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Abstract. Two words are k-binomially equivalent, if each word of length
at most k occurs as a subword, or scattered factor, the same number of
times in both words. The k-binomial complexity of an infinite word maps
the natural n to the number of k-binomial equivalence classes represented
by its factors of length n. Inspired by questions raised by Lejeune, we
study the relationships between the k and (k + 1)-binomial complexities;
as well as the link with the usual factor complexity. We show that pure
morphic words obtained by iterating a Parikh-collinear morphism, i.e. a
morphism mapping all words to words with bounded abelian complexity,
have bounded k-binomial complexity. In particular, we study the prop-
erties of the image of a Sturmian word by an iterate of the Thue–Morse
morphism.

Keywords: Factor complexity · Abelian complexity · Binomial com-
plexity · iterates of Thue–Morse morphism.

1 Introduction

When we are interested in the combinatorial structure of an infinite word x
over a finite alphabet A, it is often useful to study its language L(x), i.e. the
set of its factors, and in particular to look at factors of a given length n. We
let Ln(x) denote L(x) ∩ An. The usual factor complexity function px : N → N
counts the number #Ln(x) of words of length n occurring in x. For instance,
ultimately periodic words are characterized by a bounded factor complexity and
Sturmian words are exactly those words satisfying px(n) = n + 1 for all n. For
a general reference about word combinatorics, see, for instance, [2,13]. However,
to highlight particular combinatorial properties of the infinite word of interest,
other complexity measures such as abelian, k-abelian, cyclic, privileged, and
k-binomial complexities have been introduced. See, for instance, [18,9,3,16,19].
In most cases, one considers the quotient of the language L(x) by a convenient
equivalence relation∼ and the corresponding complexity function therefore maps
? Manon Stipulanti is supported by the FNRS Research grant 1.B.397.20. Markus
Whiteland is supported by the FNRS Research grant 1.B.466.21F. Markus White-
land dedicates this paper to the memory of his father Alan Whiteland (1940–2021).
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n ∈ N to #(Ln(x)/∼). For instance, a binary (non-periodic) word is balanced
if and only if its abelian complexity is equal to the constant function 2. This
paper focuses on the binomial complexity introduced in [19] and that is also the
central theme of Lejeune’s thesis [10].

A parallel can be drawn between the k-abelian complexity introduced by
Karhumäki et al. [9] and the k-binomial complexity. In both cases, we have a
series of refinements of the abelian equivalence already introduced by Erdős [5].
The fundamental difference is the following one. Let k ≥ 1 be an integer. Two
finite words u, v are k-abelian equivalent if, for each factor w of length at most k,
we count the same number of occurrences of w in both words u and v. For
k-binomial equivalence, we count the number of times each word w of length
at most k occurs in u and v as a subword, i.e. scattered factor. Thus, in the
first case, we are interested in sequences of k consecutive letters, whereas in the
second case, we look at subsequences of length k extracted from a given word.
We will thus make the important distinction between a factor of a word and a
subword.

1.1 Binomial Coefficients and Complexity Functions

Let us now give precise definitions and notation. For any integer k, we let Ak
(resp., A≤k; resp., A<k) denote the set of words of length exactly (resp., at
most; resp., less than) k over A. We let A∗ (resp., A+) denote the set of finite
words (resp., non-empty finite words) over A. We let ε denote the empty word.
The length of the word w is denoted by |w| and the number of occurrences of a
letter a in w is denoted by |w|a. Writing A = {a1, . . . , ak} and fixing the order
a1 < a2 < · · · < ak on the letters, the Parikh vector of a word w ∈ A∗ is defined
as the column vector

Ψ(u) = (|w|a1 , |w|a2 , . . . , |w|ak)ᵀ.

Let u,w ∈ A∗. The binomial coefficient of u and w is the number of times w
occurs as a subsequence of u, i.e., writing u = u1 · · ·un with ui ∈ A,(

u

w

)
= #

{
i1 < i2 < · · · < i|w| : ui1ui2 · · ·ui|w| = w

}
.

By convention,
(
u
ε

)
= 1. For more on these binomial coefficients, see, for in-

stance, [13, Chapter 6]. Let k ≥ 1 be an integer. Two words u, v ∈ A∗ are
k-binomially equivalent, and we write u ∼k v, if(

u

x

)
=
(
v

x

)
, ∀x ∈ A≤k.

Salomaa [20] introduces the k-spectrum of a word u which is a formal polynomial
in non-commutative variables

∑
w∈A≤k

(
u
w

)
w. Thus two words are k-binomially

equivalent if and only if they have the same k-spectrum. Observe that the word
u is obtained as a permutation of the letters in v if and only if u ∼1 v. In this
case, we say that u and v are abelian equivalent.
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Definition 1. Let k ≥ 1 be an integer. The k-binomial complexity function of
an infinite word x is defined as b(k)

x : N→ N, n 7→ #(Ln(x)/∼k).

It is immediate from the definition, that for all k ≥ 1, u ∼k+1 v implies
u ∼k v. Thus, for all n, we have the inequalities (illustrated by Fig. 1)

b(1)
x (n) ≤ b(2)

x (n) ≤ · · · ≤ b(k)
x (n) ≤ b(k+1)

x (n) ≤ · · · ≤ px(n). (1)

1.2 Questions Addressed in This Paper

The k-binomial complexity function has been studied for particular infinite
words: for k ≥ 2, the k-binomial complexity of Sturmian words coincides with
their factor complexity [19] and the same property holds true for the Tribonacci
word [12]. Recently, the 2-binomial complexity of generalized Thue–Morse words
was also computed [14]. The k-binomial complexity of the Thue–Morse word t
is bounded by a constant (depending on k) [11], and more generally bounded
k-binomial complexity holds for any fixed point of a prolongable Parikh-constant
morphism φ [19], i.e. Ψ(φ(a)) = Ψ(φ(b)) for all letters a, b.

In this work, we generalize the above property of the fixed points of Parikh-
constant morphisms to what we call Parikh-collinear morphisms φ: for all letters
a, b, there is a rational number ra,b such that Ψ(φ(a)) = ra,bΨ(φ(b)). Such mor-
phisms were characterized in [4]; see Theorem 16. In Section 3.1, we provide a
new characterization of these morphisms in terms of the binomial complexity:
they map all words with bounded k-binomial complexity to words with bounded
(k + 1)-binomial complexity. Finally, Corollary 18 shows that fixed points of
Parikh-collinear morphisms have bounded k-binomial complexity. (See Fig. 1 for
an illustration.)

Fig. 1. The functions b(k)
x , k ∈ {1, 2, 3}, where x is the fixed point of the morphism

0 7→ 000111, 1 7→ 0110. This morphism has the property of being Parikh-collinear.
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For all j ≥ 1, the exact value of b(j)
t (n) computed in [11] is given by

b(j)
t (n) =


pt(n) if n ≤ 2j − 1;
3 · 2j − 3, if n ≡ 0 (mod 2j) and n ≥ 2j ;
3 · 2j − 4, otherwise.

(2)

We show in Theorem 23 that such a behavior is not specific to t, but appears for
a large class of words. Let ϕ be the Thue–Morse morphism. For any aperiodic
binary word y, the word x = ϕk(y) is such that b(j)

x (n) = b(j)
t (n) for all j ≤ k

and n ≥ 2j .
In general, not much is known about the general behavior or the properties

that can be expected for the k-binomial complexity. In particular, computing
the k-binomial complexity of a particular infinite word remains challenging, see,
for instance, Fig. 1 to grasp the difficulty. It would also be desirable to compare
in some ways k and (k + 1)-binomial complexities of a word. For two functions
f, g : N → N, we write f ≺ g when the relation f(n) < g(n) holds for infinitely
many n ∈ N. Our reflexion is driven by the following questions inspired by
Lejeune’s questions [10, pp. 115–117] that are natural to consider in view of
(1). 1

Question A. Does there exist an infinite word w such that, for all k ≥ 1, b(k)
w

is unbounded and b(k)
w ≺ b(k+1)

w ? If the answer is positive, can we find a (pure)
morphic such word w?

From (1), notice that b(k)
w is unbounded, for all k ≥ 1, if and only if the abelian

complexity b(1)
w is unbounded. Even though the Thue–Morse word t is such that,

for all k ≥ 1, b(k)
t ≺ b(k+1)

t , b(k)
t remains bounded (2). So t is not a satisfying

answer to Question A. However, in Section 2, we provide several positive answers
to this question.

Section 4 is about binomial properties of iterates of ϕ. Going further than
(2), we also study the (k + 1)- and (k + 2)-binomial complexity of words of
the form x = ϕk(y) with y aperiodic. In Section 4.1 we prove Theorem 23
mentioned above. In Section 4.2, we characterize (k + 1)-binomial equivalence
in x with Proposition 34. As a consequence of it, we get that b(k)

x ≺ b(k+1)
x .

We made these considerations because one can wonder if the factor complexity
can be achieved (dismissing the trivial cases of periodic words or fixed points of
Parikh-constant morphisms).

Question B. For each ` ≥ 1, does there exist a word w (depending on `) such
that b(1)

w ≺ b(2)
w ≺ · · · ≺ b(`−1)

w ≺ b(`)
w = pw? If the answer is positive, is there a

(pure) morphic such word w?

1 We choose ≺ because, e.g., for the period-doubling word pd there exist two subse-
quences such that b(2)

pd(ni) = ppd(ni) and b(2)
pd(mi) < ppd(mi) [10, Prop. 4.5.1].
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Putting together results from Sections 4 and 5 we fully answer Question B:
Theorem 23 and Proposition 34 give b(1)

x ≺ b(2)
x ≺ · · · ≺ b(k−1)

x ≺ b(k)
x ≺ b(k+1)

x ,
while assuming that y above is Sturmian, we show that b(k+2)

x = px. Iterates
of ϕ applied to Sturmian words are studied (among other words) in [7]. Our
construction leads to words with bounded abelian complexity. Question B is
then strengthened in Section 5 where we ask for words with unbounded abelian
complexity. We give a pure morphic answer when ` = 3.

1.3 Preliminaries

We collect some useful results on k-binomial equivalence. First note that ∼k is
a congruence, i.e. for u, v, x y ∈ A∗, u ∼k v and x ∼k y implies ux ∼k vy.

Using a classical “length-n sliding window” argument, one has the following.

Lemma 2 (Folklore). For any binary word y over {0, 1}, we have

b(1)
y (n) = 1 + max

u,v∈Ln(y)

∣∣|u|1 − |v|1∣∣.
Lemma 3 (Cancellation property). Let u, v, w be words over A. We have

v ∼k w ⇔ uv ∼k uw and v ∼k w ⇔ vu ∼k wu.

We will also need the following result characterizing k-binomial commutation
among words of equal length.

Theorem 4 ([21, Thm. 3.5]). Let k ≥ 2 and x, y ∈ A∗ such that |x| = |y|.
Then xy ∼k yx if and only if x ∼k−1 y.

A proof of the next result can be conveniently found in [11, Lem. 30]. This
could also be proved by induction using Theorem 4 with x = ϕk(0), y = ϕk(1).

Theorem 5 (Ochsenschläger [15]). Let ϕ : 0 7→ 01, 1 7→ 10 be the Thue–
Morse morphism. For all k ≥ 1, we have ϕk(0) ∼k ϕk(1) and ϕk(0) 6∼k+1 ϕ

k(1).

The following result from [11, Lem. 31] will be convenient. This can alterna-
tively be proved using Theorem 4 combined with Ochsenschläger’s result.

Lemma 6 (Transfer lemma). Let k ≥ 1. Let u, v,′ be three non-empty words
such that |v| = |v′|. We have ϕk−1(u)ϕk(v) ∼k ϕk(v′)ϕk−1(u).

It is an exercise to see that, for an arbitrary morphism f : A∗ → B∗, we have,
for all u ∈ A∗, e ∈ B∗,(

f(u)
e

)
=

∑
a1,...,a`∈A

`≤|e|

(
u

a1 · · · a`

) ∑
e=e1···e`
ei∈B+

∏̀
i=1

(
f(ai)
ei

)
. (3)

We recall the following lemma that appears in [21]; it is a straightforward
generalization of an observation in [20]. We give a proof for the sake of com-
pleteness.
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Lemma 7. Let C be an abelian equivalence class of non-empty words with Parikh
vector (ma)a∈A. Then, for any word u ∈ A∗, we have

∑
w∈C

(
u
w

)
=
∏
a∈A

(|u|a
ma

)
.

Proof. The sum on the left counts the number of ways one can choose a subword
w of u so that Ψ(w) = (ma)a∈A. On the other hand, for a vector (ma)a∈A, any
choice of ma many distinct a’s in u for each a ∈ A gives rise to a subword of
u having Parikh vector (ma)a∈A. The number of distinct such choices is the
product on the right. ut

Theorem 8 ([19, Thm. 7]). For any Sturmian word s, we have b(2)
s = ps.

In particular, the theorem implies that for two distinct equal-length factors u, v
of a Sturmian word, we have either u 6∼1 v, or

(
u
01
)
6=
(
v
01
)
.

2 Several Answers to Question A

One can give a rather direct answer to Question A. Indeed, let c be the binary
Champernowne word, that is, the concatenation of the binary representations of
the non-negative integers: 0 1 10 11 100 101 110 111 · · · . Notice that c contains all
binary words. For each k, there exist two binary words u, v such that u ∼k v and
u 6∼k+1 v (see, for instance, Theorem 5). Therefore, the same properties hold for
ux and vx, for all x ∈ {0, 1}∗, thus b(k)

c ≺ b(k+1)
c for all k. Clearly b(1)

c (n) = n+1
is unbounded and so is b(k)

c for k ≥ 2.
Observe that c is not morphic, nor uniformly recurrent. Therefore in the rest

of the section we provide more “structured” words answering Question A.

2.1 A Non-Binary Pure Morphic Answer

Let ϕ : 0 7→ 01, 1 7→ 10 be the Thue–Morse morphism over {0, 1}. Consider the
morphism g : {a, 0, 1, α}∗ → {a, 0, 1, α}∗ defined by

a 7→ a0α, 0 7→ ϕ(0), 1 7→ ϕ(1), α 7→ α2.

We have g = gω(a) = a
∏∞
j=0 ϕ

j(0)α2j . We show that the word g answers
Question A:

Proposition 9. The abelian complexity of g is unbounded and b(k)
g ≺ b(k+1)

g for
all k ≥ 1.

Proof. The abelian complexity of g is (at least) linear, since

{|u|α : u ∈ Ln(g)} = {0, . . . , n}.

Furthermore, for each k ∈ N there exist infinitely many words un, vn ∈ L(g)
such that un ∼k vn but un 6∼k+1 vn: by Theorem 5, take un = ϕk(0)αn and
vn = ϕk(1)αn. Consequently b(k)

g ≺ b(k+1)
g for all k ≥ 1. ut
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2.2 A Binary Morphic Answer

Consider the word τ(g), where g is the word defined in the previous subsection,
and τ is the coding a 7→ ε, 0 7→ 0, 1 7→ 1, and α 7→ 1. We have the following:

Proposition 10. The abelian complexity of τ(g) is unbounded and b(k)
τ(g) ≺

b(k+1)
τ(g) for all k ≥ 1.

Proof. The word τ(g) has unbounded abelian complexity: it contains arbitrarily
long words u for which |u|1 = b|u|/2c (take factors of the Thue–Morse word for
instance). Similarly it contains arbitrarily long powers of 1. Consequently, the
word has unbounded abelian complexity (recall Lemma 2).

To show b(k)
τ(g) ≺ b(k+1)

τ(g) for all k, we notice that the same arguments as in
the case of g can be applied verbatim with τ(un) and τ(vn). ut

2.3 A Binary Uniformly Recurrent Answer

We note that none of the above words are uniformly recurrent (a word x is
uniformly recurrent if for each x ∈ L(x) there exists N ∈ N such that x appears
in all factors in LN (x)). We recall a particular construction from Grillenberger [8]
for uniformly recurrent words having arbitrary entropy. The word of interest is
constructed as follows. DefineD0 = {0, 1}. AssumingDk is constructed, let uk be
the product of words of Dk in lexicographic order, assuming 0 < 1. Define then
Dk+1 := ukD

2
k. Now the sequence (uk)k∈N converges to a uniformly recurrent

word u = 0100010101100111 · · · .

Lemma 11. Let k ≥ 1. If, for some j ≥ 0, Dj contains two words u, v, such
that u ∼k v and u 6∼k+1 v, then Dj+1 contains words x, y, z and w such that
• x ∼k y but x 6∼k+1 y;
• z ∼k+1 w but z 6∼k+2 w.

Proof. By definition, the set Dj+1 contains the words x = ujuu, y = ujvv,
z = ujuv, and w = ujvu.

We first consider the pair x, y. Since ∼k is a congruence, x ∼k y. To see that
x 6∼k+1 y, assume the contrary so that this equivalence reduces to uu ∼k+1 vv
by Lemma 3. For any word e of length k + 1, we have(

uu

e

)
−
(
vv

e

)
= 2
(
u

e

)
− 2
(
v

e

)
+
∑

e=e1e2
ei∈A+

[(
u

e1

)(
u

e2

)
−
(
v

e1

)(
v

e2

)]

= 2
(
u

e

)
− 2
(
v

e

)
because u ∼k v. Since u 6∼k+1 v, there exists a word e of length k + 1 such that(
u
e

)
6=
(
v
e

)
which implies

(
uu
e

)
6=
(
vv
e

)
, a contradiction.

Next we have uv ∼k+1 vu by Theorem 4, and thus z = ujuv ∼k+1 ujvu = w
by Lemma 3. Similarly z ∼k+2 w would imply uv ∼k+2 vu and thus u ∼k+1 v
by Theorem 4, a contradiction. The claim follows. ut
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Theorem 12. The abelian complexity of u is unbounded and b(k)
u ≺ b(k+1)

u for
all k ≥ 1.

Proof. First we show that b(1)
u is unbounded. Assume, for some j ≥ 0, that Dj

contains words u, v with |u|0−|v|0 = 2j (this holds for j = 0). Then by definition
Dj+1 contains the words x = ujuu and y = ujvv, for which |x|0 − |y|0 =
2(|u|0 − |v|0) = 2j+1. This observation suffices for the claim by Lemma 2.

We then prove the second part of the statement. Observe that D1 contains
the words 0101 and 0110, which are abelian equivalent, but not 2-binomially
equivalent (as

(0101
01
)

= 3 and
(0110

01
)

= 2). The above lemma then implies that
for all k ≥ 1 and for all j ≥ k, the set Dj contains words that are k-binomially
equivalent, but not (k + 1)-binomially equivalent. The claim follows. ut

3 An Interlude: Parikh-Collinear Morphisms

Definition 13 (Parikh-collinear morphisms). A morphism f : A∗ → B∗ is
said to be Parikh-collinear if, for all letters a, b ∈ A, there is ra,b ∈ Q such that
Ψ(f(b)) = ra,bΨ(f(a)).

In this section, we show that, given an infinite fixed point of a prolongable
Parikh-collinear morphism, its k-binomial complexity is bounded for each k.

Remark 14. Given a morphism f : A∗ → B∗, its adjacency matrix Mf is the
matrix of size |B| × |A| defined by (Mf )b,a = |f(a)|b for all a ∈ A, b ∈ B.
Observe that f is a Parikh-collinear morphism if and only if Mf has rank 1
(unless it is totally erasing). We observe that for any word u ∈ A∗, we have that
Ψ(f(u)) = MfΨ(u).

Example 15. The morphism f defined by 0 7→ 000111; 1 7→ 0110 is Parikh-
collinear since Ψ(f(1)) = 2

3Ψ(f(0)). The first three binomial complexities are
graphed in Fig. 1.

Theorem 16 ([4, Thm. 11]). A morphism f : A∗ → B∗ maps all infinite
words to words with bounded abelian complexity if and only if it is Parikh-
collinear.

We extend the above theorem to the following one, where 0-binomial complexity
has to be understood as the “equal length” equivalence relation.

Theorem 17. A morphism f : A∗ → B∗ maps, for all k ≥ 0, all words with
bounded k-binomial complexity to words with bounded (k+1)-binomial complexity
if and only if it is Parikh-collinear.

Before proving this result in Section 3.2, let us mention a straightforward conse-
quence, which generalizes [19, Thm. 13] from Parikh-constant to Parikh-collinear
morphisms. For example, the Thue–Morse morphism is Parikh-constant and thus
Parikh-collinear but the morphism of Example 15 is Parikh-collinear but not
Parikh-constant.
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Corollary 18. Let z be a fixed point of a Parikh-collinear morphism. For any
k ≥ 1 there exists a constant Cz,k ∈ N such that b(k)

z (n) ≤ Cz,k for all n ∈ N.

Proof. Let f : A∗ → A∗ be a Parikh-collinear morphism whose fixed point is z.
Since f(z) = z, Theorem 16 implies that z has bounded abelian complexity. For
any k ≥ 1, we have that z = f(fk−1(z)) implying that z has bounded k-binomial
complexity by induction and the previous theorem. ut

Remark 19. We cannot relax the assumption on the rank of the adjacency ma-
trix Mf . The morphism f : {0, 1, 2}∗ → {0, 1, 2}∗ defined by 0 7→ 0323, 1 7→
03132, 2 7→ 240613 has an adjacency matrix of rank 2. The fixed point starting
with 0 is aperiodic as fn(0) is readily seen to be right special for all n ≥ 0. Yet,
its adjacency matrix has eigenvalues 0 and 5±

√
13, the latter two of which are

strictly greater than 1. This means that the word has unbounded abelian com-
plexity. Indeed, this follows from a deep result of Adamczewski [1, Thm. 1(ii)]
combined with an observation in [17, Lem. 2.2]. Hence the word has unbounded
b(k) for all k ≥ 1.

3.1 A Characterization of Parikh-Collinear Morphisms

To prove Theorem 17, we give further characterizations of Parikh-collinear mor-
phisms. To this end, we require the following lemma where is defined a map ge
which is constant on any abelian equivalence class. Such a map is natural to
consider in view of (3).

Lemma 20. Let A,B be finite alphabets with |A| ≥ 2. Let f : A∗ → B∗ be a
Parikh-collinear morphism. For a word e = e1 · · · en of length n over B, define
ge : An → N by

ge(a1 · · · an) :=
n∏
i=1

(
f(ai)
ei

)
.

Then, for all words w,w′ ∈ An with w ∼1 w
′, we have ge(w) = ge(w′).

Proof. Write w = a1 · · · an with ai ∈ A for all i ∈ {1, . . . , n}. For all α ∈ A and
β ∈ B, define I(α, β) := {i ∈ {1, . . . , n} | ai = α and ei = β}. We get

ge(w) =
∏
α∈A
β∈B

∏
i∈I(α,β)

(
f(α)
β

)
.

The claim is trivial if f maps all words to ε, so let 0 ∈ A be a letter for which
|f(0)| 6= 0. Since the morphism f is Parikh-collinear, for all α ∈ A and all β ∈ B,
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there exists rα ∈ Q such that
(
f(α)
β

)
= rα

(
f(0)
β

)
. We now get

ge(w) =
∏
α∈A
β∈B

∏
i∈I(α,β)

(
f(α)
β

)
=
∏
α∈A
β∈B

∏
i∈I(α,β)

rα

(
f(0)
β

)

=

∏
α∈A
β∈B

∏
i∈I(α,β)

(
f(0)
β

)
∏
α∈A
β∈B

∏
i∈I(α,β)

rα

 .

For any letter β ∈ B, the definition of I(α, β) gives

∏
α∈A

∏
i∈I(α,β)

(
f(0)
β

)
=
(
f(0)
β

)|e|β
.

Similarly, for any letter α ∈ A, the definition of I(α, β) yields∏
β∈B

∏
i∈I(α,β)

rα = r|w|αα .

Thus

ge(w) =

∏
β∈B

(
f(0)
β

)|e|β(∏
α∈A

r|w|αα

)
.

Observe that the first factor in this product only depends on (the Parikh vector
of) e — in particular, not on w — as the morphism f is fixed. Similarly, the
second factor in the product depends solely on the Parikh vector of w, not on
the word w itself. The desired result follows. ut

Proposition 21. Let f : A∗ → B∗ be a morphism. The following are equivalent.

(i) For all k ≥ 2 and u, v ∈ A∗, u ∼k−1 v implies f(u) ∼k f(v).
(ii) There exists an integer k ≥ 2 such that for all u, v ∈ A∗, u ∼k−1 v implies

f(u) ∼k f(v).
(iii) For all u, v ∈ A∗, u ∼1 v implies f(u) ∼2 f(v).
(iv) f is Parikh-collinear.

Proof. Clearly (i) implies (ii). We show that (ii) implies (iii). There is nothing to
prove if (ii) holds for k = 2, so assume that k ≥ 3. We show that f also satisfies
(ii) with k − 1 instead of k, and hence, by repeating the argument, f satisfies
(ii) with k = 2. Assume to the contrary that there exists a pair u, v such that
u ∼k−2 v but f(u) 6∼k−1 f(v). Since u and v are abelian equivalent (k − 2 ≥ 1)
they have equal length, so by Theorem 4, we have that uv ∼k−1 vu. Then, since
f has the property for k, we have f(u)f(v) ∼k f(v)f(u). Furthermore, f(u) and
f(v) have the same length (due to u ∼1 v). This implies that f(u) ∼k−1 f(v) by
the converse part of Theorem 4, contrary to what was assumed.



Binomial Complexities and Parikh-Collinear Morphisms 11

Assuming (iii), we show that (iv) holds. Let x, y be distinct letters from A.
Since xy ∼1 yx, we have f(xy) ∼2 f(yx) by assumption. In other words, for all
s, t ∈ B we have, applying (3),

0 =
(
f(xy)
st

)
−
(
f(yx)
st

)
=

∑
a1,...,a`∈A

`≤2

[(
xy

a1 · · · a`

)
−
(

yx

a1 · · · a`

)] ∑
st=b1···b`
bi∈B+

∏̀
i=1

(
f(ai)
bi

)

=
∑

a1,a2∈A

((
xy

a1a2

)
−
(
yx

a1a2

))(
f(a1)
s

)(
f(a2)
t

)

=
(
f(x)
s

)(
f(y)
t

)
−
(
f(y)
s

)(
f(x)
t

)
,

where in the third equality we use
(
xy
a

)
=
(
yx
a

)
for all a ∈ A (since xy ∼1 yx).

Summing over s ∈ B, we get |f(x)|
(
f(y)
t

)
= |f(y)|

(
f(x)
t

)
for all t ∈ B. Now x

and y were chosen arbitrarily from the alphabet A. If |f(x)| = 0 for all x ∈ A,
then f is clearly Parikh-collinear. If there is a letter x for which |f(x)| > 0, we
may write

((
f(y)
t

))
t∈B

= |f(y)|
|f(x)|

((
f(x)
t

))
t∈B

for each y ∈ A. In other words, f is
Parikh-collinear.

To complete the proof, we show that (iv) implies (i). So let f be a Parikh-
collinear morphism and u ∼k−1 v with k ≥ 2. We apply (3): for any word e ∈ B∗,
we have(
f(u)
e

)
−
(
f(v)
e

)
=

∑
a1,...,a`∈A

`≤|e|

((
u

a1 · · · a`

)
−
(

v

a1 · · · a`

)) ∑
e=e1···e`
ei∈B+

∏̀
i=1

(
f(ai)
ei

)
.

Notice that for words e ∈ B<k, we have
(

u
a1···a`

)
=
(

v
a1···a`

)
since u ∼k−1 v, which

in turn gives
(
f(u)
e

)
=
(
f(v)
e

)
. So to show that f(u) ∼k f(v), it suffices to consider

words e ∈ Bk. By assumption, for ` < k, we again have
(

u
a1···a`

)
=
(

v
a1···a`

)
.

Therefore, we have
(
f(u)
e

)
=
(
f(v)
e

)
if and only if

∑
a1,...,ak∈A

(
u

a1 · · · ak

) k∏
i=1

(
f(ai)
ei

)
=

∑
a1,...,ak∈A

(
v

a1 · · · ak

) k∏
i=1

(
f(ai)
ei

)
. (4)

Observe here that
∏k
i=1
(
f(ai)
ei

)
= ge(a1 · · · ak) as defined in Lemma 20. Let C be

an abelian equivalence class of a word in Ak. As the Parikh vector is constant
on C, let us write Ψ(w) = ΨC for all words w ∈ C. We now have

∑
w∈Ak

(
u

w

)
ge(w) =

∑
C

∑
w∈C

(
u

w

)
ge(w) (5)
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where C in the outer sum ranges over the abelian equivalence classes of words
in Ak. By Lemma 20, ge(·) is constant on C, so write ge(w) = gC,e for all words
w ∈ C. Then we obtain∑

w∈Ak

(
u

w

)
ge(w) =

∑
C
gC,e

∑
w∈C

(
u

w

)
=
∑
C
gC,e

∏
a∈A

(
|u|a
mC,a

)
by Lemma 7, where ΨC = (mC,a)a∈A. One obtains the same formula by replacing
u with v, and equality indeed holds in (4) as |u|a = |v|a for each letter a ∈ A.
This concludes the proof. ut

3.2 Proof of Theorem 17

The next result essentially appears in the proof of [4, Thm. 12]. We give a proof
here for the sake of completeness.

Lemma 22. Let x be a an infinite word over A with bounded abelian complexity.
Let f : A∗ → B∗ be a morphism and assume y = f(x) is an infinite word. Then
for all c ∈ N there exists Dx,c ∈ N such that if

∣∣|f(u)| − |f(v)|
∣∣ ≤ c, for some

u, v ∈ L(x), then
∣∣|u| − |v|∣∣ ≤ Dx,c.

Proof. Assume without loss of generality that |u| ≥ |v| and write u = u′v′ with
|v′| = |v|. Let Mf be the adjacency matrix of f . If

∣∣|f(u)| − |f(v)|
∣∣ ≤ c, we have

by the reverse triangle inequality

c ≥
∣∣|f(u′)| − |f(v)|+ |f(v′)|

∣∣
≥ |f(u′)| −

∣∣|f(v′)| − |f(v)|
∣∣ = |f(u′)| − |〈Mf (Ψ(v′)− Ψ(v)),1〉|,

where 〈· , ·〉 denotes the inner product of vectors, and 1 is the all-ones-vector.
Recall that x has bounded abelian complexity if and only if it is C-balanced for
some C [17]. Hence, as v and v′ are factors of the same length, Ψ(v′)−Ψ(v) attains
finitely many distinct integer points (in particular, belonging to [−C,C]#A). So
does Mf (Ψ(v′) − Ψ(v)). We therefore obtain |f(u′)| ≤ D for some D ∈ N. We
deduce that u′ is bounded in length as well: indeed, let a ∈ A be a letter occurring
infinitely often in x and for which f(a) 6= ε (such a letter exists because f(x) is
infinite). Since x is balanced, we deduce that all long enough factors of x contain
more than |u′| occurrences of a. We let Dx,c be this bound on |u′| to conclude
the proof. ut

We are now ready to prove the main result of this section: A morphism
f : A∗ → B∗ maps, for all k ≥ 0, all words with bounded k-binomial complexity
to words with bounded (k + 1)-binomial complexity if and only if it is Parikh-
collinear.

Proof (of Theorem 17).
If f : A → B∗ maps all words with bounded 0-binomial complexity (i.e., all

words) to words with bounded 1-binomial complexity, then f is Parikh-collinear
by Theorem 16.
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Assume thus that f is Parikh-collinear. Theorem 16 implies that f maps
all words (i.e., all words with bounded 0-binomial complexity) to words with
bounded 1-binomial complexity. Let then k ≥ 1 and let x be a word with bounded
k-binomial complexity. Let n ∈ N. Any length-n factor of f(x) can be written
as pf(u)s, where the word u is a factor of x, p is a suffix of f(a) and s is a
prefix of f(b) for some letters a, b ∈ A. Here n − 2m < |f(u)| ≤ n, where m :=
maxa∈A |f(a)|. The (k + 1)-binomial equivalence class of pf(u)s is completely
determined by the words p, s, and the k-binomial equivalence class of f(u), which
itself is determined by the k-binomial equivalence class of u by Proposition 21.

The former two words p and s are drawn from a finite set, as their lengths
are bounded by the constant m (depending on f). The length of u can be chosen
from an interval whose length is uniformly bounded in n. Indeed, assume we
have equal length factors w = pf(u)s and w′ = p′f(v)s′. As observed above,
n ≥ |f(u)| and |f(v)| > n − 2m, so that

∣∣|f(u)| − |f(v)|
∣∣ < 2m. Applying

Lemma 22 (by assumption, x has bounded k-binomial complexity and thus,
x has bounded abelian complexity by (1)) there exists a bound D such that∣∣|u| − |v|∣∣ ≤ D uniformly in n. Since the number of k-binomial equivalence
classes in x of each length is uniformly bounded by assumption, and the number
of admissible lengths for u above is bounded, we conclude that the number of
choices for the k-binomial equivalence class of u is bounded. We have shown that
the number of (k+ 1)-binomial equivalence classes among factors of length n in
f(x) is determined from a bounded amount of information (not depending on
n), as was to be shown. ut

4 Binomial Properties of the Thue–Morse Morphism

In this section, we consider binomial complexities of iterates of the Thue-Morse
morphism ϕ on aperiodic binary words. Repeated application of Theorem 17
shows that, for any k ≥ 1 and any binary word y, the k-binomial complexity
function of the word ϕk(y) is bounded. In Section 4.1 we make this result much
more precise:

Theorem 23. Let j, k be integers with 1 ≤ j ≤ k and let y be an aperiodic
binary word. Let x = ϕk(y). For all n ≥ 2j, we have b(j)

x (n) = b(j)
t (n) which is

given by (2) and, for n < 2j, b(j)
x (n) = px(n).

This is a generalization of [11, Thm. 6], which says that, for all j ≥ 1, the
j-binomial complexity of the Thue–Morse word t is given by (2). It implies that
b(1)

x ≺ b(2)
x ≺ · · · ≺ b(k)

x . The aim of Section 4.2 is to go one step further and
get b(k)

x ≺ b(k+1)
x . To do so, we characterize k-binomial and (k + 1)-binomial

equivalence among factors of x (Theorem 29 and Proposition 34).

4.1 The First k Binomial Complexities

Before proving Theorem 23, we require the following general lemma about ape-
riodic binary words.
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Lemma 24. Let z be an aperiodic binary word. Then for all n ≥ 2 we have
Ln(z) ∩ L 6= ∅ for each L ∈ {0A∗1, 1A∗0, 0A∗0 ∪ 1A∗1}. Furthermore, for all
n ≥ 2 and a ∈ {0, 1}, we have

(Ln(z) ∩ aA∗a) ∪ (Ln+1(z) ∩ aA∗a) 6= ∅.

Proof. If Ln(z) ∩ aA∗a = ∅ for some n, then z is ultimately periodic: for all
m ≥ 0, if zm = a, then zm+kn−1 = a for all k ≥ 1. Consequently, for each
0 ≤ m ≤ n − 1, the word (zm+kn−1)k≥1 is either 0ω or 0`1ω for some ` ≥ 0.
It follows that z is eventually periodic. Also, since z is aperiodic, there is a
right special factor of length n − 1 ≥ 1 of the form av or av, in which case
ava ∈ Ln(z) ∩ aA∗a 6= ∅ (resp., ava ∈ Ln(z) ∩ aA∗a 6= ∅).

Let us prove the second part of the statement. Assume for a contradiction
that Ln(z) ∩ 0A∗0 = ∅ = Ln+1(z) ∩ 1A∗1 for some n ≥ 2. Consider a factor of
the form z = 1z1 · · · zn−1zn · · · z2n−1 of length 2n. Since Ln+1(z)∩ 1A∗1 = ∅, we
have zn = 0. Further, since Ln(z) ∩ 0A∗0 = ∅, we have z1 = 1. Repeating the
argument we have zn+i−1 = 0 and zi = 1 for all i ≥ 1 which is a contradiction
when i = 1 and i = n. ut

Definition 25. Let j ≥ 0. For any factor u of ϕj(y) of length at least 2j − 1
there exist a, b ∈ {0, 1} and z ∈ {0, 1}∗ with azb ∈ L(y) such that u = pϕj(z)s
for some proper suffix p of ϕj(a) and some proper prefix s of ϕj(b). (Note that
z could be empty.) The triple (p, ϕj(z), s) is called a ϕj-factorization2 of u. The
word azb (resp., zb; az; z) is said to be the corresponding ϕj-ancestor of u when
p, s are non-empty (resp., p = ε and s 6= ε; p 6= ε and s = ε; p = s = ε).

Since the words ϕj(0) and ϕj(1) begin with different letters, we notice that
if s 6= ε in a ϕj-factorization of a word, then the letter b is uniquely determined.
Similarly the jth images of the letters end with distinct letters, whence the letter
a is uniquely determined once p 6= ε.

p ϕj(z) s

a z b

Fig. 2. A ϕj-factorization and its ϕj-ancestor.

2 We warn the reader that the term ϕ-factorization has a different meaning in [11].
Our ϕj-factorization corresponds to their “factorization of order j”.
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Proof (of Theorem 23). Let j ∈ {1, . . . , k}. Notice all factors of length at most
2j − 1 of x = ϕk(y) occur already in the Thue–Morse word t: such factors
appear in factors of the form ϕj(ab), ab ∈ L(y). Since ϕj(ab) appears in the
Thue–Morse word for all a, b ∈ {0, 1}, it follows from (2) that all such words are
pairwise j-binomially non-equivalent. Hence we have shown that b(j)

x (n) = px(n)
for n ≤ 2j − 1.

In the remaining of the proof we let n ≥ 2j . We show that Ln(t)/∼j =
Ln(x)/∼j by double inclusion, which suffices for the claim since Theorem 23
holds true for x = t.

Let u ∈ L(x); we show that there exists v ∈ L(t) such that u ∼j v. To this
end, let z = ϕk−j(y) so that x = ϕj(z). Let u have ϕj-factorization pϕj(u′)s
with ϕj-ancestor au′b ∈ L(z). The Thue–Morse word contains a factor av′b,
where |v′| = |u′| (see, e.g., [11, Prop. 33]). It follows that t contains the factor
v := pϕj(v′)s. Now u ∼j v because ϕj(u′) ∼j ϕj(v′) by Theorem 5.

Let then u ∈ L(t) have ϕj-factorization pϕj(u′)s with ϕj-ancestor au′b ∈
L(t). As before we show that there exists v ∈ L(x) such that u ∼j v. By the
previous lemma, z contains, at each length, factors from both the languages 0A∗1
and 1A∗0. Hence, if a and b above are distinct, we may argue as in the previous
paragraph to obtain the desired conclusion. Assume thus that a = b. Again the
previous lemma says that z contains a factor of length |u′| + 2 in the language
1A∗1 ∪ 0A∗0. Assume without loss of generality that it contains a factor from
0A∗0. Then, if a = b = 0, we may again argue as in the previous paragraph. So
assume now that a = b = 1 and L|u|′+2 z∩1A∗1 = ∅. Notice that by the previous
lemma, L|u|′+2 z ∩ 0A∗0 6= ∅ and, further, L|u|′+2±1 z ∩ 0A∗0 6= ∅. To conclude
with the proof, we have four cases to consider depending on the length of p and
s which can be less or equal, or greater than 2j−1.

Case 1: Assume that p is a suffix of ϕj−1(0) and s is a prefix of ϕj−1(1). For
all v′ such that |v′| = |u′| − 1, ϕj(u′) ∼j ϕj(v′1) by Theorem 5. By the Transfer
Lemma (Lemma 6), ϕj(v′1) ∼j ϕj−1(1)ϕj(v′)ϕj−1(0). Consequently

u ∼j pϕj−1(1)ϕj(v′)ϕ(0)j−1s =: v

where pϕj−1(1) is a suffix of ϕj(0) and ϕ(0)j−1s is a prefix of ϕj(0). Hence v
is a factor of ϕj(0v′0). Recall that a factor of the form 0v′0 appears in z by
assumption, and thus ϕj(0v′0) appears in x. To recap, we have shown a factor
v of x j-binomially equivalent to u.

Case 2: Assume that p = p′ϕj−1(0) where p′ is a suffix of ϕj−1(1) and s
is a prefix of ϕj−1(1). For all v′ such that |u′| = |v′|, applying Theorem 5 and
Lemma 6,

u ∼j p′ϕj(v′)ϕj−1(0)s =: v.

Hence v is a factor of ϕj(0v′0), and such a factor appears in z by assumption.
We conclude as above.

Case 3: Assume that p is a suffix of ϕj−1(0) and s = ϕj−1(1)s′ where s′
is a prefix of ϕj−1(0). For all v′ such that |u′| = |v′|, applying Theorem 5 and
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Lemma 6, u ∼j pϕj−1(1)ϕj(v′)s′ =: v and the conclusion is the same as in the
previous case.

Case 4: Assume that p = p′ϕj−1(0) and s = ϕj−1(1)s′ where p′ is a suffix of
ϕj−1(1) and s′ is a prefix of ϕj−1(0). For all v′ such that |v′| = |u′|+ 1, applying
Theorem 5 and Lemma 6,

u ∼j p′ϕj−1(0)ϕj−1(1)ϕj(u′)s′ ∼j p′ϕj(w′)s′ =: v

Hence v is a factor of ϕj(0w′0) and the conclusion is similar to Case 1.

ut

Remark 26. If y is an aperiodic infinite word, then for all a, b ∈ {0, 1} and n ≥ 2
we have Ln(ϕ(y))∩aA∗b 6= ∅. Indeed, for a 6= b the claim follows from Lemma 24.
For a = b, we observe the following: for even length factors n = 2`, ` ≥ 1, a factor
aya of y of length ` − 1 (which exists by Lemma 24) gives a factor aaϕ(y)aa
in z, hence we have the factor aza with |z| = 2` − 2. For odd length factors
n = 2`+ 1, ` ≥ 1, we have that a factor of the form cyc, |y| = `− 1, of y (such
a factor exists for some c ∈ {0, 1} by Lemma 24) gives ccϕ(y)cc. Consequently
z contains a factor in aA∗a of length n.

Applying this observation to z when j < k in the above proof shows that
Ln(z)∩ 1A∗1 6= ∅ for all n ≥ 2, and thus some of the arguments are unnecessary
in the case j < k.

4.2 The (k + 1)-Binomial Complexity

The previous subsection was dealing with the j-binomial equivalence in x =
ϕk(y), where y is an aperiodic binary word and j ≤ k. Here, we are concerned
with the (k+1)-binomial equivalence in such words. To this end, we need to have
more control on the k-binomial equivalence in x. First, we have a closer look at
the ϕj-factorizations of a word and in particular at the associated prefixes and
suffixes.

Definition 27 ([11, Def. 43]). Let j ≥ 1. As usual, we let · denote the com-
plementation morphism defined by a = 1 − a, for a ∈ {0, 1}. Let us define the
equivalence relation ≡j on A<2j ×A<2j by (p1, s1) ≡j (p2, s2) whenever there
exists a ∈ A such that one of the following situations occurs:

1. |p1|+ |s1| = |p2|+ |s2| and
(a) (p1, s1) = (p2, s2);
(b) (p1, ϕ

j−1(a)s1) = (p2ϕ
j−1(a), s2);

(c) (p2, ϕ
j−1(a)s2) = (p1ϕ

j−1(a), s1);
(d) (p1, s1) = (s2, p2) = (ϕj−1(a), ϕj−1(ā));

2.
∣∣|p1|+ |s1| − (|p2|+ |s2|)

∣∣ = 2j and
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(a) (p1, s1) = (p2ϕ
j−1(a), ϕj−1(ā)s2);

(b) (p2, s2) = (p1ϕ
j−1(a), ϕj−1(ā)s1).

The next lemma is essentially [11, Lem. 40 and 41] (except that with an
arbitrary word y instead of the Thue–Morse word t, we cannot use the fact
that t is overlap-free, so factors such as 10101 may appear in y). To each ϕj-
factorization there is a natural corresponding ϕj−1-factorization, though two ϕj-
factorizations may correspond to the same ϕj−1-factorization. The next lemma
says that in such a case the ϕj-factorizations are related.

Lemma 28. Let j ≥ 1. Let u be a factor of ϕj(y) such that |u| ≥ 2j − 1 with
a ϕj-factorization of the form (p, ϕj(z), s) and z0zzn+1 being the corresponding
ϕj-ancestor (where according to Definition 25 z0, zn+1 or z could be empty). The
factor u has a unique ϕj-factorization if and only if the word z0zzn+1 contains
both letters 0 and 1. Otherwise stated, the ϕj-factorization is not unique if and
only if u is a factor of ϕj−1(m) with m ∈ (01)∗∪(10)∗∪1(01)∗∪0(10)∗. Moreover,
when the ϕj-factorization is not unique, i.e. if there is another ϕj-factorization
(p′, ϕj(z′), s′), then (p, s) ≡j (p′, s′).

Proof. If |u| ≥ 2j − 1, u contains at least a factor ϕj−1(a) and thus at least
one ϕj-factorization of the prescribed form exists with z = z1 · · · zn and n ≥ 0
(n = 0 if z = ε).

We first prove the claim for uniqueness by induction on j. For j = 1, assume
that u = z0ϕ(z1) · · ·ϕ(zn)zn+1 with z0, zn+1 ∈ {0, 1, ε}. Suppose, as in the state-
ment, that both letters 0 and 1 occur in z0 · · · zn+1. Then we have zizi+1 = 01 (or
similarly 10) for some i. This means that u contains the factor 11 forcing unique-
ness of this kind of a factorization: 11 6∈ {ϕ(0), ϕ(1)}. Assume that the property
holds true up to j − 1 and prove it for j ≥ 2. Let u = pϕj(z1) · · ·ϕj(zn)s be a
ϕj-factorization and assume that zizi+1 = 01 for some i. To this factorization,
we have a corresponding factorization of the form

u = pϕj−1(z1)ϕj−1(z1) · · ·ϕj−1(zn)ϕj−1(zn)s.

Notice that p is a suffix of ϕj−1(z0) if |p| < 2j−1 and otherwise, p = p′ϕj−1(z0)
with p′ a suffix of ϕj−1(z0). Similarly, s is a prefix of ϕj−1(zn+1) if |s| < 2j−1

and otherwise, s = ϕj−1(zn+1)s′ with s′ a prefix of ϕj−1(zn+1). Observe that
zizizi+1zi+1 = 0110. So by the induction hypothesis, the ϕj−1-factorization of
u is unique. There are at most two ϕj-factorizations corresponding to a ϕj−1-
factorization. But since ϕj−1(1)ϕj−1(1) /∈ {ϕj(0), ϕj(1)}, the claimed uniqueness
follows.

We then prove the claim for non-unique factorizations. Assume that z0 =
z1 = · · · = zn+1 = 0. Then

u = pϕj(0) · · ·ϕj(0)s = pϕj−1(0)ϕj−1(1) · · ·ϕj−1(0)ϕj−1(1)s.

If |p| ≥ 2j−1, then p = p′ϕj−1(1) with p′ a suffix of ϕj−1(0) (and thus, a suffix of
ϕj(1)), otherwise set p′ = pϕj−1(0). Similarly, if |s| ≥ 2j−1, then s = ϕj−1(0)s′
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with s′ a prefix of ϕj−1(1), otherwise s′ = ϕj−1(1)s. Notice that the correspond-
ing ϕj−1-factorization of u is unique by the previous part. Now u can also be
written as

p′ϕj−1(1)ϕj−1(0) · · ·ϕj−1(1)ϕj−1(0)s′ = p′ϕj(1) · · ·ϕj(1)s′.

There are no other ϕj-factorizations due to the uniqueness of the ϕj−1 factor-
ization of u. To conclude the claim in this case, a straightforward case analysis
shows that (p, s) ≡j (p′, s′):

If |p| ≥ 2j−1 and if |s| ≥ 2j−1, then (p, s) = (p′ϕj−1(1), ϕj−1(0)s′).
If |p| ≥ 2j−1 and if |s| < 2j−1, then (p, ϕj−1(1)s) = (p′ϕj−1(1), s′).
If |p| < 2j−1 and if |s| ≥ 2j−1, then (pϕj−1(0), s) = (p′, ϕj−1(0)s′).
If |p| < 2j−1 and if |s| < 2j−1, then (pϕj−1(0), ϕj−1(1)s) = (p′, s′). ut

We have the following theorem, the proof of which is essentially the proof
of [11, Thm. 48]. Indeed, the lemmas leading to its proof do not require that
the factors u and v are from the Thue–Morse word, only that they have ϕj-
factorizations. We note that [11, Thm. 48] is stated for j ≥ 3. The case j = 1
is trivial. The case j = 2 is obtained by looking closely at the proof of [11,
Thm. 34].

Theorem 29. Let y be an aperiodic binary word. Let k ≥ j ≥ 1. Let u and v
be equal-length factors of x = ϕk(y) with ϕj-factorizations u = p1ϕ

j(z)s1 and
v = p2ϕ

j(z′)s2. Then u ∼j v if and only if (p1, s1) ≡j (p2, s2).

We then turn to the (k+ 1)-binomial equivalence in x. We require some lem-
mas. A straightforward consequence of (3) together with the identities

∑
x∈A`

(
u
x

)
=(|u|

`

)
, ` ≥ 1, is the following observation.

Lemma 30. Let ϕ : 0 7→ 01, 1 7→ 10 be the Thue–Morse morphism. Let u ∈
{0, 1}∗. Then(
ϕ(u)

0

)
= |u|;

(
ϕ(u)
01

)
= |u|0 +

(
|u|
2

)
;
(
ϕ(u)
011

)
=
(
u

01

)
+
(
|u|0
2

)
+
(
|u|
3

)
.

Proof. For example,
(
ϕ(a)
011
)

= 0 =
(
ϕ(a)

11
)
for both a ∈ {0, 1}. Similarly

(
ϕ(a)
b

)
= 1

for letters a, b ∈ {0, 1}. Therefore(
ϕ(u)
011

)
=

∑
x1,x2∈A

(
u

x1x2

) ∑
011=e1e2
ei∈A+

(
ϕ(x1)
e1

)(
ϕ(x2)
e2

)
+
∑
|x|=3

(
u

x

)

=
(
u

00

)
+
(
u

01

)
+
(
|u|
3

)
.

and the claim follows. ut

Lemma 31. Let u, v be two binary words of equal length. For k ≥ 1, we have(
ϕk(u)
01k

)
−
(
ϕk(v)
01k

)
= 2(k−1)(k−2)/2(|u|0 − |v|0).
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In particular, u 6∼1 v implies ϕk(u) 6∼k+1 ϕ
k(v). Moreover, if u ∼1 v, for k ≥ 1,

we have (
ϕk(u)
01k+1

)
−
(
ϕk(v)
01k+1

)
= 2(k−1)(k−2)/2

((
u

01

)
−
(
v

01

))
.

In particular, u 6∼2 v implies ϕk(u) 6∼k+2 ϕ
k(v).

Proof. The case k = 1 is deduced from Lemma 30. Then assume k ≥ 2. We en-
courage the reader to refer to [11] for details that would be too long to reproduce
here. From [11, Rem. 23], we have the following expression(

ϕk(u)
01k

)
−
(
ϕk(v)
01k

)
=

∑
x∈fk(01k)

mfk(01k)(x)
[(
u

x

)
−
(
v

x

)]
,

where the map f is defined to take into account the multiple ways factors 01 or
10 may occur in a word: f(u) is a multiset of words of length shorter than u; see
[11, Def. 15 and 17]. We let the coefficient mfk(01k)(x) denote the multiplicity
of x as an element of the multiset fk(01k). It can be shown that the multiset
fk(01k) only contains the elements 0 and 1. Therefore we obtain(

ϕk(u)
01k

)
−
(
ϕk(v)
01k

)
= mfk(01k)(0) (|u|0 − |v|0) +mfk(01k)(1) (|u|1 − |v|1) .

To conclude with the proof, we use two facts. The first is that |u|1 − |v|1 =
−(|u|0 − |v|0) since u, v have equal length. The second is that

mfk(01k)(0)−mfk(01k)(1) = mfk−1(01k)(01)−mfk−1(01k)(10) = 2(k−1)(k−2)/2,

which follows from [11, Prop. 28]. For the second part, the same reasoning may
be applied to obtain(

ϕk(u)
01k+1

)
−
(
ϕk(v)
01k+1

)
=

∑
x∈fk(01k+1)

mfk(01k+1)(x)
[(
u

x

)
−
(
v

x

)]
.

The multiset fk(01k+1) only contains 0, 1, 00, 01, 10, 11. But since it is assumed
that u ∼1 v, the only (potentially) non-zero terms in the sum correspond to
x ∈ {01, 10}. Then the observation

(
u
01
)
−
(
v
01
)

=
(
v
10
)
−
(
u
10
)
suffices to conclude.

ut

Next we consider the structure of factors of the image of an arbitrary binary
word y.

Definition 32. For n ≥ 1 we let S(n) = Ln(y). Further, for all a, b ∈ {ε, 0, 1}
such that ab 6= ε, we define Sa,b(n) = Ln+|ab|(y) ∩ aA∗b. We call these sets
factorization classes of order n.
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Consider now a factor u of ϕ(y). We associate with u some factorization
classes as follows. Let aϕ(u′)b be the ϕ-factorization of u with ϕ-ancestor au′b ∈
L(y). If ab = ε, we associate the factorization class S(|u′|). For ab 6= ε, we
have that u is a factor of ϕ(au′b). In this case we associate the factorization
class Sa,b(|u′|). If u is associated with a factorization class T , we write u |= T ,
otherwise we write u 6|= T .

Observe that u |= S(n) implies that |u| = 2n. Also, for ab 6= ε, u |= Sa,b(n)
implies that |u| = 2n+ |ab|. Notice also that a factor u of ϕ(y) can be associated
with several factorization classes: take, e.g., (10)`1 = 1(01)` which is associated
with both Sε,1(`) and S0,ε(`), or (01)`+1 = 0(10)`1 which is associated with both
S(`+ 1) and S1,1(`).

Lemma 33. For two 2-binomially equivalent factors u, v ∈ L(ϕ(y)), if u |= T
for some factorization class T , then v |= T . Furthermore, a factor u of y is
associated with distinct factorization classes if and only if u ∈ L = (01)∗ ∪
(10)∗ ∪ 1(01)∗ ∪ 0(10)∗.

Proof. Even-length factors. Let u ∼2 v with |u| = 2n. If u |= Sa,a(n−1) with
a ∈ {0, 1}, then u is of the form aϕ(x)a with |x| = n− 1, whence |u|a = n + 1.
Factors v′ 6|= Sa,a(n − 1) of length 2n have |v′|a ≤ n by inspection. Hence also
v |= Sa,a(n−1). The above arguments also show that u is associated with exactly
one factorization class. For the latter claim, we note that u has even length and
begins and ends with the same letter, so it cannot appear in the language L.

Assume then that u 6|= Sa,a(n−1), a ∈ {0, 1}. Then v 6|= Sa,a(n−1), a ∈ {0, 1}
by the previous observation. Notice that we may assume n ≥ 2 as otherwise we
have |u| = 2 and the claim is trivial (2-binomial equivalence is equality in this
case). We compare the values of

(
y
01
)
for y associated with S1,1(n−1), S0,0(n−1),

and S(n), respectively.

Case 1: y |= S1,1(n − 1). We have
(
y
01
)
≥
(
n
2
)

+ n, and equality holds for
y = (01)n. Indeed, say y = 0ϕ(x)1 for some x ∈ {0, 1}n−1. Then we have by
Lemma 30(
y

01

)
=
(
ϕ(x)
01

)
+ |ϕ(x)|0 + |ϕ(x)1|1 = |x|0 +

(
|x|
2

)
+ 2|x|+ 1 = |x|0 +

(
n

2

)
+n,

since |x| = n− 1. Equality now holds when |x|0 = 0, i.e., x = 1n−1.
Case 2: y |= S0,0(n − 1). We have

(
y
01
)
≤
(
n
2
)
, and equality holds when

y = (10)n. Indeed, say y = 1ϕ(x)0 for some x ∈ {0, 1}n−1. Then(
y

01

)
=
(
ϕ(x)
01

)
= |x|0 +

(
|x|
2

)
= |x|0 +

(
n

2

)
− (n− 1).

Since |x| = n− 1, we have
(
y
01
)
≤
(
n
2
)
. Equality holds when x = 0n−1.

Case 3: y |= S(n). We have
(
n
2
)
≤
(
y
01
)
≤
(
n
2
)

+ n. The former equality is
attained with y = (10)n and the latter with y = (01)n. Indeed, say y = ϕ(x′)
for some x′ ∈ {0, 1}n. We have

(
y
01
)

=
(
n
2
)

+ |x′|0 from Lemma 30. Therefore,(
n
2
)
≤
(
y
01
)
≤
(
n
2
)

+n. The former equality is attained with x′ = 1n and the latter
with x′ = 0n.
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We conclude that u and v are associated with a common factorization class. In
fact, the latter claim is also implied from the above: a word can be associated
with two (and only two) factorization classes if and only if it appears in L. This
concludes the proof in the case of even length factors.

Odd-length factors. Assume without loss of generality that u |= Sa,ε(n)
with u = aϕ(u′) of length 2n+1. Recalling that |ϕ(u′)|0 = |u′| = n, if u ∼2 v with
u and v associated with distinct factorization classes, then necessarily v ∈ Sε,a,
say v = ϕ(v′)a. We show that this is impossible, unless u = v ∈ L.

Indeed, assuming that we have 2-binomial equivalence, we have(
aϕ(u′)

01

)
=
(
ϕ(u′)

01

)
+ δ0(a)

(
ϕ(u′)

1

)
= |u′|0 +

(
n

2

)
+ δ0(a)n (6)

which is equal to(
ϕ(v′)a

01

)
=
(
ϕ(v′)

01

)
+ δ1(a)

(
ϕ(v′)

0

)
= |v′|0 +

(
n

2

)
+ δ1(a)n (7)

where δa(b) = 1 if a = b, otherwise δa(b) = 0. Rearranging, we get |u′|0− |v′|0 =
(δ1(a) − δ0(a))n ∈ {±n}. This implies, without loss of generality, that u′ = 0n,
v′ = 1n, and a = 1. But then u = 1(01)n = (10)n1 = v ∈ L, as claimed. ut

The next result characterizes (k+1)-binomial equivalence in x = ϕk(y) when
y is an arbitrary binary word.

Proposition 34. Let u and v be factors of length at least 2k − 1 of x with the
ϕk-factorizations u = p1ϕ

k(z)s1 and v = p2ϕ
k(z′)s2. Then u ∼k+1 v and u 6= v

if and only if z ∼1 z
′, z′ 6= z, and (p1, s1) = (p2, s2).

Notice that the proposition claims that those factors of x having more than one
ϕk-factorization are (k + 1)-binomially equivalent only to themselves (in L(x)).

Proof. The “if”-part of the statement follows by a repeated application of Propo-
sition 21 on the Thue–Morse morphism together with the fact that the morphism
is injective.

Let us assume that u ∼k+1 v for some distinct factors. It follows that u ∼k
v, which implies that (p1, s1) ≡k (p2, s2) by Theorem 29. Next we show that
(p1, s1) = (p2, s2) and z ∼1 z′. We have the following case distinction from
Definition 27:

(1)(a): We have that (p1, s1) = (p2, s2). By deleting the common prefix p1
and suffix s1, we are left with the equivalent statement ϕk(z) ∼k+1 ϕ

k(z′). If
z 6∼1 z

′, then we have a contradiction with Lemma 31. The desired result follows
in this case.

In the remaining cases, we assume towards a contradiction that (p1, s1) 6=
(p2, s2).

(1)(b): Suppose that (p1, s2) = (p2ϕ
k−1(a), ϕk−1(a)s1). Deleting the common

prefixes p2 and suffixes s1, we are left with ϕk−1(aϕ(z)) ∼k+1 ϕk−1(ϕ(z′)a).
Now aϕ(z) ∼1 ϕ(z′)a, but aϕ(z) 6∼2 ϕ(z′)a by Lemma 33 (otherwise aϕ(z) =
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ϕ(z′)a and thus u = v contrary to the assumption). Lemma 31 then implies that
ϕk−1(aϕ(z)) 6∼k+1 ϕ

k−1(ϕ(z′)a), which is a contradiction.
(1)(c): Suppose that (p2, ϕ

k−1(a)s2) = (p1ϕ
k−1(a), s1). This is symmetric to

the previous case.
(1)(d): Suppose that (p1, s1) = (s2, p2) = (ϕk−1(a), ϕk−1(a)). We thus have

directly ϕk−1(aϕ(z)a) ∼k+1 ϕ
k−1(aϕ(z)a). The claim follows by an argument

similar to that of in Case (1)(b).
(2)(a): Suppose that (p1, s1) = (p2ϕ

k−1(a), ϕk−1(ā)s2). After removing com-
mon prefixes and suffixes, we are left with ϕk−1(aϕ(z)a) ∼k+1 ϕ

k−1(ϕ(z′)). We
have that aϕ(z)a ∼1 ϕ(z′), but by Lemma 33 aϕ(z)a 6∼2 ϕ(z′) (otherwise z = a`

and z′ = a`+1, implying that u = v, a contradiction). This is again a contradic-
tion by Lemma 31.

(2)(b): Suppose that (p2, s2) = (p1ϕ
j−1(a), ϕj−1(ā)s1). This is symmetric to

the previous case. ut

Notice that Theorem 23 and Proposition 34 have the following corollary:

Corollary 35. Let x = ϕk(y), where y is an arbitrary aperiodic binary word.
We have

b(1)
x ≺ b(2)

x ≺ . . . ≺ b(k)
x ≺ b(k+1)

x .

Proof. Recall that y contains arbitrarily long factors of the form aza, a ∈
{0, 1}. Therefore x contains the k-binomially equivalent (by Lemma 6) factors
ϕk−1(a)ϕk(z) and ϕk(z)ϕk−1(a). However, by Proposition 34 these factors are
either not (k + 1)-binomially equivalent, or ϕk−1(a)ϕk(z) = ϕk(z)ϕk−1(a). The
latter happens when ϕk(z) = ϕk−1(a)` for some ` ≥ 0, and thus only when ` = 0
and z = ε. (Indeed, it is not hard to prove that if w is primitive so is ϕ(w).)
This observation suffices for showing b(k)

x ≺ b(k+1)
x . The rest of the claim follows

by Theorem 23. ut

5 Answer to Question B and Beyond

The word 0ω gives b(1) = p. The Fibonacci word f = 0100101001001010010 · · · ,
the fixed point of the morphism 0 7→ 01, 1 7→ 0, is a pure morphic word such
that 2 = b(1)

f ≺ b(2)
f = pf by Theorem 8.

Remark 36. We notice that b(1)
x = px cannot be attained for an aperiodic word

x (indeed, there must exist a factor ava, with a ∈ A and v containing a letter
different to a, whence av ∼1 va with av 6= va). In fact, the only ultimately
periodic words over an m-letter alphabet {a1, . . . , am} for which the equality
holds are of the form an1

1 an2
2 · · · aωm, ni ∈ N (up to permutation of the letters).

To answer Question B for larger values of k, we take images of a Sturmian
word s by a power of ϕ and we prove the following result.
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Theorem 37. Let ϕ be the Thue–Morse morphism. Let s be a Sturmian word.
For each k ≥ 0, the word sk := ϕk(s) has

b(1)
sk ≺ b(2)

sk ≺ · · · ≺ b(k+1)
sk ≺ b(k+2)

sk = psk .

In particular, putting the Fibonacci word for s gives a morphic positive answer
to Question B.

Proof. Observe that sk has bounded (k + 1)-binomial complexity as a straight-
forward application of Theorem 17 (because s has bounded abelian complexity),
and thus b(k+1)

sk ≺ psk . By Corollary 35, we need only to show that b(k+2)
sk = psk .

Let u and v be distinct factors of sk. Assume they are (k + 2)-binomially
equivalent. By Proposition 34, we have that u = pϕk(z)s, v = pϕk(z′)s with
z ∼1 z

′. If z 6= z′, then z 6∼2 z
′ by Theorem 8. But then Lemma 31 implies that

ϕk(z) 6∼k+2 ϕ
k(z′), contradicting the assumption. Hence we deduce that z = z′,

but then u = v contrary to the assumption. ut

Remark 38. In the above proof, since s is Sturmian, Theorem 8 says distinct
factors are not 2-binomially equivalent. This means that Theorem 37 applies
to and only to aperiodic words s such that b(2)

s = ps. The “only if”-part of the
statement follows by a repeated application of Proposition 21 on the Thue–Morse
morphism together with the fact that the morphism is injective.

We answered Question B by providing a word with bounded abelian com-
plexity. We can therefore strengthen the question with the following extra re-
quirement.

Question C. For each ` ≥ 1, does there exist a word w (depending on `) such
that b(1)

w is unbounded and

b(1)
w ≺ b(2)

w ≺ · · · ≺ b(`−1)
w ≺ b(`)

w = pw?

If the answer is positive, can we find a (pure) morphic such word w?

The following word answers the question for ` = 3 in the positive.

Theorem 39. The word h = 0112122122212222122222 · · · fixed point of the
morphism 0 7→ 01, 1 7→ 12, and 2 7→ 2 is such that its abelian complexity b(1)

h is
unbounded and b(1)

h ≺ b(2)
h ≺ b(3)

h = ph.

We obtain the previous theorem by combining the following two results.

Proposition 40. The abelian complexity b(1)
h of h is unbounded and b(1)

h (n) <
b(2)

h (n) < ph(n) for all n ≥ 6.

Proof. We claim that b(1)
h is of the order Θ(

√
n). Clearly it suffices to show the

claim for the word h′ = 0−1h, as removing the first zero always removes exactly
one abelian equivalence class: the only one that contains a zero. The resulting
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word h′ is effectively a binary word; it is evident that the maximal number of
1’s in a word of length n is attained by the prefix of h′. This value equals the
maximal m for which

∑m
i=1 i =

(
m+1

2
)
≤ n. Clearly m = Θ(

√
n). By Lemma 2,

we conclude that the abelian complexity of h is Θ(
√
n).

Since the abelian complexity of h if unbounded, so is its 2-binomial complex-
ity. However, the 2-binomial complexity does not equal the factor complexity
at lengths n ≥ 6: h contains both the factors 12n−21 and 212n−412 which are
readily seen to be 2-binomially equivalent. (One may also invoke a result from
[6] for binary alphabets.)

Finally observe that the abelian complexity does not coincide with the 2-
binomial complexity either: the factors 2x12y with x + y = n − 1 are abelian
equivalent but not 2-binomially equivalent. This ends the proof. ut

Proposition 41. We have b(3)
h = ph.

Proof. We may again discard the first 0 of h, as the prefix is the only factor
containing a zero. Assume to the contrary that there exist 3-binomially equiv-
alent distinct factors u1 and u2 in h′ = 0−1h. The two factors must contain
the same number of 1’s, and hence at least one under the assumption that they
are distinct. If the factors are of the form ui = 2xi12yi with x1 6= x2, then the
factors are not even 2-binomially equivalent. So the words contain at least two
1’s. By the structure of h, we may write ui = 2xi12ai12ai+11 · · · 12ai+t12yi for
some t ≥ 0, ai ∈ N, xi < ai and yi ≤ ai + t+ 1 for all i ∈ {1, 2}. If a1 = a2, then
x1 6= x2, and we again deduce that the factors are not even 2-binomially equiv-
alent. So we must have a1 < a2 without loss of generality. We show that in this
case the factors are not 3-binomially equivalent. Indeed, consider the coefficient( ·

121
)
. For i = 1, 2, we clearly have(

ui
121

)
=
(
vi

121

)
, (8)

where vi = 12ai12ai+11 · · · 12ai+t1 is obtained from ui by deleting a prefix and a
suffix. But, since a1 < a2, notice now that v1 is a proper subword of v2, meaning
that each occurrence of 121 in v1 has a corresponding occurrence in v2. Clearly
v2 will have more occurrences of 121. This combined with (8) gives the claim.

ut

6 Concluding Remarks

A complete answer to Question C is far from obvious; especially if one wishes
to obtain a pure morphic word. Conversely, for a non-periodic morphic word
w which is not the fixed point of a Parikh-collinear morphism, one can wonder
about the existence of a minimal value m for which the binomial and factor
complexities would coincide. Does there exists m ∈ N such that b(m)

w = pw?
Even with an apparently simple situation, it is far from obvious. As stated

in the introduction, computing the k-binomial complexity of a particular in-
finite word remains challenging. We can prove that the period doubling word
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pd = 01000101010001 · · · , fixed point of σ : 0 7→ 01, 1 7→ 00, has the follow-
ing properties [10]. Its abelian complexity b(1)

pd is unbounded. For the 2-binomial
complexity, we can show that b(2)

pd(2n) = ppd(2n) for all n, but b(2)
pd(n) < ppd(n)

for all n 6= 2m. Otherwise stated, b(1)
pd ≺ b(2)

pd ≺ ppd. Computer experiments
suggest that b(3)

pd ≺ b(4)
pd = ppd.

Proposition 42. Let w be the fixed point of an injective morphism f such that
Mf is invertible. If there exist two distinct factors u and v of the same length
such that u ∼k v, then b(k)

w ≺ pw.

Proof. One can define an extended Parikh vector Ψk(u) of size |A|+ |A|2 + · · ·+
|A|k encoding the binomial coefficients for all subwords of length at most k. As
in [12, Lemma 9], an extended adjacency matrix M ′f can be defined accordingly
and it satisfies M ′fΨk(u) = Ψk(f(u)). It can be shown that this matrix is block-
triangular and the square blocks on the main diagonal are the Kronecker prod-
ucts of i copies of Mf : Mf , Mf ⊗Mf , . . . , Mf ⊗· · ·⊗Mf , for i = 1, . . . , k. Since
Mf is invertible, M ′f is also invertible (its determinant is a power of det(Mf )).
Using this fact, observe that u ∼k v if and only if f(u) ∼k f(v). So we have found
infinitely many pairwise distinct factors f i(u) and f j(u) of the same length that
are k-binomially equivalent. ut
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