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Abstract. Regular sequences generalize the extensively studied automatic

sequences. Let S be an abstract numeration system. When the numeration
language L is prefix-closed and regular, a sequence is said to be S-regular if

the module generated by its S-kernel is finitely generated.

In this paper, we give a new characterization of such sequences in terms
of the underlying numeration tree T (L) whose nodes are words of L. We

may decorate these nodes by the sequence of interest following a breadth-first

enumeration. For a prefix-closed regular language L, we prove that a sequence
is S-regular if and only if the tree T (L) decorated by the sequence is linear,

i.e., the decoration of a node depends linearly on the decorations of a fixed
number of ancestors.

Next, we introduce and study regular sequences in a rational base numer-

ation system, whose numeration language is known to be highly non-regular.
We motivate and discuss our definition that a sequence is p

q
-regular if the un-

derlying numeration tree decorated by the sequence is linear. We give the first

few properties of such sequences, we provide a few examples of them, and we

propose a method for guessing p
q

-regularity. Then we discuss the relationship

between p
q

-automatic sequences and p
q

-regular sequences. We finally present a

graph-directed linear representation of a p
q

-regular sequence. Our study per-

mits us to highlight the places where the regularity of the numeration language

plays a predominant role.
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1. Introduction

The notion of k-regular sequences [2] is a natural generalization of k-automatic
sequences (see, for instance, [16] for an introduction) whenever the set of taken
values is infinite. It means that the k-kernel of the sequence is included in a finitely
generated module (or simply a finite-dimensional Q-vector space when dealing with
integer sequences). Otherwise stated, a sequence (xn)n≥0 is k-regular if and only if
there exists an integer L ≥ 0 such that any subsequence (xk`n+r)n≥0 of its k-kernel
can be expressed, for all ` > L and 0 ≤ r < k`, as a linear combination of a finite
number of subsequences of the form (xkmn+j)n≥0 for 0 ≤ m ≤ L and 0 ≤ j < km.
This concept has proven its usefulness in many fields: number theory, combinatorics
on words, enumeration or discrete mathematics and theoretical computer science
or algorithm analysis [2, 3, 6, 7]. The notion of kernel and regular sequences have
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been generalized to non-standard numeration systems with a regular numeration
language [14, 8].

In a recent article [15], we introduced automatic sequences built on a rational
base numeration system. In this framework, contrarily to the classical situation
where the numeration language is regular, the sequences are built from represen-
tations belonging to a highly non-regular language. In the current paper, our aim
is to extend the notion of regular sequences to this framework. Our study permits
us to highlight the places where the regularity of the numeration language plays
a predominant role. Because of its universality, the case of integer bases does not
always reveal the importance of the underlying language.

The simplest example of what should be a 3
2 -regular sequence is probably the

sum-of-digits sequence in base 3
2 taking values in N:

s = (sn)n≥0 = 0, 2, 3, 3, 5, 4, 5, 7, 5, 5, 7, 8, 5, 7, 6, 7, 9, 9, . . . .

Indeed, the representations of the first few integers in base 3
2 are ε, 2, 21, 210, 212,

2101, 2120, 2122, 21011, 21200, . . . . If, like Allouche and Shallit [2], we consider the
kernel formed of all subsequences of s whose selected indices have a representation
in base 3

2 sharing a fixed suffix, since the prefix-tree of the base- 32 numeration
language is built on a periodic signature [13], we obtain the “classical” 3-kernel of
the sequence: every third 3

2 -representation in radix order has the same last digit,

every ninth 3
2 -representation has the same suffix of length 2, and so on and so

forth. Since s is unbounded, the set of subsequences of s of the form (s3jn+r)n≥0
is infinite, and moreover it has no clear combinatorial properties (as mentioned
above, one usually looks for linear relations between elements of the kernel). A
similar negative observation is made when computing elements of its 2-kernel or
using the generalized definition of kernel from [8]. (See Section 5 for more details.)
Hence the usual definitions of regularity based on kernel sets do not provide us with
a suitable setting. We note that the classical framework is thus not applicable.

It is therefore necessary to find an alternative to the definition involving the
finitely generated property of the module generated by the kernel. Our motivation
is to introduce a new definition of a regular sequence in a rational base numera-
tion system, which also extends the classical framework of integer base numeration
systems or numeration systems built on a prefix-closed regular language. Our ap-
proach is based on the structure of the prefix-tree of the numeration language.
Indeed, since rational base numeration languages are prefix-closed, they are con-
veniently represented by trees whose nodes are in one-to-one correspondence with
the words of the language. Note that the prefix-closed property is also assumed in
[8]. The nodes of such a tree are then decorated by the sequence x = (xn)n≥0 of
interest by breadth-first enumeration (or serialization): the nth node representing
n has decoration xn. We introduce the concept of a linear decorated tree where
the decoration of a node depends linearly on the decorations of a fixed number of
ancestors.

The reader accustomed to k-regular sequences should not be surprised by our
description given in terms of prefix-trees in which are found linear relationships.
Indeed, this is somehow a reformulation of the fact that linear relations occur
among elements of the k-kernel. However, compared with the definition based on
the kernel, our approach allows us to propose a definition extending regularity to
numeration systems with non-regular (prefix-closed) languages. As an example, the
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sum-of-digits sequence s gives rise to a decorated linear tree but its kernel does not
belong to a finitely generated module. Moreover, we are able to propose a kind of
linear representation that permits us to compute the decoration associated with xn
with a number of matrix multiplications equal to the length of the representation
of n in the considered rational base numeration system.

Our study also highlights the limitations of a numeration system built on a
non-regular language. With our definition of regularity extending the classical
framework, we show that any regular sequence taking a finite number of values is
automatic. However, the converse is false. One can easily construct a non-regular
sequence produced by an automaton even in the simplest case where the outputs
are all distinct. See, for instance, Example 36.

Berstel and Reutenauer [6] present the k-regularity of a sequence (xn)n≥0 through
the fact that the formal series

∑
n≥0 xn repk(n) is rational (where repk(n) denotes

the base-k representation of n). In a more general setting, one considers the series∑
n≥0 xn repS(n) where repS(n) is the representation of n in a convenient abstract

numeration system S and the support of these series is thus included in the numer-
ation language. With the above example of the sum-of-digits sequence s, such a
series (each term is made of a coefficient followed by a word of the language) starts
with∑

n≥0

sn rep 3
2
(n) = 2 · 2 + 3 · 21 + 3 · 210 + 5 · 212 + 4 · 2101 + 5 · 2120 + · · · .

So in the case of 3
2 -representations, we have a series with a non-regular support.

In particular, this series cannot be N-rational [6, Chapter 3]. In this paper, we
are extensively considering trees and subtrees but we are not considering series as
functions defined over the set of finite trees (i.e., with bounded height) and taking
values in a semiring. Indeed, we point out that such a variant of rational series on
trees has been considered in [5] and is an independent matter. The map associating
with a tree its height or the evaluation of a parse tree of an arithmetic expression
are examples of this kind. The authors studied the corresponding notion of rational
series.

The paper is organized as follows. In Section 2, we recall the necessary back-
ground on trees. In particular, we distinguish decorated and undecorated trees.
Section 3 is dedicated to our main concept, namely linear trees. Roughly a tree
is h-linear for some h ≥ 0 if, for each type of undecorated subtrees of height h,
the decoration of each node on level h can be obtained as a linear combination of
decorations of nodes on levels 0, 1, . . . , h− 1. We provide examples of such trees in
three different numeration systems (integer base, Fibonacci or Zeckendorf system
and rational base 3

2 ). In Section 4, with Theorems 14 and 23, given an abstract
numeration system S based on a prefix-closed regular language, we give an al-
ternative characterization of regularity by showing that a sequence is S-regular if
and only if the decorated tree associated with the numeration language is linear.
Then, in Section 5, we explain why such an equivalence does not hold for a rational
base whose numeration language is not regular. We thus argue that a meaningful
definition for regularity in rational bases should be related to the linearity of the
decorated numeration tree. This provides a new framework to extend the notion
further beyond rational bases. We give the first few properties of regular sequences
in rational bases. As Allouche and Shallit in [3], we provide a method for guessing
p
q -regularity. Thanks to this technique, we provide a few examples of p

q -regular
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sequences such as (nd)n≥0 for any integer d ≥ 0. Then we compare the set of
p
q -automatic sequences with the set of p

q -regular sequences taking finitely many

values. We make use of our results to show that the cumulative version (defined
later in the paper) of a p

q -regular sequence is also p
q -regular. Finally in Section 6,

we provide a graph-directed linear representation of a regular sequence in rational
bases. This again highlights the main differences between regular and non-regular
numeration languages.

2. Trees

Let L be a prefix-closed language over a totally ordered alphabet (A,<) and let
x = x0x1 · · · be an infinite sequence over a commutative semiring K, i.e., x ∈ KN.
With L is associated a tree whose (linearly ordered) nodes are “colored” by the
terms of x. The tree representation of the free monoid A∗ is classical; we consider
a subtree of this infinite tree.

Definition 1. With every prefix-closed language L ⊆ A∗ is associated a labeled
tree T (L) whose nodes are the words of L. The empty word ε is the root. Edges of
the tree are labeled by letters in A. The alphabet is assumed to be totally ordered,
so the edges are also ordered. If u and ua are two nodes with a ∈ A, there is an
edge of label a between them.

Enumerating the words of L by radix order (so considering an abstract numera-
tion system S = (L,A,<) in the sense of Lecomte and Rigo [9]) corresponds to the
breadth-first traversal (or serialization [12]) of the ordered tree T (L). For all n ≥ 0,
the nth word wn in L corresponds to the nth node of T (L). We let repS(n) denote
the (n + 1)st word in L for all n ≥ 0, and valS : L → N is the inverse function
mapping any word of L to its position in the radix ordered language L.

Definition 2. A decoration of a tree T = (V,E) is a map from the set V of vertices
to some set B associating a value in B with each node of the tree.

To avoid any confusion or misunderstanding, we say that edges have labels and
nodes have decorations. In a tree, nodes of level ` ≥ 0 are those at distance ` from
the root.

From now on, we consider the labeled tree T (L) decorated by x. It is denoted
by Tx(L). Otherwise stated, for the abstract numeration system built on L, the
node corresponding to a word w ∈ L in Tx(L) has decoration xval(w). By abuse
of notation, since integers are in one-to-one correspondence with words in L, we
also write xw. In Figure 1, we have depicted the first few levels of the tree of
the numeration language associated with base-2, Fibonacci and base- 32 numeration
systems. The decorations are given by the sequence (n)n≥0.

Definition 3. The domain dom(T ) of a labeled tree T is the set of labels of paths
from the root to its nodes. In particular, dom(T (L)) = L. The truncation of a tree
at height h is the restriction of the tree to the domain dom(T ) ∩A≤h.

Definition 4. Let w ∈ L. We let T [w] denote the (infinite) subtree of T (L) having
w as root. Its domain is w−1L = {u | wu ∈ L}. We say that T [w] is a suffix
of T . The factor of height h rooted at w is the truncation of T [w] at height h. It is
denoted by T [w, h]. The prefix of height h of T is the factor T [ε, h]. We distinguish
the case without or with decorations.
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Figure 1. Prefixes of height 4 of three trees T (L) where L is
respectively the base-2, Fibonacci and base- 32 numeration lan-
guage.

• Two factors T [w, h] and T [w′, h] of the same height in the (undecorated)
tree T (L) are equal if they have the same domain.
• Two factors T [w, h] and T [w′, h] of the same height in the decorated tree
Tx(L) are equal if they have the same domain and the same decorations,
i.e., xwu = xw′u for all u ∈ dom(T [w, h]).

For instance, in the first tree of Figure 1, the factors T [10, 2] and T [11, 2] are
equal as undecorated trees (they have the same domain {0, 1}≤2), but are different
as decorated trees.

Lemma 5. If L is a regular language, then, for all integers n ≥ 0, the number
of (undecorated) factors of height n in T (L) is less than or equal to the number of
states of the trim minimal automaton of L.

Proof. Any two states in the minimal automaton of L are distinguished: there is a
word accepted from exactly one of the two states and rejected from the other one.
Moreover, it is a classical result that if two states are distinguishable, then they are
distinguished by a word of length at most N − 1 where N is the number of states
of the minimal automaton of L. (This follows from Hopcroft DFA minimization
algorithm.) Otherwise stated, if the word w (respectively w′) leads to a state q
(respectively q′), then there is a word u of length h ≤ N − 1 such that u belongs to
the domain dom(T [w, h]) = w−1L∩A≤h of T [w, h] or to the domain dom(T [w′, h]) =

w′
−1
L ∩A≤h of T [w′, h] but not to both of them. �

Remark 6. Let L be a regular language havingML as minimal automaton. From
the above lemma, if the height h is large enough, e.g., at least the number of states
of ML, then there is a one-to-one correspondence between the states of ML and
the pairwise distinct factors of height h in T (L). In particular, T [w, h] = T [w′, h]
if and only if, from the initial state, the words w and w′ lead to the same state of
ML.

3. Decorated h-linear trees

The next definition is central and has to be understood as follows. Roughly
speaking, whenever two factors of height h occurring in T (L) are isomorphic as
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labeled trees, then the decorations of the nodes on the lowest level h are obtained
as linear combinations of the decorations of the nodes on the other levels. For nodes
on level h at the same relative positions in the two trees, the linear combinations
to get the corresponding decorations are the same.

Let L be a commutative Noetherian ring, i.e., a ring in which every ideal is finitely
generated. We assume that L is a subsemiring of K. So we will consider L-linear
combinations of elements in KN. We make such an assumption because in general,
a submodule of a finitely generated module is not always finitely generated, but it
is the case when the module is over a Noetherian ring. In particular, principal ideal
domains (PID for short) and fields, such as Z and Q respectively, are Noetherian
rings.

Definition 7. Let L be any prefix-closed language (not necessarily regular) over
a finite alphabet A. Fix some integer h ≥ 1 and let r(h) ≥ 1 denote the num-
ber of pairwise distinct labeled trees of height h occurring in T (L), denoted by
T1, . . . , Tr(h). The decorated tree Tx(L) is (L, h)-linear (or simply h-linear) if there
exists a finite number of constants cj,u,v ∈ L such that, for all words w ∈ L
with T [w, h] = Tj for some j ∈ {1, . . . , r(h)} and for all words u belonging to
dom(Tj) ∩Ah, we have

(3.1) xwu =
∑

v∈dom(Tj)
|v|<h

cj,u,v xwv.

In what follows, for all words w ∈ L such that the height-h subtree T [w, h] of T (L)
is equal to Tj for some j with 1 ≤ j ≤ r(h), we say that the type of T [w, h] is Tj .

Lemma 8. If a decorated tree Tx(L) is h-linear, then it is (h+ 1)-linear.

Proof. Let T [w, h + 1] be a subtree of height h + 1 in Tx(L). Assume that the
words wa1, . . . , wa` are the children of w with aj ∈ A for all j with 1 ≤ j ≤
`. Hence T [w, h + 1] contains ` disjoint (i.e., with no common node) subtrees
T [wa1, h], . . . , T [wa`, h] of height h. By assumption, for all j with 1 ≤ j ≤ `, the
decorations on the last level of T [waj , h] are linear combinations of the decorations
of the nodes in T [waj , h − 1], which are nodes of T [w, h]. Otherwise stated, the
decorations on the last level of T [w, h+1] are linear combinations of the decorations
of the nodes in T [w, h]. �

If a decorated tree Tx(L) is h-linear, it is enough to know its prefix of height h
and the linear relations occurring on the lower level in every non-isomorphic factor
of height h to recover the full decorated tree. Indeed, from the prefix of height h−1
of any factor of height h, one can compute the decorations on the next level. We
now illustrate this fact on three different types of numeration systems.

Let k ≥ 2 be an integer. We let Ak be the finite alphabet {0, 1, . . . , k − 1}. The
usual base-k numeration system is built on the language

(3.2) Lk := {ε} ∪ {1, . . . , k − 1}{0, . . . , k − 1}∗.

Example 9 (Integer base). Assume that the decorations take values in N and
that we consider the tree T (L2) in the binary numeration system. From the prefix
and the linear combinations given in Figure 2, we can build a decorated infinite
3-linear tree. With notation from Definition 7, we have r(3) = 2: the two subtrees
are depicted in Figure 2. (We assume that T1 is the prefix of height 3 and T2 is
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the other subtree occurring everywhere else.) We proceed as follows. Start with
the given decorated prefix of height 3. In the factor T [1, 3], the first three levels
are already decorated. If we make use of the given relations, we can compute the
decorations on level 4 as depicted in Figure 3. For instance, let us show that the
fourth node on level 4 has decoration 0+2−1 = 1. Using notation from Definition 7,
we have w = 1 and u = 011. Using the corresponding relation from Figure 2, we get
xwu = xw0 + xw11 − xw1. This is Equation (3.1) where c2,011,0 = 1, c2,011,1 = −1,
c2,011,11 = 1 and c2,011,v = 0 for v ∈ {ε, 00, 01, 10}. Similarly, the fifth node on level
4 has decoration 1: in this case, we have w = 1 and u = 100 and we get xwu = xw1,
i.e., c2,100,1 = 1 and c2,100,v = 0 for v ∈ {ε, 0, 00, 01, 10, 11}. We can continue with
the factor T [10, 3] (and respectively T [11, 3]) where the first three levels are already
decorated. We use the same relations and obtain the decorations on level 5, and
so on and so forth. We obtain the tree in Figure 3 and the serialization of the
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Figure 2. A first example (base-2 case): the prefix of height 3
and linear relations to extend the tree.

decorations is the sequence 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 1, 2, 3, . . . [20, A014081],
which counts the number of occurrences of 11 (with possible overlaps) in the binary
representation of n. To prove that we indeed get this sequence, observe that from
a node decorated by z to the one decorated by t, an extra 11 has been read. Thus,
t − z should be equal to 1 so, each time a new factor 11 occurs, t − z has to be
added to the current decoration. This explains the relations on the lowest level in
Figure 2.

Remark 10. In the tree T (Lk) corresponding to the base-k numeration system,
there are exactly two factors of height h: the prefix of height h of the tree (occurring
only once and whose root has k − 1 children) and the full k-ary tree of height h
(occurring everywhere else and whose root has k children). This is consistent with
Lemma 5 and Remark 6: the minimal automaton of Lk has two states. In the
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Figure 3. The first levels of the corresponding 3-linear tree.

initial state, one cannot read leading zeroes. The second state has a loop for any
symbol in Ak including zero.

Example 11 (Fibonacci numeration system). Assume that the decorations take
values in N and that we consider the tree T (F ) in the Fibonacci numeration
system with the language F = 1{0, 01}∗ ∪ {ε} over {0, 1}. Compared with the
previous examples, we have two non-isomorphic (undecorated) factors t1, t2 of
height 2 to consider as shown in Figure 4. If we proceed as in the first exam-
ple, from the prefix of height 2 and the linear combinations given in Figure 4,
we can build a decorated infinite 2-linear tree. Start with the prefix denoted by
t0. The factor T [1, 2] is of type t1. Thus knowing the decorations of the first
two levels, we compute the decorations on level 3 using the relations in the sec-
ond tree in Figure 4. Now, the factor T [10, 2] is of type t2 and we compute the
decorations on level 4 using the relations in the third tree in Figure 4. Then
we have to consider the two factors T [100, 2] and T [101, 2] of types t2 and t1
respectively and we make use of the relations to compute the next decorations.
Keeping doing so, we obtain the tree in Figure 5 and the serialization of the decora-
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Figure 4. A second example (Fibonacci case): the prefix of height
2 and linear relations to extend the tree.

tions is the sequence 1, 2, 3, 4, 4, 5, 6, 6, 6, 8, 9, 8, 8, 7, 10, 12, 12, 12, 10, 12, 12, . . . [20,
A282717] counting the number of nonzero entries in nth row of the generalized
Pascal triangle based on Fibonacci representations. The linear relations are taken
from [10].

Rational bases numeration systems were introduced in [1] and are special kinds
of abstract numeration systems. Let p and q be two relatively prime integers with
p > q > 1. We let L p

q
⊆ A∗p denote the numeration language in base p

q . It is
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Figure 5. The first levels of the corresponding 2-linear tree.

known that L p
q

is prefix-closed and non-regular. The corresponding tree T (L p
q
) has

a purely periodic labeled signature denoted by (w0, . . . , wq−1), where each word wi

belongs to A∗p. For details, we refer the reader to [1, 11, 12, 13, 15].

Example 12 (Rational base). Consider the rational base 3
2 having (02, 1)ω as

signature and the tree T (L 3
2
). Let us quickly recall how this tree is built. Following

the breadth-first traversal, each node periodically has either two children with edges
of labels 0 and 2, or one child with a single edge of label 1. Except for the root
which has only a single edge with label 2 to avoid representations with leading
zeroes, we alternate between nodes of degree one or two.
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Figure 6. A third example (base- 32 case).

As in the previous examples, from the prefix of height 2 and the linear combina-
tions given in Figure 6, we can build a decorated infinite 2-linear tree on T (L 3

2
). It

is depicted in Figure 7. We proceed as in the other examples: in T (L 3
2
), if in a given

factor the first two levels have been decorated, then we get the decorations on the
lower level. We get the serialization: 0, 2, 3, 3, 5, 4, 5, 7, 5, 5, 7, 8, 5, 7, 6, 7, 9, 9, . . .,
which is the sum-of-digits sequence in base 3

2 . To show that it is indeed this
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sequence, for the first (respectively second) type of tree, observe that y−x (respec-
tively z − x) is equal to 1 (respectively 2). One can therefore deduce the relations
to be considered. For instance, in the second tree, the second leaf has decoration
3y − 2x = y + 2 · (y − x) = y + 2, which indeed reflects the sum of digits.
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Figure 7. The first levels of the corresponding 2-linear tree.

4. Link with regular sequences, so many kernels

Let k ≥ 2 be an integer. We can easily characterize k-regular sequences in terms
of the linearity of the tree they decorate. Recall that the k-kernel of a sequence
x = x0x1 · · · is the set

(4.1) kerk(x) := {(xkjn+r)n≥0 | j ≥ 0, 0 ≤ r < kj}.
The L-module generated by a subset B is defined as the set 〈B〉L of finite linear
combinations of elements in B with coefficients in L of the form `1b1 + · · ·+ `mbm
for some m ≥ 0 where `i ∈ L and bi ∈ B. A sequence x ∈ KN is said to be (L, k)-
regular if the L-module 〈kerk(x)〉L generated by the k-kernel of the sequence x is
finitely generated [2].

Remark 13. Let us recall an important fact that we will use several times in the
following. As observed in [2, Theorem 2.2], if 〈A〉L = 〈s1, . . . , sm〉L, then each si is
an L-linear combination of some elements of A. Since there is a finite number of
si to consider, these elements s1, . . . , sm are in fact generated by a finite number
of elements of the set A. This means that 〈A〉L is generated by a finite number of
elements in A. We will make use of this remark first with A = kerk(x).

Theorem 14. Let k ≥ 2 be an integer. A sequence x = x0x1 · · · taking values in
K is (L, k)-regular if and only if the decorated tree Tx(Lk) is (L, h)-linear for some
h ≥ 1.

Proof. If the L-module M generated by the k-kernel is finitely generated, then
there exists some integer h ≥ 1 such that, for all r with 0 ≤ r < kh, the sequence
(xkhn+r)n≥0 is a linear combination of sequences of the form (xkjn+s)n≥0 for some
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j, s with 0 ≤ j < h and 0 ≤ s < kj . Using Remark 13, we can assume that M is
generated by finitely many elements of the k-kernel itself. Otherwise stated, there
exist constants cr,j,s ∈ L such that

(4.2) ∀n ≥ 0, xkhn+r =

h−1∑
j=0

kj−1∑
s=0

cr,j,s xkjn+s.

For the base-k numeration system, the language Lk and a word w ∈ Lk, the tree
T [w, h] of height h is such that

valk(dom(T [w, h])) = {kj valk(w) + s | 0 ≤ j ≤ h, 0 ≤ s < kj}.
So Tx(Lk) is (L, h)-linear. Indeed, Equation (4.2) means that in every tree T [w, h]
for w ∈ Lk, the decorations on the last level satisfy the same linear relations
depending on decorations on the other levels.

Conversely, if Tx(Lk) is (L, h)-linear, then we obtain relations similar to (4.2)
for all n ≥ 1. (Indeed, the case of the prefix of height h may give other relations
for n = 0 because T [ε, h] and T [w, h], for w 6= ε, are not equal as undecorated
trees. This is due to the absence of leading zeroes in greedy representations. Recall
Remark 10.) Let r with 0 ≤ r < kh. Hence (xkhn+r)n≥1 is a linear combination
of the sequences (xkjn+s)n≥1 for some j, s with 0 ≤ j < h and 0 ≤ s < kj . Now
(xkhn+r)n≥0 is a linear combination of the sequences (xkjn+s)n≥0 for some j, s with
0 ≤ j < h and 0 ≤ s < kj and some extra sequence z whose terms are all zeroes
except the first one. From this, we deduce that the sequence x is (L, k)-regular.
Indeed, for t ≥ 1 and some p with 0 ≤ p < kh+t, if we write p = khqp + rp, then we
have

(4.3) (xkh+tn+p)n≥1 = (xkh(ktn+qp)+rp)n≥1.

We can therefore express the former sequence as a linear combination of sequences
of the form (xkj(ktn+qp)+s)n≥1 for some j, s with 0 ≤ j < h and 0 ≤ s < kj and
continue recursively until we get a combination of the sequences (xkjn+s)n≥1 for
some j, s with 0 ≤ j < h and 0 ≤ s < kj . Therefore the sequence (xkh+tn+p)n≥0
is a linear combination of sequences (xkjn+s)n≥1, for some j, s with 0 ≤ j < h and
0 ≤ s < kj , and z. �

We consider the definition from [8] extending the one of [14] which permits us
to consider S-regular sequences in particular abstract numerations systems. Let
S = (L,A,<) be an abstract numeration system built on a prefix-closed regular
language and let x = x0x1 · · · be a sequence in KN. For all words u ∈ A∗, consider
the sequence

τ(x, u) : n 7→
{
xrepS(n)u, if repS(n)u ∈ L;
0, otherwise.

The S-kernel of the sequence x is the set

(4.4) kerS(x) := {τ(x, u) | u ∈ A∗}.

Remark 15 (About leading zeroes). For a sequence x, there is a small difference
between the elements of its k-kernel and those of its Sk-kernel for the abstract
numeration system Sk built on the language Lk from (3.2). This difference arises
because leading zeroes are allowed in the positional base-k numeration system but
are forbidden in the abstract numeration system setting (leading zeroes change
the length and thus the value for the radix order). Indeed, when a word u has
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digit 0 as a prefix, then repS(0)u = εu = u starts with 0 and does not belong to
Lk. So the sequence τ(x, u) in kerSk

(x) starts with 0 compared with the sequence
(x(k|u|n+valk(u)))n≥0 in kerk(x) starting with x(k|u|0+valk(u)) = xvalk(u), which
can be non-zero. So the two subsequences built from the same suffix u can differ
on the first term. With this distinction, this is why the prefix of height h in
T (Lk) differs from any other factor having a leftmost branch labeled with zeroes.
Nevertheless from [8], 〈kerk(x)〉L is finitely generated if and only if 〈kerSk

(x)〉L is.

Definition 16. Let S = (L,A,<) be an abstract numeration system built on a
prefix-closed regular language L. A sequence x taking values in K is (L, S)-regular
if the L-module 〈kerS(x)〉L generated by the S-kernel of x is finitely generated.

It will be convenient to convey an extra piece of information about the type of tree
that is encountered when reading repS(n) in the process of building subsequences.
Let h ≥ 1. There are finitely many (undecorated) labeled trees {T1, . . . , Tr(h)} of
height h occurring in T (L). For all words u ∈ A∗ and all j ∈ {1, . . . , r(h)}, consider
the sequence

τ(x, u, Tj) : n 7→
{
xrepS(n)u, if repS(n)u ∈ L and T [repS(n), h] = Tj ;
0, otherwise.

In particular, we have

(4.5)

r(h)∑
j=1

τ(x, u, Tj) = τ(x, u).

The h-filtered S-kernel of the sequence x is the set

kerh,S(x) := {τ(x, u, Tj) | u ∈ A∗, 1 ≤ j ≤ r(h)}.

Note that the 0-filtered S-kernel is simply the S-kernel of the sequence.
For convenience, we introduce some characteristic sequences, for j ∈ {1, . . . , r(h)},

χj : n 7→
{

1, if T [repS(n), h] = Tj ;
0, otherwise.

This means that

τ(x, u)� χj = τ(x, u, Tj),

where � is the term-wise multiplication (which is compatible with the notation of
the Hadamard product, see Remark 24).

Example 17. Consider the three trees t0, t1, t2 from Figure 4. The tree t0 has ε
as root. Trees of type t1 have a root reached with a path ending with 1 (after a
letter 1, one can only add a letter 0). Trees of type t2 have a root reached with a
path ending with 0 (after a letter 0, one can add either 0 or 1). In the next table,
we give the values of τ(x, 0, t1) and τ(x, 0, t2). Note that τ(x, 0, t0) = 0, 0, 0, ....

repS(n) ε 1 10 100 101 1000 1001 1010 10000
repS(n)0 0 10 100 1000 1010 10000 10010 10100 100000
τ(x, 0) 0 3 4 5 6 6 9 8 7

χ1 0 1 0 0 1 0 1 0 0
τ(x, 0, t1) 0 3 0 0 6 0 9 0 0

χ2 0 0 1 1 0 1 0 1 1
τ(x, 0, t2) 0 0 4 5 0 6 0 8 7
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Lemma 18. Let h ≥ 0. The S-kernel of a sequence is finite if and only if its
h-filtered kernel is finite.

Proof. Each element τ(x, u) of the S-kernel gives rise to at most r(h) distinct
elements τ(x, u, Tj) of the h-filtered kernel. Conversely, from Equation (4.5), each
element of the S-kernel is obtained by summing up some of the elements of the
h-filtered kernel. �

Lemma 19. The L-module 〈kerS(x)〉L generated by the S-kernel of x is finitely
generated if and only if the L-module 〈kerh,S(x)〉L generated by the h-filtered S-
kernel of x is finitely generated for all h ≥ 0.

Proof. From Equation (4.5), we deduce that 〈kerS(x)〉L is included in 〈kerh,S(x)〉L.
Any submodule of a finitely generated module over a Noetherian ring is also finitely
generated. Hence, if 〈kerh,S(x)〉L is finitely generated, so is 〈kerS(x)〉L.

Assume that 〈kerS(x)〉L is finitely generated. Using Remark 13, we may assume
that it is generated by a finite number of elements s1, . . . , sm ∈ kerS(x). Every
element of kerh,S(x) is of the form t � χj for some t ∈ kerS(x) and some j with
1 ≤ j ≤ r(h). Hence, it is an L-linear combination of s1�χj , . . . , sm�χj . Otherwise
stated, this means that the h-filtered S-kernel is generated by the sequences si�χj ,
for all i, j with 1 ≤ i ≤ m, 1 ≤ j ≤ r(h). �

Proposition 20. Let S = (L,A,<) be an abstract numeration system built on a
prefix-closed (not necessarily regular) language. If the L-module 〈kerS(x)〉L gener-
ated by the S-kernel of a sequence x taking values in K is finitely generated, then
the decorated tree Tx(L) is (L, h)-linear for some h ≥ 1.

Proof. As in the proof of the above lemma, we may assume that 〈kerS(x)〉L is
generated by a finite number of sequences τ(x, u1), . . . , τ(x, um). Let h = 1 +
maxi |ui|. By Lemma 19, 〈kerh,S(x)〉L is generated by the sequences of the form
τ(x, ui, Tj) = τ(x, ui)�χj , i = 1, . . . ,m, j = 1, . . . , r(h). Let v be a word of length
h and j be such that v belongs to the domain of Tj (one of the labeled factors of
height h). Then, τ(x, v, Tj) is an L-linear combination of the τ(x, ui, Tj). Due to the
form of the sequences (obtained as a multiplication by χj), we can indeed assume
that no sequence of the form τ(x, u′, Ti) with i 6= j occurs in the decomposition of
τ(x, v, Tj). For any n such that repS(n) is the root of a factor of the type Tj , this
means that xrepS(n)v is an L-linear combination of the xrepS(n)ui

’s. Since |v| = h,
this means that in any factor of height h, the decorations of the leaves are linear
combinations of decorations of the above nodes (since |ui| ≤ h − 1). We conclude
that Tx(L) is (L, h)-linear. �

In the next proposition, the assumption that the numeration language is regular
is important. Also see Remark 22.

Proposition 21. Let S = (L,A,<) be an abstract numeration system built on a
prefix-closed regular language. If the tree Tx(L) decorated by a sequence x taking
values in K is (L, h)-linear for some h ≥ 1, then the sequence x is (L, S)-regular.

Proof. By Lemma 8, we can take h large enough such that the factors of height h in
T (L) are in one-to-one correspondence with the states of the minimal automaton of
L (see Remark 6) and this correspondence is compatible with the transition function
of the automaton, i.e., if a state q corresponds to T [w, h], then q.a corresponds to
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T [wa, h]. So instead of denoting by T1, . . . , Tr(h) the trees of height h occurring in
T (L) we can denote them by their respective root Tw.

By assumption, Tx(L) is (L, h)-linear for some h ≥ 1: if w is the root of a tree
T [w, h], then for all word u of length h such that wu ∈ L, there exist constants
cw,u,v ∈ L such that

(4.6) xwu =
∑

v∈dom(Tw)
|v|<h

cw,u,v xwv.

If u is such that wu 6∈ L, then the constants are set to 0. Hence τ(x, u, Tw) is an
L-linear combination of sequences of the form τ(x, v, Tw) for |v| < h.

We proceed as in Equation (4.3) to show that any element of the h-filtered kernel
can be expressed as a linear combination of sequences of the form τ(x, v, Tw) for
|v| < h. Note that there are finitely many such sequences (as there are finitely
many trees Tw). Let a ∈ A such that au is a word of length h + 1 and wau ∈ L.
By using Equation (4.6) in the first and last equalities, we have

xwau =
∑

v∈dom(Twa)
|v|<h

cwa,u,v xwav

=
∑

v∈dom(Twa)
|v|<h−1

cwa,u,v xwav +
∑

v∈dom(Twa)
|v|=h−1

cwa,u,v xwav

=
∑

v∈dom(Twa)
|v|<h−1

cwa,u,v xwav +
∑

v∈dom(Twa)
|v|=h−1

cwa,u,v

∑
z∈dom(Tw)
|z|<h

cw,av,z xwz,

which means that τ(x, au, Tw) is an L-linear combination of sequences of the form
τ(x, av, Twa) for |av| < h and of sequences of the form τ(x, z, Tw) for |z| < h.
Repeating this argument, this shows that the h-filtered S-kernel is finitely generated
by elements of the form τ(x, v, Tw) for |v| < h and w ∈ A∗. Hence we conclude
with Lemma 19. �

Remark 22. We stress that the assumption on the regularity of the language
L appears quite subtly in the above proof. Assuming that h is large enough,
when we have a factor T [w, h] occurring in T (L), adding an extra letter a leads
to a unique tree T [wa, h]. There is no ambiguity because there is an underlying
finite automaton recognizing L. More precisely, whenever T [w, h] = T [w′, h], then
T [wa, h] = T [w′a, h]. See Lemma 5 and Remark 6.

In a more general setting such as rational base numeration systems, this is no
longer the case. In base 3

2 for instance, for any height h and any word w, the
factor T [w, h] appears as the prefix of two distinct trees of height h + 1. For
example, see the four trees in the right side of Figure 6: each tree of height 1 is
the prefix of two distinct trees of height 2. So T [w, h] = T [w′, h] never implies that
T [wa, h] = T [w′a, h].

We summarize the above two propositions as follows, which generalizes Theo-
rem 14 to abstract numeration systems.

Theorem 23. Let S = (L,A,<) be an abstract numeration system built on a
prefix-closed regular language. A sequence x taking values in K is (L, S)-regular
sequence if and only if the decorated tree Tx(L) is (L, h)-linear for some h ≥ 1.
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Remark 24. Under the conditions of the above theorem, as a consequence of [8,
Theorem 29], the series S =

∑
w∈L xw w is recognizable. Note that since L is a

regular language, the series Sj =
∑

w∈L χj(valS(w))w is the characteristic series
of a regular language Lj = {w ∈ L | T [w, h] = Tj}. Hence, the Hadamard product
S � Sj of these two series is again recognizable.

5. What is a p
q -regular sequence1?

Let s denote the sum-of-digits sequence in the base- 32 numeration system S =
(L 3

2
, {0, 1, 2}, <) (defined in Section 1). As mentioned in the introduction, the

3-kernel of s given by Equation (4.1) does not seem to provide any linear relation-
ships. We give here some more details about the sets of subsequences that can
be associated with s. The Mathematica package IntegerSequences developed
by E. Rowland [17] implements a procedure for guessing k-regular sequences as
described by Shallit [19]. But it does not find any 2-, 3- nor 6-regularity for the
sequence s.

Let now us have a look at some elements τ(s, u) of the S-kernel of the sequence s.
We will show that S-kernel of s given by Equation (4.4) is not finitely generated.

u ∈ {0, 1, 2}∗ τ(s, u)
ε 0, 2, 3, 3, 5, 4, 5, 7, 5, 5, 7, 8, 5, 7, 6, 7, 9, 9, 5, 7, 8, . . .
0 0, 0, 3, 0, 5, 0, 5, 0, 5, 0, 7, 0, 5, 0, 6, 0, 9, 0, 5, 0, 8, . . .
1 0, 3, 0, 4, 0, 5, 0, 8, 0, 6, 0, 9, 0, 8, 0, 8, 0, 10, 0, 8, 0, . . .

10 0, 3, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 8, 0, 0, 0, 10, 0, 0, 0, . . .
01 0, 0, 4, 0, 0, 0, 6, 0, 0, 0, 8, 0, 0, 0, 7, 0, 0, 0, 6, 0, 0, . . .
11 0, 0, 0, 5, 0, 0, 0, 9, 0, 0, 0, 10, 0, 0, 0, 9, 0, 0, 0, 9, 0, . . .
00 0, 0, 0, 0, 5, 0, 0, 0, 5, 0, 0, 0, 5, 0, 0, 0, 9, 0, 0, 0, 8, . . .

000 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, . . .

Note that all suffixes u are not considered in the previous table since some can be
obtained from others. For example,

τ(s, 2) = 2, 0, 5, 0, 7, 0, 7, 0, 7, 0, 9, 0, 7, 0, 8, 0, 11, 0, 7, 0, 10, . . .

can be expressed as τ(s, 2) = τ(s, 0) + (20)ω and τ(s, 21) = τ(s, 00) + (3000)ω. Also
observe that, for any u ∈ {0, 1, 2}∗, the sequence (τ(s, u)(n))n≥1 has positive values

separated by 2|u|− 1 zeroes because there are 2|u| types of factors of height |u| and
u belongs to the domain of exactly one of them.

With basic knowledge about the numeration system S, it is not difficult to see
that kerS(s) contains a sequence having non zero terms only for all positive positions
being congruent to r mod 2j for all j, r with j ≥ 0 and 0 ≤ r < 2j . Since the
characteristic sequences of the sets N, 2N, 4N, 4N + 1, . . . , 2jN,. . . , 2jN + 2j−1 −
1 are linearly independent, then 〈kerS(s)〉 cannot be finitely generated. Indeed,
by induction, the determinant of the matrix made of the first 2j terms of these
sequences is equal to −1.

As a conclusion, no reasonable kernel associated with s seems to be finitely
generated. In view of Theorem 23, instead of considering a definition based on the
kernel, we therefore propose the following.

1The idea to start this paper came after listening to a talk “Avoiding fractional powers on an
infinite alphabet” given by E. Rowland [18].
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Definition 25. Let p and q be two relatively prime integers with p > q > 1. A
sequence x taking values in K is (L, pq )-regular whenever the decorated tree Tx(L p

q
)

is (L, h)-linear for some h ≥ 1.

Due to Theorems 14 and 23, Definition 25 indeed generalizes k-regular and S-
regular sequences in the usual sense.

We now give some closure properties of (L, pq )-regular sequences.

Proposition 26. The set of (L, pq )-regular sequences is an L-module.

Proof. We have to show that the set of (L, pq )-regular is closed under sum and

multiplication by a constant. The case of the multiplication by a constant is clear,
so we only prove the case of the sum. Let x and y be two (L, pq )-regular sequences.

Assume that the trees Tx(L p
q
) and Ty(L p

q
) are respectively h-linear and h′-linear

for some h, h′ ≥ 1. Let H = max(h, h′). Then both trees are H-linear by Lemma 8,
so is the tree Tx+y(L p

q
). Therefore the sequence x + y is (L, pq )-regular. �

5.1. Guessing h-linearity. As in [3, Section 6], a practical procedure may be
applied to often succeed in deducing the p

q -regularity of a sequence by inspecting

its first few terms.
Consider a long enough prefix of the sequence x = (xn)n≥0 of interest. If we

know or can compute L terms of the sequence, we are thus able to decorate the
nodes on the first ` levels of the tree T (L p

q
) for some ` ≥ 0. Fix an integer h ≥ 1.

We would like to conjecture the h-linearity of this tree by providing convenient
candidates for linear relations occurring for the decorations of subtrees of height h.

Except for the prefix T [ε, h], it is well-known that there are qh non-isomorphic
(undecorated) subtrees of height h [11, Lemme 4.14]. More precisely, two factors
T [u, h] and T [v, h] are equal if and only if val p

q
(u) ≡ val p

q
(v) (mod qh).

There are ph linear relations to guess because this is the total number of leaves
of the qh pairwise distinct (undecorated) trees. Let R ∈ {0, . . . , qh − 1} be a
remainder. Consider the finite collection of subtrees T [uj , h], j ∈ JR, that can be
extracted from the first ` levels of the tree T (L p

q
) and such that val p

q
(uj) ≡ R

(mod qh). These trees are equal as undecorated trees. Let us say that they have
kR leaves and iR internal nodes. In particular, k0 +k1 + · · ·+kqh−1 = ph. For each
j ∈ JR, we order by breadth-first traversal the nodes of T [uj , h] and we enumerate
the corresponding decorations

xnj,1
, . . . , xnj,iR︸ ︷︷ ︸

internal nodes

, xnj,iR+1
, . . . , xnj,iR+kR︸ ︷︷ ︸
leaves

,

which is a subsequence of the sequence (xn)n≥0. For each j ∈ JR and for each
t ∈ {1, . . . , kR}, we set up an equation:

αR,t,1 xnj,1 + · · ·+ αR,t,iR xnj,iR
= xnj,iR+t ,

where the coefficients αR,t,i do not depend on j. As j varies in JR, we get a tree
(of the same type) with other decorations because the root is different. Assume
the h-linearity of the decorated tree. If we are interested in the same leaf in every
tree, the same linear relation should be satisfied. Therefore, when j varies, we have
a system of linear equations whose unknowns are αR,t,1, . . . , αR,t,iR . If #JR ≥ iR
and the system has no solution, then the tree cannot be h-linear and one can test
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(h + 1)-linearity. Otherwise, we could conjecture a linear relation expressing the
decoration of the considered leaf in terms of the decorations of the internal nodes.
Note that we have such a system for each leaf of each of the qh non-isomorphic
subtrees of height h.

Example 27. As an example, consider the sequence of squares (n2)n≥0. Let p
q = 3

2 ,

h = 3 and R = 2. For this remainder R, the shape of the tree is given in Figure 8.
We encounter such a tree with the decorations (in breadth-first traversal) given in

1

1

0

0 2

0

1

2

2

4

9

25

64

1

1

0

16

36

81

0

100

2

0

49

121

1

2

2

Figure 8. A type of tree of height 3 and one occurrence.

Table 1 where each line corresponds to an occurrence of such a decorated factor.
We have written the first eight occurrences but we could take more (this would
increase the number of equations and thus of possible constraints). Table 1 has
two columns: the first six values are the decorations of the internal nodes (i2 = 6),
and the last four values are the decorations of the leaves (k2 = 4). The goal is to

xnj ,1 xnj ,2 xnj ,3 xnj ,4 xnj ,5 xnj ,6 xnj ,7 xnj ,8 xnj ,9 xnj ,10

4 9 16 25 36 49 64 81 100 121
100 225 256 529 576 625 1225 1296 1369 1444
324 729 784 1681 1764 1849 3844 3969 4096 4225
676 1521 1600 3481 3600 3721 7921 8100 8281 8464
1156 2601 2704 5929 6084 6241 13456 13689 13924 14161
1764 3969 4096 9025 9216 9409 20449 20736 21025 21316
2500 5625 5776 12769 12996 13225 28900 29241 29584 29929
3364 7569 7744 17161 17424 17689 38809 39204 39601 40000

Table 1. Decorations of some subtrees.

conjecture relations for all four leaves. If we want to do so for the first leaf, we
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consider the linear system

4 9 16 25 36 49
100 225 256 529 576 625
324 729 784 1681 1764 1849
676 1521 1600 3481 3600 3721
1156 2601 2704 5929 6084 6241
1764 3969 4096 9025 9216 9409
2500 5625 5776 12769 12996 13225
3364 7569 7744 17161 17424 17689




α2,1,1

α2,1,2

α2,1,3

α2,1,4

α2,1,5

α2,1,6

 =



64
1225
3844
7921
13456
20449
28900
38809


,

where we used the values in the column xnj ,7 of Table 1 corresponding to the
first leaf. A solution is given by α2,1,1 = α2,1,2 = α2,1,3 = 0, α2,1,4 = α2,1,5 =
5/4, and α2,1,6 = −1/4. The solution remains valid when increasing the num-
ber of equations (for instance, taking the first 20 occurrences of the subtree).
By replacing the column vector in the right-hand side with one of the last three
columns in Table 1 (they thus correspond to the last three leaves in Figure 8),
we get similar solutions and we conjecture the following values for the coefficients:
α2,2,j = 0 if j 6= 5 and α2,2,5 = 9/4;
α2,3,1 = α2,3,2 = α2,3,3 = 0, α2,3,4 = −1/4, and α2,3,5 = α2,3,6 = 5/4;
α2,4,1 = α2,4,2 = α2,4,3 = 0, α2,4,4 = 1/2, α2,4,5 = −7/4, and α2,4,6 = 7/2.

In order to obtain the h-linearity of the tree, we have to do the same with the
seven other remainders modulo 8 and thus seven other types of trees with a total of
27−4 = 23 other leaves. Having such conjectures, these relations are easy to prove.
Indeed, let us take an example and let us prove the first relation we conjectured
above. Recalling that

(5.1) val p
q
(uv) = val p

q
(u)

(
p

q

)|v|
+ val p

q
(v),

if u is the 3
2 -representation of 2 + 8n, then the conjectured relation becomes

α2,1,1 xval 3
2
(u) + · · ·+ α2,1,6 xval 3

2
(u022) = xval 3

2
(u011)

⇔ 5(val 3
2
(u01)︸ ︷︷ ︸

=18n+5

)2 + 5(val 3
2
(u20)︸ ︷︷ ︸

=18n+6

)2 − (val 3
2
(u22)︸ ︷︷ ︸

=18n+7

)2 = 4(val 3
2
(u011)︸ ︷︷ ︸

=27n+8

)2

and holds since (val 3
2
(u011))2 = 729n2 + 432n+ 64.

Theorem 28. The sequence (n2)n≥0 is (Q, 32 )-regular.

Proof. The result follows from the next 27 relations that can be easily deduced
from Equation (5.1). We start with the relations found in the above example. Note
that for two distinct remainders, the corresponding trees have disjoint domains. If
val 3

2
(u) ≡ 2 (mod 8),

5(val 3
2
(u01))2 + 5(val 3

2
(u20))2 − (val 3

2
(u22))2 = 4(val 3

2
(u011))2

9(val 3
2
(u20))2 = 4(val 3

2
(u200))2

−(val 3
2
(u01))2 + 5(val 3

2
(u20))2 + 5(val 3

2
(u22))2 = 4(val 3

2
(u202))2

2(val 3
2
(u01))2 − 7(val 3

2
(u20))2 + 14(val 3

2
(u22))2 = 4(val 3

2
(u202))2.
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If val 3
2
(u) ≡ 3 (mod 8),

9(val 3
2
(u11))2 = 4(val 3

2
(u110))2

189(val 3
2
(u))2 − 345(val 3

2
(u1))2 + 161(val 3

2
(u1))2 = 20(val 3

2
(u112))2.

If val 3
2
(u) ≡ 4 (mod 8),

5(val 3
2
(u00))2 + 5(val 3

2
(u02))2 − (val 3

2
(u21))2 = 4(val 3

2
(u001))2

9(val 3
2
(u02))2 = 4(val 3

2
(u020))2

−(val 3
2
(u00))2 + 5(val 3

2
(u02))2 + 5(val 3

2
(u21))2 = 4(val 3

2
(u022))2

2(val 3
2
(u00))2 − 7(val 3

2
(u02))2 + 14(val 3

2
(u21))2 = 4(val 3

2
(u211))2.

If val 3
2
(u) ≡ 5 (mod 8),

9(val 3
2
(u10))2 = 4(val 3

2
(u100))2

−162(val 3
2
(u))2 + 119(val 3

2
(u10))2 + 102(val 3

2
(u12))2 = 84(val 3

2
(u102))2

324(val 3
2
(u))2 − 175(val 3

2
(u10))2 + 300(val 3

2
(u12))2 = 84(val 3

2
(u121))2.

If val 3
2
(u) ≡ 6 (mod 8),

9(val 3
2
(u01))2 = 4(val 3

2
(u010))2

2(val 3
2
(u01))2 + 8(val 3

2
(u20))2 − (val 3

2
(u22))2 = 4(val 3

2
(u012))2

−(val 3
2
(u01))2 + 8(val 3

2
(u20))2 + 2(val 3

2
(u22))2 = 4(val 3

2
(u201))2

9(val 3
2
(u22))2 = 4(val 3

2
(u220))2

5(val 3
2
(u01))2 − 16(val 3

2
(u20))2 + 20(val 3

2
(u22))2 = 4(val 3

2
(u222))2.

If val 3
2
(u) ≡ 7 (mod 8),

(5.2) 27(val 3
2
(u))2 − 57(val 3

2
(u1))2 + 38(val 3

2
(u11))2 = 8(val 3

2
(u111))2.

Before moving to the last two remainders, let us point out that we have here a
single equation because the corresponding tree has a linear form (each node has a
single child). Its domain is restricted to {ε, 1, 11, 111}. This is the only relation
where we need the decorations of the nodes on every level. If val 3

2
(u) ≡ 0 (mod 8),

9(val 3
2
(u00))2 = 4(val 3

2
(u000))2

2(val 3
2
(u00))2 + 8(val 3

2
(u02))2 − (val 3

2
(u21))2 = 4(val 3

2
(u002))2

−(val 3
2
(u00))2 + 8(val 3

2
(u02))2 + 2(val 3

2
(u21))2 = 4(val 3

2
(u021))2

9(val 3
2
(u21))2 = 4(val 3

2
(u210))2

5(val 3
2
(u00))2 − 16(val 3

2
(u02))2 + 20(val 3

2
(u21))2 = 4(val 3

2
(u212))2.

If val 3
2
(u) ≡ 1 (mod 8),

−162(val 3
2
(u))2 + 182(val 3

2
(u10))2 + 39(val 3

2
(u12))2 = 84(val 3

2
(u101))2

9(val 3
2
(u12))2 = 4(val 3

2
(u120))2

810(val 3
2
(u))2 − 406(val 3

2
(u10))2 + 435(val 3

2
(u12))2 = 84(val 3

2
(u122))2.

We conclude that the sequence of squares is indeed (Q, 32 )-regular. �

If the considered numeration system has the following additional property, then
we have a more elegant result. The base-pq numeration system is expanding if for all
p
q -representations w and for all h ≥ 1, the number of leaves of T [w, h+ 1] is greater

than the number of leaves of T [w, h]. As an example, base 3
2 is not expanding

because the numeration tree contains a factor whose domain is {1n | 0 ≤ n ≤ h}
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for all h. This was exactly the case val 3
2
(u) ≡ 7 (mod 8) in the above proof. Such a

particularity will be useful in the next subsection, see Example 36. To the contrary,
base 5

2 has the expanding property because its signature is (024, 13)ω and thus every
node in the numeration tree has degree at least 2. In fact the rationals p

q for which

the base-pq numeration system is expanding are exactly those with p > 2q.

Theorem 29. Suppose that the base-pq numeration system is expanding. For all

integer d ≥ 1, the sequence (nd)n≥0 is (Q, pq )-regular.

Proof. By assumption, if we consider factors of increasing height, then they have
more and more leaves: there exists an integer h > 1 such that for all representations
w in base p

q , the tree factor T [w, h − 1] has at least d + 1 leaves. Consider a tree

of the form T [w, h] where val p
q
(w) = qhn + r for some r with 0 ≤ r < qh. The

lowest level of internal nodes contains at least d + 1 nodes that have consecutive
p
q -numerical values (because of the breadth-first ordering). Assume that the first

node on this level is of the form wx with |x| = h− 1. Hence, by Equation (5.1), its
value is given by

val p
q
(wx) = val p

q
(w)

(
p

q

)|x|
+ val p

q
(x) = (qhn+ r)

(
p

q

)h−1

+ val p
q
(x),

which we denote by αn+ β with α = q ph−1 and β ∈ Q. Now consider a leaf of the
form wy with |y| = h. Its value is given by

val p
q
(wy) = (qhn+ r)

(
p

q

)h

+ val p
q
(y),

which we denote by µn+ ν with µ = ph and ν ∈ Q. We claim that the decoration
(µn+ν)d of this leaf can be expressed as a linear combination of the d+1 decorations

(αn+ β)d, (αn+ β + 1)d, . . . , (αn+ β + d)d

of the leaves on the above level because these polynomials form a basis of the
Q-vector space of the polynomials in Q[x] of degree less than or equal to d. In-
deed, develop these polynomials using the binomial theorem and write down the
coefficients of nj as rows in the following matrix:

αd
(
d
1

)
αd−1β

(
d
2

)
αd−2β2 · · ·

(
d

d−1
)
αβd−1 βd

αd
(
d
1

)
αd−1(β + 1)

(
d
2

)
αd−2(β + 1)2 · · ·

(
d

d−1
)
α(β + 1)d−1 (β + 1)d

...
...

αd
(
d
1

)
αd−1(β + d)

(
d
2

)
αd−2(β + d)2 · · ·

(
d

d−1
)
α(β + d)d−1 (β + d)d

 .

Its determinant is given by

αd!

(
d

1

)
· · ·
(

d

d− 1

)
det


1 β · · · βd

1 β + 1 · · · (β + 1)d

...
...

1 β + d · · · (β + d)d

 ,

which is non-zero because we have a Vandermonde matrix. We have just proven
that the decorated tree T(nd)n≥0

(L p
q
) is h-linear, so the sequence (nd)n≥0 is (Q, pq )-

regular. �
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Corollary 30. Suppose that the base-pq numeration system is expanding. Let P ∈
Q[x] be a non-constant polynomial. The sequence (P (n))n≥0 is (Q, pq )-regular.

Proof. This is a direct consequence of the above theorem and Proposition 26. �

Based on computer experiments, we conjecture that the above results also hold
for rational base systems without the expanding property, such as for base 3

2 . In

that case, the regularity of the sequence (nd)n≥0 should be achieved by taking
factors of height at least d+ 1. One expects to express the decoration of the unique
leaf of a linear tree, whose domain contains a single word of each length, from the
d+ 1 decorations of the nodes above as for relation (5.2).

5.2. Sequences taking finitely many values. In this section, we study se-
quences taking finitely many values. With Proposition 34, we show that an (L, pq )-

regular sequence taking finitely many values is always p
q -automatic. We prove that,

however, the converse does not hold in general.

Definition 31. Let B ⊆ K be a finite alphabet. A sequence x = x0x1 · · · ∈ BN

is p
q -automatic if there exists a deterministic finite automaton with output (DFAO

for short) A = (Q, q0, Ap, δ, µ : Q → B) such that xn = µ(δ(q0, rep p
q
(n))) for all

n ≥ 0.

We recall some notation and results from [15].

Definition 32. For all h ≥ 0, we let Fh denote the set of factors of height h
occurring in Tx(L p

q
), and we let F∞h ⊆ Fh denote the subset of elements in Fh

occurring infinitely often in Tx(L p
q
). For any letter a ∈ Ap, we let F∞h,a ⊆ F∞h

denote the set of factors of height h occurring infinitely often in Tx(L p
q
) such that

the label of the edge between the first node on level h − 1 and its first child is a.
Otherwise stated, the first word of length h by lexicographic order in the domain
of the factor ends with a.

In the signature (w0, . . . , wq−1) of Tx(L p
q
), we let wj,0 denote the first symbol of

wj , for all j with 0 ≤ j ≤ q − 1.

Theorem 33. [15, Theorem 38] Let x be a sequence over a finite alphabet B. If
there exists some h ≥ 0 such that #F∞h+1,wj,0

≤ #F∞h for all j with 0 ≤ j ≤ q − 1,

then x is p
q -automatic.

Proposition 34. If a sequence x is (L, pq )-regular and takes only finitely many

values, then it is p
q -automatic.

Proof. Suppose that x is (L, pq )-regular and takes its values in the finite alphabet

B ⊆ K. Then the decorated tree Tx(L p
q
) is (L, h)-linear for some h ≥ 1. This means

that the decorations on level h of a given element of F∞h are uniquely determined
by the decorations of its first h− 1 levels. In particular, #F∞h,wj,0

≤ #F∞h−1 for all

j with 0 ≤ j ≤ q − 1. We now conclude by Theorem 33. �

Proposition 35. Let m ≥ 2. If a sequence x ∈ ZN is (Z, pq )-regular, then the

sequence y = (xn mod m)n≥0 is p
q -automatic.
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Proof. The tree Tx(L p
q
) is h-linear for some h ≥ 1 and thus it is also (h+ 1)-linear

by Lemma 8. Since the decorations of Ty(L p
q
) are in {0, . . . ,m − 1}, there is a

finite number of decorated factors of height h in Ty(L p
q
). Take a factor in F∞h and

consider its possible extensions to a factor in F∞h+1,wj,0
. Such an extension is unique

because taking modulo m any linear relation occurring in the (h + 1)-linear tree
Tx(L p

q
) implies that the decorations on the last level of any factor of height h+1 in

Ty(L p
q
) depends on the decorations above. We can therefore apply Theorem 33. �

Due to the non-regularity of the language L p
q
, we cannot expect a converse of

the above proposition, i.e., there are p
q -automatic sequences which are not p

q -regular

even in the case where the states of the DFAO have pairwise distinct outputs (which
is supposedly easier to handle since there is no ambiguity about the current state
when an output is produced, see the discussion in [15, Remark 37]).

Let us consider the following example in base 3
2 of an automatic sequence that

is not regular.

Example 36. We will make use of the fact that the base- 32 numeration is non-
expanding. Consider the sequence x = q0q1q2131551333223553 · · · generated by
the DFAO in Figure 9 in base 3

2 . We have chosen outputs 1, 2, 3, 5 because the

q0 q1 q2 1 2

3 5

2 1 0

2

1
0, 2

0, 1, 2

1

0, 2

0, 1, 2

0, 1 0, 2
1

Figure 9. A DFAO with 7 states reading 3
2 -representations.

vectors (1, 2) and (3, 5) are linearly independent. The outputs q0, q1 and q2 are not
relevant.

We show that the sequence x is not 3
2 -regular. We proceed by contradiction.

Let h ≥ 1 and assume that Tx(L 3
2
) is h-linear. Consider the word s = 1h−10 ∈ A∗3.

We make use of basic properties of rational base numeration systems. There exists
a word w0 such that w0s ∈ L 3

2
(see, for instance, [11, Corollaire 4.17]) and, for all

k ≥ 0, the word wk representing the integer val 3
2
(w0) +k ·2h is such that wks ∈ L 3

2

(see, for instance, [11, Lemme 4.14]). Analyzing the numeration tree (where the
number of nodes on each level is increasing), the functions

g0 : n 7→ #{x ∈ {0, 1, 2}n | 210x ∈ L 3
2
}

and

g2 : n 7→ #{x ∈ {0, 1, 2}n | 212x ∈ L 3
2
}
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are both increasing for n ≥ 2. Note that g0(n) + g2(n) is the number of words of
length n+ 3 in L 3

2
. So there exists a large enough integer N such that g0(N) > 2h

and g2(N) > 2h. Without loss of generality, we may assume that N is even. So
there exist words wi, wj ∈ A∗3 respectively of the form 210x and 212x′ such that
wis, wjs ∈ L 3

2
and |wi| = |wj | is odd.

1

1

1

1

2

0

2

2

1

1

1

3

3

3

3

5

0

5

2

1

1

1

Figure 10. The trees T [wi, h] and T [wj , h] for h = 4.

In the decorated tree Tx(L 3
2
), the factor T [wi, h] has all its decorations equal

to 1, except on the last level, where the decorations of the two nodes are equal
to 2 (the decoration of the root is also 1 since |wi| is odd). See Figure 10 for an
illustration when h = 4. Such a factor has h+ 2 nodes, one on every internal level
and two on the last level. As labeled trees, the factors T [wi, h] and T [wj , h] are
equal (they have the same structure). Nevertheless, the factor T [wj , h] has all its
decorations equal to 3, except on the last level, where the decorations are equal to
5. See Figure 10 again. Since we assume h-linearity, a linear relation must exist
for the first node on the last level, linking its decoration with the decorations of
the nodes above, and in both trees, the relation is the same. More precisely, there
must exist coefficients c0, c1, . . . , ch−1 such that

2 = c0 · 1 + · · ·+ ch−1 · 1,
5 = c0 · 3 + · · ·+ ch−1 · 3

both hold. This is impossible since in the second tree all decorations are equal to
three times the ones of the first tree, the same multiplicative relation should occur
on the last level but 2 · 3 6= 5. The same reasoning can be done for an arbitrary h.

5.3. Cumulative version of a sequence. In this section, we define and study
the cumulative version of a sequence. For any abstract numeration system S =
(L,A,<), recall that integers are in one-to-one correspondence with words in L, so
we may index a sequence by words in L, i.e., we write xw instead of xn whenever
repS(n) = w.

Definition 37. Suppose that the numeration language L is prefix-closed. For any
sequence x ∈ KN, its cumulative version is the sequence y ∈ KN defined, for all
words w ∈ L, by

yw =
∑

u∈Pref(w)

xu,

where the sum goes over all prefixes ε, w1, w1w2, . . . , w1 · · ·wk of w = w1 · · ·wk.
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Example 38. We consider the base- 32 case. The sequence x = (n)n≥0 and its
cumulative version are depicted in Figure 11. For instance, from the root of the
tree T (L 3

2
), the third node on the last level is reached by reading the word 2120,

so its decoration in the second tree is given by

xε + x2 + x21 + x212 + x2120 = 0 + 1 + 2 + 4 + 6 = 13.

0

1

2

3

5

1

0

4

6

0

7

2

2

1

2

0

1

3

6

11

1

0

7

13

0

14

2

2

1

2

Figure 11. The first few levels of the trees in base 3
2 respectively

decorated by the sequence (n)n≥0 and its cumulative version.

For the sum-of-digits sequence s, this cumulative version is a sum weighted by
the position of the digit, i.e., for a word wk · · ·w0, we get k.wk + · · ·+ 1.w1.

Theorem 39. Let S = (L,A,<) be an abstract numeration system for which the
language L is prefix-closed. Let x be a sequence such that the decorated tree Tx(L)
is (L, h)-linear for some h ≥ 1. The tree decorated by the cumulative version of x
is (L, h+ 1)-linear.

Proof. Let y denote the cumulative version of x. Let w ∈ L. Take a word u ∈ Ah−1

and two letters a, b ∈ A such that aub ∈ dom(T [w, h+1]). Note that |aub| = h+1 ≥
2. By definition of the sequence y, we have ywaub = ywau + xwaub. By assumption
on the sequence x, there exist constants cwa,ub,v ∈ L such that

xwaub =
∑

v∈dom(T [wa,h])
|v|<h

cwa,ub,v xwav.

If z = z` · · · z1z0 is a non-empty word, we let del(z) = z` · · · z1 be the word obtained
by deleting the last letter. By definition of the sequence y, we have xwav = ywav −
ydel(wav). Therefore

ywaub = ywau +
∑

v∈dom(T [wa,h])
|v|<h

cwa,ub,v (ywav − ydel(wav)),

which means that the decoration ywaub of a leaf of T [w, h+ 1] can be expressed as
a linear combination of the decorations of the nodes of T [w, h] (in the above sum,
for |v| = 0, del(wav) = w is the root of T [w, h] and for |v| = h−1, |av| = |au| = h).
Therefore Ty(L) is (L, h+ 1)-linear. �

As a consequence of Theorem 14, we have the following result.
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Corollary 40. Let x ∈ KN be an (L, k)-regular sequence. Then its cumulative
version is also (L, k)-regular.

As a consequence of Theorem 23, we have the following result.

Corollary 41. Let S = (L,A,<) be an abstract numeration system built on a
prefix-closed regular language. If a sequence x ∈ KN is (L, S)-regular, then its
cumulative version is also (L, S)-regular.

Finally, from Definition 25, we also have the following.

Corollary 42. Let x be an (L, pq )-regular sequence. Then its cumulative version is

also (L, pq )-regular.

For all words u,w, we let |u|w denote the number of occurrences of the factor w
in u.

Corollary 43. Let S = (L,A,<) be an abstract numeration system built on a
prefix-closed regular language. For any word w ∈ A∗, the sequence (| repS(n)|w)n≥0
is (Z, S)-regular.

Proof. Fix a word w ∈ A∗. Consider a DFAO over A whose output is 1 if and only
if the input word has the suffix w. Otherwise, the output is 0. This DFAO produces
an S-automatic sequence x. By [8, Theorem 38], the sequence x is in particular
(Z, S)-regular. The cumulative version of x is exactly the sequence (| repS(n)|w)n≥0.
Therefore by Corollary 41, the latter sequence is also (Z, S)-regular. �

Corollary 44. Let w ∈ A∗p be a word. The sequence (| rep p
q
(n)|w)n≥0 is (Q, pq )-

regular.

Because of Example 36, we cannot proceed as in the proof of Corollary 43: in
this setting, a p

q -automatic sequence is not always p
q -regular.

Proof. We start by defining an auxiliary sequence through decorations in the tree
T (L p

q
) as follows. The only two decorations are 1 and 2 (we have chosen these

numbers instead of 0, 1 because they are invertible). If u ∈ L p
q

ends with w, then

the decoration of the node u is 2, otherwise it is 1. In particular, this defines
a sequence x = (xn)n≥0 such that xn is the decoration associated with the p

q -

representation of n. We will show that the sequence x is (Q, pq )-regular by showing

that the corresponding decorated tree Tx(L p
q
) is (|w|+ 1)-linear.

Let T [y, |w|+ 1] be a factor of Tx(L p
q
). The decorations of the nodes on the first

|w|−1 levels depend on the “past” of the factor: one has to know the last |w| letters
of the path from the root of T (L p

q
) to such a node to determine the decorations.

This cannot be done inside the window given by T [y, |w| + 1]. Nevertheless, the
nodes on the last two levels of T [y, |w| + 1] are completely determined within the
factor. In particular, the decoration of a node on the last level can be expressed
from the decoration of a node on the previous level.

Assume that yw ∈ L p
q
, i.e., w belongs to the domain of T [y, |w| + 1]. Hence

xyw = 2. Now consider nodes on the last level. If there exists a digit d such that
ydw belongs to the domain of T [y, |w| + 1], then xydw = xyw. For all the other
words v of length |w|+ 1 such that yv belongs to the domain of T [y, |w|+ 1], then
xyv =

xyw

2 . If there is a word z 6= w of length |w| such that yz ∈ L p
q
, then xyz = 1.

We can therefore replace the above two equations by xydw = 2xyz and xyv = xyz.
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So the sequence x indicating all p
q -representation ending with w is (Q, pq )-regular.

By Proposition 26, the sequence x− (1)n≥0 is also (Q, pq )-regular. The cumulative

version of the latter sequence is exactly the sequence (| rep p
q
(n)|w)n≥0. We conclude

by using Corollary 42. �

6. Graph-Directed linear representations

In this section, we consider a prefix-closed language L ⊆ A∗, and when necessary,
the abstract numeration system S = (L,A,<) built on L. Let Tx(L) be an (L, h)-
linear decorated tree for some h ≥ 1. Our aim is to define the analogue of a linear
representation of a rational series.

Consider the restriction D to words of length less than h of the union of the
domains of the pairwise distinct factors T1, . . . , Tr(h) of height h occurring in the
undecorated tree T (L), i.e.,

D =

r(h)⋃
j=1

dom(Tj) ∩A<h.

We enumerate the words of D by radix order. We will consider matrices in LD×D

and column vectors in LD. A vector in LD encodes the decorations of the nodes of
the prefix of height h− 1 of any factor of height h occurring in Tx(L). Some entry
may be equal to 0 whenever the corresponding word of D does not belong to the
domain of the considered factor.

Example 45 (Coding vectors). In Example 11, h = 2 and D = {ε < 0 < 1}. So
we consider column vectors of dimension 3 encoding the corresponding decorations
xuz of the nodes uz, z ∈ D, of the considered factors T [u, 1] of height h − 1 = 1.
Hence, T [100, 1], T [1000, 1] and T [101, 1] are respectively coded (see Figure 5) by xu

xu0
xu1

 =

4
5
6

 ,

5
6
8

 ,

4
6
0

 .

Since 1 does not belong to domain of T [101, 1], the last entry is set to 0.

A word w = w0w1 · · ·w` in L, with ` ≥ h−1, defines a path in Tx(L) and thus a
sequence of factors of height h of Tx(L) (given by the sequence of respective roots):

(6.1) T [ε, h], T [w0, h], T [w0w1, h], . . . , T [w0 · · ·w`−h, h].

In particular, it also provides us with a sequence of factors of height h− 1 of Tx(L)
and thus a sequence of column vectors in LD. Since the tree is h-linear, we will
explain that this sequence of vectors can be computed by convenient successive
matrix multiplications until we get the desired decoration.

In the following lemma, we assume that the types of the undecorated trees oc-
curring in the sequence (6.1) are known. This assumption has to be checked for the
numeration system of interest — this will be discussed later on.

Lemma 46. Let i with 0 ≤ i < ` − h. Let zi, zi+1 ∈ LD be vectors respec-
tively coding the decorations of the prefix of height h − 1 of T [w0 · · ·wi, h] and
T [w0 · · ·wi+1, h]. Assume that T [w0 · · ·wi, h] = Tj and T [w0 · · ·wi+1, h] = Tj′

for some j, j′ ∈ {1, . . . , r(h)}. Then there is a matrix Mjj′ ∈ LD×D such that
Mjj′zi = zi+1.



REVISITING REGULAR SEQUENCES 27

Proof. Observe that T [w0 · · ·wi, h] contains T [w0 · · ·wi+1, h−1] as a factor. Let m
be the number of words of length less than h− 1 in D.

We start by building the first m rows of Mjj′ . The nodes of the first h− 2 levels
of T [w0 · · ·wi+1, h− 1] are nodes of T [w0 · · ·wi, h− 1]. Their decorations are thus
found in zi. This means that the first m rows of Mjj′ are made of entries equal to
0 and at most one entry equal to 1. More precisely, for a word u with |u| ≤ h− 2,
the entry xw0···wi+1u corresponding to u in zi+1 is equal to the one xw0···wi·wi+1u

corresponding to wi+1u in zi and |wi+1u| ≤ h− 1.
Now, we build the remaining rows of Mjj′ . The nodes of the last level of

T [w0 · · ·wi+1, h−1] are the nodes of the last level of T [w0 · · ·wi, h]. By assumption
(Tx(L) is h-linear), we know that the decorations of these nodes can be obtained
by some linear relations among decorations of the nodes on the upper levels found
in zi. The last rows of Mjj′ encode these relations. �

Definition 47 (Matrices). For all j, j′ ∈ {1, . . . , r(h)}, we let Mjj′ ∈ LD×D denote
the matrix defined in Lemma 46.

6.1. Regular abstract numeration systems. We first tackle the case of nu-
meration systems having a regular language. We start off with the example of the
Fibonacci numeration system, as we will see that the general case behaves similarly.

Example 48. In Example 11, we have three types of trees of height 2: t0, t1, t2 (see
Figure 4). Following a path from the root of Tx(F ) labeled by a valid representation,
the only possible transitions (i.e., the type of trees that can follow another tree in
a sequence of trees of height 2 given by (6.1)) is: t0 → t1, t1 → t2, t2 → t2 and
t2 → t1. The corresponding matrices are respectively

M01 =

 0 0 1
−1 0 2
0 0 0

 , M12 =

0 1 0
2 0 0
2 0 0

 , M22 =

 0 1 0
−1 2 0
2 0 0

 , M21 =

0 0 1
0 0 3

2
0 0 0

 .

Here we let Mij denote the matrix that permits us to get the vector coding the
decorations of level less than 2 in a tree of type tj from the one coding the deco-
rations of a tree of type ti. For instance, if T [u, 2] = t1 for some word u ∈ {0, 1}∗,
then T [u0, 2] = t2 and we have xu0

xu00
xu01

 =

xu02xu
2xu

 =

0 1 0
2 0 0
2 0 0


︸ ︷︷ ︸

=M12

 xu
xu0
xu1

 ,

by using the relations in Figure 4.
To compute xn for all n ≥ 1, write the Fibonacci representation of n and read the

most significant digit first, and then follow the multiplication of matrices applied
to the initial column vector coding the prefix of height 1 of Tx(F ). As an example,
ten is written as 10010 in the Fibonacci numeration system and gives the product

M21M22M12M01

1
0
2

 =

6
9
0

 .
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Indeed, first the vector coding the height-1 prefix of Tx(F ) isxεx0
x1

 =

1
0
2

 .

Now following in T (F ) the path labeled by 10010, we see the trees t0 = T [ε, 2],
t1 = T [1, 2], t2 = T [10, 2], t2 = T [100, 2] in this particular order, so we multiply
the initial column vector first by M01, then by M12 and finally by M22 because we
move from t0 to t1, then from t1 to t2 and finally, from t2 to itself. With these
three (rightmost) multiplications, we get the vector coding the prefix of height 1
of T [100, 2]. In particular, we know the decorations of x1000 and x1001. Since we
want the one of x10010, an extra multiplication is needed. The next tree necessarily
has type t1, so we have a fourth multiplication by M21 and we get the vector
coding the decorations of T [1001, 1]. So a multiplication by

(
0 1 0

)
, which is

the characteristic vector for the suffix 0 of the Fibonacci representation of ten,
gives the expected decoration: x10010 = 9. Alternatively, we could have applied a
fifth multiplication by M12 to get the vector coding the decorations of T [10010, 1]
and then a multiplication by

(
1 0 0

)
, which is the characteristic vector for the

remaining suffix ε.

Let us stress the importance of having here a regular numeration language. Ac-
tually, when the numeration language is regular (which is true for F ), for large
enough h (and thanks to Lemma 8 we can assume that this is the case), the undec-
orated factors of height h are in one-to-one correspondence with the states of the
minimal automaton of the numeration language (see Remark 6). There is no need
to separately obtain the sequence of types of trees in (6.1) that is seen during a
computation. This information is put inside a finite automaton isomorphic to the
minimal automaton of the numeration language where labels carry the matrix to
apply — similarly to GIFS (graph iterated function systems, see for instance [4]).
The initial state is initialized with the vector coding the decorations of the prefix
T [ε, h − 1]. Each processed digit, so each transition, gives rise to a multiplication
of the current vector by a matrix on the left. We add an output function for a
final multiplication by a convenient characteristic row vector. The Fibonacci case
is depicted in Figure 12.

t0 t1 t2
1,M01

0,M12

1,M21

0,M22

ε: (1 0 0)

1
0
2



ε: (1 0 0)
0: (0 1 0)

ε: (1 0 0)
0: (0 1 0)
1: (0 0 1)

Figure 12. Graph-Directed multiplications in the Fibonacci nu-
meration system.

What we have seen in the example about the Fibonacci numeration system is gen-
eral for any abstract numeration system built on a prefix-closed regular language.
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In the special case of the k-ary system, the automaton accepting the language (3.2)
is restricted to two states.

Remark 49. We can compare our construction with the one of [8]. The linear
representation (λ, µ, γ) of the series

∑
w∈F xww is given by

λ =
(
1 0 1 0

)
, µ0 =


0 −1 0 1
1 2 0 0
0 1 0 −1
0 0 0 0

 , µ1 =


0 0 0 0
0 0 0 0
2 3 0 0
2 3 0 0

 , γ =


1
0
0
0

 .

Observe that these matrices have dimension 4 whereas those in the previous example
have dimension 3, but we need the extra information given by the directed graph
in Figure 12.

6.2. Rational base. We now consider the case of the rational base numeration
system (L p

q
, Ap, <). Almost all the above reasonings remain valid. If Tx(L p

q
) is

h-linear, the set D is A<h
p . We can code the decorations of the prefix of height

h− 1 by vectors in LD. Since L p
q

is non-regular, we do not have the same behavior

as in the regular case. Nevertheless, each word in Ah
p belongs to the domain of

exactly one of the qh factors of height h occurring in L p
q
. Thus the knowledge of h

consecutive letters wi · · ·wi+h−1 in a p
q -representation unambiguously determines

the tree to consider and thus the matrix to apply.

Definition 50. We let Mwi···wi+h−1
denote the matrix which, applied to the column

vector coding the decorations of the prefix of height h−1 of T [w0 · · ·wi−1, h], gives
those of the prefix of height h− 1 of T [w0 · · ·wi, h].

With Example 12, h = 2 and D = {ε < 0 < 1 < 2}, so we have 9 matrices of the
form:

M02 = M00 =


0 1 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 , M01 =


0 1 0 0
0 0 0 0
0 1

2 0 1
2

0 0 0 0

 ,

M10 = M12 =


0 0 1 0
0 0 1 0
0 0 0 0
−2 0 3 0

 , M11 =


0 0 1 0
0 0 0 0
−1 0 2 0
0 0 0 0

 ,

M20 = M22 =


0 0 0 1
0 0 0 1
0 0 0 0
0 −1 0 2

 , M21 =


0 0 0 1
0 0 0 0
− 1

2 0 0 3
2

0 0 0 0

 .

For instance, suppose that u ∈ A∗3 can be followed by 02 in a base- 32 representation.
Then M02 codes the relation between the vectors

xu
xu0
xu1
xu2

 and


xu0
xu00
xu01
xu02
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when T [u, 2] is the third tree on the first row of Figure 6 (the tree is determined by
the length-2 word indexing M02). Looking at this particular tree allows us to fill
in the entries of M02:

xu0
xu00
xu01
xu02

 =


xu0
xu0
0
xu2

 =


0 1 0 0
0 1 0 0
0 0 0 0
0 0 0 1


︸ ︷︷ ︸

=M02


xu
xu0
xu1
xu2

 .

The prefix of height 1 of Ts(L 3
2
) is coded by the vector

(
0 0 0 2

)T
because

xε = 0, x2 = 2 and 0, 1 are not valid 3
2 -representations.

Now take the representation 2120012 of the integer 22 in base 3
2 . We compute

M12M01M00M20M12M21


0
0
0
2

 =


6
6
0
8

 ,

as sliding a length-2 window in the word 2120012 gives the six matrix indices
21, 12, 20, 00, 01, 12. We get the decorations of the prefix of height 1 of the tree
T [212001, 2]. Since the remaining suffix is 2, we apply a last multiplication by a
characteristic row vector

(
0 0 0 1

)
to get x2120012 = 8.

Remark 51. In the above example, we could even use vectors and matrices of
dimension 3 using the fact that a node u cannot simultaneously have children
u0, u2 and u1. Our matrices and vectors always have a zero row.

As a conclusion, we have shown that one way to extend the notion of regular
sequences is to consider linear decorated numeration trees. We have not considered
the formalism of rational series. Let k ≥ 2 be an integer. As a reminder [2, 6],
a sequence f : N → K is k-regular if the formal series

∑
w∈A∗k

f(valk(w))w is

K-recognizable (for a convenient choice of a semiring K). One can equivalently
consider a series whose support is A∗k \ 0A∗k. In a similar way, one could ask if
there exists a function f : N → K such that the series

∑
w∈A∗p

f(val p
q
(w))w is

K-recognizable and whose support is L p
q
.
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