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Contaminating sequences in public genome databases is a pervasive issue with
potentially far-reaching consequences. This problem has attracted much attention in
the recent literature and many different tools are now available to detect contaminants.
Although these methods are based on diverse algorithms that can sometimes produce
widely different estimates of the contamination level, the majority of genomic studies
rely on a single method of detection, which represents a risk of systematic error. In
this work, we used two orthogonal methods to assess the level of contamination
among National Center for Biotechnological Information Reference Sequence Database
(RefSeq) bacterial genomes. First, we applied the most popular solution, CheckM, which
is based on gene markers. We then complemented this approach by a genome-wide
method, termed Physeter, which now implements a k-folds algorithm to avoid inaccurate
detection due to potential contamination of the reference database. We demonstrate
that CheckM cannot currently be applied to all available genomes and bacterial groups.
While it performed well on the majority of RefSeq genomes, it produced dubious results
for 12,326 organisms. Among those, Physeter identified 239 contaminated genomes
that had been missed by CheckM. In conclusion, we emphasize the importance of
using multiple methods of detection while providing an upgrade of our own detection
tool, Physeter, which minimizes incorrect contamination estimates in the context of
unavoidably contaminated reference databases.
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INTRODUCTION

Genome contamination, defined here as the accidental inclusion of sequences from other organisms
or the misclassification of sequences in public repositories, is a problem having attracted much
attention in the recent literature (see for instance, Kahlke and Ralph, 2018; Lu and Salzberg, 2018;
Breitwieser et al., 2019; Low et al., 2019). Hence, it is notoriously known that contamination
of genome-scale datasets can lead to false conclusions, and such cases have been reported in

Abbreviations: RefSeq, Reference Sequence Database; LCA, Last Common Ancestor; IMG, Integrated Microbial Genome;
NCBI, National Center for Biotechnological Information; GTDB, Genome Taxonomy Database.
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numerous publications (e.g., Laurin-Lemay et al., 2012; Merchant
et al., 2014; Koutsovoulos et al., 2016). Nowadays, many
algorithms are available to detect contaminants in complete
genomes, e.g., Kraken 2 (Wood et al., 2019), CheckM (Parks
et al., 2015), Physeter (Cornet et al., 2018), ConFindR (Low et al.,
2019), and BASTA (Kahlke and Ralph, 2018). By studying the
phenomenon in Cyanobacteria, we have shown that different
methods sometimes yield widely different estimates of the
contamination level (Cornet et al., 2018). As this result is
explained by differences between the respective algorithms or
databases, we argued that the use of multiple methods is the best
way to detect contaminant sequences (Cornet et al., 2018). In
contrast, relying on a single method of detection, even if very
well designed and popular, always bears a danger of systematic
error, which can eventually lead to the spread of sequences
of incorrect taxonomy into public databases. The objective
of this Perspective is to highlight the importance of using
multiple methods of detection when assessing contamination in
genomic studies.

To this end, we investigated the results of the most cited
tool (3,532 citations as of September 2021 according to Google
Scholar) in the field of contamination detection, CheckM
(Parks et al., 2015). The latter is frequently the only method
used in genome-scale studies, for example in the Genome
Taxonomy Database (GTDB) project, in which specific genomes
are selected as type organisms for the community (Parks
et al., 2018). We chose to estimate the contamination level
of bacterial genomes from the reference sequence database of
the National Center for Biotechnological Information (NCBI),
Reference Sequence Database (RefSeq; O’Leary et al., 2016;
Haft et al., 2018), not only because this resource is frequently
used by many researchers (Nasko et al., 2018), but also
because it has been reported to be affected by sequence
contamination (Cornet et al., 2018; Breitwieser et al., 2019;
Pasolli et al., 2019; Zhu et al., 2019). Here, we first evaluated
the contamination level of this database using CheckM, and
then compared these estimates, for 12,326 results that we
considered as potentially dubious, to those obtained with an
upgrade of Physeter, a decontamination tool introduced in
Cornet et al. (2018).

CHECKM YIELDS POTENTIALLY
DUBIOUS RESULTS FOR 12,326
GENOMES IN NCBI REFSEQ

CheckM estimates the contamination level in a given genome
by counting duplications of single-copy and taxon-specific gene
markers (Parks et al., 2015). This requires a phylogenetic
placement of the genome, based on ribosomal protein genes,
in order to determine its taxon and derive the appropriate
marker set (Parks et al., 2015). However, for 12,326 bacterial
genomes among the 111,088 of RefSeq (Haft et al., 2018),
this first step of the algorithm yields a dubious taxon,
which has the potential to affect the contamination estimate.
In detail, CheckM results were considered dubious for at
least one, frequently several, of the four following reasons

(Supplementary Table 1: https://doi.org/10.6084/m9.figshare.
13139810): (1) the CheckM taxon obtained by phylogenetic
placement is ambiguous when compared to the NCBI taxon,
even if closely related (e.g., same phylum; 9,257 cases), (2)
the CheckM taxon is of a too high level (e.g., “bacteria”) to
be useful in practice (2,967 cases), (3) the CheckM taxon is
“incorrect” (e.g., different phylum) with respect to the NCBI
taxon or both taxa are uninformative (77 cases), and (4) the
estimated contamination level is ≥20% (25 cases), which is the
upper tested limit of detection for CheckM (per documentation).
In the latter case, CheckM results can be erroneous because its
phylogenetic placement is affected by an array of supernumerous
ribosomal genes belonging to the contaminants. Owing to
these reasons, the current release of CheckM produces reliable
estimates for only 14 phyla whereas these are questionable
for 38 phyla (Figure 1). However, the accuracy of CheckM
on the remaining 98,801 genomes of RefSeq has not been
investigated here.

PHYSETER AS A SECOND ESTIMATOR
OF THE CONTAMINATION LEVEL

We then used Physeter to estimate the contamination level
of the 12,326 dubious genomes. Physeter features a MEGAN-
like (Huson et al., 2007) Last Common Ancestor (LCA)
algorithm that uses DIAMOND blastx (Buchfink et al.,
2015) results to compute its estimates. Here, we upgraded
its heuristics to overcome the unavoidable presence of
contaminated genomes in reference databases. In practice,
a sliding window splits the reference database into 10 partitions,
and Physeter returns the median contamination level of
10 independent estimations, each one based on 90% of
the database. This k-fold approach allowed us to identify
false positive results only driven by a few contaminated
genomes in the reference database (Figure 2A). For instance,
the assemblies GCF_003612345.1 and GCF_003611835.1
have a low median level of contamination, even if some
independent estimations (Figure 2A) show a higher level.
The opposite is also observed (Figure 2A), with some
contaminated genomes leading to false negative results (see
Supplementary Additional File 1). Overall, Physeter minimizes
the estimation biases due to overlooked contamination
while maintaining the diversity of the reference database
(Supplementary Figure 1).

TAXONOMIC ERRORS AND RARE
GENOMES

According to Physeter, 107 RefSeq genomes (among the 12,326)
presented very low levels of the organism expected from the
associated NCBI taxon. First, these “taxonomic errors” may
correspond to genomes that are misclassified by the NCBI
(e.g., GCF_900453015.1). Such misclassifications should also be
considered as contamination because misclassified genomes are
susceptible to be incorporated in downstream studies under a
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FIGURE 1 | Taxonomic tree of the bacterial domain showing the fraction of contaminated genomes in each phylum with each method. Taxon identifiers of the
111,088 RefSeq bacterial genomes were passed to NCBI Common Tree tools to construct the tree [parameters: (1) include unranked taxa, (2) expand all]. Tree
visualization was performed with iTOL and branches were collapsed at the taxonomic levels reported in the tree. Triangles are proportional to taxonomic depth.
Proteobacteria are colored in orange, FCB group in green, Terrabacteria in red, PVC group in blue and the other phyla in dark gray. Green barplots are for genomes
evaluated with CheckM and blue barplots are for Physeter. The fraction of genomes with a contamination level <5% is shown in a light color whereas those ≥5% are
shown in a dark color. The number of genomes evaluated with each method is indicated by the height of the barplot on a ceiled logarithmic scale. For simplicity, the
estimates for Ca. Saccharibacteria (2 contaminated and 12 uncontaminated genomes), candidate division NC10 (2 contaminated genomes), Ca. Atribacteria (2
contaminated genomes), and Ca. Bipolaricaulota (1 contaminated genome) are included in unclassified Bacteria. Completely contaminated phyla (e.g., Caldiserica,
Nitrospinae, and Kiritimatiellaeota) are generally represented by very few genomes (i.e., one to three genomes). Among the more extensively studied phyla (11 to
37,487 genomes), some appear to be extremely contaminated, such as Balneolaeota, Synergistetes, and Chloroflexi, with, respectively, 54.5, 33.3, 16.9% of
contaminated genomes, whereas other phyla are characterized by a very low contamination level, including Cyanobacteria (2.8%), Gammaproteobacteria (0.6%), or
Chlamydiae (0.3%).

wrong taxonomy, which could be very damaging to biological
conclusions (Laurin-Lemay et al., 2012). Second, taxonomic
errors can also stem from genomes that are so contaminated
that the sequences of the expected organism are overwhelmed
by the foreign sequences (e.g., GCF_003264215.1). Third, some
genomes belong to a taxon that is so rare in genome databases

that they only match themselves, which is not allowed by the
Physeter algorithm and thus leads to low levels of the expected
organism (e.g., GCF_000226295.1), including 45 genomes tagged
as “unclassified Bacteria” by the NCBI. In practice, distinguishing
between the three cases is very difficult. Among the 107 genomes,
65 were left unclassified by CheckM (i.e., identified as “bacteria”
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FIGURE 2 | Overview of Physeter properties. (A) Distribution of contamination levels assessed by Physeter in k-fold mode. Genomes are ranked from the lowest to
highest median level of contamination. Median levels are shown in a solid orange line, while minimal and maximal levels are represented as yellow and brown dots,
respectively. GCF_003612345.1 and GCF_003611835.1 are examples of genomes having a low median level of contamination with some independent estimations
showing a higher contamination level. The opposite case is illustrated with GCF_000241265.1. (B) Taxonomic distribution of contaminating sequences within each
phylum. The relative contributions of each contaminating phylum were first averaged by genome over all 10 k-folds, then these genome-wise averaged values were
averaged by tested phylum over all genomes.
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or “root”) with a low level of contamination (median 1.1%),
whereas Physeter found high contamination levels (median
14.6%) for these 65 cases. To deal with those 107 problematic
genomes, we re-ran Physeter using the GTDB taxonomy (Parks
et al., 2018) as an alternative and let the tool determine
the main organism itself, just like CheckM usually does (see
Supplementary Table 1). In theory, the use of GTDB should help
us to discriminate between taxonomic errors and rare genomes,
though in practice it does not. This is so because 76 genomes
(among the 107) are representative genomes in GTDB, which
have been decontaminated based on CheckM results alone. On
the other hand, Physeter’s auto-detection mode is not compatible
with its self-match skipping feature. Therefore we cannot make a
decision on these 107 complex cases. The take-home message of
this section is that estimating the contamination level in the case
of rare genomes or taxonomic errors is very difficult, especially
when interconnected tools are used.

THE CASE FOR CORROBORATED
ESTIMATES

Based on the recommendations established by the Genomic
Standards Consortium (Bowers et al., 2017), we used a threshold
of 5% to decide if a genome is contaminated. CheckM and
Physeter results can only be compared in the context of this
specific cutoff, since the two algorithms are very different
and hardly comparable in terms of contaminant percentage.
Moreover, while CheckM is based on taxon-specific marker sets,
Physeter probes the whole genomes. Nevertheless, the results
can be divided into four categories based on the maximum
contamination threshold of 5%: (1) both methods identify
<5% of contaminants (11,759 genomes), (2) CheckM alone
identifies ≥5% of contaminants (384 genomes), (3) Physeter
alone identifies ≥5% of contaminants (133 genomes), and (4)
both methods identify ≥5% of contaminants (46 genomes). The
two methods are thus in agreement for 95.77% of the 12,326
dubious genomes. The discrepancies were expected based on
our previous results on Cyanobacteria, where we compared
six different detection methods (Cornet et al., 2018). Even
if numerically minor, they confirm the importance of using
multiple methods of detection when estimating contamination
levels. Schematically, the intersection of the methods (i.e.,
corroboration) increases the certainty that a given genome
is contaminated, hence reducing false positives, whereas the
union maximizes the power of detection, hence reducing false
negatives. The choice of the intersection or of the union is
dependent on the goal of study, as both options have their
drawbacks, either more false negatives or more false positives,
respectively. At this stage, it is difficult to decide “which method
is right” between CheckM and Physeter. One way would be to
perform a metagenomic binning on the genomes for which they
disagree. However, sequencing reads are not publicly available
for more than half of these genomes (only 41.3 and 45.1% for
category 2 and 3, respectively), and these genomes being lowly
contaminated, the foreign bins are too small to be accurately
classified by any tool.

Physeter presents the advantage of labeling the individual
sequences and thus offers the possibility to explore the taxonomy
of the contaminants. These are very diversified, with a median
of 45 different contaminant phyla per phylum (over the 10
k-fold replicates). Firmicutes appear to be the major contaminant
of various phyla (Figure 2B), such as Tenericutes (75.1% of
the contaminant sequences), Fusobacteria (73.3%), Synergistetes
(70.9%), or Thermotogae (68.9%). Reciprocally, the major
contaminant of Firmicutes genomes are Actinobacteria (60.1%).
Biological traits like sheath thickness or the abundance of co-
living organisms can explain the nature of the contaminants
and the fact that some taxa have a higher propensity for
contamination, the latter being also affected by uneven sampling
of lifestyles in RefSeq (e.g., lots of clinical samples).

DISCUSSION

In this study, we have only looked at bacterial genomes
contaminated by other bacterial sequences. However, the
situation can be more complex, for instance in metagenomic
samples including small eukaryotes where contaminations can
remain unnoticed by most algorithms to the exception of
Kraken (Wood et al., 2019), BlobToolKit (Challis et al., 2020), a
workflow developed for eukaryotes, and Physeter (Cornet et al.,
2018). As a case in point, we provide a protocol to construct
a database containing representative genomes from the three
domains of life and study contamination in complex samples
with Physeter (see Supplementary Additional File 2). Based on
the results of the present study, even the most curated database
publicly available, RefSeq, includes 1,395 significantly (≥5%)
contaminated genomes (considering the union of CheckM and
Physeter results), which translates to 1.25% of the genomes. This
low percentage should not be considered as a comforting result
because even a single contaminated genome can lead to false
interpretations (Bemm et al., 2016). Perhaps more critical, since
nearly all contamination detection tools use databases derived
from public repositories as references [RefSeq (Haft et al., 2018)
for Kraken (Wood et al., 2019), Integrated Microbial Genomes
(IMG; Markowitz et al., 2012) for CheckM (Parks et al., 2015),
Ensembl (Hubbard et al., 2002) for the first version of Physeter
(Cornet et al., 2018), RefSeq (Haft et al., 2018) for ConFindR
(Low et al., 2019), RefSeq (Haft et al., 2018) for BASTA (Kahlke
and Ralph, 2018)], the reliability of the detection hinges on the
quality of these public databases. To our knowledge, Physeter
is the only software able to robustly detect contaminations at
a genome-wide scale when using a moderately contaminated
database as a reference.

Considering the low level of contaminated genomes in RefSeq,
one could conclude that the risk to include contaminants in
a study, due to reliance on a single method of detection,
is also low. Nevertheless, researchers are by essence more
interested in particularities than by generalities, and even small
amounts of contaminants have the potential to lead to exciting
but false conclusions. That is why we argue that a “second
opinion” should be considered when searching for contaminating
sequences, especially as long as genome reference databases are
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not completely devoid of contamination (Pasolli et al., 2019;
Zhu et al., 2019).

METHODS

111,088 genomes were downloaded from RefSeq on the
9th of March 2019, regardless of their sequencing status.
These genomes were analyzed with CheckM using the
typical automatic workflow option lineag_wf. CheckM
automatically places the queried genomes in a reference
tree through the concatenation of predicted ribosomal
proteins. The completeness and contamination levels are
then estimated by searching for lineage specific marker genes
provided with the software. CheckM uses 5,656 genomes
from a decontaminated version of IMG dating from 2015
(Parks et al., 2015).

For Physeter analyses, we first built a DIAMOND blastx
database corresponding to the 177,288 genomes of the Kraken2
database (Wood et al., 2019; Supplementary Table 2: https://doi.
org/10.6084/m9.figshare.13139819). This very comprehensive
database is composed for a large part of RefSeq genomes,
after curation by the authors (Wood et al., 2019). Yet it only
includes bacterial genomes, which prevents us from analyzing
archaeal genomes here. Moreover, CheckM indicated that 685
genomes of this database are contaminated, which motivated
our choice of a leave-one-out approach. The queried genomes
were then split into pseudo-reads of 250 nt, BLASTed against
the protein database, and labeled by computing the LCA
of each pseudo-read based on its best hits (excluding self-
matches), provided that they yielded a bit-score ≥ 80 and within
95% of the bit-score of the first hit (MEGAN-like algorithm;
Huson et al., 2007). As in Cornet et al. (2018), we chose
to set the minimal number of best hits to 1 for computing
LCAs. For the 107 misclassified genomes on the NCBI, we
ran Physeter using a local mirror of the GTDB taxonomy
(Parks et al., 2018; release 202) instead of the NCBI Taxonomy.
Taxa were attributed through the “auto-detect” option and
the “labeller” was constructed using all available GTDB phyla,
except for Proteobacteria, which were split into their constituting
classes instead.
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