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 26 

Summary 27 

Background: Ileal and colonic Crohn’s disease seem to be two separate entities. 28 

Aims: To describe the main physiological distinctions between the small and the large 29 

intestine and to analyse the differences between ileal and colonic Crohn’s disease. 30 

Methods: The relevant literature was critically examined and synthesised. 31 

Results: In physiological situation, the small and the large intestine present fundamental 32 

distinctions (anatomy, cellular populations, immune defence, microbiota). The differences 33 

between ileal and colonic Crohn’s disease are highlighted by heterogeneous body of evidence 34 

including clinical features (natural history of the disease, efficacy of treatments and 35 

monitoring), epidemiological data (smoking status, age, gender) and biological data (genetics, 36 

microbiota, immunity, mesenteric fat). However, the contribution of these factors to disease 37 

location remains poorly understood. 38 

Conclusion: The classification of ileal and colonic Crohn’s disease as distinct subphenotypes   39 

is well supported by the literature.  The comprehension of these differences could be exploited 40 

to develop more individualised patient care. 41 
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Introduction 51 

Crohn’s disease (CD) is characterised by relapsing-remitting phases related to transient 52 

inflammatory flares. Contrary to ulcerative colitis (UC), the other inflammatory bowel disease 53 

(IBD), inflammation in CD can be transmural and can affect all the gastrointestinal tract. 54 

However, CD is most frequently located in the ileum and/or the colon1.  55 

Although the introduction of anti-tumor necrosis factor-α (TNFα) antibodies and other 56 

biologic treatments revolutionised the management of CD patients, new drugs are necessary 57 

for patients exhibiting a primary (10-30%) or a secondary (23-46%) non-response to biologic 58 

treatments2. Furthermore, the prediction of clinical outcomes and the non-invasive monitoring 59 

of disease activity are still unmet clinical needs. These observations together with the 60 

heterogeneous presentation of CD plead for the development of more personalised 61 

approaches3. In this context, disease location appears as a simple way by which patients could 62 

be stratified and next beneficiate of better fitted therapy and monitoring. Indeed, ileal and 63 

colonic CD present distinct features that might be exploited to better individualise the 64 

management of patients4,5. 65 

In 2001, it was showed for the first time that disease location, contrary to disease 66 

behaviour, remains relatively stable during the natural history of CD6. This observation highly 67 

suggested the presence of genetic factors influencing disease location6, this assumption was 68 

thereafter confirmed. Single nucleotide polymorphisms (SNPs) have been associated with 69 

ileal (intermediate conductance calcium-activated potassium channel protein 4: KCNN4; 70 

leucine-rich repeat kinase 2: LRRK2; nucleotide-binding oligomerization domain-containing 71 

2: NOD2; transcription factor 4: TCF4; low-density lipoprotein receptor-related protein 6: 72 

LRP6; autophagy-related 16-like gene: ATG16L1) or colonic CD (major histocompatibility 73 

complex: MHC)1,7–12. The influence of genetics on disease location is also supported by a 74 

genetic risk score (including known risk loci for IBD) which situated ileocolonic CD between 75 
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ileal and colonic CD1. However, CD is a complex disorder where genetics is only one piece of 76 

a complex puzzle. Currently, a heterogeneous body of evidence supports the existence of 77 

distinct pathological processes between ileal and colonic CD. By integrating and synthesising 78 

these findings, the present review aims to provide a large overview of the topic. As a 79 

prerequisite, we first describe the main constitutive factors (anatomy, cellular populations, 80 

immune defence, microbiota) distinguishing the small from the large intestine. A graphical 81 

summary of this section is presented in Figure 1.  82 

 83 

1-Main physiological features distinguishing the small from the large intestine 84 

1.1-General considerations 85 

At the anatomical level, the intestinal epithelium is relatively flat in the colon while it presents 86 

luminal projections in the ileum due to the finger-like villi13. In addition, the apical 87 

protrusions of epithelial cells, namely microvilli, constitute a particularity of the small 88 

intestine promoting nutrient absorption. In a schematic manner, nutrients are absorbed in the 89 

small intestine while the large intestine is involved in fermentation and water absorption.  90 

The gut represents the most important interface of the body with the external world, it is 91 

thus highly exposed to microorganisms. Complex cellular processes exclude pathogens from 92 

the intestinal mucosa while others allow their entry, a fundamental mechanism promoting 93 

immune system maturation and tolerance. Microbiota and host co-evolved, establishing host-94 

commensal, host-symbiotic and host-parasite relationships. The host-microbial interactions 95 

are intensively negotiated and lead to a tight homeostatic control of the gut barrier. The 96 

microbial composition influences the host immune response, thus generating a feedback that 97 

in turn shapes the microbiota. These complex interactions evolved in distinct spaces of the 98 

gastro-intestinal tract, and led to gut segment-specific relations between host and microbiota. 99 

Besides, the small and the large intestine are recognised as two distinct immunological sites14.  100 
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 101 

1.2-Epithelium 102 

The cellular composition of the small and the large intestine epithelium exhibits some 103 

specificities. Compared to the large intestine, the small intestine epithelium is characterised 104 

by the presence of Paneth cells in the crypt and a higher number of M cells14. The Paneth cells 105 

are specialised in the secretion of anti-microbial peptides (AMPs) while the M cells are 106 

involved in the transport and presentation of luminal antigens to immune cells14. Due to 107 

distinct intestinal epithelial cells (IECs) population and gene expression profiles, the secreted 108 

AMPs present specificities in the small and the large intestine. The small intestine epithelium 109 

is characterised by the secretion of α-defensins/lysozyme/phospholipase A2 (Paneth cells) and 110 

regenerating islet derived protein-γ (REG3γ) (Paneth cells and enterocytes)15. The large 111 

intestine epithelium is characterised by the secretion of β-defensins and cathelicidins by 112 

enterocytes15. Compared to the small intestine, the large intestine epithelium presents a higher 113 

number of Goblet cells which are specialised in the secretion of mucus. In the small intestine, 114 

mucus is organised in a single layer firmly attached to the epithelium whereas in the large 115 

intestine, mucus is composed of two layers: a loose layer (outer) overlapping a dense layer 116 

(inner) attached to the epithelium16. The IECs are also composed of enteroendocrine cells 117 

(<1%)17. These cells show a higher frequency in the small intestine and the rectum than the 118 

colon18. In addition, enteroendocrine cells present distinct morphology and hormone secretion 119 

profiles in the small and the large intestine18. As the cellular composition of the differentiated 120 

epithelial cells varies in relation to gut segment, it is not surprising to find distinctions in the 121 

progenitor cells. In human, stem cells from the small and the large intestine showed distinct 122 

cell surface markers, molecular signatures and response to differentiation signals19.  123 

 124 

1.3-Lamina propria 125 
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Throughout the gastrointestinal tract, immune cells mainly reside in the lamina propria and 126 

their density is higher in the small than the large intestine14. 127 

Data from mice showed that dendritic cells (DCs) are present in a much higher number in 128 

the small than the large intestine14, they migrate in anatomically distinct lymph nodes called 129 

small intestinal mesenteric lymph node (sMLN) or colonic MLN (cMLN)20. Such segregation 130 

is associated with separate antigen migration and different mechanisms of naive T-cell 131 

priming20. In the intestinal lamina propria of human and mice, DCs subsets are grouped into 132 

type 1 DC (DC1) and type 2 DC (DC2) which differ in their functions and surface markers21. 133 

In mice, the DC2 (CD103+CD11b+) predominates in the small intestine while this is the DC1 134 

(CD103+CD11b-) in the large intestine21. Similar results were reported in human (DC2: 135 

CD103+Sirpα+; DC1: CD103+Sirpα-)22. In mouse models, DC1 and DC2 are associated with 136 

key functional distinctions between the small and the large intestine. Whereas the DC2 drives 137 

Th17 response trough the transcription factor interferon regulatory factor 4 (IRF4), the DC1 138 

stimulates the Th1 response via IRF823,24. In line with these observations, in mice the 139 

proportion and absolute number of CD4+ T cells with a Th17 phenotype is higher in the small 140 

than the large intestine25,26 and, it has been shown that the Th17 response is restricted to the 141 

ileum upon bacterial colonisation27. 142 

Between the small and the large intestine, distinct mechanisms of tolerance are also 143 

suspected due to differences in regulatory T cell populations14. Indeed, in mice Tr1 (forkhead 144 

box P3-, Foxp3-) regulatory T cells predominate in the small intestine while this is the natural 145 

(Foxp3+) regulatory T cells in the large intestine28. 146 

In the lamina propria and the submucosa of the small and the large intestine, eosinophils 147 

are present in small number. Intriguingly, the inhibitory receptor of B cells, CD22, is highly 148 

expressed in the eosinophils of the small (jejunum>duodenum>ileum) but not the large 149 

intestine of mice29.  150 
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Regarding plasmacytoid DCs, macrophages, mast cells, basophils and natural killer cells, 151 

no clear differences in term of population or expression patterns have been reported between 152 

the small and the large intestine (data from mice)14. Neutrophils are a special case since their 153 

presence in the intestinal mucosa is mainly related to a pathological situation, they are scarce 154 

or even absent in a healthy gut. Thus, neutrophils will be discussed in the context of CD (see 155 

part 2.4). 156 

 157 

1.4-The gut-associated lymphoid tissue (GALT) 158 

The GALT encompasses different structures and cells such as Peyer’s patches, isolated 159 

lymphoid follicles, cryptopatches and intraepithelial lymphocytes (IELs)30. The Peyer’s 160 

patches are particular immune sites present in the lamina propria of the ileum, they consist of 161 

aggregated lymphoid nodules (mainly composed of B and T cells) covered by M cells at the 162 

apical side. In the intestinal mucosa, the largest number of B cells is found in the Peyer’s 163 

patches and these cells are notably specialised in the secretion of immunoglobulin A (IgA) 164 

which, through binding with the polymeric immunoglobulin receptor, are transported across 165 

epithelial cells and then secreted in the intestinal lumen14,31. Hence, IgA secretion constitutes 166 

a first line defence against pathogen infiltration which is more present in the small than the 167 

large intestine. In mice, Peyer’s patches contain particular DC subsets, the CD8α+CD11b- 168 

(interfollicular region) and the CD8α-CD11b+ (subepithelial dome)21. In human and mice 169 

Peyer’s patches, the lysozyme-expressing dendritic cells (LysoDCs) is a unique DCs subset 170 

able to synthesize lysozyme32,33. These cells are functionally characterised by a high capacity 171 

of antigen sampling and a high phagocytic activity against dead cells (including M cells)33.  172 

In mice, specific immune mechanisms related to gut segments have been identified through 173 

the study of the lymphoid tissue-inducer cells expressing the natural killer receptor (LTi NKR 174 

cells), a subpopulation of innate lymphoid cells present in the GALT34. The transcription 175 
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factor RAR-related orphan receptor-γ (RORγ) is more frequently expressed in LTi NKR cells 176 

of the small than those of the large intestine35. In the presence or absence of RORγ, LTi NKR 177 

cells produce respectively interleukin-22 (IL-22) or interferon gamma (IFNγ)35. This 178 

observation implies different immune mechanisms between the small and the large intestine 179 

since IL-22 stimulates the epithelial defences (e.g., AMPs and mucins) while IFNγ is well 180 

known to promote Th1 differentiation36,37.  181 

The IELs are intercalated between epithelial cells and, in mice, they show a higher density 182 

(ratio of IELs to enterocytes) in the small than the large intestine38. Based on their T cell 183 

receptor types (αβ+ or  γδ+) and their expression of CD3, CD4 and CD8, IELs subsets differ 184 

between the small and the large intestine (data from human and mice)38,39. In addition, it is 185 

well established that, compared to the large intestine, the small intestine exhibits a lower 186 

proportion of naive IELs and a higher proportion of activated/memory IELs (data from 187 

mice)39. 188 

 189 

1.5-Microbiota 190 

Between the small and the large intestine, the quantity and the composition of the microbiota 191 

present also particularities. One millilitre of human intestinal content contains 103-105 192 

(duodenum-jejunum), 108 (ileum) and 1010-1011 (colon) bacteria40,41. In human and mice, the 193 

dominant bacterial families of the small intestine are the Lactobacillaceae and the 194 

Enterobacteriaceae; while in the large intestine this is the Bacteroidaceae, Prevotellaceae, 195 

Rikenellaceae, Lachnospiraceae and Ruminococcaceae16,41.  196 

The mucus layers of each gut segment offer protected niches for particular populations of 197 

bacteria namely “mucus-associated microorganisms”42. By degrading mucins, Akkermansia 198 

muciniphila and Bacteroides fragilis are well adapted to the mucus layers of the colon where 199 

they are found enriched in mice and humans16,42. More precisely, Akkermansia muciniphila 200 
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resides in the outer mucus layer while Bacteroides fragilis is present in both the outer and 201 

inner mucus layers including crypts16,42,43. In mice, segmented filamentous bacteria are well-202 

known to colonise the mucus layer of the ileum where they attach to the epithelium while 203 

colonic outer mucus layer is enriched in bacteria such as Bacteroides acidifaciens which is a 204 

mucin-degrading bacteria16,42,44.  205 

The composition of microbiota is largely influenced by physiological gradients along the 206 

gastro-intestinal tract. Indeed, pH increases while oxygen, antimicrobial peptides and mucus 207 

thickness decrease from the small to the large intestine16,42.  208 

 209 

2-Distinctions between ileal and colonic Crohn’s disease 210 

This part is summarised in the Table 1. 211 

 212 

2.1-Dysfunction of Paneth cells in ileal Crohn’s disease: where genetic factors converge? 213 

A dysfunction of Paneth cells in ileal CD is supported by the study of genetic variants 214 

affecting NOD2, LRRK2, TCF4, LRP6, ATG16L1, X-box binding protein 1 (XBP1) and 215 

KCNN4. Except XBP1, all these genetic variants are associated with a higher risk to develop 216 

an ileal CD7–12.  217 

In CD patients carrying NOD2 or ATG16L1 genetic variants, abnormal Paneth cell 218 

morphology has been observed through histological analysis of the lysozyme granules45,46. 219 

These results have been corroborated in a mice model and intestinal organoid culture. The 220 

defect of autophagy in mice hypomorphic for Atg16l1 perturbed the secretion of lysozyme by 221 

Paneth cells45. In mice, the culture of intestinal organoid demonstrated that, in Paneth cells, 222 

NOD2 and LRRK2 are part of a pathway orchestrating the exocytosis of the lysozyme-223 

containing granules47. 224 
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The SNPs affecting TCF4, LRP6 and KCNN4 have been associated with ileal CD and 225 

proteins coded by these genes are involved in Paneth cell maturation (via the Wnt pathway) 226 

and secretion8,9,11. Hence, it was suspected that TCF4, LRP6 and KCNN4 polymorphisms 227 

could induce Paneth cell dysfunction8,9,11. However, this mechanism remains to be proven by 228 

functional experiments. 229 

The role of endoplasmic reticulum (ER) stress in Paneth cell dysfunction has been 230 

highlighted by studying XBP1. Indeed, this protein is a transcription factor implicated in the 231 

rescue of ER stress and its deletion in mice caused apoptotic death of Paneth cells and 232 

spontaneous enteritis48. In another study, a mice model with Paneth cell-specific deletion of 233 

Xbp1 has been generated49. A majority of those mice (75%) developed spontaneous enteritis, 234 

their Paneth cells presented ER stress, autophagy and abnormal lysozyme granules49. 235 

However, the link between XBP1 mutations, Paneth cell dysfunction and disease location has 236 

only been shown in mice models. In human, XBP1 risk variants for CD have not been 237 

associated with ileal CD. Thus, mice models and human data are not well in agreement to 238 

show a role of XPB1 polymorphisms in disease location. 239 

In CD, much attention has been paid to the relation between genetic variants and Paneth 240 

cell functions. However, the incriminated mutations could affect other cell types. In addition 241 

to be expressed by Paneth cells, NOD2 is found in macrophages, dendritic cells, goblet cells, 242 

intestinal stem cells and enterocytes50,51. On the other hand, ER stress, autophagy and the Wnt 243 

pathway are ubiquitous. More research is needed to characterise the functional consequences 244 

of the genetic variants associated with ileal CD. 245 

 246 

2.2-Higher disruption of the microbiota in ileal than colonic Crohn’s disease 247 

At the interplay between genetic and environmental factors, microbiota could be a key 248 

determinant of disease location in CD. IBD patients present a dysbiotic intestinal flora 249 
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characterised by a reduction of bacterial diversity (particularly the Firmicutes phylum)52. 250 

However, such a well-recognised feature of IBD appears to be specific to ileal CD. In a 251 

general manner, the microbiota of patients with isolated colonic CD seems close to healthy 252 

individuals while patients with ileal CD present a clear disruption of the intestinal flora53,54. 253 

Compared to healthy individuals, the diversity of bacteria in stools is diminished in ileal but 254 

not colonic CD53,55. Overall, ileal CD is characterised by a reduction of Firmicutes and an 255 

increase of Proteobacteria. In contrast to patients with a predominant colonic CD, patients 256 

with a predominant ileal CD showed a reduction of Faecalibacterium prausnitzii (Firmicutes 257 

phylum) and Roseburia (Firmicutes phylum) in their stools when compared to healthy 258 

individuals53. In the mucosa, similar results were reported for F. prausnitzii56. Besides, a 259 

reduction of F. prausnitzii in the ileal mucosa (surgical resection for active disease) of CD 260 

patients has been associated with a higher risk of endoscopic recurrence57. Given that F. 261 

prausnitzii presents anti-inflammatory properties, this could explain the inverse relation 262 

between abundance of this bacteria and CD activity57. On the other hand, the ileal mucosa of 263 

patients with ileal CD showed a higher level of Escherichia coli (Proteobacteria phylum) than 264 

the ileal mucosa of patients with isolated colonic CD and healthy individuals58. In this study, 265 

the identified E. coli strains were specifically harboured in the ileum and their number was 266 

positively correlated with endoscopic (Crohn's disease endoscopic index score: CDEIS) and 267 

histologic score of disease activity. The increase of E. coli in ileal CD has been confirmed56. 268 

Furthermore, adherent-invasive E. coli (AIEC) is almost exclusively associated with the ileal 269 

form of CD59. In addition to adhere and invade the epithelium, this bacteria strain is able to 270 

replicate inside macrophages and to stimulate an inflammatory response. The AIEC also 271 

showed the capacity to translocate across the M cells and to interact with the Peyer’s 272 

patches60. These mechanisms could explain the link between AIEC and ileal CD60.  273 

 274 
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2.3- Fibrosis and creeping fat are primarily found in ileal Crohn’s disease 275 

Fibrosis is a complex complication of CD for which no specific treatment exists61. A higher 276 

rate of fibrotic stricture in ileal than colonic CD well demonstrated the influence of disease 277 

location on disease behaviour6. As a consequence, the risk of surgery is more important 278 

during the natural history of ileal than colonic CD1. Currently, the pathophysiology of fibrosis 279 

remains unclear and its higher occurrence in ileum than colon is not explained.  280 

In the gut as in other organs, the development of fibrosis is due to an excessive production 281 

of extracellular matrix components (ECM) which is at the basis of the obstructive lesion62. 282 

The ECM is secreted by myofibroblasts deriving from the transdifferentiation of 283 

mesenchymal cells (e.g., fibroblasts, smooth muscle cells, stellate cells)61. Of note, 284 

proliferation and migration of fibroblasts appear as a key event driving intestinal fibrosis62. In 285 

addition to mesenchymal cells, parenchymal cells can also be a source of myofibroblasts in 286 

the context of fibrosis. When injured, IECs can contribute to the fibrotic process by acquiring 287 

mesenchymal features and this phenomenon of cellular plasticity is called epithelial-to-288 

mesenchymal transition (EMT)61. Intriguingly, we reported evidence (via the measure of 30 289 

markers) supporting the presence of EMT in the ileal ulcer edge of CD patients while this 290 

phenomenon was barely detectable in the colon63. Thus, in case of lesional process affecting 291 

the epithelium, ileum could be more prone to EMT than colon. However, this needs to be 292 

demonstrated by functional experiments.  293 

The creeping fat is an expansion of intestinal mesenteric fat (resulting from hyperplasia of 294 

adipocytes) which is specifically observed in CD, its presence remains an enigma64,65. 295 

Interestingly, it has been reported differences between ileal versus colonic mesenteric fat in 296 

CD patients: reduced adipocyte size, higher proportion of fibrosed tissue, higher T-cells 297 

infiltration and higher level of inflammation66. The presence of creeping fat is highly 298 

suspected to play a role in fibrosis pathogenesis and location. Indeed, creeping fat develops 299 



13 
 

and wraps around the intestine primarily in sites of fibrosis and inflammation of the ileum67. 300 

Thus, this phenomenon forms patches of fat tissues which strikingly follows the behaviour of 301 

CD67. Given their spatial concomitance, creeping fat and fibrosis are seen as connected 302 

pathological processes64. The understanding of this relation is limited but some data supports 303 

a pro-fibrotic role of creeping fat. In CD patients, the predominant macrophages in creeping 304 

fat are the M2-type which are well known to promote fibrosis through their secretion of 305 

biomolecules such as transforming growth factor β (TGF-β)68. However, the role of creeping 306 

fat seems dual, not only harmful, since it could be part of a protective response restricting 307 

inflammation and limiting the progression of bacteria. Due to the predominance of M2-type 308 

macrophages which highly secrete interleukin 10 (IL-10), creeping fat is viewed as an anti-309 

inflammatory environment68. On the other hand, experiments on mice models demonstrated 310 

that formation of creeping fat is promoted by the translocation of bacteria from the 311 

gastrointestinal tract toward the mesenteric fat67. As proposed by authors, the development of 312 

creeping fat could be a protective mechanism which prevent the translocation of gut bacteria 313 

to the circulation67. However, these recent advances do not explain why creeping fat is a 314 

characteristic of ileal CD. The understanding of this mystery and its relation with the 315 

development of fibrotic stricture are probably necessary steps to find new pharmacological 316 

targets64.  317 

 318 

2.4-Higher neutrophil activity in colonic than ileal Crohn’s disease  319 

Neutrophils are multifunctional immune cells capable to present antigen, regulate immune 320 

response (e.g., Th1 and Th17 differentiation), kill pathogens through phagocytosis, neutrophil 321 

extracellular traps and release of lytic granules. In CD, neutrophil infiltration is closely 322 

associated with the development of lesions and it constitutes an early histological feature of 323 

the disease13,69. Given the key role of neutrophils in gut barrier homeostasis70, some authors 324 
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pointed the need to know whether these immune cells act differently depending on their 325 

location in the gut14. In CD, measure of faecal calprotectin and lactotransferrin, two markers 326 

of neutrophils, provided indirect evidence supporting a higher involvement of neutrophils in 327 

colonic than ileal lesions. Compared to patients with an active ileal CD, patients with an 328 

active colonic CD presented much higher levels of faecal calprotectin (180 vs 1383 µg/g, 329 

respectively) and lactotransferrin (10 vs 179 µg/g, respectively)71. To explain this result, it has 330 

been proposed that lesion surface could be lower in ileal than colonic CD72,73. This hypothesis 331 

could be true but it needs to be demonstrated since, compared to colon, ileum presents a ~2-332 

fold higher length (3 vs 1.5 m) and an enhanced surface area of around 60–120 times due to 333 

the presence of villi and microvilli74,75. In a complementary or alternative way, it has been 334 

suggested that a degradation of calprotectin along the gastro-intestinal tract could explain 335 

difference of its faecal concentration between ileal and colonic CD73. However, these 336 

proposition are only speculative and they did not consider the possibility that neutrophils 337 

could show different activity according to disease location. In a proteomic study, we found 338 

evidence well supporting a higher level of neutrophil activity in colonic than ileal ulcer edge 339 

of CD patients63. When compared to paired control mucosa, ulcer edge mucosa presented a 340 

much higher increase of neutrophils markers (including calprotectin and lactotransferrin) in 341 

the colon than the ileum63. Thus, the measure of neutrophil markers in stools seems not only 342 

to reflect the extent and the severity of the affected surface but it could also testify from the 343 

localisation of the lesions (ileum versus colon). Given the deleterious role of chronic 344 

neutrophil infiltration and their secretory granules (e.g., myeloperoxidase, matrix 345 

metallopeptidases) on mucosal wound healing76–78, our result may signify that the tissue repair 346 

process is more impacted by neutrophils in colonic than ileal lesions. At a mechanistic level, 347 

the higher microbial load in the large than the small intestine14 could contribute to explain 348 
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why, in the presence of mucosal lesions, neutrophils could be more stimulated in the colon 349 

than the ileum. 350 

A difference in neutrophil infiltration between ileal and colonic CD could be also 351 

responsible for gut segment-specific immune defences. Indeed, neutrophils are well equipped 352 

to communicate and interact with plenty of immune cells. For instance, they can modulate 353 

DCs recruitment, T cell differentiation and B cell antibody production79.  354 

Hence, a better knowledge of the relation between neutrophil activity and disease location 355 

could be a basis to develop more individualised therapies for CD patients. 356 

 357 

2.5- Faecal calprotectin to monitor disease activity and to predict the risk of relapse: 358 

performance according to disease location 359 

In CD, faecal calprotectin is the most recognised biomarker for monitoring the disease 360 

activity and the risk of relapse. However, faecal calprotectin seemed less reliable in ileal than 361 

colonic CD, a situation that could be linked to different neutrophils activity in these two gut 362 

segments (see part 2.4).  363 

It has been reported that, in the case of isolated ileal CD, the concentration of faecal 364 

calprotectin did not correlate with the endoscopic (CDEIS), imaging (magnetic resonance 365 

enterography) and histologic evaluation of the disease activity71,73,80. However, contradictory 366 

results were reported and the usefulness of faecal calprotectin to monitor isolated ileal CD 367 

remains debated81,82. That being said, specific biomarkers for ileal lesions are highly required 368 

since access to this gut segment is difficult with endoscopy, it is not systematically performed 369 

in clinical routine. This is particularly true in case of inflammatory and fibrotic process 370 

affecting the ileo-caecal valve and terminal ileum. The need of biomarkers for ileal lesions is 371 

all the more true that in ~75% of the case, CD affects the ileum1. 372 
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In predicting relapse, faecal calprotectin seems to have a lower prognostic value in ileal 373 

than colonic CD. In 89 CD patients in clinical remission for at least 6 months and followed 374 

during 12 months, the prediction of relapse with faecal calprotectin was improved when 375 

patients with isolated ileal disease were excluded (area under the curve, AUC, raised from 376 

0.77 to 0.85)83. Similar results were reported in an independent study84. In another cohort of 377 

CD patients in clinical remission (n=65), it has been found that faecal calprotectin can predict 378 

the relapse only in patients with an isolated colonic disease85. In IBD patients in clinical 379 

remission (n=79), some authors concluded that faecal calprotectin is much more performant 380 

to predict the relapse in UC (AUC=0.87) than CD (AUC=0.58)86. Given the particularly high 381 

proportion of patients with an isolated ileal CD (71%), this study can reinforce the idea that 382 

the prognostic capacity of faecal calprotectin is better in colonic than ileal disease86. Besides, 383 

a review showed that all studies involving UC patients (9 out of 9) reported that faecal 384 

calprotectin has a prognostic capacity in predicting relapse while this was not the case for 3 385 

out of 11 studies involving CD patients87.  386 

Altogether, these data indicate that faecal calprotectin has a diagnostic and prognostic 387 

value which vary according to disease location.  388 

 389 

2.6-Th1/Th17 profile and disease location 390 

In addition to Th1 cells, Th17 cells are now recognised as key players in CD 391 

pathophysiology88. In physiological conditions, presence (frequency and absolute number) 392 

and response of Th17 cells are higher in the ileum than the colon (see section 1). One study 393 

supports this observation in the context of CD. In the ileum but not in the colon of paediatric 394 

CD patients, inflamed vs non-inflamed biopsies presented an increase of IL-17A and IL-6 395 

mRNA, i.e., cytokines either produced by Th17 cells or promoting Th17 differentiation, 396 

respectively89. In this study, IFNγ mRNA was increased in the inflamed biopsies from both 397 
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the ileum and colon. Thus, authors concluded that ileal CD could have a mixed profile 398 

(Th1/Th17) while colonic CD could have a Th1 profile. More studies are needed to 399 

demonstrate this phenomenon in adult cases. At therapeutic level, Th17 response was already 400 

targeted. Compared to placebo, the blockade of IL-17A activity by secukinumab or 401 

brodalumab in CD patients induced a worsening of symptoms (objectified by the CDEIS) and 402 

trials were stopped prematurely90,91. This effect seemed not influenced by disease location90. 403 

At the moment, no evidence supports that targeting Th17 response would preferentially treat 404 

the ileal form of CD.  405 

 406 

2.7-Efficacy of treatments and disease location 407 

Among the predictors of favourable response to biologics, the effect of disease location 408 

remains debated. Some studies found an association between isolated ileal disease and poor 409 

response to anti-TNFα while others did not report such finding92. As for anti-TNFα, the 410 

blockade of integrin α4β7 (vedolizumab) or IL-12/23 (ustekinumab) showed contrasting 411 

results regarding an effect of disease location on the response to treatment92. However, the 412 

situation seems less contradictory when disease activity was evaluated objectively. 413 

Endoscopic and histologic evaluation of CD activity demonstrated that maintenance 414 

adalimumab (anti-TNFα) induced a better mucosal healing of the distal (rectum, sigmoid-left-415 

transverse colon) than the proximal (right colon and ileum) gastro-intestinal tract93. 416 

Analogous results were observed with ustekinumab and vedolizumab94,95. Thus, current 417 

treatments for CD seem to present different efficacy according to disease location. This is 418 

probably linked to immunological differences across the gastro-intestinal tract (see section 1). 419 

However, the relation between disease location and efficacy of treatment is, to our opinion, 420 

not well explored. We deplore that disease location is, in many cases, not evaluated as a 421 

potential parameter influencing treatment efficacy. For instance, this situation concerns the 422 
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randomised trials evaluating the efficacy of infliximab and adalimumab96–99. In addition, 423 

current treatments of CD have not been designed to target a specific location of the disease. 424 

For instance, TNFα production is not a specific feature of ileum or colon. This situation 425 

probably reflects a lack of knowledge regarding the pathophysiological features 426 

distinguishing ileal from colonic CD. Given that immune defences present fundamental 427 

differences between ileum and colon (see section 1), more precise therapies could be expected 428 

in the future.  429 

 430 

3-Limits and perspectives 431 

3.1-Relation between NOD2 mutations and α-defensin secretion to explain disease 432 

location: history of a controversy 433 

In CD, NOD2 polymorphisms were the first genetic variants associated with the disease 434 

location7. CD patients with a NOD2 mutation have a higher risk  to develop an ileal 435 

disease100. NOD2 is an intracellular receptor recognising the muramyl dipeptide (MDP), a 436 

component of bacteria. NOD2 is highly abundant in Paneth cells where it is viewed as a key 437 

player for AMPs secretion50,101. In a logical manner, some studies investigated whether a 438 

defect of AMPs production by Paneth cells could explain the association of NOD2 mutations 439 

with ileal CD102–104. In human and mice, NOD2 deficiency has been associated with a reduced 440 

mRNA level of α-defensins in the ileal mucosa102–104. However, independent studies were not 441 

able to reproduce these results and it led to an intense controversy105–108. In the ileal mucosa 442 

of CD patients, it has been reported that the reduced mRNA expression of α-defensins is 443 

associated with inflammation but not NOD2 mutations107. Such effect has been simply 444 

explained by inflammation-induced tissue damage and loss of Paneth cells107. In the ileal 445 

mucosa of mice, NOD2 deletion was not associated with a reduced mRNA level of α-446 

defensins108. Furthermore, discordant results were unexplained in the studies defending a role 447 
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of NOD2 mutations in α-defensin secretion. Indeed, all the α-defensin studied were not 448 

affected by NOD2 mutations. Compared to wild-type mice, Nod2-/- mice infected or not with 449 

bacteria did not show a reduction of the α-defensin 5 transcript in crypts104. In addition, the 450 

mRNA level of α-defensin 6 was not reduced in the inflamed ileum of CD patients carrying 451 

NOD2 mutations compared to their wild-type counterpart102. Such results are not well 452 

compatible with the hypothesis according to which NOD2 regulates the transcription of α-453 

defensins in Paneth cells.  454 

It is commonly accepted that NOD2 upregulates the transcription of AMPs through 455 

activation of the nuclear factor-kappa B (NF-κB) pathway50. However, this mechanism has 456 

been challenged and, as it was early proposed, the action of NOD2 on AMPs could rather 457 

involve post-transcriptional mechanisms105. In intestinal epithelial organoids from mouse 458 

(mini-gut), MDP or other bacterial components induced neither transcriptional activation of 459 

NF-κB nor secretion of lysozyme109. In this model, Paneth cells secreted lysozyme upon IFNγ 460 

stimulation109. In other organoid models (mouse), two studies led to the conclusion that, in 461 

Paneth cells, NOD2 regulates lysozyme secretion by promoting its exit from lysosome (via 462 

cargo sorting) to dense core vesicles (DCVs)47,110. This finding was notably supported by 463 

showing that NOD2 deficiency provoked the degradation of lysozyme in lysosome47. This 464 

research allowed to identify a pathway (NOD2–LRRK2-receptor-interacting serine/threonine-465 

protein kinase 2 (RIPK2)-ras-related protein (RAB2A)) in which NOD2 promotes lysozyme 466 

secretion through post-transcriptional mechanisms47,110. Remarkably, this pathway was not 467 

responsible of α-defensin secretion47,110. To explain this result, authors proposed that secretion 468 

of each AMP, contained in distinct DCVs, could be regulated by independent signalling 469 

pathways47.  470 

Although attractive, the proposed causal relation between NOD2 mutations, deficit of α-471 

defensin production and ileal CD is not well supported. In Paneth cells, mechanisms inducing 472 



20 
 

secretion of AMPs are much more complex than initially thought, the role of NOD2 has been 473 

redefined and it is far to be completely elucidated.  474 

 475 

3.2-Limitations of genetics to explain disease location 476 

In CD, it has been proposed that disease site is highly influenced by genetics since 477 

monozygotic twins and family members are highly concordant (>80%) for this disease 478 

phenotype111. However, such conclusion is not well supported since twins and family 479 

members are de facto exposed to similar environmental factors. Actually, genetics alone 480 

showed weak capacity to explain disease location. Among the genetic factors incriminated in 481 

CD, NOD2 polymorphisms present the strongest association with disease location (ileal vs 482 

colonic disease: OR between 1.82 and 2.50 according to NOD2 variants)1. However, their 483 

influence on disease location remain weak. Indeed, NOD2 variants explained only 3.23% of 484 

the variance for disease location and the genetic risk score (including known risk loci for 485 

IBD) showing the most significant association with disease location classified ileal versus 486 

colonic CD with an accuracy of only 57%1. In line with these observations, the alpha-487 

diversity of microbiota in stools discriminated ileal from colonic CD while a genetic risk 488 

score including SNPs associated with ileal CD (NOD2 and ATG16L1) was not able to explain 489 

the disease location55. In a general manner, the study of genetic variants is criticised for their 490 

weak association with disease phenotype, their weak incorporation into clinical practice and 491 

the difficulty of understanding their contribution to pathogenesis112–114.  492 

The contribution of host genetics to dysbiosis affecting ileal CD have been appreciated by 493 

twin studies. The affected twins of pairs (monozygotic or dizygotic) discordant for CD 494 

present an identical perturbation of the microbiota than non-twin patients, i.e., an increase of 495 

E. coli, a depletion of F. prausnitzii and a reduction of the bacterial diversity associated with 496 

ileal CD53,56. Hence, genes seem not determinant factors of the dysbiosis observed in ileal CD. 497 
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Although genetics weakly influence disease location, its contribution could vary according 498 

to gut segment. It is tempting to propose a higher contribution of genetic variants in ileal than 499 

colonic CD since some arguments could support this idea:  1) a predominance of ileal location 500 

is classically admitted in the familial forms of CD115; 2) six genes have been exclusively 501 

associated with ileal CD while only one (MHC) has been associated with colonic CD (see 502 

introduction); 3) age at diagnosis for isolated colonic CD is higher (~10 years) than for the 503 

other sites of CD thus suggesting a weaker influence of genetics54. However, this idea could 504 

be nuanced since isolated colonic CD showed a higher prevalence in female (65%)54. Thus, an 505 

unappreciated role of sex-related genes could also contribute to disease location. This 506 

intriguing hypothesis needs to be evaluated concomitantly with the potential effect of 507 

confounders (e.g., oral contraceptive usage has been associated with isolated colonic CD54). 508 

All together, these observations underline that, when considered alone, genetic factors are 509 

limited to understand the disease pathophysiology and phenotypes. As others, we point out the 510 

need of holistic approaches where genetic and environmental factors are considered as an 511 

integrated whole to explain disease location113. 512 

 513 

3.3- Environmental factors and their interactions with genetics to explain disease location 514 

In CD, importance of environmental factors has been notably deducted from its worldwide 515 

rising incidence and its significant discordance rate (40-80%) in monozygotic twins52,116–118. 516 

Environmental factors are probably key determinants of the disease phenotype119. More 517 

importantly, their interactions with genetic susceptibility brought out complex mechanisms 518 

which have shown interesting capacity to influence the disease location.  519 

The link between disease phenotype and host-microbiome interaction has been early 520 

demonstrated in the Il-10-/- mice model of colitis. When axenic (germ-free), those mice did 521 

not develop colitis while it was the case in specific-pathogen-free (SPF) conditions120. On the 522 
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other hand, antibiotics reduced colitis in Il-10-/- mice121. Interestingly, bacteria seem not only 523 

to trigger inflammation in Il-10-/- mice but they also influence its localisation. In germ-free Il-524 

10-/- mice, inoculation of different bacterial species (nonpathogenic commensal) induced 525 

either proximal (cecum) or distal inflammation of the colon122. The kinetic and the severity of 526 

the disease was also influenced by the bacterial species inoculated. In germ-free Il-10-/- mice 527 

transferred to SPF conditions, antibiotics targeting either aerobic or anaerobic bacteria 528 

showed regional differences in their capacity to reduce colitis123. Analogous results were 529 

reported in human. In placebo-controlled trials testing the administration of antibiotics 530 

(ciprofloxacin combined with metronidazole or metronidazole alone) in CD patients, the 531 

treatments seemed effective (clinical remission) in individuals with disease involving at least 532 

the large intestine while it was not the case in patients with disease restricted to the small 533 

intestine124,125. 534 

The link between genetic variants and ileal CD seem to implicate a dysfunction of Paneth 535 

cells (see 2.1). However, the study of ATG16L1 mutations well demonstrated that, taken 536 

alone, host genetics is not sufficient to induce Paneth cells abnormalities. Indeed, Atg16l1 537 

hypomorph (Atg16l1HM) mice presented a dysfunction of Paneth cells only when exposed to 538 

the murine norovirus126. On the other hand, wild-type mice did not develop Paneth cells 539 

abnormalities in the presence of norovirus126. According to these results, a virus and a genetic 540 

predisposition can trigger a specific defect of the ileum but only when present together. Such 541 

interaction also needed the presence of bacteria since antibiotics were able to reduce DSS-542 

induced colitis in Atg16l1HM mice infected with the norovirus126.  543 

The link between ATG16L1 polymorphisms and smoking seems another example showing 544 

that disease location results from a combination of environmental exposures and genetic 545 

susceptibilities. In general, studies have reported that smoking is more frequently observed in 546 

patients with ileal or ileocolonic CD than patients with colonic CD5,54. Until recently, it was 547 
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totally unknown how smoking could be associated with disease location. It was first observed 548 

that the association between IBD and 64 SNPs is affected by smoking behavior127. Then, 549 

smoking was associated with a higher proportion of abnormal Paneth cells (decreased 550 

granules) in CD patients carrying the ATG16L1T300A SNP than in CD patients without this 551 

mutation119. The causal relation between smoking, ATG16L1T300A SNP and abnormal Paneth 552 

cells was demonstrated in mice and cellular pathways were incriminated (apoptosis, 553 

metabolism, TNF-α and peroxisome proliferator-activated receptor-γ)119. Other mechanisms 554 

could explain the contribution of smoking to the ileal form of CD. In ileal biopsies collected 555 

in surgical specimens from CD patients, T-cell receptor (TCR) analysis showed a higher 556 

clonal expansion and a reduced TCR repertoire diversity in smokers compared to non-557 

smokers128. This phenomenon was associated with a higher risk of postoperative recurrence 558 

after ileocolonic resection. Hence, alteration of TCR repertoire could be another mechanism 559 

explaining the link between smoking and ileal CD. However, smoking as genetics factors 560 

weakly contribute to disease location. Indeed, smoking explained only 1.53% of the variance 561 

for disease location1.  562 

Disease location results from complex relations between host genetics, gut bacteria and 563 

environmental factors. Furthermore, as shown with the norovirus (see above), other infectious 564 

agents than bacteria could influence the disease location. The contribution of viruses, fungi, 565 

phages, archaea and helminths remain underappreciated in the pathophysiology of IBD52,129. 566 

All these infectious agents could, in interaction with host genetics and environmental factors, 567 

favour ileal and/or colonic location of CD. More researches are needed to decipher these 568 

complex relations. 569 

 570 

4-Conclusion 571 
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The ileal and colonic CD are recognised as distinct entities. This consideration is well 572 

supported by a combination of clinical (natural history of the disease, efficacy of treatments 573 

and monitoring), epidemiological (smoking status, age, gender) and biological (genetics, 574 

microbiota, immunology, mesenteric fat) data. However, the pathophysiological mechanisms 575 

distinguishing ileal from colonic CD remain poorly understood. New ideas and dedicated 576 

works are needed to bridge this gap of knowledge, this should offer opportunities to develop a 577 

more individualised management of CD patients. 578 
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 1034 

Table 1. Main features distinguishing ileal from colonic Crohn’s disease 

 Ileal Crohn’s disease Colonic Crohn’s disease 

Genetic variants associated 

with disease location 

NOD27, LRRK212, TCF49, LRP68, 

ATG16L110, KCNN411 
MHC1,130 

   

Epidemiologic risk factors Smoking54 

Female, oral contraceptive usage, 

older age at diagnostic (~10 years 

older compared with the other 

locations)54 

   

Natural history  
Higher risk for fibrotic stricture6 

and surgery1 

Higher risk for perianal fistulae6 

   

Pathophysiological 

characteristics 

Microbiota alteration: 

-↓ Diversity53,55 

-↓ Firmicutes phylum (F. 

prausnitzii and Roseburia)53,55 

-↑ Proteobacteria phylum (E. Coli, 

AIEC)54,58,59 

 

Microbiota close to healthy 

individuals53,55 

 Paneth cell dysfunction131  

 Presence of creeping fat66 Neutrophil activity ++63 

 Th17/Th1 profile89 Th1 profile89 

   

Response to biologics 

(adalimumab, ustekinumab 

and vedolizumab) 

Better mucosal healing in colonic than ileal Crohn’s disease93–95 
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Performance of faecal 

calprotectin as biomarker 

Better performance to predict the relapse in colonic than ileal Crohn’s 

disease83–85 

Better performance to monitor disease activity in colonic than ileal 

Crohn’s disease (controversial)71,73,80–82 

AIEC: adherent-invasive E. coli; ATG16L1: autophagy-related 16-like gene; EMT: epithelial–mesenchymal 

transition; KCNN4: intermediate conductance calcium-activated potassium channel protein 4; LRP6: low-

density lipoprotein receptor-related protein 6; LRRK2: leucine-rich repeat kinase 2; MHC: major 

histocompatibility complex; NOD2: nucleotide-binding oligomerization domain-containing 2; TCF4: 

transcription factor 4. 

 1035 

 1036 

Figure 1. Graphical summary of the physiological features distinguishing the small from the 1037 

large intestine.  1038 

AMPs: anti-microbial peptides; IELs: intraepithelial lymphocytes. 1039 

 1040 


