameters and the opti-
mal set of likelihood cubes have been binarised. A standard normalisa-
tion, using the parameters mean and variance, has been applied on the
data before the clustering algorithm. The K-means clustering algorithm
relying on euclidean distance, a proper scaling of the parameters is nec-
essary to avoid favouring some parameter.
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Fig. 9. True positive rate (green), False discovery rate (in red), and False
positive rate (dash-dotted blue line) computed for a range of thresh-
olds varying from zero to twice the selected 0.45 detection threshold
(represented by a dotted vertical line). These curves are computed for
the SPHERE-2 and SPHERE-3 data sets of the EIDC, relying on the
detection maps estimated with the SPHERE-1 optimal set of parame-
ters along with the full-frame version of auto-RSM using the bottom-up
approach.

sensitivity of the detection map estimation to the parametrisa-
tion. We selected the optimal parametrisation of the SPHERE-1
data set as this parametrisation is the closest to the centre of the
SPHERE-LMIRCam cluster, and estimated the detection maps
for the SPHERE-2 and SPHERE-3 data sets. Despite the inho-
mogeneity of the SPHERE data sets in terms of observing con-
ditions and selected wavelengths, the obtained detection maps
differed only slightly from the one presented in Fig. 4, with a
reduced probability for one of the five targets in the SPHERE-
3 data set but with a similar background noise level. As can be
seen from Fig. 9, the change in terms of AUC of the FPR and
FDR is negligible, while the F1 score and the AUC of the TPR
reduce a little when considering the 0.45 probability threshold
but remain similar if the threshold is adapted.

Considering all these results, the use of a single set of
parameters for large surveys seems feasible in most cases, espe-
cially for the SPHERE and LMIRCam instruments. However, as
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demonstrated by the ADI sequences generated by NIRC2, when
large dissimilarities are observed in terms of background noise
level, a more refined subdivision should be considered.

5. Conclusion

In this paper, we present a new automated optimisation frame-
work for the RSM approach, called auto-RSM. The proposed
automated parameter selection is designed to reduce the com-
plexity and possible arbitrariness of parameter selection when
using HCI post-processing techniques and to provide users with
a simple framework to compute reliable detection maps. Based
on a single or multiple ADI sequences, after parameter optimisa-
tion, auto-RSM generates a single detection map with high con-
trast between planetary candidates and residual speckles.

The proposed multi-step parameter-optimisation framework
can be divided into three main steps, (i) the selection of the
optimal set of parameters for the considered PSF-subtraction
techniques, (ii) the optimisation of the RSM approach parametri-
sation, and (iii) the selection of the optimal set of PSF-
subtraction techniques and ADI sequences to be considered
when generating the final detection map. The selection of the
optimal set of parameters for the PSF-subtraction techniques
is based on the minimisation of the mean contrast within the
selected set of annuli, while the optimisation of the RSM
approach and selection of the optimal set of cubes of likelihoods
are based on the probability ratio between injected fake com-
panion peak probability and background residual probabilities.
As some PSF-subtraction techniques have a continuous param-
eters space, a Bayesian optimisation framework is proposed to
explore the parameter space and select the optimal set of param-
eters. Two different versions of the auto-RSM algorithm are pro-
posed, a full-frame version where a single set of parameters is
selected for all angular separations, and an annular version where
the set of optimal parameters evolves with radial distance. Dif-
ferent parametrisations of the full-frame and annular auto-RSM
are tested to investigate the added value of different methods to
select the optimal set of cubes of likelihoods or to compute the
final probabilities.

The data sets of the EIDC and the performance assessment
framework proposed in Cantalloube et al. (2020) are used to
compare the performance of the different versions and parametri-
sations of the auto-RSM. The performance assessment is per-
formed via the computation of a data set-dependant F1 score at
a predefined threshold, as well as the estimation of the AUC of
the TPR, FPR, and FDR. The auto-RSM results demonstrate the
interest of the approach: in most cases, it provides better per-
formance than the original RSM-detection map submitted to the
EIDC, while the original RSM map was already at or close to
the top of the ranking for all performance metrics in the EIDC.
The full-frame auto-RSM using the bottom-up approach to select
the optimal set of cubes of likelihood and the forward approach
to compute the RSM probabilities provides the best overall per-
formance in terms of detection. Considering the longer compu-
tation time and lower performance of the annular version, the
full-frame auto-RSM should be preferred.

As auto-RSM is computationally expensive even when using
the full-frame version, we investigate the possibility of using a
common set of parameters for each instrument. We studied the
commonalities existing between the parametrisations of the nine

data sets of the EIDC, and found that the distance between the
parametrisations for a common instrument is smaller than the
distance between the parametrisations of different instruments.
Potential differences between the noise characteristics of differ-
ent data sets generated with a common instrument should nev-
ertheless be taken into account, as illustrated by the NIRC2 data
sets. However, the use of a single parametrisation (or a limited
number of them) for large surveys seems possible.

The auto-RSM framework is not limited to the RSM algo-
rithm and the first step of the algorithm may be used separately
to optimise the parametrisation of PSF-subtraction techniques
and generate S/N maps. A S/N version of the proposed optimi-
sation framework, called auto-S/N, was developed. Despite the
degraded performance compared to auto-RSM, auto-S/N is char-
acterised by a reduced computation time and can sometimes be
a good complement to auto-RSM. All these versions of the pro-
posed optimisation framework are available in a single Python
package called PyRSM. This package offers a parameter-free
detection map computation algorithm with a very low level of
residual speckles, especially for the auto-RSM, allowing a sim-
ple detection threshold selection.
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Appendix A: Mathematical notations for auto-RSM

This Appendix regroups in Table A.1, all the mathematical notations used throughout the paper.

Table A.1. Description of the mathematical notations for the variables used in the Bayesian optimisation algorithm, the RSM detection map and
Auto-RSM optimisation framework.

Symbol Dimension Comments

Bayesian optimisation
O1:t t Set of observations of the loss function
t 1 Number of tested sets of parameters
p1:t np × t Tested sets of parameters
f (p) 1 Loss function evaluated with the set of parameters p
GP

(
m(p1:t), K

)
1 Gaussian process returning the mean and variance of a Gaussian distribution

over the possible values of f at p
m(p) 1 Mean of the Gaussian distribution of the loss function at p
K 1 Covariance function of the tested set of parameters p1:t
µ(pt+1) 1 Mean of the Gaussian posterior distribution at pt+1
σ(pt+1) 1 Variance of the Gaussian posterior distribution at pt+1
p̂ 1 Set of parameters providing the current known maximum value of the

loss function f (̂p)
RSM map
xia θ × θ × T La Patch of residuals centred on pixel ia

Fia T La Realisation of a two-state Markov chain representing the state of
the system for pixel ia

m θ × θ Cropped planetary signal (off-axis PSF)
εs,ia 2θ × θ × T La Error terms associated with the two regimes
S ia T La State of the system for every pixel ia

ξs,ia 2 × T La Probability associated with state s for every pixel ia

ηs,ia 2 × T La Likelihood of being in each state for every pixel ia

pq,s 2 × 2 Transition probabilities between the regimes
µ 1 Mean of the residuals contained in an annulus a, with width equal to θ
σ 1 Standard deviation of the residuals contained in an annulus a, with width

equal to θ
β 1 Intensity of the planetary signal in the cube of residuals
a 1 Annulus index
La 1 Number of pixels included in the annulus a
T 1 Number of frames in the cube of residuals
ia 1 Index associated with every pixel from every frame in the annulus a

(ranges from 1 to T La)
θ 1 Angular size of the considered planetary signal ( set to 1λ/D)
δ 1 Multiplicative factor of the noise standard deviation providing the

intensity parameter β
Auto-RSM
i N pix Vectorised science image/annulus before speckle subtraction
m N pix Vectorised planetary signal (off-axis PSF) inside the selected annulus
amax 1 Largest angular separation considered for the detection map computation
Ca,m,c La × Ntechnique × Nsequence Average contrast obtained with the optimal set of parameters
Ma,m,c La × Ntechnique × Nsequence Position of the median contrast aperture within the selected annulus
PPS F

a,m,c La × Ntechnique × Nsequence Optimal set of parameters for the reference PSF computation
PPS F,∗

a,m,c La × Ntechnique × Nsequence Optimal set of parameters for the reference PSF smoothed via moving average
PRS M

a,m,c La × Ntechnique × Nsequence Optimal set of parameters for the computation of the RSM map
PRS M,∗

a,m,c La × Ntechnique × Nsequence Optimal set of parameters for the computation of the RSM map
interpolated via RBF

Ya La Set of likelihood time series available (one per couple of ADI sequence
and PSF-subtraction technique) for the computation of the RSM map

Ya
c,m La × Ntechnique × Nsequence Likelihood time series

Ya
h∗ La × T Likelihood time series maximising the RSM performance index at a

given iteration
Za La Selected likelihood time series for the computation of the final detection map
Ta La Annulus-wise thresholds computed with flipped parallactic angles
T ∗a La Smoothed annulus-wise thresholds computed with flipped parallactic angles

A54, page 17 of 28



A&A 656, A54 (2021)

Appendix B: Computation of the expected
improvement and update of posterior probability
moments

The objective of the expected improvement approach is to esti-
mate the magnitude of the improvement that a set of parame-
ters can potentially yield in terms of loss function value. As the
true maximum value of the loss function f (p∗) is not known,
Mockus et al. (1978) propose maximising the expected improve-
ment with respect to a known maximum f (̂p). They define the
improvement function as

I(pt+1) = max
{
0, f (pt+1) − f (̂p)

}
, (B.1)

where I(pt+1) is positive when the prediction is higher than the
current maximum loss function value and zero otherwise. The
new set of parameters pt+1 is found by maximising the expected
improvement, as follows:

pt+1 = argmaxpt+1
E

({
0, f (pt+1) − f (̂p)

}
| O1:t

)
. (B.2)

The likelihood of improvement I when considering the
Gaussian process giving the posterior distribution is then

1
√

2πσ(pt+1)
exp

(
−

(µ(pt+1) − f (̂p) − I)2

2σ2(pt+1)

)
, (B.3)

with µ(pt+1) and σ(pt+1) being the mean and standard deviation,
respectively, of the posterior probability f (p1:t) ∼ N(0, K) for
the new set of parameters pt+1. The expected improvement is
then simply the integral over this likelihood function:

E(I(pt+1)) =

∫ ∞

0

I
√

2πσ(pt+1)
exp

(
−

(µ(pt+1) − f (̂p) − I)2

2σ2(pt+1)

)
dI, (B.4)

which gives after integration by part

E(I(pt+1)) = σ(pt+1)[
µ(pt+1) − f (̂p)

σ(pt+1)
Φ

(
µ(pt+1) − f (̂p)

σ(pt+1)

)
+ φ

(
µ(pt+1) − f (̂p)

σ(pt+1

)]
. (B.5)

Considering the improvement function definition, we obtain the
expression of Eq. 7,

EI(pt+1) ={
(µ(pt+1) − f (̂p))Φ(Z) + σ(pt+1)φ(Z) if σ(pt+1) > 0
0 if σ(pt+1) = 0

, (B.6)

with Z =
µ(pt+1)− f (̂p)
σ(pt+1) .

We see that the computation of EI requires an estimation of
the mean µ(pt+1) and standard deviation σ(pt+1) of the poste-
rior probability of f (p1:t). Starting from the posterior probability
f (p1:t) ∼ N(0, K) and taking into account the new set of param-
eters pt+1 we get(

f (p1:t)
f (pt+1)

)
= N

(
0,

(
K k
kT k(pt+1, pt+1)

))
, (B.7)

where k =
{
k(p1, pt+1), k(p2, pt+1), . . . , k(pt, pt+1)

}
.

We then get the following expression for the posterior distri-
bution using the Sherman-Morrison-Woodbury formula:

P( f (pt+1) | O1:t, pt+1) = N(µ(pt+1), σ2(pt+1)), (B.8)

with the mean and variance given by

µ(pt+1) = kT K−1 f (p1:t), (B.9)

σ2(pt+1) = k(pt+1, pt+1) − kT K−1 k. (B.10)

Appendix C: Average contrast computation via
multiple fake companion injections

In this section we aim to assess the validity of our approxima-
tion when computing the average contrast by considering the
agreement between the average contrasts generated using mul-
tiple injections and sequential injections. When relying on mul-
tiple injection, the self- and over-subtraction associated with
an injected fake companion may affect neighbouring apertures,
especially at small angular separations. We impose, for multi-
ple injections, a minimal separation of two FWHMs between the
positions of two injected fake companions in order to reduce the
impact of these interferences on the estimation of the average
contrast. The number of injected fake companions is therefore
limited to half the number of apertures contained in a given annu-
lus with a maximum of eight fake companions, which should
provide a reliable estimate of the speckle field within the annu-
lus while limiting the interference between fake companions. As
can be seen from Fig. C.1, the intensity patterns for multiple
injections are similar to the ones observed for sequential injec-
tions, with the companions having the smallest or largest flux
positioned at the same azimuth.
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(b) Multiple injections

Fig. C.1. Comparison of the recovered intensities of eight fake com-
panions injected sequentially or at once, at a radial distance of 2 λ/D,
using the SPHERE 1 data set of the EIDC, and relying on annular PCA
to generate the reference PSF with a number of principal components
equal to 20.

Figure C.2 provides the evolution of the average contrast
computed with the sequential and multiple injections for an
increasing number of fake companions. As expected the average
contrast does not vary significantly for the sequential injections.
However, for multiple injections, the average contrast starts to
strongly diverge for distances between the injected positions of
neighbouring companions below two FWHMs. A distance of
two FWHMs corresponds to 9, 18, and 33 companions for an
angular distance of 2, 4, and 8 λ/D, respectively. Looking at Fig.
C.2, we see that for eight injected fake companions, the average
contrasts generated with the multiple and sequential injections
are very similar.

Besides the distance between the average contrasts gener-
ated by the two approaches, the behaviour of these average con-
trasts when modifying the parameters of the PSF-subtraction
techniques is the most important element, as it drives the opti-
mal parameter selection. We computed the average contrasts for
several different numbers of principal components in the case of
annular PCA to determine if the behaviour of the contrast curves
generated with multiple and sequential injections was similar.
Figure C.3 shows the evolution of the average contrast with
the number of principal components used for the reference PSF
computation for different angular separations. Although there
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Fig. C.2. Comparison of the average contrasts obtained with sequen-
tial and multiple injections for an increasing number of injected fake
companions. The curves have been computed at three different angu-
lar separations (2, 4, and 8 λ/D), using the SPHERE 1 data set of the
EIDC, and relying on annular PCA to generate the reference PSF with
a number of principal components equal to 20.

exists a gap between both curves, the two curves seem to evolve
in parallel, especially for smaller angular distances. We observe
high Pearson correlations between the curves generated with
multiple and sequential injections, with a correlation of 0.996,
0.992, and 0.704 for an angular distance of respectively 2, 4, and
8 λ/D. This seems to indicate that the same set of parameters
will minimise the average contrast and confirm the validity of
our approximation when relying on multiple injections to com-
pute the average contrast.
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Fig. C.3. Comparison of the average contrasts obtained with sequential
and multiple injections for a range of principal components used by the
annular PCA to generate the reference PSF (between 10 and 45 princi-
pal components). The curves were computed at three different angular
separations (2, 4, and 8 λ/D) using the SPHERE 1 data set of the EIDC.

Appendix D: Auto-S/N

D.1. Algorithm definition

We define in this section, the auto-S/N algorithm which is
derived from the auto-RSM framework. The first step of the
auto-RSM algorithm, i.e. the parameter optimisation of the PSF-
subtraction techniques, is used to generate an optimised cube
of residuals for every considered PSF-subtraction technique. As
in the case of auto-RSM, the auto-S/N aims to combine the
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Fig. D.1. Detection maps corresponding to the SPHERE and NIRC2 data sets generated with different parametrisations of the full-frame and
annular auto-S/N along the baseline model presented in (Cantalloube et al. 2020). The SPHERE-2 and NIRC2-3 detection maps are not shown,
as no fake companions were injected in these two data sets. See Sect. 4.3.1 for the definition of the acronyms used to characterise the auto-RSM
versions. The yellow circles are centred on the true position of the detected targets (TP) and the red circles give the true positions of FNs.
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Fig. D.2. S/N maps corresponding to the LMIRCam data sets generated with different parametrisations of the full-frame and annular auto-S/N
along the baseline model presented in (Cantalloube et al. 2020). See Sect. 4.3.1 for the definition of the acronyms used to characterise the auto-
RSM versions. The yellow circles are centred on the true position of the detected targets (TP) and the red circles give the true positions of FNs.
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Fig. D.3. Ranking of the different parametrisations of the full-frame and annular versions of the auto-S/N along the full-frame bottom-up forward
auto-RSM and the baseline presented in (Cantalloube et al. 2020). Figure (a) provides the ranking based on the F1 score obtained at the selected
threshold. Figure (b) gives the ranking based on the AUC of the TPR. Figure (c) gives the ranking based on the AUC of the FPR, while Figure (d)
provides the ranking based on the AUC of the FDR. See Sect. 4.3.1 for the definition of the acronyms used to characterise the auto-RSM versions.
The light, medium, and dark colours correspond to the VLT/SPHERE-IRDIS, Keck/NIRC2, and LBT/LMIRCam data sets, respectively.

obtained cubes of residuals to generate a final detection map. As
the cubes of residuals generated by the different PSF-subtraction
techniques have their own noise distribution, a simple mean-
combination is not possible. A simple way to overcome this lim-
itation is to mean-combine the S/N maps instead of the cubes
of residuals. As the dissimilarities in the noise structure of the
different cubes of residuals are reflected in their respective S/N
maps, part of the residual speckle noise should average out. The
main difficulty pertains to the proper definition of the throughput
to estimate the contrast used for the optimal selection, as we are
combining S/N maps.

Considering the detection map obtained by averaging N dif-
ferent S/N maps, each pixels S/N is defined as:

S/Nia =
1
N

N∑
j=1

Fia, j

Na, j
(D.1)

=
1
N

∑N
j=1 Fia, j

∏N
k, j Na,k∏N

k=1 Na,k
, (D.2)

with Fia, j the flux associated with the aperture centred on pixel
ia, where a is the considered annulus in the mean-combined
de-rotated cube of residuals generated with the PSF-subtraction
technique j, and Na, j is the associated noise computed in annu-
lus a. Following this expression, the throughput obtained from
the injection of a fake companion at pixel ia is given in the case
of a combination of N S/N maps:

throughputia =

∑N
j=1 IFia, j

∏N
k, j Na,k∑N

j=1 RFia, j
∏N

k, j Na,k
, (D.3)

where IF stands for injected flux and RF for retrieved flux. The
throughput becomes simply a sum of fluxes weighted by the
noises of the other considered PSF-subtraction techniques. This
implies that the throughput associated with a less noisy mean-
combined de-rotated cube of residuals has a higher weight as
both the injected flux and retrieved flux are multiplied by larger
noise values than the others. The noise appearing in the expres-
sion of the contrast (see eq. 1) is then computed as the noise
averaged over the different S/N maps for the considered angular
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separation a. Similarly to the parameter optimisation for the
PSF-subtraction techniques, fake companions are injected at dif-
ferent azimuths to obtain an average contrast. The obtained aver-
age contrast is then used to select the optimal set of S/N maps
either via the bottom-up or the top-down approach described
respectively in Tables E.1 and E.2. As for the auto-RSM, the
auto-S/N can also use either the full-frame or the annular opti-
misation mode.

D.2. Performance assessment

We follow the same procedure as the one proposed in Section
4 to assess the performance of different parametrisations of the
auto-S/N. We consider the full-frame case as well as the annu-
lar and annular full-frame optimisation mode along the bottom-
up and top-down approach for the PSF-subtraction techniques
selection, similarly to the auto-RSM performance assessment in
Section 4. The S/N maps combinations generated by the four
parametrisations of the auto-S/N may be found in Fig. D.1 and
D.2. As can be seen from these graphs, the auto-S/N clearly per-
forms better than the baseline proposed in (Cantalloube et al.
2020), although the results are degraded compared to the ones
obtained with the auto-RSM (see Fig. 4). This degraded per-
formance was expected, considering the higher performance
of RSM probability maps compared to standard S/N maps as
demonstrated in Dahlqvist et al. (2020).

These results are confirmed by the performance metrics
shown in Figs. D.3, with both a lower TPR and a higher FPR
for the auto-S/N versions compared to the full-frame-bottom-up
forward auto-RSM. As in the case of the auto-RSM, the full-
frame auto-RSM versions perform better than the annular and
hybrid annular full-frame versions.

Considering the shorter computation time compared to auto-
RSM and the better performance compared to standard S/N
based PSF-subtraction techniques, the auto-S/N can be consid-
ered as an interesting alternative to the auto-RSM for large sur-
veys. The auto-S/N may also represent a good complement to the
auto-RSM19, as it may lead to the identification of planetary sig-
nals missed by the auto-RSM as illustrated by the LMIRCam-3
data set (to be compared with Fig. 4).

Appendix E: Auto-RSM pseudo-code

This Appendix presents first the pseudo-codes of the greedy
algorithms used to select the optimal set of likelihood cubes
generating the final RSM detection map (see Table E.1 and
E.2 for respectively the bottom-up and top-down approaches).
Tables E.3 and E.4 then provide the pseudo-codes for the auto-
RSM optimisation algorithm in the full-frame mode and annular
mode.

19 The computation time is further reduced when the auto-RSM has
already been applied to a data set.

Table E.1. Pseudo-code for the bottom-up greedy selection algorithm.
The PI symbol represents the RSM performance metrics.

1: Ya =
{
Ya

c,m,∀c ∈ [0,Nsequence],m ∈ [0,Ntechnique]
}

2: Za = ∅
3: PIa

p = 0
4: While Ya , ∅ do
5: For h = 1 to length(Ya) do
6: PIa

h = PI([Za,Ya
h])

7: End for
8: If max(PIa

h) > PIa
p

9: Ya
c∗,m∗ = Ya

h∗ = argmax(PIa
h)

10: Ya = Ya \
{
Ya

h∗,Y
a
h∀(PIa

h − PIa
p) < 0

}
11: Za = Za ∪ Ya

h∗
12: PIa

p = max(PIa
h)

13: Else
14: Ya = ∅
15: End If
16: End While

Table E.2. Pseudo-code for the top-down greedy selection algorithm.
The PI symbol represents the RSM performance metrics.

1: Za =
{
Ya

c,m,∀c ∈ [0,Nsequence],m ∈ [0,Ntechnique]
}

2: PIa
c = PI(Za)

3: PIa
p = 0

4: While PIa
c > PIa

p do
5: PIa

p = PIa
c

6: For h = 1 to length(Za) do
7: PIa

h = PI(Za \ Ya
h )

8: End for
9: If max(PIa

h − PIa
p) > 0

10: Ya
c∗,m∗ = Ya

h∗ = argmax(PIa
h − PIa

p)
11: Za = Za \ Ya

h∗
12: PIa

c = max(PIa
h − PIa

p)
13: End If
14: End While
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Table E.3. Pseudo-code for the auto-RSM algorithm in full-frame
mode. The centre of the selected set of annuli Rangesel is computed
based on the rule provided in eq.12, starting at 1.5 FWHM and ending
at amax.

1: Flipping parallactic angle sign: PA = −PA
2: For c = 1 to Nsequence do
3: For m = 1 to Ntechnique do
4: PSF-subtraction technique parameters optimisation
5: For a in Rangesel do
6: Contrast computation via fake companions injection
7: Contrast normalisation
8: End For
9: Optimal parameters and contrast selection based on

summed normalised contrast: [Ca,m,c, PPS F
m,c ]

10: Optimisation of RSM algorithm parameters
11: For a in Rangesel do
12: Median position computation: Ma,m,c

13: Performance metric computation via fake companion
injection using [Ma,m,c,Ca,m,c, PPS F

m,c ]
14: End For
15: Optimal parameters selection: PRS M

m,c
16: End For
17: End For
18: Optimal combination Z selection via bottom-up or

top-down approach using [PRS M
m,c ,Ma,m,c,Ca,m,c, PPS F

m,c ]
19: For a = FWHM to amax do
20: Threshold Ta computation using [PRS M

m,c , PPS F
m,c , Z]

21: End For
22: Threshold smoothing via polynomial fit: T ∗a
23: Flipping back parallactic angle sign: PA = −PA
24: Final RSM map computation using [PRS M

m,c , PPS F
m,c , Z,T ∗a ]

25: Threshold subtraction from final RSM map

Table E.4. Pseudo-code for the auto-RSM algorithm in annular mode.
The centre of the selected set of annuli Rangesel starts at 1,5 FWHM
and end at amax with the centre of every selected annulus separated by
one FWHM.

1: Flipping parallactic angle sign: PA = −PA
2: For c = 1 to Nsequence do
3: For m = 1 to Ntechnique do
4: For a in Rangesel do
5: PSF-subtraction technique parameters optimisation
6: Contrast computation via fake companions injection
7: Optimal parameters and contrast [Ca,m,c, PPS F

a,m,c]
8: End For
9: Outliers suppression in PPS F

a,m,c via Hampel Filter
10: Parameters smoothing via moving average: PPS F,∗

a,m,c

11: For a in Rangesel do
12: Optimisation of RSM algorithm parameters
13: Median position computation Ma,m,c

14: Performance metric computation via fake companion
injection using [Ma,m,c,Ca,m,c, P

PS F,∗
a,m,c ]

15: Optimal parameters selection: PRS M
a,m,c

16: End For
17: Outliers suppression in PRS M

a,m,c via Hampel Filter
18: Interpolation of optimal parameters via RBF: PRS M,∗

a,m,c

19: End For
20: End For
21: Optimal combination Za selection via bottom-up or

top-down approach using [PRS M,∗
a,m,c ,Ma,m,c,Ca,m,c, P

PS F,∗
a,m,c ]

22: For a = FWHM to amax do
23: Threshold Ta computation using [PRS M,∗

a,m,c , PPS F,∗
a,m,c , Za]

24: End For
25: Flipping back parallactic angle sign: PA = −PA
26: Final RSM map computation using [PRS M

a,m,c , P
PS F
a,m,c, Z

a,Ta]
27: Threshold subtraction from final RSM map
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Appendix F: Description of the ADI sequences

This Appendix provides a description of the data sets of the EIDC ADI subchallenge used in the performance assessment of the
different modes of the auto-RSM optimisation algorithm (Table F.1).

Table F.1. Characteristics of the nine ADI sequences included in the EIDC ADI subchallenge. The original number of frames for the LMIRCam
ADI sequences was reduced to limit the computation time, relying on a moving average applied along the time axis on the de-rotated ADI cubes.
The step and window sizes have been set to 20 frames for LMIRCam 1 and 3, and 15 frames for LMIRCam 2.

Instruments/ID Number of frames Frame size Plate-scale (mas/pixel) FOV rotation

SPHERE 1 252 160 × 160 12.255 40.3◦
SPHERE 2 80 160 × 160 12.255 31.5◦
SPHERE 3 228 160 × 160 12.255 80.5◦
NIRC2 1 29 321 × 321 20 53.0◦
NIRC2 2 40 321 × 321 20 37.3◦
NIRC2 3 50 321 × 321 20.2 166.9◦
LMIRCam 1 241 200 × 200 10.7 153.4◦
LMIRCam 2 214 200 × 200 10.7 60.6◦
LMIRCam 3 231 200 × 200 10.7 91.0◦

Appendix G: Definition of the parameter ranges

This Appendix provides the boundaries of the parameter space for the different data sets of the EIDC ADI subchallenge used for
the performance assessment of the auto-RSM optimisation algorithm (Table G.1).

Table G.1. A range of values is provided for each parameter and each ADI sequence in order to define the size of the parameters space considered
during the PSF-subtraction techniques optimisation.

Parameters/ID NIRC2-1 NIRC2-2 NIRC2-3 SPHERE-1 SPHERE-2 SPHERE-3 LMIRCam-1 LMIRCam2 LMIRCam-3

APCA components [5, 25] [5, 25] [5, 25] [15, 45] [15, 45] [15, 45] [15, 45] [15, 45] [15, 45]
APCA segments [1, 4] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4]
APCA FOV rotation [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1]
NMF components [2, 15] [2, 15] [2, 15] [2, 20] [2, 20] [2, 20] [2, 20] [2, 20] [2, 20]
LLSG rank [1, 5] [1, 5] [1, 5] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
LLSG segments [1, 4] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4]
LOCI tolerance [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2]
LOCI FOV rotation [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1]
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Appendix H: Detection maps for auto-RSM parametrisations

Here, Fig. H.1 and Fig. H.2 show the detection maps obtained with four parametrisations of the auto-RSM algorithm for the data
sets of the EIDC ADI subchallenge.
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Fig. H.1. Detection maps corresponding to the SPHERE and NIRC2 data sets generated with different parametrisations of the full-frame and
annular auto-RSM. The SPHERE-2 and NIRC2-3 detection maps are not shown, as no fake companions were injected in these two data sets. See
Sect. 4.3.1 for the definition of the acronyms used to characterise the auto-RSM versions. The yellow circles are centred on the true position of the
detected targets (TP) and the red circles give the true positions of FNs.
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Fig. H.2. Detection maps corresponding to the LMIRCam data sets, generated with different parametrisations of the full-frame and annular auto-
RSM. See Sect. 4.3.1 for the definition of the acronyms used to characterise the auto-RSM versions. The yellow circles are centred on the true
position of the detected targets (TP) and the red circles give the true positions of FNs.
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Appendix I: Parametrisation for the full-frame auto-RSM

Here, Table I.1 regroups the optimal parameters selected with the auto-RSM FF_BU_F for the nine ADI sequences of the EIDC
ADI subchallenge.

Table I.1. Optimal set of parameters for the PSF-subtraction techniques and RSM algorithm for the nine ADI sequences obtained with the auto-
RSM FF_BU_F. The ‘fit’ row indicates if the noise properties have been estimated using a best-fit approach while the β row indicates if a Gaussian
maximum likelihood has been used to compute the intensity parameter. The variance row provides information about the region used for the noise
properties computation and translates as follows: ST-Spatio-Temporal estimation, F-Frame based estimation, FM-Frame with mask estimation,
SM -Segment with mask estimation, and T-Temporal estimation.

Parameters/ID NIRC2-1 NIRC2-2 NIRC2-3 SPHERE-1 SPHERE-2 SPHERE-3 LMIRCam-1 LMIRCam2 LMIRCam-3

APCA components 11 17 25 25 18 23 40 42 21
APCA segments 4 4 4 2 1 3 4 2 2
APCA FOV rotation 0.679 0.296 0.984 0.311 0.261 0.389 0.298 0.300 0.256
NMF components 12 2 14 18 18 12 14 20 18
LLSG rank 4 5 3 8 8 8 8 6 8
LLSG segments 4 4 1 4 2 2 4 2 3
LOCI tolerance 0.00752 0.00138 0.00425 0.00242 0.00128 0.00887 0.00112 0.00104 0.00218
LOCI FOV rotation 0.355 0.268 0.447 0.250 0.267 0.255 0.252 0.261 0.326
APCA δ 5 5 5 5 5 5 5 5 5
NMF δ 5 5 5 5 5 5 5 5 5
LLSG δ 5 5 3 4 1 2 4 2 5
LOCI δ 5 5 2 5 5 5 4 5 5
APCA crop size 3 3 3 3 3 3 3 3 3
NMF crop size 3 3 3 3 3 3 3 3 3
LLSG crop size 3 3 3 3 3 3 3 3 3
LOCI crop size 3 3 3 3 3 3 3 3 3
APCA Fit True True True True True True True True True
NMF Fit True True True True True True True True True
LLSG Fit True True True True True True True True True
LOCI Fit True True True True True True True True True
APCA β True True False False False False False False False
NMF β False False False False False False False False False
LLSG β True True False False False False False False False
LOCI β False True False False False False False False False
APCA variance T FM FM SM T FM ST SM FM
NMF variance FM FM ST SM FM ST ST SM ST
LLSG variance FM FM SM SM SM SM ST FM ST
LOCI variance FM T FM T ST SM SM SM SM
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