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EFFECTIVE THERMAL CONDUCTIVITY OF NANOSTRUCTURES:
A REVIEW

GEORGY LEBON a∗ AND HATIM MACHRAFI a

ABSTRACT. We present a synthesis of recent results on thermal heat conductivity in
nano-composites and nano-structures. The model is a mixt of the Effective Medium
Approximation (EMA) and Extended Irreversible Thermodynamics (EXIT). The latter is
particularly well adapted to the description of small scaled systems and will be used to
derive the expression of the thermal conductivity of nanoparticles. The model is applied to
spherical, cylindrical (nanowires) and porous nanoparticles, respectively, being embedded
in host media, like polymeric matrices and semi-conductors. Good agreement is observed
with other models, experimental data and Monte-Carlo simulations.

1. Introduction

It was observed experimentally that dispersion of nanoparticles, i.e., small-size par-
ticles of the order of 5 nm to 100 nm, in some classes of materials (like polymers or
semi-conductors), modifies considerably their mechanical and thermal properties. In the
foregoing, we focus on thermal transport, ignoring mechanical properties, and limit our
analysis to non-metallic bodies so that the heat carriers are exclusively phonons, in metallic
materials electrons will contribute to the heat transport, while in semi-metals, both phonons
and electrons participate to heat conduction. The aim of this work is to propose a general
and systematic theoretical frame for predicting the thermal conductivity of nanocomposites;
in particular, we will discuss the role of various specific parameters as

• The nature, shape and size of the embedded nanoparticles.
• The volume fraction of particles.
• The thermal properties of host medium and particles.
• The temperature of the system.
• The porosity of the particles
• The interface particles/host medium.

Several models have been developed in the literature (Bruggeman 1935; Nan et al. 1997;
Chen 1998; Wang et al. 2007; Behrang et al. 2013; Guo and Wang 2015; Zhang and Minnich
2015) but the originality of the present work is that it is based on Extended Irreversible
Thermodynamics (EXIT) (Jou et al. 2010; Lebon and Machrafi 2015; Lebon et al. 2015). At
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nanoscales, the transport is not only governed by diffusive collisions between heat carriers
but mainly by ballistic collisions. Diffusive collisions refer to collisions experimented by
the carriers inside the system whereas ballistic phonons travel more or less freely through
the system and undergo collisions with the boundaries. Ballistic collisions are dominant at
small length-scales and very low temperatures. As a consequence, the classical Fourier law

q =−λ∇T (1)

relating linearly the heat flux vector q to the gradient of temperature T , with λ the thermal
conductivity, is no longer valid for at least two reasons: first, it does not contain non-
local terms and, second it does not account for the finite relaxation time τ of heat carriers.
Although this latter property is included in the expression of the Cattaneo equation (Cattaneo
1948)

τdtq+q =−λ∇T (2)

where dt stands for time derivative, note that Cattaneo’s relation is not designed for non-local
phenomena.

There exists several ways to solve the problem, for instance by constructing ad hoc
models, but this is not convincing as these models are only applicable to a reduced number
of systems and there is generally no physical background. Another solution is to start from
the kinetic theory and to solve Boltzmann’s equation for phonons. But its resolution is not
an easy task and moreover, it is not well adapted to engineering configurations. Another
route is to mix kinetic theory and macroscopic approach as suggested by Behrang et al.
(2013) at Ecole Polytechnique de Montréal. Here a different way is selected consisting in
mixing the so-called Effective Medium Approximation (EMA) with EXIT.

The paper is organized as follows. After recalling the main ideas underlying EMA and
EXIT in Sections 2 and 3, we apply our model to the concrete problem of spherical particles
dispersed in homogeneous non-metallic materials. The results are extended in Section 4 to
cylindrical nanowires. In Section 5 the role of porous nanoparticles is investigated and two
applications are proposed. Final remarks and prospectives are found in Sections 6 and 7.

2. EXIT and EMA formalisms

Let us briefly recall the main ingredients of these two theories. Concerning EXIT, its
fundaments and applications have been developed in several books (Müller and Ruggeri
1998; Lebon et al. 2008; Jou et al. 2010; Ruggeri and Sugiyama 2015; Sellitto et al. 2016).

2.1. A brief description of EXIT. The basic idea is to extend the space of state variables
by comparison with the classical theory of non-equilibrium thermodynamics based on the
local equilibrium hypothesis (Prigogine 1961; De Groot and Mazur 1962). Denoting by x
the space of state variables, it is assumed that it is formed by the union of the space C of
classical variables and F, the space of flux variables:

x = C
⋃

F. (3)

The classical variables C are essentially the mass, the momentum and the energy densities,
they are slow and conserved quantities. The flux variables F are their corresponding fluxes:
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fluxes of mass, momentum, energy and eventually higher order fluxes, as the flux of the
energy flux, the flux of the flux, . . . etc. These variables are fast and non-conserved.

The second important feature is that it is assumed that there exists a non-equilibrium
entropy s(x) dependent on the whole set x of variables and whose time variation is given by

dts =−∇ ·Js +σ
s (σ s ≥ 0). (4)

In (4), s is measured per unit volume, σ s is its rate of production per unit time and unit
volume and Js is the entropy flux vector. Moreover, σ s is a non-negative quantity to satisfy
the second law of thermodynamics. The time-evolution of the state variables are of the form

dtx = X
(
x,∇x,∇2x, ...

)
(5)

they are obtained by exploiting the restrictions placed by σ s ≥ 0 (Jou et al. 2010) or by
using Liu’s more sophisticated technique (1972).

2.2. The EMA approach. The basic idea can be traced back to Maxwell (1881) and Brug-
geman (1935), Maxwell’s objective was to calculate the electrical conductivity of a system
of electrical particles dispersed in an electrolyte. It was more recently generalized to thermal
transport among others by Nan et al. (1997) and Chen (1998). EMA consists essentially
in an homogenization process: the heterogeneous two-phase nanocomposite formed of
nanoparticles and a host matrix is substituted by a homogeneous medium characterized by
specific effective properties. In the case of heat transfer, the most relevant quantity is the
thermal conductivity to which is devoted the essential of this work. For pedagogical reasons,
we will not enter into general considerations, but prefer rather to apply EMA’s technique to
several examples discussed in the foregoing sections.

3. Rigid spherical nanoparticles dispersed in a homogeneous non-metallic matrix

3.1. General considerations. As a first application, let us consider spherical non-porous
nanoparticles of radius rp dispersed uniformly in a homogeneous non-metallic matrix.
With respect to Maxwell’s original formulation (1881), a modified EMA description was
proposed later on by Nan et al. (1997) and revisited by Minnich and Chen (2007). Following
these authors, a closed formulation of the effective thermal conductivity λe f f can be written
as

λe f f = λm
(1+2α)λp +2λm +2ϕ [(1−α)λp −λm]

(1+2α)λp +2λm −ϕ [(1−α)λp −λm]
. (6)

In (6), λm designates the heat conductivity of the matrix, λp, the heat conductivity of the
particles, ϕ , the volume fraction of the particles (Vp (particles)/ V (total)) and

α = Rλm/rp (7)

is a dimensionless parameter describing the particle-matrix interactions at the interface,
with R the thermal boundary resistance (TBR). When a heat flow q crosses two different
materials, there is a barrier across which is observed a temperature drop ∆T with R defined
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by R = ∆T/q. TBR is sensitive to the interfacial density Φ, i.e., the interfacial scattering
area of the particles per unit volume. In the case of spherical particles, it is easily checked
that

Φ = 3ϕ/rp (8)

meaning that TBR is the largest when the volume fraction is high and the size of particles
is small. The coefficient R has been calculated by Chen (1998) from the kinetic theory in
terms of the heat capacities cv and the respective group velocities vp and vm of phonons
in the particles and the matrix: R = 4

(
1/cv

pvp +1/cv
mvm

)
. TBR depends of course on the

physical nature of the interface, which is described by the so-called specularity parameter s
taking values between 0 and 1: s = 0 corresponds to a rough surface with incident phonons
isotropically diffused through the whole space while the opposite case, s = 1, refers to a
smooth surface (like a mirror), with phonons reflected in a given direction. To take the
specularity into account, the particle radius rp is redefined as

rs
p =

1+ s
1− s

rp. (9)

In expression (6) of the effective thermal conductivity, there remains two important
quantities to be determined, namely the thermal conductivities λm and λp of the matrix and
the particles. Concerning the former, we will use the classical expression drawn from the
kinetic theory, namely

λm = (1/3)cv
mvmlm (10)

with lm designating the mean free path of the phonons in the matrix and derived by Minnich
and Chen (2007) from Matthiesen rule as

1/lm = 1/lm,bulk +3ϕ/4rp (11)

the last term being introduced to take into account the collisions of the phonons with the
particles in the host phase.

We next determine the thermal conductivity of the nanoparticles, it is at this level that
we refer to EXIT. As the details of the derivation have been given explicitly elsewhere (Jou
et al. 2010; Lebon and Machrafi 2015; Lebon et al. 2015) we will here only recall the main
steps.

Step 1: we consider an infinite number of state variables q, Q(2), ... Q(n) (n → ∞) with
Q(2), Q(3), ... designating the flux of the heat flux, the flux of the flux of the heat flux, etc.

Step 2: we formulate the corresponding linear time–evolution equations subject to the
restrictions placed by the positiveness of the entropy production.

Step 3: applying Fourier’s transform q̂(k, t) =
∫ +∞

−∞
q(r, t)e−ik·rdr , k designating the

wave number vector and r the position vector, we are led after some lengthy but elementary
calculations to a Cattaneo-like equation for the Fourier transform q̂,

τdt q̂(k)+ q̂(k) =−ikλp(k)T̂ (k), (12)
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wherein the wave-dependent heat conductivity λp(k) is given by a continuous fraction

λp(k) =
λ0

1+ k2l2
1

1+
k2l22

1+
k2l23
1+...

, (13)

with λ0 the bulk thermal conductivity, that will be given by (10), and the correlation lengths
ln related to the mean free path lp of the phonons in the particles by l2

n = l2
p(n+1)2/(4(n+

1)2 −1). Note that due to (13), Eq. (12) is not strictly the Cattaneo equation, but actually
takes into account the non-local effects.

Step 4: as there is only one single length involved in the problem, namely the radius of
the particles, it is natural to identify the wave vector with a scalar k as given by k = 2π/rp.

Step 5: for further purpose, let us introduce the so-called Knudsen number Kn defined as

Kn = lp/rp. (14)

In classical situations for which the dimensions are much larger than the mean free
path of the heat carriers, Kn is much smaller than one, whereas for small systems, such as
nanoparticles, Kn is larger than one.

Step 6: In the asymptotic limit n→∞, and following a procedure similar to that developed
by Hess (1977), the continuous fraction (13) can be written as

λp = (
1
3

cv
pvplp)

3
4π2Kn2

[
2πKn

arctan(2πKn)
−1
]
. (15)

The term between parentheses represents the bulk contribution whereas the remaining
terms describe the size effects of the nanoparticles through the Knudsen number. Expression
(15) is the most important result of the present analysis. We now apply it to some illustrative
examples.

3.2. Si nanoparticles dispersed in a Ge matrix. In Fig. 1, we have represented the
effective thermal conductivity versus the volume fraction for three values of the specularity
parameter (s = 0, 0.2, 1) and three different radii (rp = 5,25 and 100 nm) of the spheres
assumed to be uniformly dispersed in the host medium. The results are valid at room
temperature.

It may appear as a paradox that the thermal conductivity of the two-phase system Si/Ge
is smaller than that of the matrix Ge, at least for s different from s = 1, indeed the bulk heat
conductivity Ge is 60 W/mK and that of Si is 126 W/mK. This peculiarity is interpreted
by the fact that by increasing the volume fraction, one increases the interfacial density (see
Eq. (8)) and similarly the thermal boundary resistance, whence a reduction of the thermal
conductivity. The figures 1(b) and 1(c) indicate that the thermal conductivity is increased
with larger sizes because the effective interfacial boundary is actually decreased (see Eq.
(8)). In the limiting case s = 1, Eq. (9) predicts that rs

p tends to infinity, which amounts to a
vanishing scattering interface. The results are in very good agreement with these obtained
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A14-6 G. LEBON AND H. MACHRAFI

FIGURE 1. Effective thermal conductivity of Si/Ge as a function of the specularity
parameter and three different nanoparticle’s radii: (a) 5 nm, (b) 25 nm and (c)
100 nm. [Republished with permission of The Royal Society, from “An extended
irreversible thermodynamic modelling of size-dependent thermal conductivity
of spherical nanoparticles dispersed in semi-conductors”, Lebon, G., Machrafi,
H., and Grmela, M., Proceedings of The Royal Society A 471, 20150144, 2015;
permission conveyed through Copyright Clearance Center, Inc.].

by other models (Minnich and Chen 2007; Behrang et al. 2013)), experimental data and
Monte Carlo simulations (Machrafi and Lebon 2014; Lebon et al. 2015).

3.3. SiO2 (silicate) nanoparticles embedded in epoxy resin. The results of Fig. 2 in-
dicate that, contrary to the previous example, the effective thermal conductivity is now
growing with increasing volume fraction. This is so because the heat conductivity of the
nanoparticles is much larger (by a factor 10 at least) than that of the matrix and will therefore
dictate its behavior; in particular, the higher is the silicate particles density, the larger is the
thermal conductivity.

The right frame of the Fig. 2 is a zooming of the results in the region 0 < ϕ < 0.1, and
the circles denote experimental results. As indicated above, thermal conductivity is now
growing with the particles density. It is also worth to stress that an excellent agreement with
experiments is observed.
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FIGURE 2. Effective thermal conductivity of SiO2 embedded in epoxy resin for
s = 0 (rough diffusive surface) and rp = 10 nm. [Republished with permission
of The Royal Society, from “An extended irreversible thermodynamic modelling
of size-dependent thermal conductivity of spherical nanoparticles dispersed in
semi-conductors”, Lebon, G., Machrafi, H., and Grmela, M., Proceedings of The
Royal Society A 471, 20150144, 2015; permission conveyed through Copyright
Clearance Center, Inc.].

3.4. AlN (aluminium nitride) embedded in epoxy resin. The results plotted in Fig. 3
indicate that the model underestimates the experimental data.

FIGURE 3. Effective thermal conductivity versus the volume fraction for s = 0
and rp = 11 nm, triangles represent experimental data [Reprinted from “Effect
of volume-fraction dependent agglomeration of nanoparticles on the thermal
conductivity of nanocomposites: Applications to epoxy resins, filled by SiO2,
AlN and MgO nanoparticles”, Machrafi, H., Lebon, G., and Iorio, C., Composites
Science and Technology 130, 78–87, 2016; with permission from Elsevier.]

Disagreement with experiments may be due to the fact that the dispersion of particles is
no longer uniform. Indeed recent investigations at the experimental and theoretical levels
(Machrafi et al. 2016a) have shown that agglomeration of particles is important in this
nanocomposite and that the formation of clusters plays a decisive role in heat transport.

3.5. Temperature dependence in Si/Ge. Up to now, the temperature was fixed equal to
the room temperature 300 K. The results of Section 3.1 have been generalized by Lebon
et al. (2015) to study the role of temperature. The results are reproduced in Fig. 4.

We have represented in Fig. 4 the behavior of λe f f versus the temperature for s = 0,
three values of the volume fraction and three different nanoparticles sizes: 5, 25, and 100
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FIGURE 4. Effective thermal conductivity of Si/Ge as a function of temperature
T for various Si particles’ radii (denoted here by a) and three different values
of the volume fraction, (a) ϕ = 0.01, (b) ϕ = 0.2 and (c) ϕ = 0.5, s is fixed at
s = 0. [Republished with permission of The Royal Society, from “An extended
irreversible thermodynamic modelling of size-dependent thermal conductivity
of spherical nanoparticles dispersed in semi-conductors”, Lebon, G., Machrafi,
H., and Grmela, M., Proceedings of The Royal Society A 471, 20150144, 2015;
permission conveyed through Copyright Clearance Center, Inc.].

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 97, No. S1, A14 (2019) [16 pages]



EFFECTIVE THERMAL CONDUCTIVITY OF NANOSTRUCTURES: A REVIEW A14-9

nm, respectively, three different volume fractions for the sake of comparison, we have also
drawn the curve corresponding to bulk Ge. Increasing the temperature induces a reduction
of the mean free path of the phonons and therefore a reduction of the heat conductivity as
shown by formula (10). One observes indeed a decrease of λe f f with increasing temperature
whatever the volume fraction and the radius of the particles. Moreover the influence of the
particle’s size becomes less important as the temperature is higher. At high temperature the
phonons-boundary collisions are less frequent than the bulk phonon-phonon scattering and
therefore the sensitivity of heat conductivity to the size of the particles is weaker.

4. Tubular nanowires composites

The considerations of the previous section are now extended to cylindrical nanowires
of radius rp and length L, uniformly dispersed in homogeneous supports. EMA approach
distinguishes heat fluxes normal ⊥ and parallel ∥ to the cylinder axis of symmetry, following
Nan et al. (1997), the corresponding effective thermal conductivities are respectively given
by

λ
e f f
⊥ = λm

(1+α)λp+λm+ϕ[(1−α)λp−λm]
(1+α)λp+λm−ϕ[(1−α)λp−λm]

λ
e f f
∥ = (1−ϕ)λm +ϕλp

. (16)

We have used the same notation as for spherical particles. As illustration, we have
calculated the transversal effective thermal conductivity of the couple Si/Ge for three
different values of rp and have compared the results with these derived from Fourier’s law
and the case α = 0 (no boundary resistance). The results (Lebon and Machrafi 2015) are
gathered in Fig. 5.

FIGURE 5. Effective transversal thermal conductivity as a function of the volume
fraction for 3 values of rp (5, 25, 50 nm) and diffusive interface (s = 0): our
model is indicated by solid lines, the Fourier model by dashed ones and the one
with no boundary resistance (α = 0) by dotted lines. [Reprinted from “Thermal
conductivity of tubular nanowire composites based on a thermodynamical model”,
Lebon, G. and Machrafi, H., Physica E 71, 117–122, 2015; with permission from
Elsevier.]
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The following remarks are in form:
(1) the thermal conductivity decreases with volume fraction,
(2) the thermal conductivity decreases with decreasing particle’s size,
(3) differences with Fourier’s law (upper curves) are important as they may be of the

order of 80%,
(4) the thermal conductivity is, without any surprise, the largest for α = 0,
(5) it has been numerically checked that the effects of the longitudinal length L are

small.
Similar results are obtained for the longitudinal heat conductivity, as seen in Fig. 6.

FIGURE 6. Effective parallel thermal conductivity λe f f versus volume fraction
ϕ for four different radii. [Reprinted from “Thermal conductivity of tubular nano-
wire composites based on a thermodynamical model”, Lebon, G. and Machrafi,
H., Physica E 71, 117–122, 2015; with permission from Elsevier.]

It is still noticed that generally λe f f decreases with ϕ and, at fixed ϕ , increases with
increasing size. In contrast, the conductivity increases at large r-values, say 500 nm (see the
upper the bold line). At such values, the Knudsen number Kn << 1 from which follows that
we are in the Fourier regime with the heat conductivity growing with the particles density
(the non-local effects become negligible).

5. The role of porosity

In this section, the role of porosity of nanoparticles and nano-porous systems will receive
a special treatment and two specific applications are briefly discussed.

5.1. Heat conductivity of nanoporous Si. We consider spherical nano-pores uniformly
dispersed in a Si matrix, the nano-porous inclusions are assumed to be filled by air, for
illustration. The effective thermal conductivity of the system is given by expression (6)
wherein the volume fraction ϕ is replaced by the porosity ε , defined as the ratio of the
volume occupied by the pores and the total volume:

λe f f = λm
(1+2α)λp +2λm +2ε [(1−α)λp −λm]

(1+2α)λp +2λm − ε [(1−α)λp −λm]
(17)
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λm is the thermal conductivity of bulk Si and λp that of the nano-pores expressed by relation
(15) with λ 0 (substituted to the kinetic result 1

3 cvvl) standing for the heat conductivity of
air, namely λ 0 = 0.0026 W/mK.

The validity of our model is evaluated by comparing our results with the hydrodynamic
model (Alvarez et al. 2010), consisting in a kinetic version of Stokes’ resistance force.
Accordingly, the thermal conductivity is given by

λ
hydro
e f f = λm

(
1

(1− ε)3 +
9ε

2
Kn2

1+Kn− (0.864+0.29e−1.25Kn)

(
1+

3
√

5√
2

))−1

(18)

Letting Kn tend to zero leads to the well-known percolation model

λe f f = λ
0
m(1− ε)3 (19)

In Fig. 7, the results of our model are compared with the hydrodynamic one and
experimental data in the case of four pore radii: 2, 5, 10 and 100 nm.

FIGURE 7. Effective thermal conductivity versus porosity for two models, several
pore sizes (2 nm (blue line), 5 nm (qarnet line), 10 nm (brown line) and 100 nm
(green line)) and experimental data (symbols). Our model is indicated by solid
lines and the hydrodynamic model by dashed lines. [Reprinted from “Size and
porosity effects on thermal conductivity of nanoporous material with an extension
to nanoporous particles embedded in a host matrix”, Machrafi, H. and Lebon, G.,
Physics Letters A 379, 968–973, 2015; with permission from Elsevier.]

The general trend is a decrease of heat conductivity with porosity whatever the model, and
that at fixed porosity, heat conductivity is considerably reduced by passing from larger pores
to smaller ones in the nanosize range. We observe, however, rather important differences
between both models in the region of mid-porosities (0.2 < ε < 0.9). A better agreement
between our model and experimental data is observed, especially at higher porosities. To
close this section, let us discuss two interesting applications.

5.2. Porous Si nanoparticles embedded in Ge. In Section 3.2, we have calculated the
effective thermal conductivity of solid (without porosity) Si nanoparticles dispersed in a Ge
matrix. We now repeat the exercise by considering instead, porous Si nanoparticles filled by
air uniformly distributed in Ge. The results are represented in Fig. 8, as a function of the
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volume fraction ϕ of nanoparticles and different values of the porosity. For details of the
calculations, we refer to Machrafi and Lebon (2015).

FIGURE 8. Effective thermal conductivity of Si/ Ge as a function of volume
fraction of Si particles for different values of the porosity: ε = 0 (bulk Si), 0.01,
0.1 and 1 (air bubbles in Ge), with rp (Si particle radius) = 25 nm and ap (pore
size) = 1 nm.[Reprinted from “Size and porosity effects on thermal conductivity
of nanoporous material with an extension to nanoporous particles embedded in a
host matrix”, Machrafi, H. and Lebon, G., Physics Letters A 379, 968–973, 2015;
with permission from Elsevier.]

It is shown that ke f f , decreases with increasing volume fraction and that it is rather
insensitive to the porosity: indeed a porosity of 0.1 yields results practically equivalent to
bulk particles. This is however no longer true by increasing the radius of the Si nanoparticles,
for instance at rp = 100 nm, the reduction of thermal conductivity becomes stronger as
porosity is increased. This is visible in Fig. 9.

5.3. Thermal rectifiers. Thermal rectifiers are devices allowing the heat to flow in one
direction but blocking it in the opposite direction: they are the analogs of diodes in electricity.
The important factor is the dimensionless thermal rectifying coefficient R* defined by

R* =
∥qd∥
∥qr∥

(20)

with qd denoting the heat flow in the direct direction and qr the flow in the reverse direction.
To have rectification, the coefficient R* must be larger than 1. Experimental devices have
exhibited values up to 2.2 but recently, a solid state structure with shape memory alloys
recorded an R*-value of the order of 90. A problem of actual interest is to find the best
configuration among several bulk–nanoporous devices giving the highest R*-value. The
subject has been recently treated by Machrafi et al. (2016b) and is commented in Jou et al.
(2018).

6. Flashback

Our objective was to model the effective thermal conductivity of non-metallic nano-
composites, constituted by nanoparticles uniformly dispersed in homogeneous polymers or
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FIGURE 9. Effective thermal conductivity of Si/Ge as a function of volume
fraction of Si particles for different values of the porosity: ε = 0 (bulk Si), 0.01,
0.1 and 1 (air bubbles in Ge), with rp (Si particle radius) = 100 nm and ap (pore
size) = 1 nm.[Reprinted from “Size and porosity effects on thermal conductivity
of nanoporous material with an extension to nanoporous particles embedded in a
host matrix”, Machrafi, H. and Lebon, G., Physics Letters A 379, 968–973, 2015;
with permission from Elsevier.]

semiconductors. This has been achieved by mixing the Effective Medium Approximation
(EMA) and Extended Irreversible Thermodynamics (EXIT). The originality of the model is
the derivation of the thermal conductivity of the particles on the bases of EXIT. The most
important results of this work are embedded in Eqs. (6) and (15). A particular attention
has been put on spherical and porous nanoparticles and tubular wires. Illustrations have
concerned not only Si, SiO2 and AlN nanoparticles dispersed in Ge and epoxy resin, but
also nanoporous Si embedded in Ge. We have studied the sensitivity of the effective thermal
conductivity to the nature, volume fraction, size and porosity of nanoparticles, the effect of
temperature has also been analyzed. The main results are summarized below:

• A decrease (or increase) of effective heat conductivity with increasing volume
fraction, depends on the nature of the nanocomposite. Increase or decrease is
essentially conditioned by the value of the coefficient α (see Eq. (7)), expressing
the interactions at the interface. For α > 1 (high thermal boundary resistance (TBR)
and small particles’ size) λe f f is decreasing while it is increasing for α < 1 (weak
TBR and large particles’ size). The value of the α-parameter is of importance
within the perspective of practical applications: constituents with small α-values
should be selected when significant enhancement of the thermal conductivity is
aimed at, like in electronic devices wherein evacuation of heat is required, large
values of α should be preferred when a reduction of heat transport is the objective,
for instance with the perspective of increasing thermal isolation, or in thermoelectric
devices.

• A decrease of effective heat conductivity with decreasing particle size.
• A decrease of effective heat conductivity with increasing temperature.
• A decrease of effective heat conductivity with increasing porosity.
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A good agreement has been observed with experimental data, Monte-Carlo simulations and
other models.

7. Back to the future (open problems)

A series of problems to be investigated in the future are, among others:
• To mix nanoparticles of different nature, shape and size.
• To include non-linear contributions involving terms in q2, q ·∇q, .. in the time

evolution equations of the fluxes.
• To apply the analysis to other configurations as thin films and superlattices.
• To extend the above considerations to nanofluids, wherein specific effects as Brow-

nian motion, presence of boundary layers around the particles, and formation of
clusters are to be taken into account (Machrafi and Lebon 2016).

• To exploit the property of decreasing heat conductivity to enhance the figure of
merit Z of thermoelectric devices which is inversely proportional to the thermal
conductivity.

• To study thermal conductivity of concentrated media, including percolation pheno-
mena.

• To generalize the above technique to other transport coefficients like electrical
conductivity, thermoelectric coefficients and viscosity of nanofluids.

• To investigate complex configurations including both nanoparticles and nanopores.
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