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Abstract

Over the past 40 years, actigraphy has been used to study rest-activity patterns in circadian

rhythm and sleep research. Furthermore, considering its simplicity of use, there is a growing

interest in the analysis of large population-based samples, using actigraphy. Here, we intro-

duce pyActigraphy, a comprehensive toolbox for data visualization and analysis including

multiple sleep detection algorithms and rest-activity rhythm variables. This open-source

python package implements methods to read multiple data formats, quantify various proper-

ties of rest-activity rhythms, visualize sleep agendas, automatically detect rest periods and

perform more advanced signal processing analyses. The development of this package aims

to pave the way towards the establishment of a comprehensive open-source software suite,

supported by a community of both developers and researchers, that would provide all the

necessary tools for in-depth and large scale actigraphy data analyses.

Author summary

The possibility to continuously record locomotor movements using accelerometers (acti-

graphy) has allowed field studies of sleep and rest-activity patterns. It has also enabled

large-scale data collections, opening new avenues for research. However, each brand of

actigraph devices encodes recordings in its own format and closed-source proprietary

softwares are typically used to read and analyse actigraphy data. In order to provide an

alternative to these softwares, we developed a comprehensive open-source toolbox for

actigraphy data analysis, pyActigraphy. It allows researchers to read actigraphy data from

7 different file formats and gives access to a variety of rest-activity rhythm variables, auto-

matic sleep detection algorithms and more advanced signal processing techniques.

Besides, in order to empower researchers and clinicians with respect to their analyses, we

created a series of interactive tutorials that illustrate how to implement the key steps of

typical actigraphy data analyses. As an open-source project, all kind of user’s contribu-

tions to our toolbox are welcome. As increasing evidence points to the predicting value of

rest-activity patterns derived from actigraphy for brain integrity, we believe that the devel-

opment of the pyActigraphy package will not only benefit the sleep and chronobiology

research, but also the neuroscientific community at large.
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This is a PLOS Computational Biology Software paper.

Introduction

Actigraphy consists in continuous movement recordings, using small watch-like accelerome-

ters that are usually worn on the wrist or on the chest. As recordings can last several days or

weeks, this technique is an adequate tool for in-situ assessments of the locomotor activity and

the study of rhythmic rest-activity patterns. Consequently, it has been used in the field of sleep

and circadian rhythm research [1] to assess night-to-night variability in estimated sleep

parameters as well as rest-activity rhythm integrity. For example, intradaily variability has

been associated with both cognitive and brain ageing [2, 3], while sleep fragmentation, as

quantified by probability transitions from rest to activity during night-time, has been linked to

cognitive performances [4] as well as to increased risks for Alzheimer’s disease [5].

However, the generalization of the findings made by this technique remains difficult;

researchers either develop specific, often closed-source, data processing pipeline and/or analy-

sis scripts, which are time-consuming, error prone and make the reproducibility of the analy-

ses difficult, or they rely on commercial toolboxes that are not only costly but also act as black

boxes. In addition, cumbersome manual data preprocessing, such as cleaning, hampers large

scale analyses, which are mandatory for reliable and generalizable results.

Several initiatives to collect, host and share large actigraphy data sets have been successfully

carried out over the past years; in 2012, the UK Biobank decided to add 7-day actimetry-

derived physical activity data collection [6]. The National Sleep Research Resource [7] was

launched in 2014 and it currently hosts actigraphy recordings for more than 18000 subjects.

Not only these data sets were successfully used to perform genome-wide association studies,

where the number of subjects is often a statistically limiting factor, and reveal links between

rest-activity phenotypes and pathology of genetic background (e.g. [8, 9]) but they could also

be crucial for understanding public health issues such as the impact of daylight time saving

changes or chronic sleep deprivation. However, processing and analyzing such a large number

of recordings remain a challenge. Therefore, the emergence of such biobanks should be

matched by the emergence of appropriate analysis tools. Besides, facilitating the access to such

analysis tools for actigraphy data would benefit other fields of neuroscience. For example,

there are evidence for a link between human brain structure and the locomotor activity,

whether it is the total amount of activity [10, 11], the sleep fragmentation [12] or the integrity

of the circadian rhythmicity [3, 13]. Human brain functions are also modulated by circadian

and/or seasonal rhythmicity [14, 15]. Therefore, a precise assessment of rhythmicity, as

allowed by actigraphy, is crucial for functional brain imaging and cognitive studies too. These

are only a few of the many examples that emphasize the benefit of extending the use of actigra-

phy outside the field of sleep and circadian research.

We thus argue that there is a need for a comprehensive and open-source toolbox for acti-

graphy data analysis. This motivated the development of the pyActigraphy package.

Design and implementation

The pyActigraphy package is written in Python 3 (Python Software Foundation, https://www.

python.org/). As illustrated in Fig 1, a dedicated class has been implemented for each file for-

mat to extract the corresponding actigraphy data, as well as the associated meta-data. These
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classes inherit from a base class implementing the various functionalities of the pyActigraphy
package, via multiple inheritance (mixin). This centric approach provides multiple advantages;

classes for new file formats can easily be implemented as they have to solely focus on reading

the acquired data and meta-data. Additional functionalities will be inherited from the base

class. In addition, newly added metrics or functions are readily available to all dedicated classes

that derive from the base class. This design has been chosen in order to ease contributions

from users with various coding skills.

Most of the variables and algorithms implemented in this package have been developed and

validated for actigraphy devices that aggregate data into so-called movement counts. More

recent devices provide now access to raw acceleration data and specific algorithms have been

developed for this type of data (e.g [16, 17]). Nonetheless, it remains possible to convert these

data into movement counts, providing a backward compatibility for these devices with algo-

rithms validated with count-based devices [18]. This procedure has not yet been implemented

in the pyActigraphy package but will be in the near future. However, data converted to counts

can readily be used with our package.

Fig 1. Diagram of the code architecture.

https://doi.org/10.1371/journal.pcbi.1009514.g001
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Reading native actigraphy files

The pyActigraphy package provides a unified way to read several actigraphy file formats. Cur-

rently, it supports output files from:

• wGT3X-BT, Actigraph (.agd file format only);

• Actiwatch 4 and MotionWatch 8, CamNtech;

• ActTrust 2, Condor Instruments;

• Daqtometer, Daqtix;

• Actiwatch 2 and Actiwatch Spectrum Plus, Philips Respironics;

• Tempatilumi, CE Brasil.

For each file format, a dedicated class has been implemented to extract the corresponding

actigraphy data, as well as the associated meta-data. These classes inherit from a base class

implementing the various functionalities of the pyActigraphy package. In addition, the package

allows users to read actigraphy recordings, either individually, for visual inspection for exam-

ple, or by batch, for analysis purposes.

Masking and cleaning data

Before analysing the data, spurious periods of inactivity, where the actigraph was most likely

removed by the participant, need to be discarded from the activity recordings. The pyActigra-
phy package implements a method to mask such periods, either manually or using timestamps

specified in a text file. For convenience, it is also possible to automatically detect periods of

continuous total inactivity, in order to create an initial mask that can be further visually

inspected and edited by the users. Given that manual edition of masked periods might be

tedious for large-scale data sets, more sophisticated methods for automatic masking [19, 20]

could be implemented in the future. In addition to temporary actigraph removals, another

usual source of artificial inactivities arises when the recordings start before and/or end after

the actigraph is actually worn by the participant. Upon reading an actigraphy file, the pyActi-
graphy package allows users to discard such inactivity periods by specifying a start and a stop

timestamp. The data collected outside this time range are not analyzed. These timestamps can

also be specified by batch by using a simple log file where each line should correspond to the

participant’s identification. This file is then processed to automatically apply such boundaries

to the corresponding actigraphy file read by the package.

Activity profile and onset/offset times

In circadian rhythm and sleep research, profile plots of the mean daily activity of actigraphy

recording provides a visual tool to assess the overall rest-activity pattern, as well as recurrent

behaviours such as naps. Patterns extracted from these profiles provide valid biomarkers that

have been linked to cognitive decline [21] and psychiatric disorder [22]. Profiles are obtained

by averaging consecutive data points that are 24h apart, over the consecutive days contained in

the recording. The pyActigraphy package provides methods to construct these profiles (Fig 2).

In addition, it provides methods to anchor the 24h-profile of an individual to a specific time

and therefore ease group averaging; for example, if one uses the dim-light melatonin onset

time, it becomes possible to compare activity data acquired at the same circadian phase across

participants. For convenience, two methods have been implemented to detect the time points

of a profile where the relative difference between the mean activity before and after this time
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point is maximal and minimal, respectively. These time points might then serve as initial esti-

mates of the individual activity onset and offset times.

Visualization of sleep agenda

In both sleep research and medicine, a sleep diary is usually given with an actimeter to allow

participants to report sleep episodes (duration and timing) as well as the subjective assessment

of sleep quality for example. It allows comparisons between data recorded by an actigraph and

the subjective perception of the individual wearing the device. In medical fields, sleep diaries

are commonly recommended in order to help doctors in the diagnosis and treatment of sleep-

wake disorders. The pyActigraphy package allows users to visualize and analyse sleep diaries,

encoded as .ods or .csv files. Each row of these files indicates a new event, characterized by a

type, a start time and an end time. A summary function provides descriptive statistics (mean,

std, quantiles, . . .) for each type of events. For convenience and considering the current inter-

ests of the researchers involved in the development of the package, four types (active, nap,

night, no-wear) are implemented by default when a sleep diary is read. However, the pyActi-
graphy package allows users to remove or customize these types and add new ones. As shown

in Fig 3, the visualization of the sleep diary is allowed through the use of the python plotting

library “plotly” [23]. Each event found in the sleep diary is associated with a plotly “shape”

object that can be overlaid with the actigraphy data in order to visually assess the adequacy

between the subjective reports and their objective counterparts.

Fig 2. Visualization example of average daily profiles obtained with pyActigraphy using example files included in the package.

https://doi.org/10.1371/journal.pcbi.1009514.g002
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Rest-activity rhythm variables

Non-parametric rest-activity variables can easily be calculated with the pyActigraphy package.

The list of such variables includes:

• the interdaily stability (IS) and the intradaily variability (IV) [24], which quantify the day-to-

day variance and the activity fragmentation, respectively;

• the relative amplitude (RA) [25], which measures the relative difference between the mean

activity during the 10 most active hours (M10) and the 5 least active ones (L5).

In addition, pyActigraphy implements the mean IS and IV variables, namely ISm and IVm

[26], obtained by averaging IS or IV values calculated with data resampled at different frequen-

cies. Finally, the pyActigraphy package allows users to calculate the values of the IS(m), IV(m)

and RA variables for consecutive, non-overlapping time periods of user-defined lengths. Upon

calling the corresponding function, users can specify the resampling frequency, if the data

must be binarized before calculation, as well as the threshold used to binarize the data.

Fragmentation of rest-activity patterns

The pyActigraphy package implements rest-activity state transition probabilities, kRA and kAR
[27]. These variables quantify the fragmentation of the rest-activity pattern fragmentation;

based on a probabilistic state transition model, where epochs with no activity are associated to

a “rest” state (R) and to an “active” state (A) otherwise, the kRA variable is associated with the

probability to transition from a sustained “rest” state to an “active” state and the kAR variable is

associated with the probability to transition from a sustained “active” state to a “rest” state.

Fig 3. Visualization example of actigraphy data, overlaid with periods (green: Nap, grey: Night, red: Device not worn) reported in the sleep diary

example file included in the package.

https://doi.org/10.1371/journal.pcbi.1009514.g003
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The pyActigraphy package allows users to restrict the computation of the kRA and kAR variables

to specific period of the day. For example, to target sleep periods, users may specify the activity

offset and onset times (see section Activity profile and onset/offset times), as derived from

individual activity profiles, as time boundaries. In the case of the kRA variable, this would pro-

vide a quantification of the sleep fragmentation, adapted to a subject’s specific rest periods.

Rest-activity period detection

The pyActigraphy package implements several rest-activity detection algorithms, which can be

classified into two broad classes:

• Epoch-by-epoch rest/activity scoring algorithms: Cole-Kripke’s [28], Oakley’s [29], Sadeh’s

[30] and Scripps’ [31] algorithms. The idea underlying these algorithms is to convolve the

signal contained in a sliding window with a pre-defined kernel. Most algorithms use gauss-

ian-like kernels. If the resulting value is higher than a certain threshold, then the epoch

under consideration, usually the one located at the centre of the sliding window, is classified

as active and as rest, otherwise. Finally, the window is shifted forward by one epoch and the

classification procedure is repeated.

• Detection of consolidated periods of similar activity patterns: Crespo’s [32] and Roenne-

berg’s [33] algorithms. These two algorithms are fundamentally different from the epoch-by-

epoch scoring algorithm as they intend to detect, at once, consolidated periods of rest. One

advantage of this class of algorithms is that it provides a start and a stop time for each period

classified as rest.

As illustrated in Fig 4, these algorithms have been implemented to return a binary time

series: 0 being rest or activity depending on the definition made in the original article describ-

ing the detection algorithm.

Based on the aforementioned algorithms, the pyActigraphy package allows also the compu-

tation of a sleep regularity profile which quantifies the probability for the participant to be in

the same state (rest or active) at any daytime point on a day-by-day basis. From this 24h pro-

file, the sleep regularity index (SRI) [34, 35] can be calculated as the product of theses probabil-

ities over all the time bins. Finally, using the detection algorithms of the latter class, the

pyActigraphy package allows the computation of the sleep midpoint as described in [35].

Advanced signal processing

The pyActigraphy package makes available additional functions for more advanced analyses of

actigraphy recordings:

• Cosinor [36]: the idea of a Cosinor analysis is to estimate some key parameters of the actigra-

phy count series by fitting these data with a (co)sine curve:

YðtÞ ¼ M þ A � cos
2p

T
� t þ �

� �

where M is the MESOR (Midline Statistic Of Rhythm), A is the amplitude of the oscillations,

T is the period and ϕ is the acrophase. The fit procedure provides estimates of these parame-

ters which can then help to characterize the 24h rest-activity rhythm of an individual.

• Detrented Fluctuation Analysis (DFA) [37, 38]: human activity exhibits a temporal organiza-

tion characterised by scale-invariant (fractal) patterns over time scales ranging from minutes
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to 24 hours. This organization has been shown to be degraded with aging and dementia [39].

The DFA method allows the quantification of this scale-invariance and comprises four steps:

1. Signal integration and mean subtraction

2. Signal segmentation

3. Local detrending of each segment

4. Computation of the q-th order fluctuations

All these steps have been implemented in the DFA class of pyActigraphy.

• Functional linear modelling (FLM) [40]: it consists in converting discrete measures to a

function or a set of functions that can be used for further analysis. In most cases, the smooth-

ness of the resulting function is under control, which ensures the derivability of this func-

tion. Three techniques are available in pyActigraphy to convert the actigraphy data to a

functional form:

• Fourier expansion

• B-spline interpolation

• Smoothing

In the context of actigraphy, functional linear modelling and analysis have been successfully

applied to link sleep apnea and obesity to specific circadian activity patterns [41].

• Locomotor inactivity during sleep (LIDS) [42]: the analysis of the locomotor activity during

sleep revealed a rhythmicity that mimics the ultradian dynamic of sleep. This type of analysis

Fig 4. Visualization example of actigraphy data, overlaid with periods scored as “active” (0) or “rest” (1) by Roenneberg’s algorithm [33] for two

different settings (full line: Default parameter values, dash line: With a threshold set at 0.25 of the activity trend).

https://doi.org/10.1371/journal.pcbi.1009514.g004
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opens new opportunities to study, in situ, sleep dynamics at a large scale and over large indi-

vidual time periods. The LIDS class implements all the necessary functions to perform the

analysis of the LIDS oscillations:

• sleep bout filtering

• non-linear conversion of activity to inactivity

• extraction of the characteristic features of the LIDS oscillations via a cosine fit

• Singular spectrum analysis (SSA) [43, 44]: this technique allows the decomposition of a time

series into additive components and the quantification of their respective partial variance. In

the context of actigraphy, SSA can be used to extract the signal trend as well as circadian and

ultradian components separately. The latter is relevant in human sleep research because

sleep is not only alternating with wakefulness over the 24-hour cycle, but also exhibits an

ultradian modulation, as mentioned previously. For example, a SSA analysis has been used

to reveal alterations of the ultradian rhythms in insomnia [45]. All the necessary steps for the

SSA and related functions, namely the embedding, the singular value decomposition, the

eigentriple grouping and the diagonal averaging, are implemented in the SSA class. Since the

subsequent calculations can be computationally intensive, the class implementation uses the

open-source compiler Numba [46] for a direct translation of the functions to machine code

and therefore improve their execution speed by several orders of magnitudes.

Online documentation and tutorials

The online documentation of the pyActigraphy package (https://ghammad.github.io/

pyActigraphy) contains instructions to install the package, as well as information about the

authors and the code license. It also contains a list of the attributes and methods available in

the pyActigraphy package. More information about their implementation, as well as the refer-

ence to the related original research articles, can be found in the online API documentation

(https://ghammad.github.io/pyActigraphy/api.html), which is generated automatically from

source code annotations. In order to keep the documentation up to date with the latest devel-

opments of the package, the documentation is automatically generated anew and made avail-

able online for each new release. Finally, the online documentation offers several tutorials

(https://ghammad.github.io/pyActigraphy/tutorials.html), illustrating the various functionali-

ties of the package. These tutorials are generated from Jupyter notebooks [47] that are included

in the pyActigraphy package itself, so that they can be used by any user to reproduce and prac-

tice the various functionalities of the pyActigraphy package in an interactive and user-friendly

environment. As input data, the tutorials use real example data files that are included in the

package for illustration and testing purposes. In total, 13 examples are included.

Continuous integration and automated unit tests

The development of the pyActigraphy follows practices intended to reduce the probability of

coding errors such as continuous integration [48]. For the integration of a new feature in the

package, a suite of unit tests is run with the pytest (https://docs.pytest.org/en/latest) framework

and, upon success only, this feature is permanently integrated to the package. There are cur-

rently more than 50 different tests in the test suite, covering various functionalities of the pyAc-
tigraphy package. For example, for each supported file format, an example file, with known

information in its header, is available in the package and the associated unit tests ensure that

the corresponding reader function is able to retrieve the correct information from that file. In
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addition, synthetic data (ex: sine and square waves with known periods, as well as Gaussian

noise) are used to test the implementations of variables such as IS, IV, kRA, kAR for which the

value can be analytically derived. For example, the IS is equal to 1 and IV equal to 0 for any

periodic data with a period of 24h. In case of data whose series of consecutive zeros follow a

geometric distribution with a probability of success p, the kRA is equal to p. Finally, to assert

further the correct implementation of the rest-activity rhythm variables, values obtained with

the pyActigraphy package have been compared with values obtained with a commercial soft-

ware (MotionWare, version 1.2.28), using the file “example01.AWD” included in the pyActi-
graphy package. The analysis uses 7 days of data, starting from the 25/01/1918 at 00:00 AM. As

shown in Table 1, differences, if any, are below 0.2% and are thus most likely due to round-off

errors.

Results

Most actigraphy devices encode their data in proprietary format. Therefore, these devices are

bound to their specialized commercial software to read and analyse the acquired data. While

softwares like MotionWare (CamNtech, Cambridge, UK), ActStudio (Condor Instruments,

São Paolo, Brasil), Actilife (ActiGraph LLC, Pensacola, FL) or Actiware (PhilipsRespironics,

Murrysville, PA) give access to a variety of activity and sleep parameters, such as total sleep

time, sleep onset, etc, they provide very limited views on their current implementations of the

algorithms applied to the data and very little possibilities to apply new ones. Over the last

years, there have been efforts to create open-source analysis tools; from packages to simply cal-

culate the IS, IV and RA variables (nparACT [49]) to softwares allowing the preprocessing of

large accelerometer data sets and the extraction of the sleep timing and duration (e.g. bioban-

kAccelerometerAnalysis [6, 50–52], GGIR [53], OMGUI [54]). However, to our knowledge,

there is no comprehensive open-source analysis package for actigraphy data that would allow

users to read various data format, perform the necessary data cleaning as well as more

advanced data analysis within a single framework in the python ecosystem. This is all the more

necessary as it would improve the reproducibility of research outcomes by limiting the prolif-

eration of private analysis codes [55]. It would also allow users to perform more complex anal-

yses and therefore make optimal use of actigraphy data that are often part of costly multi-

modal data acquisition protocols. Such analysis package would also help to reduce error rates

by alleviating the burden of manual data processing that hampers the processing of large-scale

actigraphy data sets. So far, the pyActigraphy package has successfully been used to compute

non-parametric rest-activity rhythm variables [56, 57], to automatically detect sleep periods

Table 1. Values of the rest-activity rhythm variables obtained with Motionware (1.2.28) and pyActigraphy.

Variable MotionWare (1.2.28) pyActigraphy
IS 0.622 0.623

IV 0.788 0.788

RA 0.918 0.919

L5 13.371 13.37

L5 (start time) 02:00 AM 02:00 AM

M10 311.971 311.97

M10 (start time) 08:00 AM 08:00 AM

1Mean hourly values obtained with MotionWare have been divided by 60 to match the definition used in

pyActigraphy (mean value per acquisition epoch)

https://doi.org/10.1371/journal.pcbi.1009514.t001
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with multiple algorithms [58, 59] or assess sleep fragmentation via transition state probability

[60].

In order to facilitate the understanding of the various functionalities of the package and to

help researchers to design their analysis code, tutorial notebooks are available. They are

divided into three categories, with an increasing complexity;

1. Introductory notebooks:

• Intro: this notebook introduces how to read an actigraphy file and retrieve some of the

most common meta-data that are useful for subsequent analyses. It also shows how to

plot the raw actigraphy data for visual inspection.

Link to the corresponding tutorial: https://ghammad.github.io/pyActigraphy/

pyActigraphy-Intro.html

• Batch: this notebook illustrates how to read files by batch and how to access information

(meta-data or metrics) of all these files at once.

Link to the corresponding tutorial: https://ghammad.github.io/pyActigraphy/

pyActigraphy-Batch.html

2. Feature notebooks:

• Masking: this notebook provides informations about how to automatically mask spurious

inactivity periods, during which the device has most likely been removed by the partici-

pant. The impact of such masking on the calculation of rest-activity variables is also

shown.

Links to the corresponding tutorials: https://ghammad.github.io/pyActigraphy/

pyActigraphy-Masking.html

• SSTLog: this notebook highlights the possibility with pyActigraphy to remove, in an auto-

matic fashion, the start and end periods of recordings read by batch. The need to remove

such periods arise quite often when the device is set to acquire data while it is not yet

worn or not worn anymore, by the participant.

Links to the corresponding tutorials: https://ghammad.github.io/pyActigraphy/

pyActigraphy-SSt-log.html

• RaR: this notebook demonstrates how to calculate, for an individual file or by batch of

files, various rest-activity rhythm variables, such as IS, IV, ISm, IVm, etc. Effects of resam-

pling, binarization or thresholding on these variables are also shown.

Link to the corresponding tutorial: https://ghammad.github.io/pyActigraphy/

pyActigraphy-Non-parametric-variables.html

• SleepDiary: this notebook shows how to overlay the actigraphy data with the different

periods reported in its corresponding sleep diary. It uses a sleep diary example provided

with the package to illustrate the accepted diary format and how to custom its layout.

Link to the corresponding tutorial: https://ghammad.github.io/pyActigraphy/

pyActigraphy-Sleep-Diary.html

• RestAlgo: in this notebook, the six different rest period detection algorithms implemented

in pyActigraphy are reviewed; a distinction is made between algorithms providing an

epoch-by-epoch rest-activity scoring and algorithms aiming to detect consolidated peri-

ods of rest or activity.

Link to the corresponding tutorial: https://ghammad.github.io/pyActigraphy/

pyActigraphy-Sleep-Algorithms.html
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• SleepFrag: this notebook is an illustration of the state transition probability model imple-

mented in pyActigraphy; this model is used to quantify the probability to transition from

a “rest” state to an “active” state. By restricting the time window of the data used to esti-

mate this probability to the habitual night time, this notebook illustrates how to derive an

index of sleep fragmentation.

Link to the corresponding tutorial: https://ghammad.github.io/pyActigraphy/

pyActigraphy-StateTransitionProb.html

3. Analysis notebooks:

• Cosinor: in this notebook, instructions are given to perform a Cosinor analysis and

retrieve the associated fit parameters, namely the mesor, the period, the acrophase, etc.

Analyses of a single actigraphy file and of a batch of files are both illustrated. This note-

book also contains words of caution about the use of a Cosinor analysis with non-station-

ary actigraphy data.

Link to the corresponding tutorial: https://ghammad.github.io/pyActigraphy/

pyActigraphy-Cosinor.html

• FLM: this notebook provides examples about how to obtain a smooth representation of

the inherently noisy actigraphy data, either with a basis function expansion technique

(Fourier functions or B-splines) or with a Gaussian kernel function. Examples for group

analysis of multiple files at once are also provided.

Link to the corresponding tutorial: https://ghammad.github.io/pyActigraphy/

pyActigraphy-FLM.html

• MF-DFA: this notebook illustrates the functions implemented in pyActigraphy to perform

the different steps of a (multi-fractal) detrended fluctuation analysis; from signal integra-

tion to estimation of the generalized Hurst exponent.

Link to the corresponding tutorial: https://ghammad.github.io/pyActigraphy/

pyActigraphy-MFDFA.html

• SSA: in this last notebook, the SSA methodology is reviewed. As an illustration, the signal

from an example file is decomposed into a trend, a circadian component and an ultradian

component. This notebook also provides indications about how to use a weighted-corre-

lation matrix to group the elementary matrices, prior to reconstructing the different com-

ponents of the signal.

Link to the corresponding tutorial: https://ghammad.github.io/pyActigraphy/

pyActigraphy-SSA.html

Availability and future directions

The pyActigraphy package has been released under the GPLv3 license and is available from the

Python Package Index (PyPI) repository: https://pypi.org/project/pyActigraphy. Its source

code is hosted by Github (https://github.com/ghammad/pyActigraphy) and the Zenodo plat-

form [61]. The online documentation of the pyActigraphy package contains a detailed descrip-

tion of the attributes and methods of its various modules and is meant to be used as

complementary material of the current paper. In addition, more than a dozen of tutorials are

made available online to illustrate how to use the multiple features of the package, described in

this paper. By developing the pyActigraphy package, we not only hope to facilitate data analysis

but also foster research using actimetry and drive a community effort to improve this open-
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source package and develop new variables and algorithms. As such, user’s contributions of any

type (code, documentation, suggestion of new features, etc.) are welcome and encouraged.
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