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Abstract 32 

Understanding recovery of consciousness and elucidating its underlying mechanism is 33 
believed to be crucial in the field of basic neuroscience and medicine. Ideas such as the global 34 
neuronal workspace and the mesocircuit theory hypothesize that failure of recovery in 35 
conscious states coincide with loss of connectivity between subcortical and frontoparietal 36 
areas, a loss of the repertoire of functional networks states and metastable brain activation. 37 
We adopted a time-resolved functional connectivity framework to explore these ideas and 38 
assessed the repertoire of functional network states as a potential marker of consciousness 39 
and its potential ability to tell apart patients in the unresponsive wakefulness syndrome (UWS) 40 
and minimally conscious state (MCS). In addition, prediction of these functional network states 41 
by underlying hidden spatial patterns in the anatomical network, i.e. so-called eigenmodes, 42 
were supplemented as potential markers. By analysing time-resolved functional connectivity 43 
from fMRI data, we demonstrated a reduction of metastability and functional network repertoire 44 
in UWS compared to MCS patients. This was expressed in terms of diminished dwell times 45 
and loss of nonstationarity in the default mode network and fronto-parietal subcortical network 46 
in UWS compared to MCS patients. We further demonstrated that these findings co-occurred 47 
with a loss of dynamic interplay between structural eigenmodes and emerging time-resolved 48 
functional connectivity in UWS. These results are, amongst others, in support of the global 49 
neuronal workspace theory and the mesocircuit hypothesis, underpinning the role of time-50 
resolved thalamo-cortical connections and metastability in the recovery of consciousness.51 
   52 
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I. Introduction 57 

Diagnosis of the level of consciousness after coma due to severe brain injury is a well-known 58 
dilemma in the field of neurology and intensive care medicine. Coma after cardiac arrest or 59 
after traumatic brain injury (TBI) may result in sustained altered states of consciousness. 60 
These patients with disorders of consciousness (DOC), irrespective of the aetiology, can be 61 
grouped into the unresponsive wakefulness syndrome (UWS) (1), characterized by the 62 
presence of eye-opening and reflexive behaviours, and the minimally conscious state (MCS), 63 
characterized by consistent but fluctuant wilful conscious behaviours, such as command 64 
following or visual pursuit (2, 3). Recovery of consciousness is argued to emerge conjointly 65 
with restoration of resting-state functional brain networks (4), which refers to patterns of 66 
neuronal interactions inferred by indirect (e.g., functional magnetic resonance imaging - fMRI) 67 
or direct (e.g., electro- and magneto-encephalography (EEG/MEG)) measurements. Analysis 68 
of these resting-state networks could potentially help in the diagnosis of patients with DOC 69 
and provide insight into the mechanisms that results in absence of recovery of consciousness 70 
in UWS. 71 

Various resting-state networks that play an important role in the recovery of consciousness 72 
have been identified, among which the default mode network (DMN), fronto-parietal network 73 
(FPN) and the salience network are the most important (5, 6). Recovery of the DMN in 74 
combination with recovery of the auditory network could for instance discriminate between 75 
MCS and UWS with a very high accuracy (~85%) (7). The mechanism of resting-state network 76 
restoration in DOC is yet unknown, however, thalamic activity and especially thalamocortical 77 
connectivity may be a driving force behind restorations of cortical network function that 78 
sustains conscious states (8, 9). Previous work on resting-state networks in DOC have mainly 79 
focused on the “static” picture of functional connectivity (4, 6, 10, 11), i.e., connections are 80 
assessed over the entire duration of the (fMRI) recording and fluctuations in connectivity over 81 
time are ignored. However, the underlying dynamics of connectivity seem relevant for 82 
consciousness (12, 13) and a static description may therefore be inadequate to provide 83 
mechanistic insight into failure of recovery of consciousness in DOC (14). 84 

The analysis of dynamic or time-resolved functional connectivity, as well as the relationship 85 
between the underlying anatomical connections and emergent time-resolved functional 86 
connectivity (15, 16), may be clinically relevant in patients with DOC. Previous studies have 87 
already explored the role of time-resolved functional connectivity in DOC (17–19). A recent 88 
study demonstrated that network states with long distance connections occurred less 89 
frequently over time in MCS compared to UWS patients (14), emphasizing disintegration of 90 
interactions across the cortex in unconscious states. However, network states reminiscent of 91 
the well-known resting-state networks were not retrieved. Cao and colleagues used two 92 
methods to extract time-varying networks, i.e. independent component analysis and hidden 93 
Markov modelling, and revealed clinically relevant differences in network state durations 94 
between patients with DOC patients and healthy subjects (20), while lacking comparative 95 
analysis between patients in MCS and in UWS. In another fMRI study, the authors focused on 96 
the posterior cingulate area and the DMN using a spatiotemporal point process analysis and 97 
demonstrated decreased occurrence of DMN-like patterns in UWS. Dynamic connectivity 98 
analysis has recently also been applied to EEG data, revealing loss of network integration and 99 
increased network segregation in DOC patients (21). Despite the importance of the previously 100 
published work, the role of the well-known resting-state networks and especially thalamo-101 
cortical functional connections (22) within the context of time-resolved connectivity and DOC 102 
has so far not been fully explored, partly potentially due to the fact that previous work has 103 
been mostly hypothesis driven rather than data driven.   104 

Another important aspect in the context of the emergence or restoration of resting-state 105 
networks is the underlying structural network, as anatomical connectivity patterns influence 106 
the repertoire of possible functional network states (23). It is widely assumed that switching 107 
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between functional network states is achieved by so-called metastability in the brain (24), i.e., 108 
winnerless competitive dynamics. A promising and robust approach to analyse the relationship 109 
between structural and functional network states is the so-called eigenmode approach (25–110 
27). With this approach, spatial harmonic components or eigenmodes are extracted from the 111 
anatomical network. These eigenmodes can be considered as patterns of ‘hidden 112 
connectivity’, which allow for prediction of the well-known resting-state networks (28). It can 113 
be hypothesized that switching between functional network states, as can be observed in the 114 
metastable brain, is accompanied by fluctuations in the expression of eigenmodes (29); 115 
therefore, a potential loss of metastability in DOC could co-occur with loss of modulations in 116 
eigenmode expression (12).  117 

In this context, the aim of the current study was fourfold. First, we first tested whether loss of 118 
metastability and resting-state network activity, derived from time-resolved estimates of 119 
functional connectivity, could differentiate between MCS and UWS, with a potential extraction 120 
of a spatiotemporal thalamocortical network state. Second, we analysed whether time-121 
resolved connectivity could be explained by modulations in expression of eigenmodes in DOC, 122 
and third, whether potential differences in eigenmode expression in DOC patients would co-123 
occur with a loss of metastability. Finally, we used a classification procedure to evaluate 124 
whether the collection of these network-based measures could predict patients’ diagnosis.  125 

II. Results 126 

We included 34 healthy control subjects (HC, 39 (mean) ± 14 years (standard deviation), 20 127 
males), 30 MCS (41 ± 13 years, 21 males) and 14 UWS patients (48 ± 16 years, 7 males).  128 
There was no difference in the age of patients with MCS and UWS (p > 0.05), gender (p > 129 
0.05), time since injury (p > 0.05) and aetiology (p > 0.05). There was also no difference in 130 
age (p > 0.05) and gender (p > 0.05) between HC and DOC patients. Further details about the 131 
patient population is described in the methods and supplementary table 1.  132 

Metastability and time-resolved functional connectivity in patients with DOC 133 

Time-resolved or dynamic connectivity for all subjects was extracted from the phase 134 
information of the data. We quantified a proxy measure for metastability defined as the 135 
standard deviation of the overall phase behaviour over time (i.e. the Kuramoto order 136 
parameter). This was followed by extraction of spatiotemporal patterns using non-negative 137 
tensor factorisation (NNTF) from phase connectivity data, corresponding to resting-state 138 
networks or network states (see Figure 1). Well-known resting-state networks as well as a 139 
residual component were used as initial conditions for the spatial connectivity patterns for all 140 
network states to allow for stable convergence of the algorithm (i.e. DMN, FPN, visual network, 141 
sensorimotor network, salience network, subcortical network (30)). However, the NNTF 142 
algorithm allowed the spatial patterns of these network states to change in order to maximize 143 
the explained variance of the data. Temporal statistics from the network states were derived 144 
for every network state in terms of excursions from the median (proxy for nonstationarity (31) 145 
and state duration (i.e., dwell time).  146 

A reduction of metastability was found in DOC patients compared to HCs (Figure 2A). Lower 147 
metastability was observed in UWS patients in comparison to MCS patients (Figure 2A). 148 
Reduced metastability is expected to occur with loss of switching between resting-state 149 
networks and potentially with dwelling within a more limited subset of resting-state networks 150 
in DOC. The output of the NNTF algorithm resulted in spatial topographies of some of the well-151 
known resting-state networks, i.e., the default mode network (DMN), a separate posterior DMN 152 
around the precuneus, the visual network, the salience network (SN), the fronto-parietal 153 
network (FPN), and a network consisting of fronto-parietal and subcortical regions (FPN-sub) 154 
(Figure 2 I-N). Note that these network states were not identical to the initial conditions, e.g. 155 
the subcortical network that was provided as initial condition to NNTF was incorporated with 156 
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the frontoparietal network (Figure 2N) by the NNTF algorithm. At the same time, the 157 
sensorimotor network that was provided as initial condition disappeared as state.  Excursions 158 
from the median were lower for most networks (DMN, visual, Salience, Posterior DMN and 159 
FPN-sub) in DOC compared to HC (Figure 2 C-F, H). Significant loss of nonstationarity was 160 
also found in UWS compared to MCS for the DMN, FPN, FPN-sub (Figure 2 C,G,H). The 161 
NNTF also yielded a residual state, with a lack of spatial structure, accounting for the variance 162 
of connectivity data not explained by the resting-state networks. The residual component had 163 
longer dwell times for the decreasing levels of consciousness (Figure 2B).  In addition, as in 164 
line with the metastability results, there were lower dwell times in DOC patients for a specific 165 
set of resting-state networks (Salience, Posterior DMN, FPN and FPN-sub), and dwell time 166 
was shorter in UWS patients compared to MCS patients only in the FPN-sub network (see 167 
results in Figure S1).  168 

Relationship between structural eigenmodes and time-resolved functional connectivity in DOC 169 

We next analysed how disruption in time-resolved functional connectivity in DOC was related 170 
to the underlying structural network. In order to put our findings into context, we first analysed 171 
the relationship between static functional networks and structural networks, using the Pearson 172 
correlation between static functional connectivity and structural connectivity for the different 173 
groups (Figure 3A). These results show that functional connectivity in DOC patients show 174 
more correspondence with the underlying structural connectivity as compared to HCs, as the 175 
relationship between structural and functional connectivity was stronger for decreasing levels 176 
of consciousness (Figure 3A). 177 

We next obtained the eigenmodes from the structural connectivity by extracting the 178 
eigenvectors of the graph Laplacian. These eigenmodes can be regarded as distinct spatial 179 
harmonics within the structural connectivity, where the first eigenmodes correspond to 180 
patterns with low spatial frequency and subsequent eigenmodes contain patterns with 181 
increasingly higher spatial frequencies. Given their spatial configuration, consecutive 182 
eigenmodes can be associated with increasing levels of segregation while the first 183 
eigenmodes can be linked with network integration. For every time point we predicted the 184 
extent to which phase connectivity could be explained by a weighted combination of the 185 
eigenmodes (27). Since phase connectivity can evolve over time, the weighting coefficients 186 
for the eigenmodes can modulate as well, resulting in fluctuations in the strength of the 187 
expressions of eigenmodes over time. For every eigenmode, we could then quantify the 188 
modulation strength (i.e. how much the eigenmode-expression varied over time). In addition 189 
to the weighting coefficients, we also obtain the goodness-of-fit for the predictions of time-190 
resolved functional connectivity. 191 

The goodness-of-fit for the eigenmode predictions is displayed in Figure 3B, where we show 192 
the average correlation between eigenmode predicted FC and empirical FC for the three 193 
groups. Results show better predictions for HC and MCS compared to predictions for static 194 
FC (median and interquartile range of correlations HC static 0.18 ± 0.04, HC eigenmode 0.39 195 
± 0.09, Z = -7.1, p < 0.001, MCS static 0.2 ± 0.05, MCS eigenmode 0.35 ± 0.18, Z = -4.8, p < 196 
0.001). In order to test whether these eigenmode predictions of time-varying connectivity could 197 
have been obtained by chance, we redid our analysis using surrogate BOLD data (see method 198 
section “Analysis steps”). Results showed that eigenmode predictions for time-resolved 199 
connectivity from surrogate data performed significantly worse compared to genuine empirical 200 
data (for all comparisons with surrogate data p < 0.001; Figure 3B). We did not test whether 201 
contribution of individual eigenmodes differed between groups as this would come with a 202 
serious multiple comparisons problem.    203 

Instead, since structural connectivity appeared to correlate stronger with static FC in DOC 204 
compared to HC, we expected that eigenmode coefficients in DOC patients would hardly 205 
change over time, underlining the observation of a ‘fixed’ structural-functional network 206 
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relationship in DOC patients. To analyse this lack of change in the structural-functional 207 
network relationship over time in DOC patients, we quantified the modulation strength of the 208 
weighting coefficients over time (see methods “Analysis steps”). We performed this analysis 209 
separately for the dominant (1st to 107th eigenmode, first half) and non-dominant eigenmodes 210 
(108th to 214th eigenmode, second half). Results for the dominant eigenmodes show a clear 211 
reduction in modulation of the eigenmode weighting in DOC patients compared to HCs (Figure 212 
3C), with also a significantly lower modulation of eigenmode expression in UWS compared to 213 
MCS patients. This result could not be explained by chance, since the same results could not 214 
be obtained from surrogate data (Figure 3C). Note that no between group difference for non-215 
dominant eigenmodes was obtained (Figure 3D). 216 

We have so far shown a reduction in modulation strength of eigenmode expressions in DOC 217 
patients compared to HC subjects, as well as a loss of metastability in DOC patients and 218 
dwelling of the brain in fewer network states in DOC patients. This poses the question whether 219 
these two observations are related. In Figure 3EFG we show that metastability is strongly 220 
correlated to modulations in eigenmode expression within every group. This underscores the 221 
notion that loss of dynamic modulations in functional network patterns due to a loss of 222 
metastability could indeed be related to a reduced modulation of eigenmode expression. 223 

Classification of DOC patients using measures of dynamic functional connectivity and 224 
structure-function relationships 225 

To translate the structural and functional dynamic properties of the brain to clinical practice, 226 
we used a classification approach for functional and structural properties using two class 227 
support vector machine (SVM) classifiers. Only functional and structural properties that 228 
showed group differences were used as features. We used three different classification 229 
approaches of SVM (i.e., leave one out cross validation (LOOCV), k-fold cross validation, and 230 
splitting the data into 60-40% training and testing data respectively). The LOOCV showed 231 
better performance in terms of classification between groups for the selected features, 232 
compared to the other approaches (see Table 1). Using LOOCV, UWS versus MCS 233 
classification accuracy was 79.1%, with a sensitivity of 83.3% and specificity of 69.2%. When 234 
we compared healthy controls with the DOC patient group, the classification performance was 235 
very high. For healthy controls versus UWS, we found a classification accuracy of 95.8%, with 236 
a sensitivity of 97.1% and a specificity of 92.3%. The healthy controls versus MCS 237 
classification accuracy was 95.3%, with a sensitivity of 94.1% and specificity of 96.7% (Table 238 
1). We also used the surrogate data to assess whether such a classification accuracy could 239 
be obtained by chance. We found that the classification algorithm assorted all subjects into 240 
one group, with an accuracy equal to chance level, a sensitivity of 100% and specificity of 0% 241 
(Table 1). These results indicate that the classification performance of functional and structural 242 
features is beyond chance level.  243 

To further understand which features were most discriminating between UWS and MCS, we 244 
used a feature ranking based on diagonal adaptation of neighbourhood component analysis 245 
(NCA). Results showed that the most important features were nonstationarity in the DMN 246 
(feature weight (FW)=2.22), Salience network (FW=1.03), FPN (FW=0.66), visual network 247 
(FW=0.18), FPN-sub network (FW=0.1). Remaining features had low feature weights (<0.01) 248 
(Figure 4). Interestingly we found that purely structural features had very low weights, 249 
indicating that purely structural properties contribute very little beyond functional features to 250 
the classification between UWS versus MCS, as well as between healthy controls versus DOC 251 
patients.     252 

  253 
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III. Discussion 254 

Differentiation between MCS and UWS is key for adequate diagnosis and prognosis in DOC 255 
patients as this is connected to medical-ethical end of life decisions. Use of imaging 256 
characteristics allows testing of hypotheses on causes for delayed, or failure of, recovery of 257 
consciousness. Here, we used state-of-the art techniques to quantify time-varying functional 258 
connectivity, metastability and the relationship between the underlying anatomical network 259 
and time-resolved functional connections. We demonstrated that these advanced techniques 260 
were sensitive to detect clinically relevant differences for the diagnosis of MCS and UWS 261 
patients. More specifically, we first demonstrated that UWS patients show reduced 262 
metastability, and spend less time in states outside the natural equilibrium state that would 263 
favor cerebral processing in a cooperative and coordinated manner to support consciousness. 264 
This is accompanied by shorter state durations that the brain spends in the frontoparietal-265 
subcortical configuration in UWS. A loss of nonstationarity was observed in several resting-266 
state networks (i.e., DMN, frontoparietal and frontoparietal-subcortical) in UWS compared to 267 
MCS patients. We furthermore showed that functional brain networks are more ‘fixed’ to the 268 
underlying anatomical connections and are less subject to spatial reconfigurations over time 269 
in UWS compared to MCS patients. The extent to which these spatial reconfigurations 270 
occurred (i.e., expressed as modulations in eigenmode-expression) correlated strongly to 271 
metastability. Lastly, classification analysis showed that out of all results, nonstationarity in the 272 
DMN, salience network, frontoparietal network, visual network and in the frontoparietal-273 
subcortical network were features that were most discriminating between MCS and UWS. 274 

Our results are in agreement with several hypothesis and theories for the emergence of 275 
consciousness, of which most share the importance of thalamocortical connectivity for 276 
consciousness (32–34). The mesocircuit hypothesis states that deafferentation between the 277 
frontal cortex and subcortical regions is crucial in explaining failure of recovery of 278 
consciousness (32). One of the most novel findings in the current work is the generation of 279 
the frontoparietal-subcortical network. Although subcortical connections were, among others, 280 
used as initial conditions for the decomposition of the time-varying functional connectivity 281 
patterns into resting-state networks, incorporation with fronto-parietal connections emerged 282 
from the data-driven NNTF algorithm. Another observation confirms that this NNTF approach 283 
was extracting DOC-relevant networks, namely that the sensorimotor network disappeared 284 
after optimization of spatial network patterns. This latter result is in line with the fact that 285 
somatosensory cortices are not directly involved in the emergence of consciousness, based 286 
on current theories (35). In addition, we found that the frontoparietal-subcortical network 287 
showed shorter dwell times in DOC patients compared to HC subjects, with even shorter state 288 
durations in UWS compared to MCS patients. Finally, this network also demonstrated a loss 289 
of nonstationarity in UWS compared to MCS patients. However, it should be noted that the 290 
frontoparietal-subcortical network was not the only network with loss of time-resolved network 291 
characteristics; other resting-state networks also showed loss of nonstationarity, such as the 292 
DMN and frontoparietal network. Yet a combination of shorter dwell times and loss of 293 
nonstationarity was only found for the frontoparietal-subcortical network. The mesocircuit 294 
hypothesis suggests that lack of excitation of the inhibition of the thalamus induces a reduction 295 
of thalamo-cortical connectivity, which in turn, causes a reduction of the activity in the whole 296 
frontoparietal network. It may be tempting to interpret that the frontoparietal-subcortical 297 
network may play a crucial role in orchestrating global network interactions and dwell times. 298 
Hence, this sub-network may be instrumental for the observed loss of nonstationarity in the 299 
other sub-networks. Although the importance of functional connections between the thalamus 300 
and frontal cortex has been emphasized by the mesocircuit hypothesis, and shown to relate 301 
to consciousness in hypothesis-driven functional (e.g., (8, 22, 36)) and structural (e.g., (37, 302 
38)) neuroimaging studies, this is the first demonstration of the ability of a (semi)data-driven 303 
approach to identify this sub-network in the context of time-resolved functional connectivity. 304 
Most previous data-driven approaches have been unable to extract such a network (14, 20, 305 
21).      306 
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Our findings also support the global neuronal workspace (GNW) theory (33), which 307 
emphasizes the importance of long-distance and recurrent functional connections, large-scale 308 
reverberant networks and metastable brain states in the emergence and recovery of 309 
consciousness (39). So far, the importance of metastability has mainly been addressed in the 310 
context of recovery of consciousness from anesthesia (40). Here, we underscore this finding 311 
and demonstrate that a reduction of metastability can even differentiate between UWS and 312 
MCS patients. We further show that in DOC patients, the brain is dwelling shorter in relevant 313 
and important network states, indicating that a more limited repertoire of functional network 314 
states in DOC patients. There is still some dwelling time in the DMN, salience network, visual 315 
network and in the unstructured residual state, but shorter dwell time in especially the 316 
frontoparietal and frontoparietal-subcortical network.  317 

Diagnosis and prognosis of patients in DOC is challenging and merely relying on clinical 318 
measures may be unreliable (41, 42). Specialistic imaging techniques such as positron 319 
emission tomography (PET) have shown their added-value to complement the clinical 320 
diagnosis of DOC patients (4). Especially the lack of activation of a frontoparietal-subcortical 321 
network in UWS has been postulated by several hypotheses on DOC (4). Here, we have used 322 
a non-invasive imaging protocol and demonstrated the role of time-resolved functional 323 
connectivity and disrupted structural-functional network coupling to differentiate between MCS 324 
and UWS patients. Our findings allow differentiation between MCS and UWS with about 80% 325 
accuracy, commensurate with previous work (7, 37, 43, 44). A high sensitivity (83%, i.e., true 326 
positive for the presence of consciousness) and slightly lower specificity (69%, i.e., true 327 
negative predicting the absence of consciousness) was obtained. This might reflect the finding 328 
that behavioural assessment might underestimate the presence of consciousness in up to 2/3 329 
of the UWS patients (45). Since our sample size was limited with only 14 UWS patients, we 330 
did not use a separate validation dataset to verify our classification results. Instead, we applied 331 
a few different approaches to verify our results and we used surrogate data to find out whether 332 
our classification could have been obtained by chance. This was not the case. Diagnosis in 333 
itself was not the sole goal of the classification analysis, but the adopted approach also aided 334 
to elucidate mechanisms that would lead to (failure of) recovery of consciousness in DOC 335 
leveraging the data-driven obtained features. Loss of nonstationarity in the DMN, salience 336 
network and frontoparietal turned out to be important discriminating features to tell apart MCS 337 
and UWS.  338 

Our observation of functional connectivity dynamics that are more restricted to the structural 339 
connectivity has been observed in pharmacological and pathological loss of consciousness 340 
(see also (14, 46)), however, here we show that this co-occurred with a reduction of 341 
metastability. Previous work has demonstrated that the underlying anatomical connectivity 342 
forms a constraint for functional connectivity and also shapes the repertoire of possible 343 
functional network states (24). The underlying anatomical connectivity contains so-called 344 
inherent ‘hidden patterns’ or eigenmodes with different spatial structures. In a dynamical 345 
system such as the brain, these eigenmodes, or a combination of eigenmodes, can 346 
sequentially be activated or deactivated (25, 47), and thereby shape the repertoire of possible 347 
functional network states. We stress that this framework does not imply that there is some 348 
fixed relationship or coupling between structure and function, but rather that parts of the 349 
anatomical network support the (sequential) formation of specific functional sub-networks, and 350 
not only at the level of individual nodes (46). Although the mechanism behind the 351 
(de)activation of these spatial eigenmodes remains to be investigated, we posit that a potential 352 
underlying mechanism for a loss of the functional repertoire in DOC is the inability to 353 
sequentially dwell for prolonged times in a different set of eigenmodes. This inability was even 354 
more pronounced for UWS than for MCS. 355 

A few methodological aspects in our retrospective study deserve further discussion. First of 356 
all, we did not analyse the contributions of individual eigenmodes for two reasons: i) although 357 
earlier studies have demonstrated that a limited set of eigenmodes could already explain 358 
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observed functional connectivity pattern (25), in our case, assessing group differences 359 
between MCS and UWS on the basis of individual eigenmodes would impose a multiple 360 
comparisons problem; ii) our analytical approach is based on the assumption that all 361 
eigenmodes are necessary in the mapping to functional connectivity instead of a statistical 362 
selection of eigenmodes. Second, using fMRI to look at dynamic FC, and particular phase-363 
based FC, may not be optimal. High temporal resolution of EEG/MEG may be able to provide 364 
even more reliable estimates of dynamic FC (even of subcortical structures (48) and on the 365 
relation between SC and dynamic FC (47). Last, concatenated data from all groups were fed 366 
into the NNTF analysis, instead of per group. This assumes that spatial network structure is 367 
similar across groups. Even though this is not necessarily the case, the amount of data to 368 
allow for stable NNTF results for individual groups was limited, especially for the UWS group. 369 
Future (multicentric) studies with more patients should verify whether the decomposition of 370 
the dynamic functional connectivity patterns into the observed sub-networks holds for the 371 
separate groups. Our approach to concatenate data from all groups made group comparison 372 
much easier though, as there was now no need to ‘match’ potentially slightly different networks 373 
from the different groups. This also allowed us to focus on networks that were important in 374 
DOC. 375 

Taken together, we have demonstrated that a (semi) data-driven approach has extracted 376 
clinically meaningful time-resolved functional brain networks. This unique network-based 377 
spatiotemporal characterization accounts for structure-function coupling (i.e., eigenmodes), 378 
and shows a relationship with brain stability. The measures that differed between UWS and 379 
MCS patients most, were the dominant eigenmodes (reflecting structure-function coupling) 380 
and time-resolved functional connectivity in the default mode network, frontoparietal network 381 
and the subcortical-frontoparietal network. Interestingly, the latter network was generated by 382 
the (semi)data-driven approach to better fit the data, and was to sole network to show shorter 383 
dwell times in UWS than MCS patients. This suggests that the subcortical-frontoparietal 384 
network might play a pivotal role for supporting conscious network interactions, as is in line 385 
with several theorethical and hypothesis-driven studies. Future work will be required to assess 386 
to what extent these advanced aspects of connectivity can serve as biomarkers to aid 387 
diagnosis and prognosis in DOC.  388 

V. Methods 389 

Participants 390 

Forty-four adult DOC patients, of whom 30 in Minimally Conscious State (MCS)  (11 females, 391 
age range 24-83 years; mean age ± SD, 45 ± 16 years) and 14 with the Unresponsive 392 
Wakefulness Syndrome (UWS) (6 females, age range 20-74 years; mean age ± SD, 47 ± 16 393 
years) and thirty-four age and gender matched healthy subjects (HC)  (14 females, age range 394 
19-72 years; mean age ± SD, 40 ± 14 years) without premorbid neurological problems were 395 
included. The local ethics committee from the University Hospital of Liège (Belgium) approved 396 
the study. Written informed consent was obtained from all healthy subjects and the legal 397 
representative for DOC patients. The same data was used in (46, 49).  398 

The diagnosis of the DOC patients was confirmed through two gold standard approaches (i.e., 399 
(i) behavioural and (ii) fluorodeoxyglucose-positron emission tomography (FDG-PET), 400 
excluding patients for whom these two diagnostic approaches disagreed. (i) Patients were 401 
behaviourally diagnosed through the best of at least five coma recovery scale revised  CRS-402 
R assessments, evaluating auditory, visual, motor, oromotor function, communication and 403 
arousal  (50). (ii) Behavioural diagnosis was complemented with the visual assessment of 404 
preserved brain metabolism in the frontoparietal network using FDG-PET as a neurological 405 
proxy for consciousness (41). Patient-specific clinical information is presented in Table 1. We 406 
only included patients for whom (1) MRI data were recorded without anaesthesia (2) diagnosis 407 
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was based on at least 5 repetitions of the CRS-R assessment, (3) diagnosed as UWS or MCS, 408 
and (4) the FDG-PET diagnosis was in agreement with the clinical diagnosis. We excluded 409 
the patients (1) for whom the patients the structural MRI segmentation was incorrect or (2) if 410 
there were excessive head movement artefacts during MR recordings. There were 46 MCS 411 
patients in which 16 were discarded due to mismatch of PET and CRS-R diagnosis, 8 for failed 412 
segmentation and 4 for head movement artefacts. Amongst the 28 UWS patients, 8 were 413 
discarded due to mismatch of the PET and CRS-R diagnosis, 4 for failure of segmentation 414 
and 2 for head movement artefacts. 415 

MRI Data Acquisition 416 

For the DOC dataset, structural (T1 and DWI) and functional MRI data was acquired on a 417 
Siemens 3T Trio scanner. 3D T1-weighted MP-RAGE images (120 transversal slices, 418 
repetition time = 2300 ms, voxel size = 1.0 x 1.0 x 1.2 mm3, flip angle = 9°, field of view = 256 419 
x 256 mm2) were acquired prior to the 10 minutes of BOLD fMRI resting-state (i.e. task free) 420 
(EPI, gradient echo, volumes = 300, repetition time = 2000 ms, echo time = 30 ms, flip angle 421 
= 78°, voxel size = 3 x 3 x 3 mm3, field of view = 192 × 192 mm2, 32 transversal slices). HC 422 
subjects were instructed to keep eyes open and to be in relaxed state during the fMRI data 423 
acquisition. Last, diffusion weighted MRI (DWI) was acquired in 64 directions (b-value =1,000 424 
s/mm2, voxel size = 1.8 x 1.8 x 3.3 mm3, field of view 230 x 230 mm2, repetition time 5,700 425 
ms, echo time 87 ms, 45 transverse slices, 128 x 128 voxel matrix) preceded by a single 426 
unweighted image (b0). 427 

Resting -state fMRI preprocessing 428 

Preprocessing was performed as in (46) using MELODIC (Multivariate Exploratory Linear 429 
Optimized Decomposition into Independent Components) version 3.14, which is part of 430 
FMRIB's Software Library (FSL, http://fsl.fmrib.ox.ac.uk/fsl). The preprocessing consisted of 431 
the following steps: the first five functional images were discarded to reduce scanner 432 
inhomogeneity, motion correction was performed using MCFLIRT, non brain tissue was 433 
removed using Bet Extraction Tool (BET), temporal band-pass filtering with sigma 100 434 
seconds, spatial smoothing was applied using a 5mm FWHM Gaussian kernel, rigid-body 435 
registration was performed, and finally single-session ICA with automatic dimensionality 436 
estimation was employed (51). Then, FIX (FMRIB's ICA-based X-noiseifier) was applied to 437 
remove the noise components and the lesion-driven for each subject. Specifically, FSLeyes 438 
in Melodic mode was used to manually identify the single-subject independent components 439 
(ICs) into "good" for cerebral signal, "bad" for noise or injury-driven artifacts, and "unknown" 440 
for ambiguous components. Each component was evaluated based on the spatial map, the 441 
time series, and the temporal power spectrum (51). Next, for each subject, FIX was applied 442 
with default parameters to remove bad and unknown components. Subsequently, the Shen et 443 
al., functional atlas (without cerebellum) was applied for brain parcellation to obtain the BOLD 444 
time series of the 214 cortical and subcortical brain areas in each individual's native EPI 445 
space (30, 52). The cleaned functional data were co-registered to the T1-weighted structural 446 
image by using FLIRT (53). Then, the T1-weighted image was co-registered to the standard 447 
MNI space by using FLIRT (12 DOF), and FNIRT (54). The transformations matrices were 448 
inverted and applied to warp the resting-state atlas from MNI space to the single-subject 449 
functional data using a nearest-neighbor interpolation method to ensure the preservation of 450 
the labels. Finally, the time series for each of the 214 brain areas were extracted using 451 
fslmaths and fslmeants. 452 

 453 

  454 
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Probabilistic Tractography analysis  455 

A whole-brain structural connectivity (SC) matrix was computed for each subject as reported 456 
in our previous study (46). Briefly, the b0 image was co-registered to the T1 structural image 457 
using FLIRT and the T1 structural image was co-registered to the MNI space using FLIRT and 458 
FNIRT(53, 54).  The transformation matrices were inverted and applied to warp the resting-459 
state atlas from MNI space to the native diffusion space using a nearest-neighbor interpolation 460 
method. Analysis of diffusion images was applied using the FMRIB's Diffusion Toolbox (FDT) 461 
(www.fmrib.ox.ac.uk/fsl). BET was computed, eddy current distortions and head motion were 462 
corrected using eddy correct tool (55). Crossing Fibres were modeled by using BEDPOSTX, 463 
and the probability of multi-fibre orientations was calculated to enhance the sensitivity of non-464 
dominant fibre populations (56, 57). Then, probabilistic tractography analysis was calculated 465 
in native diffusion space using PROBTRACKX to compute the connectivity probability of each 466 
brain region to each of the other 213 brain regions. Subsequently, the value of each brain area 467 
was divided by its corresponding number of generated tracts to obtain the structural probability 468 
matrix. Finally, the SCpn matrix was then symmetrized by computing their transpose SCnp and 469 
averaging both matrices. 470 

Metastability and time-resolved functional connectivity 471 

BOLD time series for every ROI k were filtered within the narrowband of 0.01-0.9 Hz. We 472 
estimated both time-resolved functional connectivity and static functional connectivity. Static 473 
functional connectivity (FCstatic) was estimated by the Pearson correlation coefficient between 474 
pairwise narrowband time courses. Time-resolved connectivity was estimated from the 475 
instantaneous phases. The instantaneous phase of the BOLD signal, 𝜑𝑘(𝑡), was extracted 476 
from the analytic signal as obtained from the Hilbert transform. The synchronization between 477 
pairs of brain regions was characterised as the difference between their instantaneous 478 
phases. At each time point, the phase difference between two regions j and k was used as 479 
estimate for instantaneous phase connectivity ∆𝜑𝑗𝑘(𝑡) (58). Evaluation of pairwise connectivity 480 

at each time point resulted in a functional connectivity tensor (number of ROIs x number of 481 
ROIs x time points). 482 

Furthermore, we investigated how the synchronization between different nodes fluctuates 483 
across time using the concept of metastability. In the current sense, metastability quantifies 484 
how variable the states of phase configurations are as a function of time. We quantified 485 
metastability (i.e. our proxy measure for metastability) in terms of the standard deviation of the 486 

Kuramoto order parameter, 𝑅(𝑡) = |
1

𝑁
∑ 𝑒𝑖𝜑𝑘(𝑡)𝑁

𝑘 |, where 𝑁 is the number of ROIs and i denotes 487 

the imaginary unit (59). 488 

Similar to (60, 61), we extracted time-evolving networks using non-negative tensor 489 
factorization (NNTF) (62). We used the N-way toolbox (version 1.8) for MATLAB for this 490 
analysis (63). NNTF can be considered as a higher-order principal component analysis. The 491 
goal of the approach is to decompose the functional connectivity tensor 𝐹𝐶 into components, 492 
such that the approximation of the functional connectivity tensor 𝐹�̃� can be written as 𝐹�̃� =493 
∑ 𝑎𝑙 × 𝑏𝑙 × 𝑐𝑙

𝐿
𝑙 . Here, 𝑎𝑙 and 𝑏𝑙 correspond to vectors decoding spatial information for 494 

component l, and 𝑐𝑙 represents the vector that contains information on temporal fluctuations 495 
of component l. Note that the outer product 𝑎𝑙 × 𝑏𝑙 stands for the spatial pattern of functional 496 
connectivity of component l. The number of components L can be estimated from the data 497 
using established algorithms (64). However, here, we fixed the number of components based 498 
on the number of a-priori expected networks that we were interested in. We fed the NNTF 499 
algorithm with initial conditions for 𝑎𝑙  and 𝑏𝑙 based on the spatial components of six expected 500 
resting-state networks: salience network, fronto-parietal network, default mode network, 501 
subcortical network, sensorimotor network, visual network. We added a residual network to 502 
account for the unexplained variance in the functional connectivity tensor. Note that the spatial 503 
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initial conditions did not indicate that these spatial components were kept fixed during NNTF 504 
calculation, but these spatial components were free to be adjusted according to maximization 505 
of the explained variance. Data from all subjects and groups were concatenated to allow 506 
convergence to stable results. 507 

Relationship between structural eigenmodes and time-resolved functional connectivity 508 

For every subject, we extracted structural eigenmodes from the graph Laplacian 𝑄𝐴 of the 509 
structural connectivity (SC) matrix defined by 𝑄𝐴 = 𝐾𝑆𝐶 − 𝑆𝐶, where 𝐾𝑆𝐶  refers to the diagonal 510 
degree matrix of SC. We further applied symmetric normalization to obtain a normalized 511 
Laplacian 𝑄𝑆𝐶. Subsequently, eigenvectors 𝑢𝑖 and eigenvalues (together called eigenmodes) 512 
were extracted using diagonalization of 𝑄𝑆𝐶, resulting in N eigenmodes (N = number of ROIs). 513 
Using a recently introduced approach we mapped functional brain networks at each time point 514 
from the structural eigenmodes (27). In other words, we estimated to what extent functional 515 
connectivity at each time point 𝐹𝐶(𝑡) could be explained by a linear combination of the 516 
eigenmodes  517 

𝐹𝐶(𝑡) ≈ 𝐾𝐹𝐶(𝑡) − 𝐾𝐹𝐶

1

2(𝑡)(𝑈𝑃(𝑡)𝑈𝑇)𝐾𝐹𝐶

1

2(𝑡),       (1) 518 

where 𝐾𝐹𝐶(𝑡) is the diagonal node strength matrix of the functional connectivity matrix 𝐹𝐶(𝑡) 519 
at time t. The matrix 𝑃(𝑡) corresponds to the weighting coefficient matrix for the eigenmodes 520 
and is obtained after optimisation and equal to 521 

𝑃(𝑡) = diag(𝑢1
𝑇𝑄𝐹𝐶(𝑡)𝑢1, … , 𝑢𝑁

𝑇 𝑄𝐹𝐶(𝑡)𝑢𝑁).        (2) 522 

Hence, modulations of eigenmode expressions over time are expressed in 𝑃(𝑡). Here, 𝑄𝐹𝐶(𝑡) 523 
is the normalised graph Laplacian of 𝐹𝐶(𝑡) at time t, and 𝑢𝑖 is the i-th eigenvector of 𝑄𝑆𝐶 and 524 
the i-th column of 𝑈.  525 

Analysis steps 526 

1. Time-resolved functional connectivity. Individual temporal time courses 𝑐𝑙
𝑖𝑛𝑑 for 527 

expression of component l for every subject were extracted from 𝑐𝑙. A high value of 𝑐𝑙 528 
at a certain time point indicates strong expression of this spatial pattern of functional 529 
connectivity (𝑎𝑙 × 𝑏𝑙) at that time point. At each time point we determined the 530 

component with the strongest expression (max(𝑐𝑙
𝑖𝑛𝑑)), and assumed that connectivity 531 

at that point in time was dominated by this state or component. The duration that this 532 
component retained the strongest expression was considered as state duration or 533 
dwell time (see Figure 1). In addition, we also characterized the amount of 534 
nonstationarity in 𝑐𝑙  (31, 65), i.e. excursions from the median. The rationale for using 535 
this metric is its sensitivity to detect modulations if the underlying system is indeed 536 
dynamic (65). Mann-Whitney U tests were used to test, for each network separately, 537 
differences in state durations and excursion from the median between groups.   538 

2.   Structural vs functional brain networks. We first estimated the relationship between 539 
static functional connectivity and the structural connectivity itself (without decomposing 540 
SC into eigenmodes). This relationship was estimated in terms of a Pearson correlation 541 
coefficient between the SC and FCstatic, denoted as corr(FCstatic, SC). We secondly 542 
analysed the amount to which time-varying functional networks could be explained by 543 
expressions of the structural eigenmodes. We therefore computed the Pearson 544 
correlation between the empirical 𝐹𝐶(𝑡) and the eigenmode predicted 𝐹𝐶(𝑡), denoted 545 
as corr(FC, eigenmodes). In order to be able to test whether there was a difference in 546 
fluctuations of eigenmode expression over time between groups, we quantified the 547 

eigenmode modulation strength defined as ∆eigenmode = ∑ ‖𝑃(𝑡𝑘) − 𝑃(𝑡𝑗)‖𝑇,𝑇
𝑡𝑘=1,𝑡𝑙=1

, 548 

where 𝑡𝑗 and 𝑡𝑘 correspond to different points in time and 𝑇 to total duration of the 549 
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recording. As the first eigenmodes can be considered as dominant eigenmodes and 550 
more important to shape functional brain networks (25), we evaluated the eigenmode 551 
modulation strength for the dominant eigenmodes 𝑖 = {1, … , 𝑁/2} and non-552 
dominant eigenmodes 𝑖 = {𝑁/2, … , 𝑁} separately. We further computed the correlation 553 
between eigenmode modulation strength and metastability in all groups separately in 554 
order to test whether modulations in eigenmode expression related to our proxy 555 
measure for metastability. Group differences for all metrics was tested using Mann-556 
Whitney U tests.  557 

In order to test whether eigenmode predictions of functional connectivity could be 558 
obtained by chance, we created surrogate data and redid analysis for the surrogate 559 
data. Surrogate data for fMRI BOLD time series were obtained using the circular time 560 
shifted method (66). Time-resolved phase connectivity was estimated in the same way 561 
as for genuine empirical data. Time-resolved connectivity obtained from surrogate data 562 
was subsequently predicted using the eigenmodes.  563 

False discovery rate was used to correct for multiple comparisons for analysis steps 1 564 
and 2: number of metrics (excursions * seven networks, dwell time * seven networks, 565 
metastability, corr(FCstatic, SC), corr(FC, eigenmodes), non-dominant and dominant 566 
eigenmodes)* 3 comparisons + surrogate comparison with genuine data 3 * 3, 567 
(corr(FC, eigenmodes), non-dominant and dominant eigenmodes) comparisons = 66 568 
tests) (67).   569 

3. Classification Algorithm. For two group classifications (i.e., UWS vs MCS, UWS vs HC, 570 
MCS vs HC), a two class “linear SVM” model with 2nd order polynomial kernel was 571 
employed. To train the classifier, we used the “fitcsvm” function and to test the classifier 572 
performance, we used the “SVMModel.predict” function of MATLAB. As we have a low 573 
sample size, we employed three popular algorithms to avoid model or parameter bias. 574 
We employed the SVM model with: 1) Leave-one-out cross-validation (LOOCV); 2) 10-575 
fold cross validation and 3) splitting the data in 60-40%. Furthermore, classification 576 
performance was verified with real and surrogate data features to get an estimate of 577 
the bias in the results obtained with the real data. The discriminative and the predictive 578 
capabilities of the classifier were evaluated with measures obtained from receiver 579 
operating curves (ROC): accuracy, sensitivity, specificity (68). 580 

4. Feature Ranking. To understand which features predominantly contribute to classify the 581 
UWS from MCS, and healthy controls from patients, we used the classification-based 582 
feature weighting algorithm based on diagonal adaptation of neighbourhood 583 
component analysis (NCA). We used the ‘fscnca’ function of MATLAB that learns the 584 
feature weights using a diagonal adaptation of NCA and returns the weight for each 585 
functional dynamic and structural-functional feature (69). 586 

  587 
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VI. Figures  757 

Figure 1: Overview of the analysis pipeline. We used the same Shen parcellation for DWI 758 
and fMRI data. Time-resolved functional connectivity was estimated using a metric for phase 759 
connectivity. A proxy measure for metastability was derived from the phase information. Time-760 
resolved networks were subsequently extracted from the concatenated data from all subjects 761 
using non-negative tensor factorisation (NNTF). Dwell times and nonstationarity (excursions 762 
from the median) were retrieved for each spatial pattern of functional connectivity (6 resting-763 
state networks and 1 ‘residual’ network). At the same time, time-resolved connectivity was 764 
predicted on a sample by sample basis based on a linear combination of eigenmodes (hidden 765 
patterns in the anatomical network). Measures were used for classification and feature 766 
ranking.    767 

Figure 2: Metastability and time-resolved functional networks in DOC. Panel A displays 768 
metastability for all groups: healthy controls (HC), minimally conscious state (MCS), 769 
unresponsive wakefulness state (UWS). Panels B-H display the distributions of nonstationarity 770 
(excursions from the median) for the residuals and time-resolved networks. Panels I-N show 771 
the spatial patterns of time-resolved output networks. Abbreviations: default mode network 772 
(DMN), frontoparietal network (FPN), **, and *** denote p < 0.01 and p <0.001 respectively. 773 
The colourbar indicates the strength of that specific area to the overall spatial pattern.  774 

Figure 3: Relationship between time-resolved connectivity and eigenmodes. Panel A 775 
shows the prediction of static functional connectivity based on structural connectivity for all 776 
three groups (HC, MCS and UWS) in terms of the Pearson correlation coefficient. Panel B 777 
shows the prediction of time-resolved functional connectivity based on eigenmodes. These 778 
distributions of eigenmode predictions are accompanied with predictions based on surrogate 779 
data. We further illustrate the level of fluctuations in eigenmode expression for all three groups 780 
(HC, MCS, UWS) for dominant (reflecting network integration, Panel C) and non-dominant 781 
eigenmodes (reflecting increasing network segregation, Panel D) accompanied with results 782 
for surrogate data, ** and *** denote p < 0.01 and p <0.001 respectively. Panels E-G show 783 
that metastability is strongly correlated to modulations in eigenmode expression within every 784 
group. 785 

Figure 4: Feature ranking. We illustrate the feature weights for classification based on 786 
diagonal adaptation of neighborhood component analysis (NCA). 787 
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Figure 1: 798 
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Figure 3: 813 
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Table 1. Classification accuracy, sensitivity and specificity (mean and standard deviation) for 819 
MCS vs UWS, HC vs UWS and HC vs MCS using three different SVM-based classification 820 
approaches. Performance of the classification using the real experimental data is presented 821 
alongside the performance of classicisation based on surrogate data, to define change level. 822 

SVM 
classifie

r 
method 

Group 
Comparis

on 

Accuracy Sensitivity Specificity 

Experimen
tal data 

Surroga
te data 

Experimen
tal data 

Surroga
te data 

Experimen
tal data 

Surroga
te data 

LOOCV 
(Leave-
one-out 
cross-

validatio
n) 

MCS vs 
UWS 

79.1% 66% 83.3% 100% 69.2% 0% 

HC vs 
UWS 

95.8% 72% 97.1% 100% 92.3% 0% 

HC vs 
MCS 

95.3% 53% 94.1% 100% 96.7% 0% 

10-fold 
cross-

validatio
n 

MCS vs 
UWS 

76.1±0.03
% 

66±0% 80.0±0.04
% 

100±0% 67.1±0.04
% 

0±0% 

HC vs 
UWS 

95.5±0.01
% 

72±0% 96.6±0.01
% 

100±0% 92.8±0.04
% 

0±0% 

HC vs 
MCS 

93.8±0.02
% 

53±0% 93.8±0.01
% 

100±0% 93.7±0.03
% 

0±0% 

60-40 
data 

splitting 

MCS vs 
UWS 

73.5±0.12
% 

66±0% 78.4±0.14
% 

100±0% 64.5±0.11
% 

0±0% 

HC vs 
UWS 

95.5±0.05
% 

72±0% 96.3±0.07
% 

100±0% 93.4±0.08
% 

0±0% 

HC vs 
MCS 

93.6±0.05
% 

53±0% 93.3±0.06
% 

100±0% 94.2±0.08
% 

0±0% 
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