DOI: 10.1002/arch.21853

INSECT BIOCHEMISTRY AND PHYSIOLOGY

WILEY

Host plant adaptability and proteomic differences of diverse *Rhopalosiphum maidis* (Fitch) lineages

Jianqing Guo^{1,2,3} I Gang Hao¹ | Séverin Hatt⁴ | Zhenying Wang² | Frédéric Francis³

¹College of Agriculture and Forestry, Hebei North University, Zhangjiakou, Hebei, China

²State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China

³Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium

⁴Agroecology and Organic Farming, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany

Correspondence

Zhenying Wang, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China. Email: zywang@ippcaas.cn

Frédéric Francis, Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium. Email: frederic.francis@ulg.ac.be

Abstract

Corn leaf aphid Rhopalosiphum maidis (Fitch) can feed on various cereal crops and transmit viruses that may cause serious economic losses. To test the impact of both host plant species and age on R. maidis, as well as the proteomic difference of diverse populations, we first investigated the survival and reproduction of six R. maidis populations (i.e., LF, HF, GZ, DY, BJ, and MS) via a direct observation method in the laboratory on 10 and 50 cm high maize seedlings, and 10 cm high barley seedlings. Then a proteomic approach was implemented to identify the differentially expressed proteins from both aphids and endosymbionts of BJ and MS populations. Results indicated that the BJ population performed significantly better than the others on both barley and 50 cm high maize seedlings, while no population could survive on 10 cm high maize seedlings. The proteomic results demonstrated that the expression levels of myosin heavy chain (muscle isoform X12) (spot 781) and peroxidase (spot 1383) were upregulated, while ATP-dependent protease Hsp 100 (spot 2137) from Hamiltonella defensa and protein SYMBAF (spot 2703) from Serratia symbiotica were downregulated in the BJ population when compared to expression levels of the MS population. We hypothesize that the fatalness observed on 10 cm high maize seedlings may be caused by secondary metabolites that are synthesized by the seedlings and the MS population of *R. maidis* should be more stress-resistant than the BJ population. Our results also provide insights for understanding the interaction between host plants and aphids.

KEYWORDS

corn leaf aphid, plant age, plant species, population, proteome

1 | INTRODUCTION

/II FY

Rhopalosiphum maidis (Fitch) (Hemiptera: Aphididae) is a severe sap-sucking pest on maize (Zea mays L.) that occurs globally (Foott & Timmins, 1973; Tzin et al., 2015). This insect also attacks barley (Hordeum vulgare L.) and some other cereal crops such as sorghum (Sorghum bicolor L. Moench), oat (Avena sativa L.), and wheat (Triticum aestivum L.) (Carena & Glogoza, 2004; Tabikha, 2016). In addition to physical damage on the host plant, *R. maidis* can also transmit viruses, including Maize dwarf mosaic virus and Barley yellow dwarf virus (Parry et al., 2012; Saksena et al., 1964; Thongmeearkom et al., 1976), which may lead to serious damages in maize production.

Aphids can survive on different cereal crops although some hosts may exhibit a certain degree of resistance. Previous studies on *R. maidis* showed different survival and reproductive rates on different host plants of barley and wheat (Hirano & Ito, 1964; Singh & Painter, 1964). Research on other aphid species also showed that *Toxoptera citricida* (Kirkaldy), for instance, developed at a slower rate on sour orange, Duncan grapefruit, and Mexican lime than on Carrizo and sweet orange (Tang et al., 1999), whereas *Aphis craccivora* (Koch) showed the best potential population growth on *Vicia faba* at 25°C compared to *Trifolium subterraneum* cultivars and *Medicago minima* (Berg, 1984). In this way, resistant host plants or genotypes can be determined to improve biological control efficacy (Narang & Rana, 1999).

Different aphid populations can furthermore have various levels of success on the same host plant (Broeke et al., 2013), as previously reported for *Acyrthosiphon pisum* (Sandström & Pettersson, 1994), *Myzus persicae* and *A. craccivora* (Edwards, 2001) and *Sitobion avenae* (Barrios-SanMartín et al., 2016), demonstrating that long-term population differentiation may endow different populations living in various environments with diverse biological characteristics.

Many aphids harbor secondary symbionts (i.e., facultative symbionts) in nature. Some aphids are single-infected while others are double- or multi-infected with different secondary symbionts (Guo et al., 2019; Weldon et al., 2019). These symbionts are primarily transmitted maternally (i.e., vertically transferred) within populations, or can exhibit horizontal transmission among species (Oliver et al., 2010). According to previous studies, secondary symbionts offer their host aphids benefits such as resistance to natural enemies and increasing the fitness of their host plants to persist and spread (Guo et al., 2017).

With this context in mind, the present study aimed at assessing the performance (i.e., longevity and reproduction) of different populations of an aphid species (*R. maidis*) on host plants that differed in age and species. Six *R. maidis* populations were monitored on barley (10 cm high), small maize seedlings (10 cm high) and high maize seedlings (50 cm high) under laboratory conditions. A proteomic approach, using two-dimensional difference gel electrophoresis (2D-DIGE) analysis and mass spectrometry, was applied to provide insight into the putative molecular mechanisms (including symbiont infestation) underlying the potential variation of aphid performances.

WILEY

2 | MATERIALS AND METHODS

2.1 | Aphid lineages

Six lineages of *R. maidis*, namely BJ, DY, GZ, HF, LF, and MS populations, were collected from maize field in Beijing, Dongyang, Guangzhou, Hefei, Langfang and Mangshi cities of China respectively in 2014 (Figure 1). All clones were reproduced initially from one female and then reared separately at $23 \pm 1^{\circ}$ C, L16: D8 photoperiod and 60%–80% relative humidity (RH) in laboratory on barley seedlings for more than ten generations before test.

2.2 | Host plants

Three treatments of host plants, barley seedlings (10 cm high), small maize seedlings (10 cm high) and high maize seedlings (50 cm high), were used for this study. The height of the host plants was measured with a ruler. To ensure germination rate and uniformity, the maize seeds were treated with accelerating germination before sowing into the soil. Rearing conditions for plants were $20 \pm 1^{\circ}$ C, 60%–80% RH and a photoperiod of L16: D8 before inoculation of aphid. All plants were moved to aphid rearing conditions as described above after inoculation.

2.3 | Treatment settings

Both barley seeds and germinated maize seeds were sown in 10×10 cm square plastic pots. We kept 12 ± 1 barley seedlings and one maize seedling in each pot. Five adult apterous aphids were inoculated to the seedlings of required height in each pot, then the pots were separated by a plastic tube (10 cm in diameter) covered by gauze element. Each treatment was replicated 10 times and the total survival number of aphids was observed at the same time every day for 1 week. We recorded the survival number of inoculated adults and number of nymphs for 4 days since it was difficult to distinguish the inoculated adults from the fifth day.

FIGURE 1 Collecting locations of six *Rhopalosiphum maidis* populations in China. 1, MS; 2, LF; 3, BJ; 4, HF; 5, DY; 6, GZ

2.4 | 2D-DIGE and protein identifications

BJ and MS populations were selected to do proteomic analysis since BJ population performed the best while MS population was more abundant in endosymbionts according to our previous study (Guo et al., 2019). Total protein from around 50 mg fresh *R. maidis* of BJ and MS populations were extracted, purified and quantified as described by Francis et al. (2010). Three Cy dyes (GE Healthcare) were used for labelling and protein samples of BJ and MS aphid clones were labelled either with Cy3 or Cy5 and mixed with an internal reference standard protein mixture (pooled from equal aliquots from all experimental samples) labelled with Cy2. Two replicates from each treatment with one dye (Cy3 or Cy5) and a third replicate with the other of the two Cy dyes were established for a conventional dye swap of DIGE. The first and second-dimensional electrophoresis, the excision of protein spots and the process of protein identification were performed following the description in Francis et al. (2010).

2.5 Statistical analysis

Generalised linear mixed effect models (package "Ime4," function "glmer"; Bates et al., 2014)) with Poisson error distribution (log-link function) were fitted to test whether the abundance of aphids (i.e., the nymphs, the survived inoculated adults, and the total abundance of aphids) (i) differed between populations on each crop separately (i.e., populations analyzed as fixed factor), (ii) differed between host plants for each population separately (i.e., host plants as fixed factor). The observed plants (i.e., 10 repetitions per crop) were included as random effects as measurements were repeated each time on the same plant. For each model, the effect of the fix factor was tested using a likelihood-ratio test (p < 0.05) and means (i.e., between the different populations or between the different host plants) were compared using a post hoc test of Tukey (p < 0.05, package "multcomp," function "glht," Hothorn et al., 2008). The statistical analyses regarding the survival and reproduction of *R. maidis* were used to compare the expression levels of proteins between two populations. Only fold-change ratios with p < 0.05 were statistically significant.

3 | RESULTS

3.1 | Number of nymphs reproduced per female and survival of inoculated adults on different hosts plants

Host plants had a significant effect on the abundance of aphid nymphs produced for all *R. maidis* populations (BJ: $\chi^2 = 88.6$, df = 2, p < 0.001; DY: $\chi^2 = 38.8$, df = 2, p < 0.001; GZ: $\chi^2 = 40.2$, df = 2, p < 0.001; HF: $\chi^2 = 79.7$, df = 2, p < 0.001; LF: $\chi^2 = 43.1$, df = 2, p < 0.001; MS: $\chi^2 = 58.2$, df = 2, p < 0.001). Aside from the HF population, the number of nymphs for the other five populations was significantly higher on barley than on high maize (p < 0.05), and significantly higher (for all six populations) on high maize than on small maize (p < 0.05) (Figure 2). It was also found that the number of nymphs produced by each female per day on high maize reached maximum on the second or third day (for all populations), while the number was still increasing on the fourth day for five populations (except LF) when tested on barley. On small maize, less than or only one nymph was produced by each female per day for all six populations (Figure 2).

Host plants also had a significant effect on the survival of inoculated adults for BJ ($\chi^2 = 18.2$, df = 2, p < 0.001), GZ ($\chi^2 = 18.0$, df = 2, p < 0.001), HF ($\chi^2 = 33.1$, df = 2, p < 0.001), and MS ($\chi^2 = 31.1$, df = 2, p < 0.001) populations but not for DY ($\chi^2 = 1.9$, df = 2, p = 0.395) or LF ($\chi^2 = 3.2$, df = 2, p = 0.201) populations. The survival number of adults was significantly higher on barley than on high maize and small maize (p < 0.05) with the exception of LF and DY

FIGURE 2 Number of nymphs produced by each female per day on different host plants of six R. maidis populations. (a), MS; (b), LF; (c), BJ; (d), HF; (e), DY; (f), GZ

populations. Aside from the MS population, for which the survival number of adults was significantly higher on small maize than on high maize (p < 0.05), there were no significant differences with regards to the adult survival for the other five populations (Figure S1).

3.2 Total aphid survival and reproduction on different plant hosts

Host plants had a significant effect on the survival and reproduction of aphids for all populations (BJ: χ^2 = 3575.2, df = 2, p < 0.001; DY: $\chi^2 = 1005.1, df = 2, p < 0.001;$ GZ: $\chi^2 = 1907.4, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ HF: $\chi^2 = 1922.5, df = 2, p < 0.001;$ p < 0.001; LF: $\chi^2 = 1439.5$, df = 2, p < 0.001; MS: $\chi^2 = 2288.7$, df = 2, p < 0.001). The survival and reproduction of *R. maidis* populations on barley were significantly higher than on high maize (p < 0.001) (Figure S2) and the total survival numbers on high maize were significantly higher than that of small maize (p < 0.001) for all six lineages (Figure S3). Figure 3a shows that no clones were able to survive on small maize. Although several progeny nymphs were deposited in the first and second day, the total number of aphids decreased rapidly from the third to the seventh day. We observed that the nymphs were unable to grow and most of them died at the first or second instar.

Contrastingly, *R. maidis* populations could survive on high maize seedlings, although the aphid numbers increased significantly slower than on barley (especially from the fourth day onward) (Figure S2). By the seventh day

FIGURE 3 Survival number of six *R. maidis* populations on different host plants. (a), small maize; (b), high maize; (c), barley

WILE

on high maize, the highest aphid number (n = 57) of the BJ population was about three times that of the lowest number (n = 18) of the MS population (Figure 3b).

All *R. maidis* populations performed best on the barley seedlings (Figure 3c). Notably, the BJ population showed the fastest reproduction cycle with the number of aphids reaching 134 on the seventh day—nearly two times that of the number of MS and DY populations (n = 78). The HF population produced the lowest number of surviving aphids (n = 67) on barley by the seventh day.

The mean survival numbers per day were significantly different among populations for small maize ($\chi^2 = 43.48$, df = 5, p < 0.001), high maize ($\chi^2 = 860.53$, df = 5, p < 0.001) as well as barley ($\chi^2 = 439.73$, df = 5, p < 0.001) (Figure S4). The mean numbers per day on small maize were no more than five (Figure S4a), while the mean number of the BJ population on high maize was significantly higher (p < 0.001) than that of the other five populations (Figure S4b). No difference was found (p > 0.1) between LF and GZ populations (exhibiting the lowest mean survival numbers on high maize). With barley as the host plant, a significantly higher mean survival number of the BJ population was observed in comparison to the other five lineages (p < 0.001) (Figure S4c). There was no difference between the GZ and MS populations (p > 0.1), nor was there a significant difference between the HF and DY populations (p > 0.1) which were significantly lower in survival number than the other four populations (p < 0.05).

3.3 | Identification of differentially expressed proteins

In total, 466 proteins were identified from the 2D gel among which 77 protein spots varied significantly (p < 0.05) (Figure S5). The complete properties of over- and under-expressed proteins in the BJ population on MS population of *R. maidis* were listed in Tables 1 and 2 according to their relations to metabolic pathways in aphids and bacterial endosymbionts. We found that 57 proteins were related to aphids (Table 1) and 20 proteins were related to endosymbionts (Table 2). The fold change ratios of these proteins between the two *R. maidis* populations ranged from -1.9 to 1.8 (Tables 1 and 2). These differentially expressed proteins showed that 16/57 (Table 1) in the aphid group and 11/20 (Table 2) in the endosymbiont group were overexpressed in the BJ population versus the MS population. In particular, the amount of myosin heavy chain (muscle isoform X12) (spot number: 781) and peroxidase (spot number: 1383) from the aphid group in the BJ population was 1.7 and 1.6 times of that in the MS population respectively. However, the amount of bifunctional glutamate synthase subunit beta (spot number: 1664) in *Rickettsia rickettsii* from the endosymbiont group in the BJ population was -1.9 times that of the MS population. Also, the expression levels of ATP-dependent protease, Hsp 100 (spot number: 2137) from *Hamiltonella defensa*, and protein SYMBAF (spot number: 2703) from *Serratia symbiotica* were -1.4 and -1.5 times in the BJ versus MS population.

With regards to proteins in the aphid group, 86% were detected in A. *pisum* while fewer were detected in Aphis citricidus (5%), Aphis glycines (2%), Aphis laciniariae (2%), Rhopalosiphum padi (3%) and Schizaphis graminum (2%), respectively (Figure 4a). With regards to the endosymbiont group, various proteins were detected in Buchnera aphidicola (10%), H. defensa (5%), Regiella insecticola (10%), Rickettsia (40%), S. symbiotica (5%) and Spiroplasma (30%) (Figure 4b).

The distribution of proteins with different expression levels in BJ and MS populations, as they relate to metabolic pathways, is shown in Figure 5. We found that proteins in the aphid group accounted for various roles in metabolic pathways such as cell function and structure (18%), energy metabolism (12%), folding, sorting and degradation (11%), protein-protein interactions (11%), and stress tolerance (11%). On the other hand, proteins involved in metabolic pathways of carbohydrate metabolism (15%), energy metabolism (10%), signaling molecules (10%), and interaction, replication and repair (35%) were prominent in the endosymbiont group.

In the aphid group, 7/10 proteins that take part in metabolic pathways of cell function and structure were upregulated, while 6/7 proteins that participate in energy metabolism, 5/6 proteins that participate in folding, sorting and degradation, 5/6 proteins that participate in stress tolerance and all six proteins that participate in

atio
pul
o pc
ţ
/een
betw
ice b
ndar
abuı
.⊑
liffe
nat c
ls th
phic
in a
/ays
pathw
olic
etab
Ŭ O
ŝdt
relate
ins
rote
ed p
ntifi
ide
t of
∆ lis
Ì
E T

TABLE	1 A list of	f identified proteins related to metabolic pa	athways in aphids that	differ in abu	undance betv	veen two pop	oulations ^a		
Spot number	Fold change	Protein identification	Organism	Mascot score	MS coverage	Peptide number	Protein MW p	2 1d	letabolic pathways
1784	-1.20	Glutamate dehydrogenase	Acyrthosiphon pisum	92	44	27	59,929 8	8,6 A	mino acid metabolism
1878	-1.30	Serine hydroxymethyltransferase 1	Acyrthosiphon pisum	45	17	11	52,156	6,9 A	mino acid metabolism
1648	-1.40	Transketolase-like protein 2	Acyrthosiphon pisum	60	17	13	67,859 7	7,1 C	arbohydrate metabolism
1406	1.20	NADH-ubiquinone oxidoreductase	Acyrthosiphon pisum	79	14	6	80,850	6.0 C	arbohydrate metabolism
1780	-1.40	Glucose-6-phosphate 1-dehydrogenase	Acyrthosiphon pisum	137	38	24	61,370 7	7,2 C	arbohydrate metabolism
2792	1.40	Diacetyl/L-xylulose reductase	Acyrthosiphon pisum	69	47	14	26,317 7	7,7 C	arbohydrate metabolism
523	-1.20	Laminin subunit gamma-1 isoform X1	Acyrthosiphon pisum	71	16	23	184,715 4	4,8 C	ell function and structure
789	1.30	Myosin heavy chain	Acyrthosiphon pisum	106	15	29	223,739	5,7 C	ell function and structure
781	1.70	Myosin heavy chain, muscle isoform X12	Acyrthosiphon pisum	207	26	57	225,732	5,7 C	ell function and structure
825	1.30	Myosin heavy chain	Acyrthosiphon pisum	189	25	51	223,739	5,7 C	ell function and structure
818	1.20	Myosin heavy chain, muscle isoform X7	Acyrthosiphon pisum	225	24	55	225,440	5,7 C	ell function and structure
1239	-1.50	Filamin-A isoform X4	Acyrthosiphon pisum	230	43	33	91,385	6,3 C	ell function and structure
2051	-1.20	LIM domains protein 2 isoform X3	Acyrthosiphon pisum	80	40	12	41,861 8	8,9 C	ell function and structure
2188	1.30	Muscle actin	Acyrthosiphon pisum	168	50	18	42,158 5	5,2 C	ell function and structure
3114	1.40	Actin-1	Acyrthosiphon pisum	111	68	8	12,794	5,3 C	ell function and structure
1786	-1.30	G2/mitotic-specific cyclin-B3	Acyrthosiphon pisum	74	32	16	50,521 9	9,1 C	ell growth and death
1394	-1.20	2-Oxoglutarate dehydrogenase	Acyrthosiphon pisum	143	26	30	117,106 6	6,9 EI	nergy metabolism
2058	1.30	Isocitrate dehydrogenase [NADP]	Acyrthosiphon pisum	73	37	17	46,850	6,2 EI	nergy metabolism
1982	-1.30	Hydroxyacid-oxoacid transhydrogenase	Acyrthosiphon pisum	69	34	17	50,998	6,4 E	nergy metabolism
1905	-1.30	Aldehyde dehydrogenase	Acyrthosiphon pisum	75	27	15	48,197	6,5 EI	nergy metabolism
1622	-1.30	ATP synthase alpha	Acyrthosiphon pisum	52	21	20	59,987 9	9,6 E	nergy metabolism

	pathways	etabolism	etabolism	orting and ation	orting and ation	orting and ation	orting and ation	orting and ation	orting and ation	ort	ocessing	ocessing	rotein tions	otein
	Metabolic	Energy me	Energy me	Folding, sc degrad	Folding, sc degrad	Folding, sc degrad	Folding, sc degrad	Folding, sc degrad	Folding, sc degrad	lon transp	Protein pr	Protein pr	Protein-pr interac	Protein-pi
	Įd	8,7	8,7	4,8	5.0	5.0	6,8	7,6	7,6	6,1	6.0	6,7	5,2	5,3
	Protein MW	35,579	35,579	130,929	89,914	89,914	30,934	28,366	8552	110,012	95,558	30,157	71,626	89,426
	Peptide number	13	13	32	64	33	18	16	ω	18	49	16	24	18
	MS coverage	49	50	22	67	37	52	50	69	63	46	46	36	22
	Mascot score	06	111	73	376	210	115	82	89	86	176	103	140	102
	Organism	Rhopalosiphum padi	Rhopalosiphum padi	Acyrthosiphon pisum	Acyrthosiphon pisum	Acyrthosiphon pisum	Acyrthosiphon pisum	Acyrthosiphon pisum	Schizaphis graminum	Acyrthosiphon pisum	Acyrthosiphon pisum	Aphis laciniariae	Acyrthosiphon pisum	Acvrthosiphon pisum
inued)	Protein identification	Glyceraldehyde-3-phosphate dehydrogenase	Glyceraldehyde-3-phosphate dehydrogenase	Nucleoprotein TPR isoform X2	Transitional endoplasmic reticulum ATPase	Transitional endoplasmic reticulum ATPase	Proteasome subunit alpha type-1	Proteasome subunit alpha	Ubiquitin, partial	ATP synthase oligomycin sensitivity conferral protein	Translation elongation factor 2	Elongation factor 1-alpha, partial	Heat shock 70 kDa protein cognate 4	Heat shock 70 kDa protein 4
1 (Conti	Fold change	-1.40	-1.60	1.40	-1.30	-1.20	-1.20	-1.20	-1.30	1.20	-1.50	-1.20	-1.20	-1.30
TABLE	Spot number	2321	2330	1367	1182	1178	2385	2623	3554	2795	1173	2454	1584	1203

(Continues)

WILEY

(Continued)	
-	
щ	
B	
Z	

pot umber 295 532	Fold change -1.30	Protein identification Heat shock protein 83 Heat shock protein cognate 3 precursor	Organism Acyrthosiphon pisum Acyrthosiphon pisum	Mascot score 147 116	MS coverage 35 AB	Peptide number 30 26	Protein MW 83,707 72,993	pl Metabolic pathways 4,8 Protein-protein 5,1 Protein-protein interactions interactions	
36 28 26	-1.20 -1.20 -1.30	Chaperonin containing TCP1, subunit 5 RAB GDP dissociation inhibitor alpha Protein kinase C receptor	Acyrthosiphon pisum Acyrthosiphon pisum Aphis citricidus	160 201 135	48 57 62	28 28 21	59,844 50,201 36,522	 5.5 Protein-protein 6,2 Signal transduction 6,7 Signal transduction 	
841 812	-1.30 -1.20	GTP-binding nuclear protein Ran Leucine-rich repeat protein	Acyrthosiphon pisum Acyrthosiphon pisum	139 80	69 14	8 20	24,861 62,913	6,6 Signaling molecules and interaction6,7 Signaling molecules and interaction	
98	-1.40 -1.20	Stress-induced-phosphoprotein 1 Hypoxia upregulated protein 1	Acyrthosiphon pisum Acyrthosiphon pisum	70 108	25 22	21 21	61,879 100,244	6,4 Stress tolerance 5,2 Stress tolerance	
55	-1.40 1.30	T-complex protein 1 subunit alpha Peroxiredoxin 1	Acyrthosiphon pisum Acyrthosiphon pisum	188 38	54 22	33 3	60,431 21,781	5,2 Stress tolerance5,3 Stress tolerance	
'09 '18	-1.20 -1.50	T-complex protein 1 subunit zeta Peroxiredoxin-6	Acyrthosiphon pisum Acyrthosiphon pisum	125 184	48 77	31 25	58,617 25,245	6,2 Stress tolerance4,6 Stress tolerance	
80 03	-1.20 -1.20	TAR DNA-binding protein 43 Eukaryotic initiation factor 4A	Acyrthosiphon pisum Acyrthosiphon pisum	109 167	41 61	21 33	45,677 46,989	6,6 Transcription 5,3 Transcription	
576	-1.20	Zinc finger MYM-type protein 1	Acyrthosiphon pisum	60	19	7	71,306	7,2 Transcription	
042	-1.30	Guanine nucleotide-binding protein subunit beta-like protein	Acyrthosiphon pisum	122	55	19	36,582	6,7 Translation	

CT BIOCHEMISTRY

WILEY

Archives INSE AND

ued)	
ntin	
<u>Co</u>	
-	
ш	
ä	
Ā	
Ē.	

Spot number	Fold change	Protein identification	Organism	Mascot score	MS coverage	Peptide number	Protein MW	ld Id	Aetabolic pathways
2829	-1.30	Aspartyl-tRNA synthetase	Acyrthosiphon pisum	60	48	13	31,884	5,2 J	ranslation
1383	1.60	Peroxidase	Acyrthosiphon pisum	189	43	28	79,341	5,7 >	(enobiotics biodegradation and metabolism
2476	1.20	Fructose 1,6-bisphosphate aldolase	Aphis citricidus	117	53	16	40,275	6,8 (Carbohydrate metabolism
2640	1.30	Muscle actin	Aphis citricidus	79	28	10	42,158	5,2 (Cell function and structure
1569	-1.20	Heat shock protein 70	Aphis glycines	146	45	27	71,399	5,3 F	orotein-protein interactions
3146	1.60	MPA13 allergen-like isoform X1	Acyrthosiphon pisum	89	58	12	15,458	6,2 (Other
Moto: Fold	opando fo	Id change whice of differentially eveneration	toinc of DI non-lotion	or MC no		botolos moior	activitation or contract	icm for	the metain identification:

Mascot score, Mowse score according to Mascot search; MS coverage, percentage of the protein sequence identified; Peptide number, number of peptide hits for each protein; Protein Note: Fold change, fold change ratios of differentially expressed proteins of BJ population versus MS population; Organism, related original organism for the protein identification; MW, molecular weight; pl, isoelectric point.

^aProteins that significantly varied (p < 0.05) between two populations are listed by spot number according to the gel analysis.

WILEY

TABLE 2	A list of	identified proteins related to metabolic	pathways in bacterial end	dosymbionts	s that differe	d in abundar	nce between	two pc	opulations ^b
Spot number	Fold change	Protein identification	Organism	Mascot score	MS coverage	Peptide number	Protein MW	Įd	Metabolic pathways
2137	-1.40	ATP-dependent protease, Hsp 100	Hamiltonella defensa	48	27	21	96,395	5,9	Energy metabolism
2323	-1.20	ATP-dependent DNA helicase	Spiroplasma apis	64	25	20	83,617	9,1	Energy metabolism
2980	1.80	chaperone protein DnaK, partial	Rickettsia bellii	48	10	4	29,247	4,7	Protein-protein interactions
2627	1.30	Glucose-6-phosphate isomerase	Regiella insecticola	60	26	14	63,058	6,4	Carbohydrate metabolism
3150	-1.40	Dihydrolipoamide succinyltransferase	Regiella insecticola	70	19	6	45,076	6,8	Carbohydrate metabolism
2196	1.20	Isocitrate dehydrogenase [NAD]	Spiroplasma chrysopicola	122	47	21	39,697	6,9	Carbohydrate metabolism
2638	1.40	Succinyl-CoA:3-ketoacid-coenzyme A transferase	Rickettsia bellii	60	31	11	23,072	4,8	Lipid metabolism
1656	-1.20	NACHT family NTPase	Rickettsia bellii	69	24	13	56,674	6,1	Transcription
2541	1.50	GTP-binding protein YsxC	Rickettsia prowazeki	42	15	4	24,580	10,3	Signaling molecules and interaction
1914	1.30	GTP-binding protein	Rickettsia rickettsii	50	27	20	40,030	4,7	Signaling molecules and interaction
1994	-1.50	NIFR3-like protein	Rickettsia prowazeki	41	6	4	36,108	9,8	Stress tolerance
1664	-1.90	Bifunctional glutamate synthase subunit beta/2-poly	Rickettsia rickettsii	51	23	19	119,326	6,2	Amino acid metabolism
826	1.40	DNA helicase II	Spiroplasma apis	64	26	18	82,464	6,3	Replication and repair
2702	1.20	Transposase	Rickettsia rickettsii	44	15	e	21,620	5,6	Replication and repair
3036	1.50	Hypoxanthine-guanine phosphoribosyltransferase	Spiroplasma chrysopicola	51	53	10	22,031	4,8	Replication and repair
1932	-1.30	DNA primase	Spiroplasma syrphidicola	47	31	6	39,664	6,3	Replication and repair
1338	1.20	Superfamily I DNA/RNA helicase	Spiroplasma taiwanense	56	18	26	150,160	8,1	Replication and repair

TABLE 2 (Continued)

/ays	epair.	epair		
ic pathw	on and r	on and r		
Metabol	Replicati	Replicati	Other	
β	9,5	10,1	8,8	
Protein MW	42,291	100,640	23,031	
Peptide number	4	22	8	
MS coverage	7	22	31	
Mascot score	43	85	63	
Organism	Buchnera aphidicola	Buchnera aphidicola	Serratia symbiotica	
Protein identification	DNA polymerase III beta subunit	DNA topoisomerase I	Protein SYMBAF	
Fold change	-1.40	1.40	-1.50	
Spot number	1619	1045	2703	

Mascot score, Mowse score according to Mascot search; MS coverage, percentage of the protein sequence identified; Peptide number, number of peptide hits for each protein; Protein Note: Fold change, fold change ratios of differentially expressed proteins of BJ population versus MS population; Organism, related original organism for the protein identification; MW, molecular weight; pl, isoelectric point.

^bProteins that significantly varied (p < 0.05) between two populations are listed by spot number according to the gel analysis.

WILEY

FIGURE 4 Distribution of organisms for proteins with different expression levels in *R. maidis* of BJ and MS populations. (a) proteins related to aphids, (b) proteins related to endosymbionts

protein-protein interactions were downregulated in the BJ population compared to that of the MS population (Table 1). Similarly, all proteins involved in energy metabolism and stress tolerance in the endosymbiont group were downregulated in the BJ population (Table 2), whereas 5/7 proteins that participate in replication and repair were upregulated (Table 2).

4 | DISCUSSION

Rhopalosiphum maidis is known to be one of the major pests of maize in the field. Our laboratory data indicated that although all six aphid populations best performed on barley seedlings, they showed a suboptimal reproductive potential on 50 cm high maize seedlings. As previously reported (Hirano & Ito, 1964), the survival rates of *R. maidis* were different between barley and wheat hosts, and performed differently between different wheat ages.

FIGURE 5 Distribution of related metabolic pathways for proteins with different expression levels in R. maidis of BJ and MS populations. (a) proteins related to metabolic pathways in aphids, (b) proteins related to metabolic pathways in bacterial endosymbionts

In the present study, 10 cm high maize seedlings proved fatal to all R. maidis populations. We hypothesize that it was due to potential detrimental chemicals in young maize seedlings (10 cm high) such as DIMBOA (2.4-dihydroxy-7-methoxy-1.4-benzoxazin-3-one). As a secondary metabolite (and hydroxamic acid) in many cereals, DIMBOA plays an important role in insect resistance (Klun et al., 1967; Pérez & Niemeyer, 1989; Yan et al., 1995). Moreover, the concentration of DIMBOA varies according to plant organ and age (Cambier et al., 2000), research has shown that DIMBOA is synthesized concurrently with germination in maize and that the concentration reaches its highest level 24–36 h after germination (Ebisui et al., 2000). It has furthermore been reported that the concentration of DIMBOA decreases during subsequent plant growth and, in the aerial parts of maize, can drop to almost zero by the 20th day after germination (Cambier et al., 2000). In our study, *R. maidis* populations were introduced 4–5 days after host plant germination for the 10 cm high maize seedling treatment, with the expectation that biosynthesis of DIMBOA should still be ongoing (Cambier et al., 2000). Contrastingly, the inoculation of *R. maidis* populations was performed 19–20 days after germination for maize seedlings that were 50 cm in height (expecting that there would be almost no DIMBOA left in aerial parts at this time; Cambier et al., 2000). In addition, the barley seeds used in this study were from a cultivar that is unable to biosynthesize DIMBOA due to the elimination of the necessary benzoxazinone genes (Nomura et al., 2003). Future research is however required to confirm the resistance effect of DIMBOA in small maize seedlings.

Previous research found that the performance of different populations of A. craccivora was significantly different on faba bean, field pea as well as narrow-leafed lupin (Edwards, 2001). Also, when highly resistant wheat seedlings were used as host plants, the population growth rate of one S. avenae superclone was significantly higher than that of nonsuperclones (Barrios-SanMartín et al., 2016). Moreover, different genotypes of S. avenae identified through microsatellite analysis performed diversely on Poaceae (Figueroa et al., 2004). In this study, the total survival numbers of all R. maidis populations on high maize were significantly higher than on small maize (Figure S3). However, no significant difference in adult survival was detected between high and small maize for five of the populations (Figure S1), demonstrating that the adults were more adaptive to the detrimental chemicals in small maize than the nymphs. There was, however, also a significant decline in adult fecundity (Figure 2). The BJ population showed the best performance on both high maize and barley, and its mean survival number per day was also significantly higher than that of the other populations, suggesting that the BJ population was more adaptable and fertile. The aphid number of other populations slowly increased on 50 cm high maize seedlings (when compared with the BJ population), especially after the fourth day. The total number of the MS population even declined upon comparison of the seventh day to the fourth day. Nikolakakis et al. (2003) found a significant effect of "region/host plant origin" based on the different performances of various M. persicae clones. The six populations of R. maidis in the present study that collected from different regions of the same plant (maize) were tested, however, the effect of "host plant origin" should be tested in future research.

According to protein identification results, both myosin heavy chain, muscle isoform X12 (spot number: 781), and peroxidase (spot number: 1383) were overexpressed in the BJ population. Myosin heavy chain, muscle isoform X12 is involved in cell structure and function (Table 1) and it has been reported that myosin heavy chains could activate ATPase and be responsible for mechanochemical energy transduction (Kiehart et al., 1989). Additionally, peroxidase takes part in the pathway of xenobiotics biodegradation and metabolism (Table 1), and it has previously been shown that suppression of a peroxidase gene could reduce the survival rate in *S. avenae* (Fei et al., 2016). Based on this, these two proteins might thus be beneficial to the BJ population—allowing for stronger vitality and faster reproduction.

Conversely, both ATP-dependent protease, Hsp 100 (spot number: 2137) and protein SYMBAF (spot number: 2703) were overexpressed in the MS population. We infer that these proteins may be involved in heat shock resistance since both *H. defensa* (the organism of ATP-dependent protease, Hsp 100) and *S. symbiotica* (the organism of protein SYMBAF) have been reported to enhance the heat shock resistance for their host aphid (Russell & Moran, 2006). Furthermore, the MS population was collected from Mangshi City (24°26' N, 98°35' E), Yunnan Province where the average temperature is higher than that of Beijing City (40°2' N, 116°16' E) which served as the collection site of the BJ population.

Secondary symbionts have been suggested to enact various effects on their host aphids such as host plant fitness, heat shock resistance, parasitoids resistance, longevity, and fecundity (Oliver et al., 2005; Russell & Moran, 2006; Tsuchida et al., 2011; Vorburger et al., 2013). Both BJ and MS populations were infected with various secondary symbionts while *Rickettsia* and *Spiroplasma* exhibited a relatively high frequency of infection in these two

populations of *R. maidis*, supporting previous findings (Guo et al., 2019). Nevertheless, the fold change ratios of all differentially expressed proteins were no more than twofold since both BJ and MS populations were originally collected from maize and reared under the same conditions.

In conclusion, the BJ population of *R. maidis* performed the best, both on high maize and barley seedlings, while maize seedlings in 10 cm height were fatal to all populations. Secondary metabolites may be responsible for the unfitness of small maize seedlings, but this hypothesis requires further verification. Proteomic analyzes showed that proteins involved in stress tolerance and energy metabolism were mostly downregulated in the BJ population (in both aphid and endosymbiont groups), indicating that the MS population might be more stress-resistant (especially to heat-shock) than the BJ population—even though the BJ population of *R. maidis* showed a faster reproduction rate.

ACKNOWLEDGEMENTS

This research was funded by the Young Talent Program of Hebei Higher Education (BJ2018009). We thank the University of Liège-Gembloux Agro-Bio Tech for supporting the experiment that made this paper possible.

CONFLICT OF INTERESTS

The authors declare that there are no conflict of interests.

AUTHOR CONTRIBUTION

Jianqing Guo: writing-review & editing (equal).

ORCID

Jianqing Guo 🕩 http://orcid.org/0000-0002-2903-6563

REFERENCES

- Barrios-SanMartín, J., Figueroa, C. C., & Ramírez, C. C. (2016). Evidence of plastic probing behavior in a 'superclone' of the grain aphid Sitobion avenae. Bulletin of Entomological Research, 106, 801–808. https://doi.org/10.1017/S0007485 316000754
- Bates, D., Maechler, M., Bolker, B. M., & Walker, S. (2014). Ime4: Linear mixed-effects models using Eigen and S4. R package.
- Berg, G. N. (1984). The effect of temperature and host species on the population growth potential of the cowpea aphid, Aphis craccivora Koch (Homoptera: Aphididae). Australian Journal of Zoology, 32, 345–352. https://doi.org/10.1071/ zo9840345
- Broeke, C. J. M. T., Dicke, M., & Loon, J. J. A. V. (2013). Feeding behaviour and performance of different populations of the black currant-lettuce aphid, Nasonovia ribisnigri, on resistant and susceptible lettuce. Entomologia Experimentalis et Applicata, 148, 130–141. https://doi.org/10.1111/eea.12084
- Cambier, V., Hance, T., & de Hoffmann, E. (2000). Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. *Phytochemistry*, 53, 223–229. https://doi.org/10.1016/S0031-9422(99)00498-7
- Carena, M. J., & Glogoza, P. (2004). Resistance of maize to the corn leaf aphid: A review. Maydica, 49, 241-254.
- Core Team, R. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
- Ebisui, K., Ishihara, A., Hirai, N., & Iwamura, H. (2000). Occurrence of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and a β-glucosidase specific for its glucoside in maize seedlings. *Zeitschrift für Naturforschung C*, 53, 793–798. https://doi.org/10.1515/znc-1998-9-1003
- Edwards, O. R. (2001). Interspecific and intraspecific variation in the performance of three pest aphid species on five grain legume hosts. *Entomologia Experimentalis et Applicata*, 100, 21–30. https://doi.org/10.1046/j.1570-7458.2001. 00844.x
- Fei, D., He, Q., & Zhao, Z. (2016). Suppressing a peroxidase gene reduces survival in the wheat aphid sitobion avenae. Archives of Insect Biochemistry and Physiology, 93, 86–95. https://doi.org/10.1002/arch.21343
- Figueroa, C. C., Simon, J. C., Gallic, J. F. L., Prunier-Leterme, N., Briones, L. M., Dedryver, C. A., & Niemeyer, H. M. (2004). Effect of host defense chemicals on clonal distribution and performance of different genotypes of the cereal aphid Sitobion avenae. Journal of Chemical Ecology, 30, 2515–2525. https://doi.org/10.1007/s10886-004-7947-x

- Francis, F., Guillonneau, F., Leprince, P., Pauw, E. D., Haubruge, E., Jia, L., & Goggin, F. L. (2010). Tritrophic interactions among *Macrosiphum euphorbiae* aphids, their host plants and endosymbionts: Investigation by a proteomic approach. *Journal of Insect Physiology*, 56, 575–585. https://doi.org/10.1016/j.jinsphys.2009.12.001
- Guo, J. Q., Hatt, S., He, K. L., Chen, J. L., Francis, F., & Wang, Z. Y. (2017). Nine facultative endosymbionts in aphids. A review. Journal of Asia-Pacific Entomology, 20, 794–801. https://doi.org/10.1016/j.aspen.2017.03.025
- Guo, J. Q., Liu, X. W., Poncelet, N., He, K. L., Francis, F., & Wang, Z. Y. (2019). Detection and geographic distribution of seven facultative endosymbionts in two *Rhopalosiphum* aphid species. *MicrobiologyOpen*, 8(8):e817. https://doi.org/ 10.1002/mbo3.817
- Hirano, C., Ito Y. (1964). Effect of plant age on survival and reproduction of *Rhopalosiphum maidis* Fitch (Homoptera: Aphididae). Japanese Journal of Applied Entomology & Zoology, 8, 317–323. https://doi.org/10.1303/jjaez.8.317
- Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. *Biometrical Journal:* Journal of Mathematical Methods in Biosciences, 50, 346–363. https://doi.org/10.1002/bimj.200810425
- Kiehart, D. P., Lutz, M. S., Chan, D., Ketchum, A. S., Laymon, R. A., Nguyen, B., & Goldstein, L. S. B. (1989). Identification of the gene for fly non-muscle myosin heavy chain: *Drosophila* myosin heavy chains are encoded by a gene family. *The EMBO Journal*, 8(3), 913–922. https://doi.org/10.1002/j.1460-2075.1989.tb03452.x
- Klun, J. A., Tipton, C. L., & Brindley, T. A. (1967). 2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), an active agent in the resistance of maize to the European Corn Borer. *Journal of Economic Entomology*, 60, 1529–1533. https:// doi.org/10.1093/jee/60.6.1529
- Narang, S., Rana, J. S. (1999). Screening of barley genotypes against corn leaf aphid, Rhopalosiphum maidis (Fitch.). Cereal Research Communications, 27, 131-138. https://doi.org/10.1007/BF03543929
- Nikolakakis, N., Margaritopoulos, J. T., & Tsitsipis, J. A. (2003). Performance of Myzus persicae (Hemiptera: Aphididae) clones on different host-plants and their host preference. Bulletin of Entomological Research, 93, 235–242. https://doi. org/10.1079/BER2003230
- Nomura, T., Ishihara, A., Imaishi, H., Ohkawa, H., Endo, T. R., & Iwamura, H. (2003). Rearrangement of the genes for the biosynthesis of benzoxazinones in the evolution of Triticeae species. *Planta*, 217, 776–782. https://doi.org/10.1007/ s00425-003-1040-5
- Oliver, K. M., Degnan, P. H., Burke, G. R., & Moran, N. A. (2010). Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annual Review of Entomology, 55, 247–266. https://doi.org/10.1146/annurev-ento-112408-085305
- Oliver, K. M., Moran, N. A., & Hunter, M. S. (2005). Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proceedings of the National Academy of Sciences of the United States of America, 102, 12795–12800. https://doi.org/10.1073/pnas.0506131102
- Parry, H. R., Macfadyen, S., & Kriticos, D. J. (2012). The geographical distribution of Yellow dwarf viruses and their aphid vectors in Australian grasslands and wheat. Australasian Plant Pathology, 41, 375–387. https://doi.org/10.1007/ s13313-012-0133-7
- Pérez, F. J., & Niemeyer, H. M. (1989). Reaction of DIMBOA, a resistance factor from cereals, with papain. Phytochemistry, 28, 1597–1600. https://doi.org/10.1016/S0031-9422(00)97806-3
- Russell, J. A., & Moran, N. A. (2006). Costs and benefits of symbiont infection in aphids: Variation among symbionts and across temperatures. Proceedings of the Royal Society B: Biological Sciences, 273, 603–610. https://doi.org/10.1098/ rspb.2005.3348
- Saksena, K. N., Singh, S. R., Sill Jr., W. H. (1964). Transmission of barley Yellow-dwarf virus by four biotypes of the corn leaf aphid, Rhopalosiphum maidis. Journal of Economic Entomology, 57, 569–571. https://doi.org/10.1093/jee/57.4.569
- Sandström, J., & Pettersson, J. (1994). Amino acid composition of phloem sap and the relation to intraspecific variation in pea aphid (Acyrthosiphon pisum) performance. Journal of Insect Physiology, 40, 947–955. https://doi.org/10.1016/ 0022-1910(94)90133-3
- Singh, S. R., & Painter, R. H. (1964). Effect of temperature and host plants on progeny production of four biotypes of corn leaf aphid, *Rhopalosiphum maidis*. *Journal of Economic Entomology*, 57, 348–350. https://doi.org/10.1093/jee/57. 3.348
- Tabikha, R. M. (2016). Impacts of temporal and spatial climatic changes on annual generations of *Rhopalosiphum maidis* and R. padi (Hemiptera: Aphididae) in Egypt, using Geographical Information System (GIS). Journal of Agricultural Informatics, 7, 13–22. https://doi.org/10.17700/jai.2016.7.1.249
- Tang, Y. Q., Lapointe, S. L., Brown, L. G., Hunter, W. B. (1999). Effects of host plant and temperature on the biology of *Toxoptera citricida* (Homoptera: Aphididae). *Environmental Entomology*, 92, 895–900. https://doi.org/10.1093/ee/28. 5.895

- Thongmeearkom, P., Ford, R. E., & Jedlinski, H. (1976). Aphid transmission of maize dwarf mosaic virus strains. *Phytopathology*, *66*, 332–335. https://doi.org/10.1094/Phyto-66-332
- Tsuchida, T., Koga, R., Matsumoto, S., & Fukatsu, T. (2011). Interspecific symbiont transfection confers a novel ecological trait to the recipient insect. *Biology Letters*, 7, 245–248. https://doi.org/10.1098/rsbl.2010.0699
- Tzin, V., Fernandez-Pozo, N., Richter, A., Schmelz, E. A., Schoettner, M., Schäfer, M., Ahern, K. R., Meihls, L. N., Kaur, H., Huffaker, A., Mori, N., Degenhardt, J., Mueller, L. A., & Jander, G. (2015). Dynamic maize responses to aphid feeding are revealed by a time series of transcriptomic and metabolomic assays. *Plant Physiology*, 169, 1727–1743. https:// doi.org/10.1104/pp.15.01039
- Vorburger, C., Ganesanandamoorthy, P., & Kwiatkowski, M. (2013). Comparing constitutive and induced costs of symbiontconferred resistance to parasitoids in aphids. *Ecology & Evolution*, 3, 706–713. https://doi.org/10.1002/ece3.491
- Weldon, S. R., Russell, J. A., & Oliver, K. M. (2019). More is not always better: Coinfections with defensive symbionts generate highly variable outcomes. Applied and Environmental Microbiology, 86, e02537–19. https://doi.org/10.1128/ AEM.02537-19
- Yan, F., Xu, C., Li, S., Lin, C., Li, J. (1995). Effects of DIMBOA on several enzymatic systems in Asian corn borer, Ostrinia furnacalis (Guenée). Journal of Chemical Ecology, 21, 2047–2056. https://doi.org/10.1007/BF02033861

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher's website.

How to cite this article: Guo, J., Hao, G., Hatt, S., Wang, Z., & Francis, F. (2022). Host plant adaptability and proteomic differences of diverse *Rhopalosiphum maidis* (Fitch) lineages. *Archives of Insect Biochemistry and Physiology*, 109, e21853. https://doi.org/10.1002/arch.21853