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Abstract: Human respiratory syncytial virus (hRSV) infection brings a wide spectrum of clinical
outcomes, from a mild cold to severe bronchiolitis or even acute interstitial pneumonia. Among the
known factors influencing this clinical diversity, genetic background has often been mentioned. In
parallel, recent evidence has also pointed out that an early infectious experience affects heterologous
infections severity. Here, we analyzed the importance of these two host-related factors in shaping
the immune response in pneumoviral disease. We show that a prior gammaherpesvirus infection
improves, in a genetic background-dependent manner, the immune system response against a subse-
quent lethal dose of pneumovirus primary infection notably by inducing a systematic expansion of
the CD8+ bystander cell pool and by modifying the resident alveolar macrophages (AMs) phenotype
to induce immediate cyto/chemokinic responses upon pneumovirus exposure, thereby drastically
attenuating the host inflammatory response without affecting viral replication. Moreover, we show
that these AMs present similar rapid and increased production of neutrophil chemokines both in front
of pneumoviral or bacterial challenge, confirming recent studies attributing a critical antibacterial role
of primed AMs. These results corroborate other recent studies suggesting that the innate immunity
cells are themselves capable of memory, a capacity hitherto reserved for acquired immunity.

Keywords: immunopathogenesis; pneumoviridae; gammaherpesvirus; inflammation; animal models;
alveolar macrophages; innate and adaptive immunity

1. Introduction

Human respiratory syncytial virus (hRSV) infection leads to a wide spectrum of clini-
cal outcomes, from a mild cold to severe bronchiolitis, pneumonia, or even asthma. Nearly
all children have been infected with hRSV at least once by two years of age. Approximately
1–2% of them develop a disease that requires hospitalization, which makes it important
to identify the key factors underlying the severe clinical forms [1–3]. In this area, avail-
able studies have focused on socio-demographic and child-related risk factors. The most
comprehensive report of the strength of association between various socio-demographic
indicators and hRSV-associated severe lower respiratory infection identified eight risk
factors: prematurity, low birth weight, being male, siblings, maternal smoking, history of
atopy, no breastfeeding, and crowding ≥7 persons in the household [4]. The search for
the child-, or host-related factors underlying this clinical diversity has long favored the
genetic hypothesis. Studies of otherwise healthy infants and children have identified single
nucleotide polymorphisms (SNPs) that are overrepresented in patients hospitalized with
hRSV compared to either healthy controls or patients with milder hRSV disease. Most of
these severe bronchiolitis-associated SNPs bias the adaptive immunity Th1/Th2 balance
toward a Th2-dominated response [5–11]. At present, however, no decisive association
has been demonstrated in a reproducible manner, and hRSV susceptibility/resistance is at-
tributed to a large number of alleles acting in concert at multiple levels within the host [12].
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Another factor that could explain the predisposition of some children to the hRSV-induced
disease could be related to extrinsic factors affecting the development of the immune system
in early life. Indeed, several studies have highlighted that microbiome composition can
impact the development of hRSV pathogenesis [13]. In particular, persistent viruses such
as gammaherpesviruses have coevolved with their host and appear to broadly influence
the composition and function of the immune system [14,15]. Interestingly, while human
gammaherpesvirus Epstein-Barr virus (EBV) infection usually occurs during childhood,
recent epidemiological surveys highlighted a progressively increased age of seroconversion
to EBV in developed countries [16]. Therefore, the sequence following which children
encounter gammaherpesviruses and hRSV at an early age might influence the outcome of
RSV infections. Though immune memory is a canonical defining feature of the acquired
immune system, a series of evidence aggregated over the past decade has pointed out
that activation of the innate immune system can result in enhanced responsiveness to
subsequent heterologous triggers. Specifically, by demonstrating that an early infectious
experience affects how a given host responds to a later heterologous infection, this evidence
forged the new biological concept termed “innate immune memory”. This process has
been shown to offer either broad benefits for host defense or, on the contrary, detrimental
overactivation of the host response [17]. Among this new field of research, “priming” is
defined as a stimulus that changes the functional state of cells and their immune status
and does not return to basal levels before the second infection. Therefore, the impact of the
second challenge in primed cells is synergistic with the original stimuli [18].

In the following study, we compared the respective importance of these two host-
related factors, genetic make-up, and immune priming, in shaping the diversity of the host
response in hRSV disease. We have used the natural rodent pathogen pneumonia virus
of mice (PVM), which is closely related to hRSV [19,20]. While hRSV does not replicate
effectively in inbred mouse strains [21], PVM undergoes robust replication and generates
severe inflammatory disease in association with cytokine production and prominent leuko-
cyte recruitment to the lungs. As acute PVM infection in mice phenocopies the clinical,
histological, and inflammatory responses characteristic of the most severe forms of hRSV
infection in human subjects, it is widely regarded as the most relevant model of severe
hRSV disease [21,22]. In parallel, we pre-exposed mice to murid herpesvirus 4 (MuHV-4), a
gammaherpesvirus already known to exert a long-term effect on lung immune innate cells
in an asthma model [15]. Finally, because of the proven association between clinical severity
of hRSV disease and alleles controlling the Th1/Th2 balance, we enrolled an outbred mouse
strain (CD-1) to represent the intrinsic genetic diversity of the Mus musculus species and
two inbred strains (C57BL/6 and BALB/c) which are, respectively, prototypical Th1- and
Th2-type mouse strains [23–25].

In the context of successive inoculations of MuHV-4 and PVM, the study revealed
that a past infectious experience on the scenario of subsequent infection is effective in a
genetic background-dependent manner. Moreover, the remarkable innate immune priming
provided by MuHV-4 consisted of redirecting and modifying the alveolar macrophages
(AMs) cyto/chemokine immediate responses upon exposure to PVM, thereby drastically
attenuating the host inflammatory response and disease severity.

2. Materials and Methods
2.1. Design

To examine the effect granted by a first infection with a herpesvirus (priming) on the
course of a subsequent, theoretically lethal pneumovirus infection, 36 mice from each of
two inbred (BALB/c and C57BL/6) and one outbred (CD-1) strains were inoculated with
the pathogenic strain of the mouse pneumovirus (PVM, J3666). Inbred strains BALB/c
and C57BL/6 were chosen deliberately because they are reputed to be prototypical of
Th2 and Th1 responses, respectively. The outbred strain was enrolled to discriminate a
species-typical response from those genetically biased by prolonged inbreeding selection.
Within each strain, 3 subsets were examined, which differed according to the priming
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imposed 28 days before PVM inoculation, either PBS (n = 12), live murid herpesvirus-4
(MuHV-4, n = 12), or heat-inactivated MuHV-4 (hiMuHV-4, n = 12). Twenty-eight days
after MuHV-4 infection, the first half of each subset’s cohort (n = 6) was euthanized, and
the second half was inoculated with PVM, then euthanized on day 6 post infection (p.i.)
(day 34 post MuHV-4) for autopsy, histological examination, lung cell subsets, viral load,
and cytokines/chemokines quantitation. In a side experiment, 6 mice of each cohort were
enrolled in a longitudinal study during which clinical scoring, subcutaneous temperature,
and body weight values were measured daily, starting 1 day before PVM inoculation and
going on up to the point of accepting death as a predictable outcome post inoculation
(survival study).

2.2. Mice, Virus Infection, and Disease Monitoring

The experiments were conducted with specific pathogen-free 8-wk-old BALB/c,
C57BL/6, and CD-1 female mice obtained from Janvier Laboratories (Le Genest Saint
Isle, France). Housing, inoculation, data collection, and euthanasia procedures complied
with National Institutes of Health guidelines, and the experimental protocol was approved
by the Institutional Animal Care and Use Committee of the University of Liège (permits
#1651 and #2329).

The MHV-68 strain of MuHV-4 was propagated on BHK-21 cells. Cells and supernatant
were harvested at about 4 days post infection (~85% of lysis), and debris was removed by
low-speed centrifugation (350× g, 15 min, 4 ◦C). Virions present in the supernatant were
harvested by ultracentrifugation (100,000× g, 2 h at 4 ◦C) and banded by isopycnic gradient
ultracentrifugation through a 20% to 50% weight/volume potassium tartrate gradient in
PBS (100,000× g, 2 h at 4 ◦C). The band containing virions was collected, washed, and
concentrated further in PBS by ultracentrifugation (100,000× g, 2 h at 4 ◦C). Finally, the
pellet was resuspended in PBS, and virus-enriched preparations were aliquoted and stored
at −80 ◦C. A fraction of these aliquots was heated at 65 ◦C for 30 min and expected
inactivation of MuHV-4 was confirmed by culture on BHK-21 cells. A virulent stock
of PVM strain J3666 was obtained by blade homogenization of mouse lungs after serial
passages in 8-wk-old mice. The stock was produced in DMEM complemented with 10%
FBS, then clarified by centrifugation, filtered, dialyzed, divided into aliquots, and stored in
liquid nitrogen prior to use. Infectious titers of both stocks were determined by standard
median tissue culture infectious dose (TCID50) assay on BHK-21 cells, and prior titration of
a series of aliquots drawn at random yielded highly reproducible titers.

The inoculation procedures consisted of instilling 50 µL of vehicle (PBS), heated
(hiMuHV-4) and live MuHV-4 (1.4 × 104 TCID50 in PBS) or PVM (10 or 4 TCID50 in PBS)
into the nostrils of the anesthetized mouse (ketamine/xylazine, ip) maintained in a vertical
position. The PVM dose was intended to examine the lungs at the peak of induced disease,
which usually occurs 6 days after inoculation [26]. A previous dose-response study had
shown that inocula of 25, 10, and 4 TCID50 caused disease in all mice and that no more than
4 TCID50 had to be inoculated for maintaining 100% survival 6 days after inoculation in
the most susceptible strain (BALB/c). Incidentally, this previous study had already shown
that the effect of priming with MuHV-4 was evident for all doses of PVM, both in terms of
survival rate and mean survival time.

To assess pain and distress during the course of infection, animals were assessed twice
a day based on a scoring system assigning numerical values to several criteria of animal
conditions that were considered signs of morbidity or moribundity, including changes
in physical appearance, behavior, temperature, and weight loss. The mice were either
euthanized on day-6 p.i. or when they reached one of the three thresholds defined as the
end-point. A body weight loss of >20%, a temperature <32 ◦C, or an illness-score >20 were
the cut-off thresholds defined as end-point. The date of death for euthanized mice was
marked as the date of euthanasia. None of the animals was found dead during the course
of the experiments.
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2.3. Bacterial Stock Preparation and Use

To assess the functional phenotype of AMs CD11c+ cells, a clinical isolate of Strepto-
coccus pneumoniae (S. pneumoniae) serotype 3 (ATCC 6303; ATCC, Molsheim, France) was
prepared. Briefly, the bacterial stock was plated on Columbia blood agar (VWR chemicals,
Leuven, Belgium) and incubated overnight. Resultant colonies were cultured at 37 ◦C in 5%
CO2 in brain heart infusion broth (BHI) (VWR chemicals, Leuven, Belgium) to exponential
phase. Bacteria were then harvested and resuspended in PBS. The infectious dose was
verified by plating 10-fold serial dilutions on BHI-agar plates. AMs CD11c+ cells were
infected with 1 × 106 colony-forming units of S. pneumoniae suspended in 100 µL of PBS.

2.4. Histological Analysis

The tissues were fixed in 4% formaldehyde, dehydrated in a graded series of ethanol,
washed in xylene, and embedded in paraffin wax. Tissue blocks were sectioned at a
thickness of 5 µm, and sections were stained with hematoxylin and eosin and evaluated
under a light microscope. Lung sections were blindly scored by a board-certified pathologist
for several indices of inflammation and cellular infiltrates changes in the conducting airway
and alveolar walls. Features considered were the amount of perivascular and peribronchial
inflammatory infiltrates, alveolar septal infiltrates and alveolar luminal inflammatory cell
exudates, hemorrhage and edema, and degree of epithelial impairment.

2.5. Preparation of Cell Suspensions

After euthanasia, the lungs were perfused with 5 mL ice-cold PBS through the right
ventricle, then removed and the large airways dissected and discarded. The lungs were
removed, and the large airways were dissected from the peripheral lung tissue. The latter
was cut into small pieces, transferred into GentleMACS™ C-Tube containing complete
HBSS medium, 1 mg/mL collagenase D (Merck Life Science BV, Overijse, Belgium), and
50 µg/mL DNase I (Merck Life Science BV, Overijse, Belgium), and processed with the
GentleMACS™ dissociator according to the manufacturer’s instructions (Miltenyi Biotec,
Leiden, The Netherlands). Homogenized lungs were passed through a Falcon® 70 µm
nylon cell strainer to obtain a single-cell suspension. The latter was centrifuged at 300× g
for 10 min, and the pellet was resuspended for 5 min into 2 mL of BD Pharm Lyse™ (BD
Biosciences, Erembodegem, Belgium) to get rid of the remaining red blood cells. After
2 additional washing steps into PBS/EDTA (10 mM), cells were counted using a Countess™
automated cell counter (Thermo Fisher Scientific Inc., Merelbeke, Belgium), dead cells
being excluded based on trypan blue exclusion.

2.6. Ex Vivo Culture of AMs CD11c-Positive Cells

AMs CD11c+ cells were purified from bronchoalveolar lavage fluids (BALF) single-cell
suspensions by positive CD11c MACS selection (Miltenyi Biotech, Leiden, Netherlands)
according to the manufacturer’s instructions. Purified cells were then resuspended in com-
plete RPMI 1640 medium (10% FBS, 1 mM L-glutamine) without penicillin/streptomycin
(P/S-free media), plated at 1 × 105 cells/well in 24-well plates (500 µL/well) and incu-
bated at 37 ◦C in a 5% CO2 incubator for 1 h. S. pneumoniae bacteria were washed twice
in PBS, resuspended in P/S-free media at 1 × 107 cfu/mL, and incubated for 30 min at
37 ◦C. Bacteria were supplemented to cell culture wells with a multiplicity of infection
(m.o.i.) of 10. Complete P/S-free media was used as control (basal conditions). Cells were
incubated for 1 h at 37 ◦C, supplemented with 1.5 mL/well complete RPMI 1640 with 1%
penicillin/streptomycin, then incubated again for 30 min to get rid of extracellular bacterial
cells, washed twice in PBS before measurements. Simultaneously, CD11c+ purified cells
were infected with PVM at an multiplicity of infection (MOI) of 1. Infected cells were
incubated for 2 h at 37 ◦C in a 5% CO2 cell-culture incubator, then washed twice in PBS
and brought back at 37 ◦C before measurements. From this starting point (removal of
extracellular bacteria and PVM) onward, supernatants were collected 2, 12, 24, 48, and 72 h
after virus/bacteria exposure for cyto/chemokine assays.
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2.7. Flow Cytometry

Living cells were resuspended in PBS supplemented with 0.5% of BSA and 0.1% of
sodium azide. Cells were first incubated on ice for 10 min with purified rat anti-mouse
CD16/CD32 antibody (BD Bioscience, Erembodegem, Belgium) before being marked 30 min
on ice with various panels of fluorochrome-conjugated antibodies: CD45 (30-F11, FITC),
CD11b (M1/70, eFluor 450), CD24 (M1/69, APC), CD117 (2B8, APC) from eBioscience
(Thermo Fisher Scientific Inc., Merelbeke, Belgium); CD3ε (145-2C11, Horizon PE-CF594),
CD4 (GK 1.5, PE-Cy7), CD8α (53-6.7, APC-H7), CD11c (HL3, PE-Cy7), CD19 (1D3, PerCP-
Cy5.5), CD49b (DX5, BV421), IgE (R35-72, FITC), Ly6C (AL-21, BV605), Ly6G (1A8, Alexa
Fluor 700), MHC II (M5/114.15.2, Horizon V500), NKp46 (29A1.4, Horizon V450), SiglecF
(E50-2440, Horizon PE-CF594), TCRγδ (GL3, BV711) from BD Biosciences; CD69 (H1.2F3,
APC), CD64 (X54-5/7.1, PE), CD103 (2E7, PerCP-Cy5.5) from Biolegend (Amsterdam,
Netherlands); mCD1d PBS-57 tetramer (PE) from the NIH Tetramer Core Facility (Emory
University, Atlanta, GA), and mPDCA-1 (JF05-1C2.4.1, APC) from Miltenyi Biotec. To
assess the absolute cell number for each cell subpopulations and control the between-mice
experiment’s reproducibility, CountBright™ Absolute Counting Beads (Thermo Fisher
Scientific Inc., Merelbeke, Belgium) were added to the marked cells. Data were acquired on
BD FACS Aria III, BD LSRFortessa, and BD FACS Verse flow cytometers using BD FACSDiva
software (BD Biosciences). Cell viability was assessed by propidium iodide viability assay
(data not shown). Compensation and data analysis were performed offline using FlowJo
software 10.7.0 (TreeStar, Ashland, OR, USA). Cytospins were prepared from sorted cells
performed on FACSAria III instrument and stained with May–Grünwald Giemsa (Merck
Life Science BV, Overijse, Belgium) before microscopy analysis. The lymphoid and myeloid
lungs subpopulations were identified using three distinct gating strategies, followed by a
series of cytospins to provide visual control of the gated cell populations (gating strategy
available in Figures S1–S3). Fluorescence-minus-one (FMO) controls were used to set flow
cytometric gates (Figures S4 and S5).

2.8. Reverse Transcription and Real-Time PCR Analysis

In order to quantify the PVM virus genomic RNA and to demonstrate a possible
reactivation of the MuHV-4 virus in the lungs after the PVM infection, a section of the sh
gene (PVM) and of the DNA polymerase (ORF9) transcript (MuHV-4) were quantified by
dual-standard curve reverse transcription real-time PCR. Lung total RNA was extracted
and purified using the RNeasy Mini Kit (Qiagen, Antwerp, Belgium). Following TURBO
DNase treatment (Thermo Fisher Scientific Inc., Merelbeke, Belgium), 1 µg of total RNA
samples were reverse transcribed using random hexamers and TaqMan reverse transcrip-
tion reagents (Thermo Fisher Scientific Inc., Merelbeke, Belgium), a no reverse transcriptase
control being included. RT-PCR products were run in triplicate, with ABI TaqMan Univer-
sal Master Mix II, with UNG, primer-probe mixes for the PVM sh gene (Forward: 5′-GCC
GTC ATC AAC ACA GTG TGT-3′; Reverse: 5′-GCC TGA TGT AGC AAT GCT T-3′; Probe:
5′-CGC TGA TAA TGG CCT GCA GCA-3′), the MuHV-4 DNA polymerase (Forward: 5′-
ACA GCA GCT GGC CAT AAA GG-3′; Reverse: 5′-TCC TGC CCT GGA AAG TGA TG-3′;
Probe: 5′-CCT CTG GAA TGT TGC CTT GCC TCC A), and the Mus musculus tyrosine
3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide (yw-
haz) (Forward: 5′-TGC AAC GAT GTA CTG TCT CTT TTG-3′; Reverse: 5′-CGG TAG TAG
TCA CCC TTC ATT TTC A-3′; Probe: 5′-TCC CCA ATG CTT CGC AAC CAG AAA GCA-
3′), and cDNA or standard in a 20 µL final volume (Applied Biosystems). Thermal cycling
parameters for the ABI StepOnePlus absolute quantitation program included 50 ◦C for
2 min (UNG incubation), 95 ◦C for 10 min (AmpliTaq Gold activation), and 40 amplification
cycles alternating 95 ◦C for 15 s and 55 ◦C for 1 min. Standard curves included serial
dilutions (109, 108, 107, 106, and 105 molecules/reaction) of ywhaz (NM_011740.3) and DNA
polymerase (NC_001826.2) coding sequences and serial dilutions (1010, 109, 108, 107, 106,
and 105 molecules/reaction) of the full-length PVM sh gene (NC_006579.1). Experimental
triplicate data points were interpolated to linear standard curves over the concentration
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ranges indicated. Samples calculations from data generated by this method were performed
as described [18]. Real-time PCR results were confirmed by median tissue culture infectious
dose (TCID50) titration of whole-lung homogenates.

2.9. Cytokines and Chemokines Assays

Protein levels of IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-13, TNF-α, IFNγ,
monocyte chemoattractant protein-1 (MCP-1, CCL2), macrophage inflammatory protein-1α
(MIP-1α, CCL3), macrophage inflammatory protein-1β (MIP-1β, CCL4), RANTES (CCL5),
eotaxin (CCL11), neutrophil-activating protein-3 (NAP-3, CXCL1), macrophage inflamma-
tory protein 2 (MIP-2, CXCL2), IFN-inducible protein-10 (IP-10, CXCL10), granulocyte-
macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-
CSF), vascular endothelial growth factor (VEGF) and granzyme B were measured in 75 µL
samples from each lung homogenate using a Mouse Premixed Multi-Analyte kit (Magnetic
Luminex assay; cat LXSAMSM; R&D Systems) according to the manufacturer’s instruc-
tions. The samples were analyzed on the Luminex 100/200 cytometer using xPONENT®

4.5 software. Results, generated using lung tissue homogenates, were normalized to total
protein per sample, determined via BCA protein assay (Pierce) with BSA standards.

2.10. Statistical Analysis

Kaplan–Meier survival curves were compared using the log-rank test. Differences be-
tween groups were assessed with Student’s t-test. Multiple-group comparisons were carried
out by one-way analysis of variance followed by the Newman–Keuls test. Kaplan–Meier
survival curves were compared using the log-rank test. p-values < 0.05 were considered
significant at a 95% confidence interval for all analyses.

3. Results
3.1. Genetic Background of MuHV-4 Primed Mice Has a Significate Impact on the Survival
Outcome of a Lethal Pneumovirus Infection

To determine the resistance of each primed mouse strain and to address if the priming
of the respiratory mucosa with living MuHV-4 would modify the outcome of a lethal
pneumovirus infection, BALB/C, CD-1, and C57BL/6 mice were primed by living MuHV-4,
Heat-inactivated MuHV-4 (hiMuHV-4), or PBS inoculation and subjected 28 days later
(day 0) to different infectious doses of PVM (25, 10 or 4 TCID50 units). Following the
infection, a longitudinal study was applied with clinical scoring, subcutaneous temperature,
and body weight values measurement over the next 14 days (Figure 1A).

MuHV-4 primed mice presented a higher median survival time in each mouse strain
following 25, 10, or 4 TCID50 units PVM inoculation (Figure S6). No mice survived
following 25 TCID50 units of PVM inoculation. However, following 10 TCID50 units of PVM
inoculation, the CD-1 and C57BL/6 mice presented their first cases of survival following
MuHV-4 priming while all the BALB/c mice succumbed to PVM infection. Finally, 4 TCID50
units of PVM inoculation caused lethal disease in 100% of the PBS mock-primed mice, with
mean survival times of 6.2, 8.2, and 8.3 days in BALB/c, CD-1, and C57BL/6, respectively
(Figure 1B). In BALB/c, subcutaneous temperature decreased slowly for 4 days and then
rapidly to the end-point. In CD-1 and C57BL/6, it remained stable for 5 days and then
abruptly reached the end-point within 72 h. At the cut-off point, live weight loss peaked at
~15% in BALB/c and ~20% in CD-1 and C57BL/6 (Figure S7A,B).

Similarly, hiMuHV-4 inoculation 28 days before PVM infection resulted in comparable
clinical manifestations as in the PBS-primed group (Figure 1B, Figures S6 and S7), excluding
therefore the hypothesis of a protective response developed against the sole antiviral charge
of the MuHV-4.
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Figure 1. Past MuHV-4 infection provides protection against subsequent pneumoviral disease.
(A) Schematic of the survival study. On day -28, CD-1, BALB/c, and C57BL/6 mice were inoculated
intranasally with 1.4 × 104 TCID50 units of MuHV-4, hiMuHV-4, or PBS. On day 0, mice were
intranasally inoculated with 4, 10, or 25 TCID50 units of PVM, and the survivability of each mice strain
was monitored. (B) Survival study enrolling each mice strains given either MuHV-4, hiMuHV-4, or
PBS intranasally 28 days prior to 4 TCID50 units of PVM infection (n = 6 mice/mouse strain/priming
condition; representative of three independent experiments). (C) Schematic of experimental protocol.
On day −28, CD-1, BALB/c, and C57BL/6 mice were inoculated intranasally with 1.4 × 104 TCID50

units of MuHV-4, hiMuHV-4, or PBS. On day 0, mice were intranasally inoculated with PVM (4 TCID50

units for BALB/c mice and 10 TCID50 units for CD-1 and C57BL/6 mice). Finally, on day 6, lungs
were removed for further examinations. (D) Macroscopic aspect of lungs excised from each mouse
strain on day 6 after PVM infection (scale bar = 1 cm). (E) Representative sections of BALB/c mice
H&E-stained lung tissues on day 6 after PVM infection (4 TCID50 units) (histopathological reactions
are similar among each mice strain). Conspicuous alveolar (blue arrows), peribronchiolar (yellow
arrows), and perivascular (white arrows) inflammatory infiltrations were constant among PBS- and

hiMuHV-4-primed mice, while occasional in MuHV-4-primed mice. Scale bar = 200 µm for left panels,
50 µm for right panels.
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Conversely, prior infection with living MuHV-4 significantly improved the PVM-
associated clinical picture. Survival rate increased from 84% to 100% in CD-1 and C57BL/6,
respectively (Figure 1B). The disease remained, however, consistently fatal in BALB/c,
but the mean survival time increased from 6.2 to 8.0 days (p < 0.01). The course of the
temperature drop was delayed. The nadir was reached later and, with the exception of
BALB/c, was never less than about 33 ◦C. Normal temperature recovered rapidly in CD-1
(within 4 days), much more slowly in C57BL/6. The extent of weight loss was unaffected
by living MuHV-4 infection. Initial body weight recovered quickly in CD-1 and slowly in
C57BL/6 (Figure S7A,B). These results highlight an influence of the genetic background on
the survivability in front of a lethal pneumovirus inoculation.

For further investigations, as the peak of induced disease is reached 6 days after PVM
inoculation [26], lungs modifications were analyzed on day 6 post infection (Figure 1C).
Additionally, based on our results from the survival curves (Figure S6), the infectious dose
for PVM inoculations were defined as 4 TCID50 units in BALB/c mice to maintain a 100%
survival state at the time of measurement and 10 TCID50 units in CD-1 and C57BL/6 mice
to ensure significant immune reaction. The differences in mortality rate, weight, and
temperature loss between primed (MuHV-4) and mock-primed (PBS and hiMuHV-4) mice
correlated with the pathological findings made on lungs collected on day 6 post infection
(p.i.) (Figure 1D,E). Macroscopic examination of mock-primed (PBS and hiMuHV-4) mice
showed similar lungs alterations 6 days following PVM inoculation (Figure 1D): expanded,
red-colored tissue, rounded edges, gelatinous consistency, prominent edema, and acute
inflammation. A significant lung weight gain was measured compared to the lungs of
age-, sex-, and strain-matched uninfected mice, of the order of +50% in BALB/c and +90%
in C57BL/6 and CD-1 (Figure S7C). Conversely, MuHV-4 primed mice presented a re-
duced lung weight increase by about 25% in all three strains, and macroscopic examination
revealed how a past infection with live MuHV-4 reduces the lung inflammation associ-
ated with a subsequent pneumoviral infection. The volume and consistency of the lungs
remained unchanged, and areas of congestion were rare (Figure 1D). Finally, histopatho-
logical examination of the mock-primed, PVM-infected mice demonstrated alterations
typical of a prominent, diffuse alveolar and interstitial edema and diffuse alveolitis with
diffuse recruitment of granulocytes and conspicuous perivascular/peribronchial cuffing
with monocytic leucocytes (Figure 1E). On the other hand, microscopical inspection of
MuHV-4 primed mice showed a moderate excess of mononuclear cells accumulated in the
interalveolar septa and forming cuffs around the bronchioles and vessels was noticed with
little edema and alveolitis and no diffuse recruitment of granulocytes.

3.2. MuHV-4 Priming Affects the Leukocyte Subpopulations Recruitment in Lungs Prior and After
PVM Inoculation in a Murine Strain-Dependent Manner

To highlight the pulmonary cellular modifications following MuHV-4 inoculation
and to address the influence of the genetic background on the immune response devel-
opment against a heterologous PVM infection, the different leukocyte subpopulations
of each mice strain were analyzed successively in naïve mice, in mice mock- or MuHV-
4 primed for 28 days, and in mock- or MuHV-4 primed mice infected by PVM for 6 days
(Figures 2A and 3A). A recap table for changes observed in the leukocyte’s subpopulations
in the three different strains compared to naive mice can be found in Supplementary Table S1.
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Figure 2. MuHV-4 priming adjusts lung lymphoid subpopulations both before and 6 days after expo-
sure to PVM. (A) Schematic of experimental protocol. On day−28, CD-1, BALB/c, and C57BL/6 mice
were inoculated intranasally (i.n.) with 1.4 × 104 TCID50 units of MuHV-4, hiMuHV-4, or PBS. Each
cohort was then divided into two sub-cohorts based on whether euthanasia was performed just before
(day 0) or 6 days after intranasal inoculation of PVM. On day 0, the lungs of the first half of the mice
were removed for flow cytometry analysis, while the other half of the mice were infected with PVM.
On day 6, the lungs were removed and analyzed by flow cytometry. (B) Enumeration of absolute lung
lymphoid subpopulations in mock-primed (hiMuHV-4 and PBS) and MuHV-4-primed mice on days 0
(primed lungs) and 6 (primed and infected lungs) following PVM inoculation. (C) Absolute number
of activated (CD69+) and inactivated (CD69−) lungs CD8+ T-cell subsets in mock- or MuHV-4 primed
mice measured on days 0 and 6 following PVM inoculation (mean ± SD, with n = 6 mice/mouse
strain/priming condition; representative of three independent experiments). Mock lungs, primed
lungs (day 0), and primed/infected lungs (day 6) are considered separately from each other for statis-
tical analysis. Significantly different means are highlighted, with * p < 0.05, ** p < 0.01, or *** p < 0.001.
n.s., not significant (one-way ANOVA and Bonferroni post-tests).
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Figure 3. MuHV-4 priming adjusts lung myeloid subpopulations both before and 6 days after expo-
sure to PVM. (A) Schematic of experimental protocol. On day−28, CD-1, BALB/c, and C57BL/6 mice
were inoculated intranasally (i.n.) with MuHV-4, hiMuHV-4, or PBS. Each cohort was then divided
into two sub-cohorts based on whether euthanasia was performed just before (day 0) or 6 days after
intranasal inoculation of PVM. On day 0, the lungs of the first half of the mice were removed for flow
cytometry analysis, while the other half of the mice were infected with PVM. On day 6, the lungs of
the remaining mice were removed and analyzed by flow cytometry. (B) Enumeration of absolute lung
myeloid subpopulations in mock-primed (hiMuHV-4 and PBS) and MuHV-4-primed mice on days 0
(primed lungs) and 6 (primed and infected lungs) following PVM inoculation. (C) Mean fluorescence
intensity (MFI) of MHC II, CD64, and SiglecF expression on AMs 28 days after priming either with
MuHV-4 or PBS (mean ± SD, with n = 6 mice/mouse strain/priming condition; representative of
three independent experiments). Mock lungs, primed lungs (day 0), and primed/infected lungs
(day 6) are considered separately from each other for statistical analysis. Significantly different means
are highlighted, with * p < 0.05, ** p < 0.01, or *** p < 0.001. n.s., not significant (one-way ANOVA and
Bonferroni post-tests).
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3.2.1. Whole-Lung Cellular Environment in Each Mice Strain Native State

In the first step of our experiment, the pulmonary cellular environment of each mice
strain was assessed in its native state. In naïve mice, normalized enumeration of leucocyte
subsets revealed that lungs of CD-1 mice are constitutively infiltrated by higher numbers
of γδT cells, AMs, Ly6Clow monocytes (Ly6Clo Mo), Ly6Chigh monocytes (Ly6Chi Mo),
CD11b+ dendritic cells (CD11b+ DCs), plasmacytoid dendritic cells (pDCs), mast cells,
neutrophilic and basophilic granulocytes. Moreover, lungs of BALB/c contain 2.5-fold
more NK cells, C57BL/6 about four times less CD4+ T and B cells and CD-1 far less non-
alveolar macrophages (nAMs) (CD11b+CD11c+CD64intSiglecF−) (Material not intended
for publication: G. Gilliaux, D. Desmecht, University of Liège, Liège, Belgium, 2019).

3.2.2. Whole-Lung Cellular Modifications 28 Days after Mock or Muhv-4 Inoculation

In a second step, the pulmonary cellular modifications following mock or MuHV-
4 nasal inoculation (day 0 of PVM infection) were analyzed in each mouse strain.

• Lymphoid lineage; 28 days after intranasal injection of PBS or hiMuHV-4, the pul-
monary lymphoid subpopulations remained unchanged (p > 0.05) (Figure 2B). Further,
the injection of hiMuHV-4 did not increase the proportion of activated lymphoid cells
(CD69+) compared to the saline injection (data not shown). Conversely, after inocu-
lation of MuHV-4, the overall lung leukocyte counts increased, as did the count of
some subpopulations, albeit heterogeneously between strains (p < 0.05): iNKT/CD4−

cells (in CD-1 and C57BL/6 strains), NK cells (C57BL/6), B cells (C57BL/6), CD4+ T
cells (C57BL/6), CD8+ T cells (BALB/c and, most importantly, C57BL/6 with a 20-fold
increase) and γδT cells (BALB/c) (Figure 2B and Figure S8). Further, the general rule,
valid for all three mouse strains, was that past infection with MuHV-4 virus strongly
increased the absolute number of activated (CD69+) CD8+ cells (Figure 2C);

• Myeloid lineage; similarly, myeloid subpopulations were not altered after intranasal
injection of saline or hiMuHV-4. On the contrary, prior injection of MuHV-4 resulted
in strain-specific expansions of specific subpopulations: AMs and eosinophilic granu-
locytes in BALB/c, pDCs, mast cells, and neutrophilic granulocytes in C57BL/6 and
nAMs (5-fold) in CD-1 (Figure 3B, Figures S9 and S10). Further, the comprehensive
gating strategy used to distinguish bona fide AMs (CD11b−CD11chiCD64hiSiglecFhi)
from other myeloid cells revealed both shared and specific phenotypic changes. Most
importantly, in all three strains, AMs examined four weeks past MuHV-4 infection
displayed a significantly increased MHC II expression compared to PBS-treated mice
(Figure 3C). Strain-specific changes consisted of a decreased (BALB/c) or increased
(C57BL/6 and CD-1) expression of SiglecF and CD64 expression, respectively. Expres-
sion of other AM surface markers CD11b, CD11c, and Ly6C remained unchanged.

3.2.3. Whole-Lung Cellular Modifications 6 Days Post PVM Inoculation

In the final step of our experiment, the analysis on day 6 post PVM inoculation in
mock or MuHV-4-primed mice highlighted significant leukocyte proportion modifications.
Various immune reactions were measured according to the mice strain considered follow-
ing PVM infection, and this, independently of the influence of the MuHV-4-priming on
the immune system. Thus, the enumerated leukocyte subsets are essential for different
immunological tasks, and therefore it is theoretically possible that the observed constitutive
strain heterogeneity influences respiratory immunity to different pathogens.

• Lymphoid lineage; the recruitment pattern of lymphoid subpopulations in mock-
primed mice was similar in all three strains, with an increase in the numbers of iNKT
CD4−, iNKT CD4+, and NK cells (more marked in BALB/c and CD-1 than in C57BL/6)
while the numbers of B cells, CD4+, CD8+, γδT, and DN T cells remained stable
(Figure 2B and Figure S8). Qualitatively speaking, the PVM caused an increase in the
proportion and absolute number of CD69+, thus activating lymphoid cells. However,
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past infection with MuHV-4 further modified the leukocyte response to PVM infection.
Compared to mock-primed mice, an expansion of the pool of CD4+, CD8+, and DN
T cells was observed in all three strains (Figure 2B), along with an exacerbation of
the expansion of the iNKT CD4+ cell subpopulation in C57BL/6 and strain-specific
expansions of specific subpopulations already measured on day 0 following MuHV-4-
priming: B cells in C57BL/6 and γδT cells in BALB/c mice (Figure S8). Qualitatively
speaking, the general rule that emerged following MuHV-4 priming was an increase in
the absolute number of activated CD8+ T cells 6 days post PVM inoculation (Figure 2C);

• Myeloid lineage; all mock-primed mice infected by the PVM showed an expansion of
the AMs, pDCs, neutrophilic and eosinophilic granulocyte populations (Figure 3B).
Some changes were strain-specific: In CD-1, there was (i) a marked expansion of the
Ly6Chigh Mo pool without any change in the Ly6Clow Mo pool, whereas the opposite
was true in BALB/c and C57BL/6 and (ii) a marked expansion of the nAMs and
CD103+ dendritic cells (CD103+ DCs) pool (Figures S9 and S10). Finally, MuHV-
4-priming induced significant modifications in myeloid cells. Two effects of prior
infection with MuHV-4 on PVM-dependent reactions were shared by all three mouse
strains compared to mock-primed mice: enhancement of the pDC pool expansion
and, on the contrary, blunting of neutrophilic and eosinophilic granulocyte expansions
(Figure 3B). Further, some changes induced by the MuHV-4 priming were strain-
specific: (i) expansion of the AMs and mast cells pools were exacerbated in BALB/c
while it was blunted in the other two strains (Figure 3B) and (ii) enhanced expansion
of nAMs and diminished expansion of Ly6Chi Mo and CD103+ DCs subpopulations in
CD-1 mice (Figures S9 and S10). Two differences deserve specific attention. We found a
striking elevation of lung pDCs in CD-1 mice in comparison to inbred strains. As lung
pDCs represent a key DC subset responding to viral infections, higher pDC numbers
may influence the pathogenesis of respiratory viral infection. Further, lung CD103+

DCs were far more numerous in CD-1 mice than in other mice. Given the critical role
of respiratory CD103+ DCs for activation of naive CD8+ T cells in respiratory viral
infections [27,28], an expanded pool of CD103+ DCs may impact the strain-dependent
capacity to generate viral CD8+ T-cell immunity.

3.3. Muhv-4 Priming Impact The PVM Recovery in A Murine Strain-Dependent Manner and
Reduce PVM-Induced Lung Pro-Inflammatory Cyto/Chemokine Contents

To determine the effect of the MuHV-4 priming on the PVM recovery, the virus titer
was determined on mock and MuHV-4-primed mice 6 days post PVM inoculation in
each mice strain. As the virus recovery alone cannot predict disease outcome or long-term
survival and as the morbidity and mortality in response to severe respiratory virus infection
can result in large part from uncontrolled amplification of pro-inflammatory signaling
networks, the cytokine and chemokine production was also determined on the same day
(Figure 4A).

In lung extracts from mock-primed mice, viral RNA copy numbers reached high
levels, with slightly, albeit significantly lower counts in CD1 mice (p < 0,05). On the
other hand, PVM titers obtained from MuHV-4-primed lung extracts were not modified
in CD1 and BALB/c mice. Conversely, they were significantly decreased in C57BL/6
(~3-fold) (Figure 4B). Importantly, no sign of MuHV-4 reactivation was noted in primed
lungs following infection with PVM. Indeed, qPCR titrations applied, 6 days post PVM
infection, on MuHV-4 gene DNA polymerase showed no results (Material not intended for
publication: G. Gilliaux, D. Desmecht, University of Liège, Liège, Belgium, 2020). On the
other hand, chemokine/cytokine assay applied of MuHV-4-primed mice demonstrated a
systematic suppression of several cytokines and chemokines associated with the PVM in-
flammatory pathology independently of the genetic background: TNF-α, IL-6, chemokines
neutrophil-activating protein-3 (CXCL1), macrophage inflammatory protein 2 (CXCL2),
IFN-inducible protein-10 (CXCL10) and the granulocyte colony-stimulating factor (G-CSF)
were decreased significantly (Figure 4C). Conversely, the concentrations of the chemokine
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CCL5, the vascular endothelial growth factor (VEGF), and granzyme B were increased in
each mice strain. Finally, concentrations of IL-1β, IL-5, IL-12p70, IL-13, and CCL11 pre-
sented no significant differences (Figure S11). In a second time, strain-specific effects were
also highlighted: lung IFNγ content was unchanged in CD-1, increased in BALB/c, and
decreased in C57BL/6. IL-10 content was similar in CD-1, while it was increased in both
inbred strains (Figure 4C). Finally, a pattern specific to BALB/c was detected: PVM-induced
secretion of CCL3, CCL4, and IL-4 was enhanced while it remained similar in CD-1 and
C57BL/6. For CCL2, it was the opposite: decrease in BALB/c and stability in the other two
strains. Granulocyte-macrophage colony-stimulating factor (GM-CSF) did not vary while
its concentration was decreased in CD-1 and C57BL/6 (Figure S11).

Figure 4. MuHV-4 priming results in strain-dependent virus recovery modification and reduced
lung pro-inflammatory cyto- and chemokine contents during pneumoviral disease. (A) Schematic of
experimental protocol. On day −28, CD-1, BALB/c, and C57BL/6 mice were inoculated intranasally
with MuHV-4, hiMuHV-4, or PBS. On day 6 after PVM inoculation, lungs were prepared for virus
titration and chemokine/cytokine assays. (B) PVM titer determined by quantitative RT-qPCR applied
on whole-lung homogenate. Results are expressed as PVM sh copies per 104 ywhaz copies. (C) Lung
cyto- and chemokine concentrations normalized to sample total protein content. All results are
reported as mean ± SD, with n = 6 mice/mouse strain/priming condition, representative of three
independent experiments. Significantly different means are highlighted, with * p < 0.05, ** p < 0.01, or
*** p < 0.001. n.s., not significant (one-way ANOVA and Bonferroni post-tests).
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3.4. Past Muhv-4 Infection Alters Ams Phenotype Independently of Circulating Monocytes

In previous experiments, we have shown that exacerbation of MHC II expression
on the surface of lung macrophages is one of the key events caused by MuHV-4 prim-
ing (Figure 3C). This phenomenon is described in the literature as bone-marrow-derived
monocytes (Ly6G−, SiglecF−, CD11b+, Ly6Chi, CCR2+) colonizing the empty alveolar niche
formed by the MuHV-4 infection and differentiating into AMs that are almost identical
transcriptionally to lung-resident AMs and express higher levels of MHC II molecules,
and reduced level of SiglecF [15]. However, evidence also suggests AMs to be maintained
independently of monocytes under inflammatory conditions [29–31]. In order to dissect
the ontogeny of this alteration, we examined the AMs phenotype of 28 days naïve or
MuHV-4 primed C57BL/6 wildtype (WT) mice and CCR2-deficient (CCR2−/−) mice lack-
ing classical Ly6Chi monocytes, cells suspected to replenish tissue macrophage niches
(Figure 5A). We first confirmed the absence of Ly6Chi monocyte recruitment to the lung
monocyte population in CCR2−/− mice (Figure S12). Secondly, we showed that the ex-
pression level of MHC II and CD64 in lung macrophages is increased after priming with
MuHV-4 in both WT and CCR2−/− mice (Figure 5B), although significantly higher in WT
mice (Figure 5C). CCR2-specific CD192 antibody levels remained, however, unchanged in
AMs both in naïve or MuHV-4 primed mice (Figure 5B,C). Other AMs’ surface markers
(CD11b, CD11c, and Ly6C) remained unchanged. As the AMs phenotype modification
emerges in both WT and CCR2−/− mice, these data disprove the hypothesis of a monocytic
origin in the modification of the phenotype of AMs after MuHV-4 priming in C57BL/6 mice.

3.5. MuHV-4 Primed AMs Require Recruited Monocytes to Exert Antibacterial and Reduced
Inflammatory Phenotypes

One hallmark of innate immune memory is its ability, via innate immune cells stim-
ulation, to enhance non-specific innate protection against heterologous microbial infec-
tion [18,32]. Therefore, To address the relationship between primed MHC IIhi AMs, mono-
cyte recruitment, and protective innate immunity in front of viral or bacterial pathogens,
we purified CD11c+ cells from bronchoalveolar lavage fluids (BALF) of mock or MuHV-
4-primed WT or CCR2−/− C57BL/6 mice, and we examined whether the lung primed
AMs had similar cyto-/chemokines production in response to a viral (PVM) or bacterial
challenge by Streptococcus pneumoniae, a common respiratory bacterial pathogen [33]
(Figure 6A). Simultaneously, AMs activated by prior adenoviral infection in vivo were
shown to produce significantly more CXCL1 and CXCL2 when exposed to S. pneumo-
niae [29]. These observations prompted us to examine whether priming by MuHV-4 would
also reset the response pattern of AMs upon exposure to pathogens. As the regula-
tory monocytes in BALF responsible for the AMs replacement are defined as CD11c−,
CD19−Ly6G−SiglecF−CD11b+CCR2+Ly6Chi cells [15], our CD11c+ isolation ensured that
only resident AMs were considered in this study. Upon PVM inoculation, a significant
increase in IL-6 production was detected in mock-primed WT and CCR2−/− mice, start-
ing at 12 h post infection and continuously increasing to the last measure applied 72 h
post inoculation (Figure 6B). Conversely, MuHV-4 primed CD11c+ cells from WT mice
developed a stronger but much shorter increase in IL-6 secretion (Figure 6B), exacerbation
of CCL3 secretion, and the elicitation of new responses (CXCL2 and TNF-α) upon expo-
sure to PVM (Figure 6C). In all cases, this specific response of the MuHV-4 primed cells
was weakened or abrogated if the cells were derived from CCR2−/− mice. On the other
hand, MuHV-4-primed cells exposed to Streptococcus pneumoniae did not induce any
IL-6 production but triggered an exacerbation of CXCL1, CXCL2, and TNF-α secretion and
attenuation of CCL3 secretion. Again, these effects of MuHV-4 priming were absent in
CCR2−/− mice. Taken together, these results suggest that priming with MuHV-4 alters the
response of resident AMs to PVM and Streptococcus pneumoniae via an enhanced inflam-
matory response limited in time and via accelerated chemokine and cytokine responses.
Moreover, even if the AMs phenotype modification following MuHV-4 priming does not
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seem to come from monocytes origin (Figure 5), these latter seem necessary for the AMs
alteration of their cyto/chemokine response.

Figure 5. MuHV-4 priming educates AMs without help from monocyte-derived macrophages.
(A) Schematic of experimental protocol. Wildtype (WT) and CCR2−/− C57BL/6 mice were inocu-
lated intranasally (i.n.) with either MuHV-4 or PBS, and their lungs were analyzed 28 days later. (B) Flow
cytometry plot showing expression of AMs’ surface markers 28 days post priming. (C) Magnitude of
several markers expression at the AM’s surface, as determined by mean fluorescence intensity (MFI)
28 days post priming. All results are reported as mean± SD, with n = 6 mice/mouse strain/priming con-
dition, representative of three independent experiments. Significantly different means are highlighted,
with *** p < 0.001. n.s., not significant (one-way ANOVA and Bonferroni post-tests).

Figure 6. MuHV-4 priming resets AMs’ immediate response to PVM and Streptococcus pneumoniae.
(A) Schematic of experimental protocol. WT and CCR2−/− C57BL/6 mice were inoculated intranasally
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(i.n.) with either MuHV-4 or PBS; lung CD11c+ AMs were then isolated 28 days after and ex vivo
stimulated by PVM or S. pneumoniae inoculation before cyto- and chemokines measurement over 72 h.
(B) Heatmap of IL-6 production in CD11c+ AMs harvested from 28 days PBS or MuHV-4 primed
mice, at 0, 2, 12, 24, 48, and 72 h post PVM inoculation. (C) Supernatant cyto- and chemokine
concentrations normalized to sample total protein content. All results are reported as mean ± SD,
with n = 6 mice/mouse strain/priming condition, representative of three independent experiments.
Significantly different means are highlighted, with * p < 0.05, ** p < 0.01, or *** p < 0.001. n.s., not
significant (one-way ANOVA and Bonferroni post-tests).

4. Discussion

In this study, we demonstrated that prior MuHV-4 infection attenuates host response
to subsequent pneumoviral disease. Indeed, the disease characteristics associated with
PVM infection without priming confirmed the clinical findings, nature of macro- and
microscopic lesions, and viral loads previously reported [20,26,34]. However, in the MuHV-
4-primed group, PVM-infected mice survival rate or resistance was significantly increased.
Further, macroscopic lesions observed six days after PVM infection were drastically re-
duced, and the inflammation-dependent weight gain of the lungs was highly attenuated.
Histologically, the most remarkable difference between mock- and MuHV-4-primed mice
was the significant decrease in the recruitment of eosinophilic and neutrophilic granu-
locytes. Environmental effects are unlikely to account for the differences detected since
specific pathogen-free, age-matched animals were received from the same provider and
housed under specific pathogen-free conditions. Since MuHV-4-priming did not cause a
biologically relevant reduction in lung viral loads (with the exception of C57BL/6 mice)
but increased resistance/survivability of the mice, it is inferred that imprinting primarily
affects the host response to subsequent exposure to pneumovirus. To isolate the MuHV-
4 effect independently of the genetic background effect, we focused on the responses to
MuHV-4 infection that are shared by the three strains, among which lymphoid/myeloid
improvement taking place before and cytokine/chemokine repositioning occurring during
PVM infection. The general rule, valid for all three mouse strains, was that past infection
with MuHV-4 virus increased significantly the absolute number of activated lungs CD8+

cells on day 28 p.i. (Figure 2C), thus before PVM infection. Activation and proliferation
of antigen-independent bystander CD8+ T cells and their function during subsequent
infections have remained controversial. Though some studies have assigned them a role
during viral infections [35,36], other studies suggested that bystander activation of CD8+ T
cells is insignificant in terms of functional roles [37–40]. Recently, however, studies have
demonstrated that the host priming by a pathogen induced a long-term infiltration of CD8+

T cells in the lungs. These latter are capable of expressing protective effector functions in re-
sponse to heterologous challenge, and that could act as “helper” cells, via IFNγ production,
to support dendritic cells production of cytokines such as IL-12p70 [41,42]. Similarly, it has
been shown that CD8+ lymphocytes infiltrated into the lungs following adenoviral infection
were important to, through the release of IFNγ, confer a primed immunity phenotype to
AMs, resulting in robust host resistance against heterologous bacterial infection [29]. Here,
MuHV-4 priming of the three mouse strains results in both an expansion of the activated
CD8+ pool and a PVM resistance phenotype, which suggests a similar dialogue between
bystander CD8+ T cells and AMs.

Additionally, four weeks after MuHV-4 infection and in the three mouse strains,
AMs displayed a new membrane phenotype characterized by overexpression of MHC II
(Figures 3C and 5C). BALB/c mice AMs examination suggested a monocytic (SiglecFlo)
origin in which AMs are of embryonic origin and self-sustained in steady state but are
maintained with the contribution from blood monocytes during inflammation [15,43–45].
On the other hand, CD-1 and C57BL/6 mice AMs examination suggested a lung residential
(embryonic, SiglecFhi) origin in which AMs are maintained independently of monocytes
under inflammatory conditions [29,30]. In CD-1 and C57BL/6 mice, MuHV-4-priming
did not alter the size of the lung AM population. SiglecF expression on MuHV-4-primed
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MHC IIhi AMs was unimodally distributed and was as comparatively high as on PBS and
hiMuHV-4-primed MHC IIlo AMs (Figure 3C). To question the possible independence of
MHC IIhi AMs on circulating monocytes, we used CCR2−/− C57BL/6 mice lacking classical
Ly6Chi monocytes, a major contributor to tissue monocyte-derived macrophages [46]. In the
absence of such monocytes, compared to MuHV-4 primed wildtype C57BL/6 mice, primed
CCR2−/− mice displayed unimpaired ability to upregulate MHC II expression. Altogether,
the data thus suggest a lung residential, as opposed to monocytic, origin of MHC IIhi AMs
after MuHV-4 priming in C57BL/6 mice. In BALB/c mice, on the contrary, MuHV-4 priming
resulted in an expansion of the AM population, and the distribution of SiglecF fluorescences
among MHC IIhi AMs was bimodal (Figure S13), suggesting a dual origin of MHC IIhi AMs,
both residential and monocytic. To explain these diverging results depending on the mouse
strain studied, it was previously demonstrated that the AMs cells depletion/persistence
hypotheses also depended on the genetic background of the mouse and the conditions of
infection. Indeed, influenza infection in BALB/c mice leads to a significant deterioration
in the AMs number in an IFNγ-dependent manner, while the number of the infected
C57BL/6 counterparts is not altered, but their phenotype is amended [47]. These results are
themselves corroborated by several reports demonstrating depletion of AMs in BALB/c
mice [48] and a sustained presence of AMs in C57BL/6 mice [49–52]. Therefore, future
analyses of CCR2-depleted BALB/c mice might interrogate distinct mechanisms of MuHV-
4-induced suppression of AMs, which could also highlight beneficial or detrimental effects
in front of viral heterologous infections. This novel information will be of crucial importance
for choosing appropriate mouse models for future experiments.

Modification of the AMs’ IL-6 response by prior exposure to MuHV-4 could also
be a key event. Indeed, IL-6 has been associated with severe clinical forms of human
pneumovirus (hRSV) [53,54], pandemic H1N1 influenza virus [55], or H5N1 influenza A
virus [56] infections. Similarly, in mice, lung IL-6 concentrations were correlated with the
severity of symptoms and lesions [57]. Here, we have shown that the most severely affected
mice (BALB/c) also produce by far the most pulmonary IL-6 (Figure 4C). This result is of
crucial importance considering that, and in contrast to influenza A viruses [58,59], PVM has
been significantly less lethal in IL-6−/− mice than in WT mice, an observation corroborated
by less neutrophil recruitment and less fluid infiltration in the lungs [60]. Taken together,
these results suggest that the magnitude of the IL-6 response controls the severity of
pneumoviral disease. Here, the combination of the initial kinetics measured ex vivo and
the snapshot measured at day 6 post infection reveals an aspect not previously detected. It
is not the amount of pulmonary IL-6 during disease that correlates with severity, but most
likely the timing of its secretion by AMs. Similarly, it was demonstrated that AMs depletion
prior to PVM infection results in prolonged survival with small but statistically significant
increases in virus recovery [61]. Additionally, because neither patrolling monocytes (Ly6Clo)
nor inflammatory monocytes (Ly6Chi) but AMs are the primary source of IL-6 in the
experimental disease induced by PVM inoculation to mice [60,61], the ex vivo comparison
of the AMs response in a longitudinal design is representative of the IL-6 response in vivo.
Thus, an AM-subordinated, potent, immediate, and rapidly suppressed IL-6 outburst is
associated with mild disease and, conversely, a moderate, delayed, and prolonged response
is associated with severe disease.

Additionally, excessive TNF-α production during some respiratory viral infections
has also been associated with excessive production of cytokines, lung destruction, im-
munopathology, and premature death [62–64]. Further, TNF-α deficiency or immunoneu-
tralization improved survival and lung pathology without affecting viral loads [62], which
is reminiscent of our results. As with IL-6, the kinetics of TNF-α production was different in
MuHV-4 primed mice, with the generation of an immediate, high-magnitude outburst that
is absent in mock-primed mice upon exposure to PVM, followed by a delayed attenuation.
While there is little doubt that TNF-α participates in the PVM disease severity as in other
viral infections, the beneficial effect of priming with MuHV-4 reveals that kinetics plays
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a much more important role than anticipated, which may explain why constitutive TNF
deficiency is just as deleterious as excess production in respiratory viral diseases [64].

On the other hand, we demonstrate that activated AMs are poised for robust primed
immunity upon ex vivo bacterial stimulation via rapid induction of neutrophil chemokines
CXCL1 and CXCL2, providing, therefore, enhanced antibacterial protection. Our results
confirm previous publication suggesting that memory AMs, but not other macrophage
subsets, in the lung of viral-exposed animals mediate antibacterial trained immunity via
similar enhanced neutrophil chemokine production [29]. Additionally, in mock-primed
mice, the degree of neutrophilic infiltration and the increased expression of chemokines
and neutrophil activators, especially CXCL1 and CXCL2, into the lungs following PVM
inoculation has been positively correlated with the severity of hRSV-induced bronchioli-
tis [65–69]. As the more rapid attenuation of CXCL1 and CXCL2 cytokine production in
MuHV-4-primed mice likely plays a role in the drastic decrease in neutrophil infiltration
in the lungs measured 6 days p.i. (Figure 3B), it, therefore, participates at least in part
in the anti-pneumoviral protection conferred by prior exposure to MuHV-4. Similar ex-
periments demonstrated that neutralization of CXCR2, the receptor for the chemokines
CXCL1, CXCL2, granulocyte chemoattract protein 2, and LPS-induced CXC chemokine,
prevents RSV-induced airway hyperreactivity but does not alter viral clearance [70]. These
results further support a role for CXCL1 and CXCL2 in the induction of hRSV-associated
immunopathologic mechanisms and suggest that the rapid attenuation of these chemokines
might allow anti-pneumoviral protection by targeting the lethal inflammatory sequelae of
PVM infection.

Finally, we demonstrated that, upon ex vivo bacterial or viral stimulation, MuHV-4-
imprinted AMs from CCR2−/− mice showed a qualitatively similar response to that of
imprinted AMs from wildtype mice. Quantitatively, however, the magnitude of the early
IL-6, CXCL1, CXCL2, TNF-α, and CCL3 responses was much lower (Figure 6C). These
observations suggest that the final maturation of MuHV-4-dependent imprinting, thus the
full deployment of the anti-PVM protection conferred by prior MuHV-4 infection, requires
the infiltration of inflammatory monocytes into the lungs prior to exposure to PVM.

5. Conclusions

Taken together, our results showed that prior respiratory infection of the laboratory
mouse with a gammaherpesvirus prepares resident AMs to respond differently to sub-
sequent exposure to a pneumovirus. This immune priming consists of modifying their
immediate cyto/chemokine responses upon exposure, thereby drastically attenuating the
host inflammatory response without affecting viral replication. Moreover, even if we
have demonstrated that primed AMs do not result from monocytes origin, these latter
remain necessary for the establishment of an improved immune response following MuHV-
4 priming by an important modification of the AMs cyto/chemokine response. The role
of monocytes in this mechanism should therefore be analyzed in the future to determine
which cellular interactions with AMs lead to improved innate immunity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/v14010098/s1, Table S1: Recap table of leukocytes subpopulations modifications compared to
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flow cytometry, Figure S2: Gating strategy developed to discriminate lung lymphoid cell subsets,
Figure S3: Gating strategy developed to discriminate lung basophils, mast cells and plasmacytoid
dendritic cells cell subsets, Figure S4: Fluorescence-minus-one controls vs. full panel fluorescence
for myeloid adequate gating strategy, Figure S5: Fluorescence-minus-one controls vs. full panel
fluorescence for lymphoid adequate gating strategy, Figure S6: Comparison of strain and priming
effects on mouse survival after increasing doses of PVM were inoculated, Figure S7: Past MuHV-
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of Ly6Chigh/CD192high infiltrated monocytes in the lungs of PBS- and MuHV-4-primed wildtype or
CCR2−/− C57BL/6 mice, respectively, Figure S13: Past MuHV-4 infection differently modify AMs
phenotype in BALB/c compared to CD-1 and C57BL/6 mice.
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