arXiv:2109.00104v3 [physics.ins-det] 9 Sep 2021

IWAVE - An Adaptive Filter Approach to Phase Lock and the
Dynamic Characterisation of Pseudo-Harmonic Waves

E.J.Daw[] I. J. Hollows, E.L. Jones, R.Kennedy, and T.Mistry
Department of Physics and Astronomy, The University of Sheffield,
Hicks Building, Hounsfield Road, Sheffield S3 7TRH, UK

T.B.Edo
LIGO Laboratory, California Institute of Technology, Pasadena, California 91125,
USA, and Department of Physics and Astronomy, The University of Sheffield,
Hicks Building, Hounsfield Road, Sheffield S8 7TRH, UK

M. Fays
Department of Astrophysics, Geophysics and Oceanography (GEO),
Space sciences, Technologies and Astophysics Research (STAR),
Université de Liége, allée du sixz Auot 19, 4000 Liége, Belgium

L.Sun
0zGrav-ANU, Centre for Gravitational Astrophysics,
College of Science, The Australian National University,
ACT 2601, Australia, and LIGO Laboratory,
California Institute of Technology,
Pasadena, California 91125, USA

(Dated: September 10, 2021)

We present a novel adaptive filtering approach to the dynamic characterisation of waves of varying
frequency and amplitude embedded in arbitrary noise backgrounds. This method, known as IWAVE,
possesses critical advantages over conventional techniques making it a useful new tool in the dynamic
characterisation of a wide range of data containing embedded oscillating signals. After a review of
existing techniques, we present the IWAVE algorithm, derive its key characteristics, and provide
tests of its performance using simulated and real world data.

I. INTRODUCTION

The co-inventor of the MASER [I], Arthur Schawlow,
is said to have advised his students: “Never measure any-
thing but frequency!” There exist a great variety of tech-
niques for measuring the frequencies of harmonic waves,
broadly addressing two different classes of problems.

In the first class, the average wave characteristics are
estimated across a measurement interval, under the im-
plicit assumption that the wave properties are essentially
static, or when changes in these properties over the mea-
surement interval are not of interest. This problem is ad-
dressed by a wide variety of methods, including Welch’s
method using discrete Fourier transforms (DFTs) [2] B3],
Pisarenko’s method [4], MUSIC [5], and ESPRIT [6].

In the second class, the oscillator is constantly evolv-
ing, and we seek a time-evolving best estimate of oscilla-
tor parameters. This problem is most often solved using
phase locked loops (PLLs) [7], or their hardware realisa-
tion, lock-in amplifiers [8]. The myriad applications of
PLLs in science and engineering include, for example, a
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recent proposal for digital PLLs as an alternative tech-
nology for the readout of the photodiode clusters used to
stabilise the alignment of mirrors in future gravitational
wave detectors [9].

Where the evolving oscillation is at a very low signal-
to-noise ratio (SNR), as is expected for signals from con-
tinuous gravitational wave (CW) sources in ground based
gravitational wave interferometers, the frequency evolu-
tion cannot be inferred from the raw data as is necessary
for successful tracking with a PLL. Coherent matched
filtering techniques, such as the F-statistic used in CW
searches [10, 1], are able to achieve higher sensitivity to
these weak signals at the price of substantially greater
computational burden. Stack-slide-based semi-coherent
algorithms expedite the computation to some extent, at
the cost of sensitivity, by summing the signal power in
multiple coherent segments after sliding the segments in
the frequency domain to account for the signal phase
evolution [T2HI5]. More efficient semi-coherent methods,
e.g., signal tracking algorithms based on hidden Markov
models [I6HI9], have been developed to tackle the com-
putational challenge as well as to allow for some uncer-
tainties in the signal evolution model [20H22].

The IWAVE technique described in this paper is a
new type of PLL addressing this second class of prob-
lem - the dynamic characterisation of evolving pseudo-
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sinusoidal signals. Unlike a conventional PLL, the adap-
tive element is a filter rather than an oscillator or counter.
IWAVE has certain advantages over existing PLLs, no-
tably benign output when the PLL is unlocked, tracking
of amplitude as well as frequency using a single feed-
back loop, a small set of free parameters corresponding
directly to physical oscillator properties, and the abil-
ity to characterise, simultaneously, multiple oscillations
having almost-degenerate frequencies. This last advan-
tage has led to detailed analysis of almost-frequency-
degenerate violin modes of fused silica suspension wires
in advanced LIGO [23]. IWAVE represents a simple, well-
characterised and useful technique for analysing quite
complex spaces of evolving oscillators at relatively low
computational burden.

Several other techniques beyond the conventional PLL
have been developed for a range of applications. One ex-
ample is the second order generalised integrator (SOGI-
PLL) [24]. SOGI was one of the first methods to success-
fully addresses the problem of generating a copy of an
input sinusoid that is out of phase (the so-called quadra-
ture or QQ phase) with the input signal. Other more recent
papers, for example [25H28], have developed the SOGI al-
gorithm for a range of practical applications. A second
example is the enhanced PLL (EPLL) [29] [30], which
solves the problem of tracking the amplitude of a har-
monic wave in addition to its frequency. Further PLL
developments are well summarised in [3I]. Comparisons
of IWAVE with the SOGI and EPLL algorithms are given
in Appendix [A]

This paper consists of: a description of the IWAVE
method in Section[[I} a discussion of the limits of applica-
bility of IWAVE in Section[[II} and an overview of certain
other PLL methods in Appendix [A] Space constraints
have led us to leave out many mathematical steps; a full
treatment of the mathematics can be found at [32]. A
software library implementing IWAVE in C with wrap-
pers into MATLAB and Python/Numpy is available on
a public git repository here [33].

II. THE IWAVE METHOD
A. The Core Algorithm

Before writing down the IWAVE core algorithm, we
consider as a starting point the Z-transform [34] of a
regularly sampled time series, zp,

2@ = Y et 0

p=—00

where p increases with time, and 2 = w — ¢A has real
part w the reciprocal of one e-folding for the weighting
of previous samples and imaginary part A equal to the
frequency of the Z-transform component in radians per
sample.

Z,(92) obeys an iteration equation

Z,(Q) =e 92, 1(Q) +z,. (2)

Unit amplitude phasor input, z,, = €2, to Equation

results in output Z, = ¢ /(1 —e~"), which has zero

phase shift with respect to the input and a larger am-
plitude dependent on w. Scaling the input by a factor
of 1 — e~ leads to an iteration algorithm which passes
phasors at frequency A with unit gain and zero phase
shift

Yn = e_wemyn_l + (1 —e "), (3)

This iteration algorithm is the core of IWAVE. As we
shall see, it responds resonantly at frequency A. In the
language of signal processing, Equation [3] is an infinite
impulse response (IIR) filter because it generates its n'®
output using the current input z,, the previous output
Yn—1 and a two-input, two-output, multi-input, multi-
output (MIMO) filter; y,, and z,, are, in general, complex
variables. We will also need the real representation of the
transfer function for IWAVE derived from Equation [3] by
writing z, = 1.713+Z'x11“ Yn = yf—kzyﬁ, and y,—1 = Zﬁlynv
where 27! is the sample delay operator. In these terms,
Equation [3] can be re-written as

yp ) _ [Hu(z™h) Hio(z70)] (2 (@)
uh Hoy(27') Hao(z7Y)| \ 2l )°
where the elements of the transfer function matrix are

1—e %z lcosA —e %z lsin A
e Wz lsin A 1 —e %z lcos A )

( 1—2e~wz—1cos Afe—2wzy—2 )

l—e—w

H(:™") = [

In this form, the transfer function is seen to be sec-
ond order in sample delay. We determine the response
of the core algorithm to an input consisting of a phasor
of arbitrary frequency © radians per sample by substi-
tuting x,, = €® into Equation The response is also
a phasor, y, = Ae'("®*®) where A(0) and ® (©) are
the frequency dependent magnitude and phase lag of the
output phasor with respect to the input given by

1—e™™
V1—2e " cos(A—0O)+e 2w
e ¥sin (A —0) '
1—ewcos(A—-0)

A(0) =
(6)

& (O) = arctan <

Thus, phasors of arbitrary frequency are eigenfunctions
of the core algorithm with eigenvalues Ae’®. The reso-
nant character of the eigenvalues at frequency A can be
seen in the denominator of Equation [5| which is identi-
cal to the resonant denominator in the SOGI filter [24].
Figure [[]shows A and ® as a function of © for A = 1.257
and four values of w: 1, 0.1, 0.01, 0.001.
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Figure 1. The response of IWAVE to phasor input as a func-
tion of phasor frequency in radians per sample, for different
values of w and A = 1.257. A smaller w results in a sharper
resonant peak.

’ Quantity ‘ Symbol ‘ Formula ‘Units‘
Full width at half maximum|FWHM or I waé = Tlr Hz
Quality factor Qs % = % -
Resonant frequency fo A207{ = Hz
Response time T w:is s
w

Table I. Properties of narrow resonances of the IWAVE core
algorithm in the limit where w < 1.

Starting from Equation [fland writing § = (A—©) < 1,
and w < 1, so that we are in a limit where the frequency
is in the vicinity of a narrow resonance, the magnitude
of the filter output can be approximated as

AS) = — M)

V1t

so that the peak is approximately Lorentzian in shape
with full width at half maximum (FWHM) of 2w ra-
dians per sample. Using the sampling rate, fs, in Hz
we give other properties of narrow resonances occurring
when w < 1 in Table [] where 7, is the sampling period
in seconds, 7 is the response time in seconds and A is
the resonant frequency in radians per sample.
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Figure 2. Output of the IWAVE core algorithm for an input
T, = cosnA for A = 0.3068, 0 < n < 27 and w = 0.3. The
points are the individual outputs y, and the solid line is the
limiting ellipse discussed in Section [[TB]

B. Application of IWAVE to a Real Sinusoidal
Input

We next discuss the usual case where the input data is
a real oscillation at the IWAVE resonant frequency, x,, =
cos (nA) . We decompose z,, into two phasors, x, =z +
Ty, where 7 = et /2 and x;, = e~ /2, each of which
is an eigenfunction of the core algorithm. Substituting
the frequencies £A into Equation [6] and rearranging, we
obtain the response

where
1—e™¥
a =
V/1—2e ¥ cos (2A) + e—2w

B e "sin (QA) ‘
¢ = arctan (1 — e~ cos (QA))

9)

By inspection, the locus of y,, is an ellipse in the com-
plex plane having semi-major and semi minor axes 1+ a
and 1—a. Figure[2]shows the result of driving the IWAVE
core algorithm with an input z,, = cosnA for n > 0. The
output starts at the origin, spiralling outward towards a
limiting ellipse in the steady state. Notice that the argu-
ment of the output y, is always the same as the phase,
n/\, of the input sinusoid.
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Figure 3. Symbols for IWAVE acting on two component pha-
sor or real inputs. The parameters w and A may be adjusted
to reflect changes in the state of the drive.

Input sinusoids at frequencies other than A also result
in an elliptical steady state output, though with differ-
ent inclination angles and eccentricities, and with smaller
overall areas due to the falloff in the magnitude of the re-
sponse for phasors having frequencies far from A.

A matrix transformation can be used to transform the
elliptical locus into a circular one, with the real part of
this circular locus being a sinusoid in-phase with the in-
put wave, and the imaginary part having the same am-
plitude but lagging the input wave by 90°. We refer to
these in-phase and out-of-phase components as the D and
Q phases, respectively. This transformation can be ex-
pressed as a sequence of three elementary operations on
the vector whose elements are the real and imaginary
parts of y,,: a rotation through an angle of % about the
origin; sheers parallel to the real and imaginary axes by
factors of H—% and ﬁrespectively; and finally a rotation

through an angle of %‘f’ about the origin. These three
matrices can be combined into a single transformation

—w e -1
Dy ) _(1+e Jong o
Qn etan71 e " ((esng - 1) +3 y7Iz .

(10)

The IWAVE core algorithm followed by this matrix
transformation results in the output of both D phase and
Q phase copies of the input drive. Thus, IWAVE is an ex-
ample of what is referred to in signal processing parlance
as an orthogonal state generator. As we shall see, the Q
phase quadrature can be used to generate an error signal
to detect changes in frequency, allowing IWAVE to be
used in place of a reference oscillator in a PLL. The sum
in quadrature of the two phases, 4, = /D2 + @2, is an
estimate of the input signal amplitude. We will use the
symbols in Figure [3]to denote the application of IWAVE
either to complex phasor or real sinusoidal inputs.

We next consider the transfer functions from a real
sinusoidal drive, an example of which is shown in Figure
Note that the dependence on frequency off-resonance
is different for the D and @ outputs. The D transfer
function rises linearly in frequency below the resonance,
and falls linearly in frequency above it, having a phase
lead of 90° below the resonance and a phase lag of 90°
above it. The @ transfer function has a flat frequency
response below the resonance but falls as f~2 above it,
and is in phase with the drive below the resonance, but
180° out of phase with the drive above it.
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Figure 4. An example of the transfer functions between a real
sinusoidal input and the D and ) phase outputs. Here the
sampling rate was 256 Hz, the resonant frequency was 1 Hz
and the filter quality factor Q was set to 12.3. Notice that
the low frequency attenuation in the @ phase output is about
0.08, which is 1/Q.

This behaviour is similar to that of a driven series RLC
tank circuit, where the transfer functions from the input
voltage to the voltage across the capacitor and resistor
are similar to those between the input and the Q and D
phase outputs, respectively. The relatively light suppres-
sion of low frequency off-resonance signals in the ) phase
output can be important, particularly in cases where the
quality factor Q of the circuit is set low by using a rela-
tively large w coefficient. As in the resonant circuit, the
ratio of the resonant to low frequency response is Q).

Changes in the amplitude of the incoming wave at the
resonance result in a corresponding change in the quadra-
ture sum, A, = /D2 + @2, but with a response time
T = 75/w leading to a single pole in the response to am-
plitude changes at s = —1/7. Figureshows the response
at IWAVE’s resonance frequency to an input having a si-
nusoidally modulated amplitude for a variety of response
times.

C. An IWAVE-based Phase Locked Loop

In order to phase lock with IWAVE, we need a measure
of departures in frequency from the frequency A of the
harmonic wave at the input. We achieve this by exploit-
ing the response time 7 of the IWAVE algorithm. Con-
sider a harmonic wave initially at frequency A. IWAVE
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Figure 5. An example of the response of IWAVE to amplitude
modulated signals. The carrier frequency was 60 Hz and the
modulation depth was 10%. Modulation frequencies in the
range 33 mHz < fam < 33 Hz were used and results are shown
for five different values of 7. The 3dB point for turnover
between flat response and proportionality to 1/fam is fasy =
1/ (277) in each case.

yields both a D,, phase and a @),, phase copy of this wave
at its output. The product of the out-of-phase copy and
the input wave, A% cos (nA)sin(nA) = (4%/2) sin (2nA),
is a pure harmonic signal at frequency 2A. Now, consider
an input signal where the wave develops anomalous phase
and amplitude disturbances, ¢ and ¢, respectively, so that
xn = A(1+4¢€) cos(nA+6). For elapsed times significantly
less than 7 following the onset of these disturbances, the
outputs D,, = AcosnA and @, = AsinnA are unaf-
fected by them. The combinations E,, = (x, — D,)Qn
and F,, = x,D,, + Q2 — A2 can be written

()= [()
F, 2 € (1)
n cos(2nA) sin(2nA) 1)
—sin(2nA) cos(2nA) e )|

This equation shows that F, and F,, each consists of
a static offset plus upper sidebands of frequency 2A, lin-
ear in the phase and amplitude offsets, respectively. The
upper sidebands, however, appear as components of a
rotating phasor in the space spanned by the E,, and F,,
signals. We remove them using the complex carrier ver-
sion of IWAVE, subtracting its outputs from its inputs.
We have determined experimentally that using twice the
w factor in the 2A IWAVE filter yields an acceptable

error signal for the detection of phase departures.
Figurelfis a schematic for the full IWAVE-based phase

and amplitude detector. We have only considered here
the case where the input data is real and we are track-
ing harmonic waves. The case where the input data is
two-component rotating phasors is simpler, as it can be
shown that the combination E!, = 2%Q,,—2! D,, contains
a pure DC signal in phase offset with no upper sideband
contamination. Also shown is the feedback path from the
filtered error signal, d¢,,, back to A through an integra-
tor, discussed below.

The response of IWAVE to modulation of the fre-
quency of the carrier is shown in Figure [7]] Knowing the
analytic form of the frequency response, we can analyse
the closed loop IWAVE PLL to determine an appropriate
choice of feedback gain, G. A schematic for the feedback
controller is shown in Figure [§] Any difference between
the incoming wave frequency and the IWAVE filter cen-
tral frequency results in an accumulating phase shift in
the homodyne detector. This accumulation of phase is
represented by the factor of 27 /s, where s = 27if, with
f being the signal’s frequency. The response of IWAVE
to phase, confirmed by the measurements underlying Fig-
ure[7] acts on the accumulated phase to produce the error
signal. As shown in Figure[§] the feedback path from the
error signal to a correction in the central frequency of
IWAVE consists of an adjustable gain, G, an addition
of the gain boosted error signal to the previous value of
the phase shift per sample and a scale factor to convert
from radians per sample to frequency in Hz. The closed
loop gain is calculated by the usual consistency argument
around the loop,

Fout = f 2r ST 1 1 f 2m  sT 1 1
out = JinT Ty + 8T  STs 27T, onteq + ST ST 27Ts
(12)

from which we obtain the closed loop transfer function,

f 5
out TS
His)= 3% = o (13)

This is the transfer function of a driven damped harmonic
oscillator. We want a critically damped response since
the control signal will be used to measure the oscillator
frequency. For critical damping we require two coincident
real poles, which is achieved if G = 72/(472). The closed
loop transfer function then takes the simpler form

2

H(s):< pr ) . (14)

1
S+E

The response to frequency or phase modulation is there-
fore flat below the knee frequency of 1/(477)Hz, where
due to the 2 poles it has rolled off to —6dB, and drops
as 1/f? above that frequency. Larger values of G result
in sharper turnover or a resonant peak, corresponding to
the underdamped case.
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Figure 6. A schematic of the IWAVE PLL. The error signal after upper sideband filtering is d¢,. The switch closes the feedback
loop to adjust A and 2A for the two IWAVE instances. Use of the complex input IWAVE for attenuation of the 2A component
in the error signal reduces the computational load compared with the use of a real input IWAVE on the F, signal alone.
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Figure 7. The transfer function of IWAVE from frequency
modulation of the input carrier to the response in d¢, with
the feedback loop open, for four different values of 7. The
output is insensitive at DC because a step in frequency with-
out feedback moves the input carrier off the IWAVE resonant
frequency Ag. Sensitivity increases towards high frequencies
because the homodyne detector relies on beats between the @
phase IWAVE output and the carrier, which appear so long
as IWAVE has not had the adjustment time, 7, necessary for
its outputs to respond to changes in the input signal. Be-
tween these two regimes there is a single pole at frequency
1/(277) Hz, which, combined with the zero at DC, makes the
frequency modulated (FM) response a highpass filter having
the same 3dB point as the lowpass filter associated with the
AM response. In each case the carrier frequency is 60 Hz and
the sampling rate is 16384 Hz.
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Figure 8. An s-plane model of the IWAVE PLL.

III. LIMITS OF APPLICABILITY OF IWAVE

The time constant, 7, determines the responsiveness
of IWAVE to changes in wave frequency and amplitude,
as well as the noise bandwidth of the filter. Decreasing
7 results in a faster response and better ability to stay
locked on waves whose frequencies are changing, but also
increases the bandwidth of IWAVE to input noise, result-
ing a noisier error signal. The optimal 7 is small enough
so that IWAVE stays locked when the frequency changes,
but not so small that excessive background noise is ad-
mitted by the filter. Section [[IT/A]is on frequency track-
ing, and Section [[TT B| discusses locking in the presence of
additive noise and the character of the error signal.

A. Frequency Tracking

The ability of IWAVE to track an evolving wave de-
pends on the value of the response time parameter, 7.
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Figure 9. Measured x? as defined in the Section from a
simulation where an input swept sinusoid plus additive white
gaussian noise was fed into IWAVE. Sweep rates from 0.1 to
2.5 Hzs™! were used. For each injected wave, IWAVE was
run with a range of 7 between 0.01s and 5s. Also overlaid
are three curves in bold. The curve labelled ‘measured’ is the
minimum of x?(7) for each df /dt. The curve labelled theory
is the calculated prediction for the minimum of x?(7) from
Equation [I5] The curve labelled U.L. is the predicted upper
limit on 7 above which loss of lock is predicted as discussed in

the final paragraph of Section [[ITAl 7 = 1/4/2df/dt, versus

the measured x? at that 7.

Figure [9 shows the results of running IWAVE on a swept
sinusoidal wave starting at 20Hz and increasing linearly
in frequency at a range of rates. At each rate, a range of
values of 7 was used. The sum of the squares of the devi-
ations between the actual and reconstructed frequencies,
divided by the latter, over a time interval of 20 seconds,
here referred to as x2, was calculated as a measure of the
accuracy of frequency reconstruction.

The value of x2 is seen to be a function of 7, with
a pronounced minimum that is a function of the sweep
rate. The x? statistic also becomes noisy at both ends
of the range of values of 7. Here we explain the smooth
descent and ascent in x? on either side of the minimum,
and obtain a formula for the optimum value of 7. We
also explain the onset of noise at either end of the range
of 7.

Starting at the minimum, y? rises with 7 because of the
response time of the closed loop transfer function of the
servo, from Equation This transfer function is that
of two RC lowpass filters in series, each having an expo-
nentially decaying impulse response of timescale 27. The
response time of the entire transfer function is therefore

the time duration of the autocorrelation of this exponen-
tially decaying function. This autocorrelation initially
rises linearly in time after the impulse, before reaching
a maximum at time 27 and then decaying exponentially.
The time between the impulse and the point where the
exponential decay reaches 1/e of its maximum value is
found empirically to be 67. This causes the reconstructed
frequency to lag behind that of the input wave, resulting
in a frequency discrepancy of A f; = 67(df /dt).

Below the minimum of x?(7), the rise in x? with de-
creasing 7T is explained by the frequency response of the
core IWAVE algorithm, and is best understood by the
analogy between the IWAVE algorithm and the char-
acteristics of a damped harmonic oscillator discussed
in Section [[TB] At higher values of damping, the fre-
quency response is maximal at a frequency, f, below
the natural frequency of the undamped oscillator, fy,
by an amount approximated by the relationship fo =

f2+1/(2r272). This causes a systematic offset be-
tween the frequency, f, returned by IWAVE, and the fre-
quency, fo, of the input signal. This frequency difference
results in an additional contribution to the y? statistic.

By squaring and adding the frequency discrepancies
arising from these two effects, dividing by fp, and min-
imising with respect to 7, making the assumption that
2m272 f2 > 1, we arrive at a value of 7 that minimises
the x? statistic for frequency tracking.

1
Topt = (15)

¢/ 2884 f2 (%)2

Figure |§| shows the values of 7., corresponding to the
measured minimum 7 and x? across each of the x? curves,
vs. the measured x2? at that minimum, along with the
value of 7o, versus the value of x? at Topt- There is good
agreement between the theoretical 7,,; and the value de-
termined from simulations.

We next discuss the breakdown of IWAVE at high val-
ues of 7, where the x?(7) curves become noisy, indicating
loss of lock. The following argument leads to success-
ful prediction of the value of 7 where this breakdown
occurs. Consider a wave whose displacement at time ¢
is h(t) = Acos(2rf(t)t), so that the frequency of the
wave is changing. Assume that IWAVE is locked at time
t, so that the IWAVE output is m(t) and is equal to
h(t). At time t 4 7, the wave displacement has evolved
to h(t+71) = Acos (2n(f + df)(t+ 7)). In the time in-
terval [t,t + 7] the IWAVE output has not had time to
respond to the frequency shift df, and therefore takes the
form m(t 4+ 7) = Acos (2nf(t + 7)). The phase shift be-
tween the wave and the IWAVE output at time ¢t + 7 is
A¢ ~ 2rx7df. The error signal for IWAVE is approxi-
mated by the integral [ h(t')m(t') dt’ over time interval
[t,t + 7]. If the phase shift between the incoming wave
and the IWAVE output over this time interval is greater
than 7, the error signal will undergo a sign change caus-
ing loss of lock. Therefore, a condition for IWAVE to
remain locked is that A¢ < 7 or 7df < 1/2. Writing



df = 7 x df(t)/dt, we arrive at the upper bound that
7 should obey 7 < 1/4/2df/dt for INAVE to remain
locked. This line is drawn on the x? curves in Figure @
Again, there is good agreement between the theoretical
limit and the onset of visible servo lock loss.

B. Response to Noise

The error signal for the IWAVE PLL is derived from
the product of the input data stream and the Q phase
output of the IWAVE filter, minus the product D@ of
the two iwave outputs. Where the wave frequency is
static, this subtraction removes the upper sideband com-
ponent at frequency 2f. When the frequency changes,
this causes an additional transient upper sideband com-
ponent, which is removed using a second IWAVE filter
at frequency 2f having a response time half that of the
primary IWAVE filter. Finally, we divide by the square
of the wave amplitude, because both the amplitude of
the incoming wave, and the amplitudes of both IWAVE
outputs scale linearly with the wave amplitude. We need
to divide this scale out otherwise the PLL loop gain will
be dependent on the wave amplitude.

This is a form of homodyne detector. Because the
error signal incorporates the unfiltered wideband input,
the error signal incorporates the broadband noise of the
incoming data. The distribution of the error signal there-
fore reflects the spectral characteristics of the input data
over the full Nyquist band. If, for example, the incom-
ing data includes a time domain transient with a broad
spectral distribution, this transient will be reflected in
the time history of the error signal from IWAVE. If the
out of band noise is sufficiently large in amplitude, then
IWAVE will lose lock.

We have determined experimentally that at the opti-
mal choice of response time, 7ot given in Equation
then IWAVE will stay locked when the ratio of the wave
peak amplitude to the root mean square noise amplitude
exceeds 0.3. Future work to improve the performance of
IWAVE at lower signal-to-noise ratios could involve, for
example, prefiltering the input data to focus on a nar-
rower frequency band about the frequency of interest for
the waves under study. The noise content of the error
signal, which leads to noise also in the estimate of the
IWAVE frequency, is greater at smaller values of 7 where
the bandwidth of the IWAVE filter resonance is larger.
At sufficiently small values of 7, the incursion of noise
leads again to loss of lock. This can be seen in Figure
[ for 7 < 0.02. The optimal value of 7 is affected by
higher noise levels, with larger values than that given in
Equation [T5] becoming optimal.

The exact value of 7 where lock loss occurs and the
effects of noise on the optimal value of 7 could be deter-
mined by a detailed stochastic differential equation anal-
ysis, and is beyond the scope of this paper. However,
a simple scaling argument can be made. Noise in the
error signal leads to a random component being added

to the phase shift per sample. This means that the re-
constructed frequency, which also forms the servo control
signal, contains a component that undergoes a random
walk, and hence grows with the square root of the number
of samples. This means that you might expect the onset
of loss of lock to occur at a 7 which scales as one over the
square of the signal to noise ratio, so that IWAVE works
at 7 above a lower limit that goes down by a factor of
two when the signal to noise ratio is enhanced by a fac-
tor of v/2. This was verified by injecting additive white
Gaussian noise on top of the swept sine wave, and noting
that the threshold for lock loss at low 7 reproduced this
predicted behaviour.

In terms of noise in the error signal, the most signif-
icant source is the product of noise in the input data,
since this noise enters the error signal without bandpass-
ing through the IWAVE filter. However, this broadband
noise has an RMS amplitude independent of the ampli-
tude of the tracked wave. If the tracked wave drops in
amplitude, but the RMS of the broadband noise at the
input does not, then the noise component of the error
signal will scale inversely proportional to the amplitude
of the line. This is exactly what is seen when IWAVE is
run in practice on real data. The normalisation of the
error signal with the amplitude squared is necessary to
ensure that the feedback loop gain is independent of the
wave amplitude.

The other function of the error signal is to provide an
indication of whether or not the PLL is locked. With
a non-stationary RMS, this is difficult. However, if we
scale the error signal by multiplying it by the amplitude
of the wave being tracked, this stabilises the RMS of the
error signal noise at the level of the line amplitude. If we
further divide by the long-term RMS of the input data,
we then obtain a statistic that has a stable RMS of order
unity when the servo is locked. Departures from lock
manifest themselves as large transient spikes of amplitude
greater than 10. This effect will be seen in the discussion
of performance on gravitational wave data in Section [[V]

C. Use of multiple IWAVE filters in parallel

Multiple IWAVE filters can be applied to multiple har-
monic waves in a single data stream. However, when
those harmonics are frequencies spaced closely together,
this causes crosstalk between the different filters. All
harmonics present in the data will enter every IWAVE
instance through the error signal. To mitigate this effect
we employ a cross-subtraction scheme, as illustrated in
Figure [10]

The schematic shows only two IWAVE instances, but
the technique generalises to any number of filters. As-
sume that the two IWAVE filters are locked on line fre-
quencies f1 and fy. The D and ) phase outputs from
each IWAVE instance are fed into a phase shifter which
estimates the wave signal one sample in the future at
the frequency of the wave tracked by the filter. This
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Figure 10. A schematic showing the cross subtraction tech-
nique for two parallel IWAVE filters. The feedback loop com-
ponents are omitted for clarity; each IWAVE filter is sepa-
rately instrumented as shown in Figure [6]

wave sample is stored until the next input data sample,
when it is subtracted from the input data to the other
filter. In this way, the input data to each IWAVE filter
is purged of the harmonic being followed by the other fil-
ter. This technique has been determined to successfully
lock multiplets of up to 20 filters, leaving the frequency
estimates from each filter free of oscillations at the differ-
ence between frequencies in the multiplet, the effect seen
in the absence of the cross subtraction technique. The
technique works with IWAVE because the two quadra-
ture outputs can be used to generate an output shifted
through an arbitrary phase shift, and because the out-
puts are at the same amplitude as the input wave onto
which IWAVE is locked.

IV. PERFORMANCE OF IWAVE ON REAL
WORLD DATA

We present an example of the application of IWAVE to
a set of harmonic noise components of gravitational wave
data taken from the LIGO open data centre web site [35].
The data was acquired by the LIGO Hanford interferom-
eter on November 30*" 2016 and consists of 800 seconds
of calibrated strain data from the Hanford interferom-
eter during an 800 second lock stretch. The data was
preprocessed with a fourth order Butterworth highpass
filter at 30Hz, followed by four third order Chebyshev
type 2 bandpass filters between 5Hz and 300Hz, applied
in series. Finally, a fine adjustment to the spectrum was
made using a single real pole at 10Hz. The resulting data
is dominated by the 20-80Hz band and is approximately
white in that range. It is not a requirement that the in-
put data to IWAVE be whitened, but if a spectral feature
is to be successfully tracked by IWAVE, it’s peak should
rise above the noise floor in the surrounding background;
whitening ensures that this is the case. Eight harmonic

features were identified from a broad power spectrum and
were tracked using eight parallel IWAVE instances.

The results at four of the identified frequencies are
shown in Figure For each harmonic, the frequency,
amplitude and modified error signal (as described in Sec-
tion are displayed. Amplitudes are in dimension-
less strain units, so 1 represents the 4km length of the
LIGO detector arms. Though the lines are in some cases
almost degenerate in frequency, there is no evidence of
beats between the reconstructed frequencies. The error
signal is roughly static with approximately unit RMS,
though the distribution is non-Gaussian because of the
modulation of the input noise by the sinusoidal IWAVE
output. A non-statistical transient fluctuation in the
modified error signal in the 36.7 Hz line at around 360s
corresponds to a jump in the IWAVE reconstructed fre-
quency, indicating that IWAVE momentarily lost lock
when either the frequency of this sinusoid shifted rapidly
or IWAVE jumped between two almost degenerate har-
monics. A second loss of lock can be seen in the 37.3 Hz
data at around 30s accompanying a sudden drop in the
amplitude of the harmonic. The eight IWAVE instances
all successfully tracked their target harmonics, with the
reconstructed error signal providing a useful performance
indicator.

V. SUMMARY AND FUTURE WORK

We have described IWAVE, a novel orthogonal state
generator, resonant filter and phase locked loop for the
dynamic tracking of harmonic waves. The method has a
single input parameter, its response time. The algorithm
has a low computational load, so that many harmonics
can be tracked in real time using a single CPU core. The
ability to track multiple closely-spaced harmonics means
that the method lends itself well to applications where
there are dense ‘forests’ of harmonics, such as in LIGO
violin mode clusters, and communications applications.
IWAVE has been applied to LIGO strain data and used to
study the character of violin modes in ultra low loss fused
silica suspensions. There are many possible applications
of the IWAVE method. It is complementary to existing
PLL algorithms that we have described in the Appendix.
We have supplied software implementations of IWAVE in
C with MATLAB and PYTHON wrappers to encourage
the community to find other applications and uses [33].

The authors can see several directions in which IWAVE
could be improved. The error signal is susceptible to
broadband noise contamination, and a narrower band al-
ternative would be of benefit in applications with very
weak signals, though narrowbanding will reduce the re-
sponsiveness of the method to frequency changes. There
are also applications where feedback is not important,
for example, the use of IWAVE for novel resonators that
is promising for resonant detectors of weak signals in
physics, such as those of dark matter axions [36]. We
look forward to seeing what the community finds to do
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Figure 11. The results of IWAVE frequency tracking on four

pseudo-harmonics present in data from the LIGO Hanford
detector.

with our harmonic tracking algorithm.
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Appendix A: Overview of other PLL methods

1. SOGI-PLL

The now often-used Generalised Integrator-Based
PLL, SOGI-PLL, was introduced in 2006 [24]. SOGI is
an orthogonal state generator, producing in-phase and
quadrature-phase copies of the input wave analogous to
the IWAVE D and @ outputs. These outputs are mixed
with two quadratures from a reference oscillator, leading
to an error signal in the quadrature phase output that
indicates frequency differences between the SOGI output
and the reference. The error signal is fed to a propor-
tional /integral filter. The filter output is added to a fre-
quency offset input w, and the result is used to adjust



the coeflicients of the SOGI filter to reflect the frequency
change, as well as to control the reference oscillator. Es-
sentially, the SOGI algorithm is coupled to a conventional
phase locked loop with a reference oscillator.

The SOGI algorithm was developed for the field of
power grid monitoring, where frequency changes are a
small fraction of a nominal constant value, commonly
50 Hz, 60 Hz or harmonics of these. It is not designed for
large departures from the frequency set at the w, input.
The SOGI orthogonal state generator is designed using
two s-plane integration stages, shown in the tan SOGI
block. These s-plane filters are transformed to the dig-
ital domain by, for example, using a Tustin algorithm.
The SOGI method does not track the wave amplitude,
though this can be done in a separate circuit, assum-
ing the frequency of the wave is known, using homodyne
detection, for example. The SOGI orthogonal state gen-
erator does not have the same transfer functions as the
IWAVE one and this is not surprising given the different
methods by which they are obtained, although the de-
nominators of the two transfer functions are identical, as
they both represent a resonant response to a harmonic
drive.

2. EPLL

The EPLL, although apparently seeming to differ from
quadrature signal generation-based PLLs, such as SOGI-
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PLL, is closely related thereto [29]. A conventional PLL
is embedded within a second feedback servo that uses
the integral of the quadrature phase of the PLL output,
multiplied by the unintegrated quadrature phase to syn-
thesise a 2w signal, which can then be subtracted from
the input data, compensating for the 2w component of
the phase detector output inside the PLL. Further, the
common amplitudes are also equal to half the amplitude
of the sinusoid in the input data. In the EPLL structure,
the input data are normalised to the PLL by this ampli-
tude, thereby removing the amplitude dependence of the
phase detector [37].

Unlike IWAVE, there is a necessity for two servos to
be locked at once, and several numerical parameters that
must be adjusted, including parameters necessary to im-
plement the s-plane design digitally. EPLL is susceptible
to interference from other waves present in the input and
to DC offsets. The latter two issues are addressed by pre-
filtering the input to the EPLL. EPLL has been widely
implemented because of its comparative simplicity, abil-
ity to track wave amplitude and the availability of code
implementing the method [3§].
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