

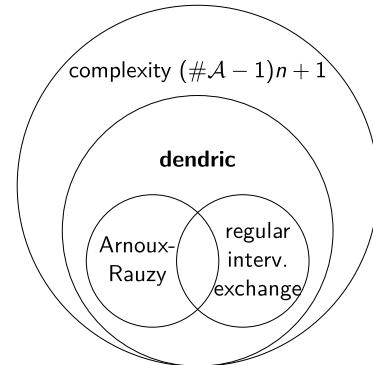
S-adic characterization of dendric shift spaces

France Gheeraert

joint work with Marie Jeune et Julien Leroy

8-9 July 2021

Introduced in 2013 by V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer and G. Rindone.



Definition

Given a (recurrent) language \mathcal{L} (from an infinite word or a shift) and a word $w \in \mathcal{L}$

$$\begin{aligned} E_{\mathcal{L}}^-(w) &= \{a \in \mathcal{A} \mid aw \in \mathcal{L}\} \\ E_{\mathcal{L}}^+(w) &= \{b \in \mathcal{A} \mid wb \in \mathcal{L}\} \\ E_{\mathcal{L}}(w) &= \{(a, b) \in E_{\mathcal{L}}^-(w) \times E_{\mathcal{L}}^+(w) \mid awb \in \mathcal{L}\} \end{aligned}$$

Definition

The *extension graph* of $w \in \mathcal{L}$ is the bipartite graph $E_{\mathcal{L}}(w)$ with vertices $E_{\mathcal{L}}^-(w) \sqcup E_{\mathcal{L}}^+(w)$ and such that, for all $a \in E_{\mathcal{L}}^-(w)$, $b \in E_{\mathcal{L}}^+(w)$, there is an edge (a, b) if and only if $(a, b) \in E_{\mathcal{L}}(w)$.

A word is *dendric* if its extension graph is a tree.

A language is *dendric* if all its elements are.

Question

Can we find a condition \mathcal{C} such that

A language \mathcal{L} is (recurrent) dendric if and only if there exists a sequence $(\sigma_n : \mathcal{A}_{n+1}^* \rightarrow \mathcal{A}_n^*)$ of morphisms satisfying the condition \mathcal{C} and such that

$$w \in \mathcal{L} \Leftrightarrow \exists N \in \mathbb{N}, a \in \mathcal{A}_{N+1} \text{ st. } w \in \text{Fac}(\sigma_0 \dots \sigma_N(a))?$$

For example, there is a well-known condition for Sturmian languages, namely $(\sigma_n) \in \{L_0, L_1\}^{\mathbb{N}}$ and it is non ultimately constant, where

$$L_0 : \begin{cases} 0 \mapsto 0 \\ 1 \mapsto 01 \end{cases} \quad L_1 : \begin{cases} 0 \mapsto 10 \\ 1 \mapsto 1 \end{cases}$$

Ternary case

In the ternary case ($\#A = 3$), we have found such a condition:

the sequence $(\sigma_n)_{n \geq 0}$ is primitive and labels a path in a specific graph (with two vertices).

The construction is based on S -adic representations using return words (Berthé et al.).

Details can be found in the following article:

S-adic characterization of minimal ternary dendric shifts, to appear in *Ergodic Theory and Dynamical Systems*

Open questions

Finding a condition \mathcal{C} to characterize

- ① dendric languages on larger alphabets
 - work in progress
- ② languages of sub-linear complexity
 - S -adic conjecture
- ③ or any other family of languages