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Abstract 
Understanding of the mechanism describing the chemical potential of nanoparticle dispersions, 
whether from modelling or experimental perspectives, is missing in the literature. As nanofluids 
are widely used in engineering applications, predicting material properties correctly needs a 
correct formulation for their behaviour. Often, the chemical potential of mixing is used for such 
expressions. Although quite appropriate for polymer blends or binary solutions, it is not suitable 
for nanoparticle dispersions. This work proposes a new mechanism for the chemical potential 
of dispersions or suspensions from thermodynamic principles, relying on porous flow 
principles, proposing that it is the fluid that diffuses in between the nanoparticles. The proposed 
model is applied in the case of mass diffusion and the results compare well with molecular 
dynamics results and several experimental data, motivating the proposed mechanism for 
dispersions.   
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1. Introduction 
It should be emphasized that the chemical potential lies at the basics of properties such as the 
diffusion coefficient, the viscosity, the mass flux relaxation time and other properties of 
nanoparticle dispersions in fluids or liquid components. Often nanofluids are treated, with 
respect to their free energy of mixing, from which the chemical potential is obtained, as ideal 
or regular solutions in the lines of the Flory-Huggins theory [1-3]. Many suggestions have been 
offered to improve the expressions for the free energy of mixing and the corresponding 
chemical potential adapting the Flory-Huggins lattice model [4,5], but they have been 
performed for the purposes of polymer blends and binary mixtures properties, phase separation 
studies and diffusion in polymers [1-4,6-8]. Also, for some colloidal mixtures, the same model 
is used for the free energy [9,10]. However, these models are used in order to interpret 
experimental work and not to predict properties of colloidal mixtures. Furthermore, in such 
works it is generally assumed that all the components have the same type of entropic behaviour, 
following the statistical relation of the Boltzmann equation [4]. The latter means that colloidal 
mixtures are considered in those works as a mixture. That is just the issue. The question is 
whether nanoparticle or colloidal dispersions can be considered as solutions. In order to 
understand this, we should discuss what a dispersion is in practice and for what it is used. For 
many applications, nanoparticle dispersions, also called nanofluids [11,12], are used to enhance 
heat transfer for solar energy harvesting and storage, provide for smart cooling, or control the 
thermal management for electronics [12-17]. Nanoparticle dispersions are also used as a 
precursor for the preparation of nanocomposites or self-assembled structures in view of other 
applications, e.g. supercapacitors, batteries, electrodes or membranes [18-20]. The required 
effects depend heavily on the presence of the nanoparticles in the fluid, so that it is important 
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that those nanoparticles are well dispersed. For that, they need to be well stabilized in order to 
avoid flocculation, settlement or agglomeration, which is quite a challenge [21]. This already 
indicates that nanoparticles are not so readily mixed in its base fluid, which the aforementioned 
standard mixing model would suggest, but that often its dispersion needs some preparation. 
Some dispersion mechanisms exist, such as electrostatic, steric, or electro-steric stabilization. 
These mechanisms rely on inter-particle repulsive forces (nanoparticle surface treatment by e.g. 
adsorption of ions, physical adsorption of charged species, accumulation or depletion of 
electrons), van der Waals inter-particle screening by macromolecular barriers attached to the 
nanoparticle surfaces and a combination of both, where surfactants or dispersing agents can 
also play a role [12]. These stabilization mechanisms suggest that the nanofluids are not really 
entropically mixed but rather dispersed. Indeed, it appears that the mixing entropy contribution 
from the nanoparticles is quite less than what the standard theory would propose [22,23]. This 
is also evidenced by observed incomplete mixing, due to an entropy decrease [24]. The 
incomplete mixing is due to the fact that the suspension or the dispersion is not a solution or 
mixture on a molecular basis, so that the nanoparticles do not have the same combinatorial 
occupation within the fluid as a solute would have on a molecular basis [9,23]. As preparations 
are needed in order to stabilize the suspension or dispersion, this gives rise to another 
phenomenon that influences the free energy of dispersion. The stabilization of the nanoparticles 
in the base fluid results into an enthalpic contribution to the free energy of dispersion that should 
compensate for the strongly reduced, maybe even to a negligible extent, entropic contribution 
of the nanoparticles. This enthalpic contribution stems from favourable, or attractive, 
interactions between the nanoparticle and the fluid (or matrix to be more general) as is 
evidenced from several modelling and experimental work [22,23,25,26]. At the same time, due 
to the interparticle repulsive forces, avoiding the nanoparticles to agglomerate, the 
nanoparticles movement is restricted with respect to that of the fluid (or matrix). This suggests 
that there is a restricted entropic contribution of the nanoparticles, that is being compensated 
by an enhanced enthalpic contribution for the dispersion to be stable. For predicting correctly 
physical properties of nanoparticle dispersions, one resorts often to the chemical potential, 
which implies that the free energy should take into account these observations, which are 
missed by the standard formulations of the free energy of mixing [27]. Although many studies 
have been performed on properties of nanofluids and on free energies of mixing, it is therefore 
rather surprising that no studies on the chemical potential of nanoparticles dispersion in fluids 
(or matrices) are performed, which necessitates new developments [27,28].  
We propose therefore another way of looking at the free energy of dispersion of nanoparticles. 
The nanoparticles are considered to be stabilized in such a way that we can suggest a similarity 
with a porous-like model, where the fluid has liberty of movement and the nanoparticles have 
a fixed relative position to one another. Furthermore, in this model, the fluid undergoes a 
volume-pressure work going from a separated state to the state of dispersion. The nanoparticles, 
being assumed to have a fixed position to one another, do not cause a volume-pressure work. 
This means that in the proposed model, it is only the fluid that contributes to the entropy. The 
interaction between the nanoparticles and the fluid is modelled by means of an enthalpy of 
dispersion. We start with discussing the standard form for the free energy of mixing. As the 
density plays a role in not only porous flow but is also accounted for in some studies dealing 
with thermodynamics of dispersions [4,29-32], we propose a development for the free energy 
of mixing that takes into account density differences between the nanoparticles and the fluid or 
matrix. Subsequently, we apply the principles of our model in order to propose the free energy 
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of dispersion. Since no studies on the chemical potential of nanoparticles dispersion has been 
performed, let alone experimental ones, our model is justified by other means. First, we consider 
an osmosis case and compare to another model based on kinetics. Finally, as one of the most 
direct uses of the chemical potential is related to the mass diffusion coefficient [8], we develop 
a model that predicts the mass diffusion of nanoparticle dispersions and compare it with 
molecular dynamics models and experiments.   
 
2. Theory: free energy of an ideal solution 
2.1 Standard formulation 
We discussed on whether to consider the dispersions as binary solutions or not. Although we 
argued, substantiated by several other works, that nanoparticle dispersions are generally not to 
be seen as solutions, it is, in order to appreciate the difference, interesting to discuss the free 
energy of mixing of an ideal solution. Often, for an ideal solution, the so-called lattice model is 
used, where each lattice point consists of a particle of a component regardless of its size and 
composition. Considering that each lattice point has the same volume 𝑣 , the number of 
combinations each component can fill such a lattice point, taking into account the presence or 
absence of the other component, leads to the mixture entropy ∆𝑆 (change from a reference 
value) for each component. The volume of such a lattice point is arbitrary and, if used 
consequently, should not influence the outcome. For further purposes, it is then convenient to 
choose such a lattice volume equal to the volume of a nanoparticle 𝑉 . For an ideal (index 𝑖𝑑) 
mixture (index 𝑚), the mixture enthalpie change ∆𝐻 is zero, so that the free Gibbs energy 
change ∆𝐺 is given by ∆𝐺 , = ∆𝐻 , − 𝑇∆𝑆 , = −𝑇∆𝑆 , . If we have 𝑁 numbers of 
lattice sites, containing 𝑁  number of base fluid molecules (each one small enough to occupy a 
lattice site) and 𝑁  number of nanoparticles (assumed to occupy also one lattice site, the 
nanoparticles assumed to be sufficiently small to be regarded as a point mass), the total number 
of microstates would equal 
 

𝑊 =
!

! !
            (1) 

 
Boltzmann’s equation of entropy would give 
 

𝑆 = 𝑘 𝑙𝑛(𝑊) = 𝑘 𝑙𝑛
!

! !
         (2) 

 
For a pure fluid, only one undistinguishable combination exists, i.e. 𝑆 = 𝑘 𝑙𝑛(1) = 0. The 
total number of particles equals 𝑁 = 𝑁 + 𝑁  and the total volume equals 𝑉 = 𝑁 𝑉 + 𝑁 𝑉 =

𝑁 𝑉 + 𝑁 𝑉 , so that 𝜑 = . Defining ∆𝑆 , = 𝑆 − 𝑆 , and using Stirling’s 

approximation for the logarithm of factorials, gives 
 

∆𝑆 , = −𝑘 𝑁 𝑙𝑛(𝜑) + 𝑁 𝑙𝑛(1 − 𝜑)         (3) 

 
For a regular solution (subscript 𝑟), the particle-particle, solvent-solvent and particle-solvent 
interactions are to be taken into account as well. We can then speak of the difference in 
interaction energy ∆𝑤 between like and unlike neighbours: 
 

∆𝜔 = 𝜀 − 𝜀 + 𝜀           (4) 
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In this case, the enthalpy of mixing is non-zero, i.e. ∆𝐺 , = ∆𝐻 , − 𝑇∆𝑆 , . It can be 
understood as that each interaction between a particle and the solvent goes at the expense of the 
average of the other two interactions. If 𝑧 is the coordination number standing for the number 
of nearest lattice neighbours for both the solvent and particles, then 𝑧𝑁  is the number of 

nearest-neighbour sites to all the particles. Multiplying this by the probability  that any 

such site is occupied by a fluid molecule, we obtain the total number of particle-solvent 

interactions 𝑧𝑁 = 𝑧𝑁 (1 − 𝜑). The enthalpy of mixing is then equal to  

 
∆𝐻 , = 𝑧𝑁 (1 − 𝜑)∆𝜔         (5) 
 
A nanoparticle-solvent interaction parameter (𝜉 ) is defined in analogy to the polymer-solvent 
parameter as  
 

𝜉 ≡ −2𝜒 = −2
∆

           (6) 

 
where 𝜒  is the well-known Flory-Huggins interaction parameter, generally also used for 
nanoparticle suspensions, [7,33] so that the enthalpy of mixing becomes 
 

∆𝐻 , = −𝑘 𝑇 𝑁 (1 − 𝜑)         (7) 

 
The minus sign in the expression of the 𝜉  parameter indicates that for 𝜉 > 0 (the 𝜒  
parameter is then negative) an exothermic enthalpy of mixing is obtained, which favours the 
stability of a nanofluid dispersion and guarantees ∆𝐺 , < 0 [33]. Finally, we obtain the Gibbs 
free energy per unit mass for a regular solution to be  
 

∆𝐺 , = 𝑘 𝑇 𝑁 𝑙𝑛(𝜑) + 𝑁 𝑙𝑛(1 − 𝜑) − 𝑁 (1 − 𝜑)      (8) 

 
Dividing by the total volume of the system (assuming that each volume package is equivalent 
to the volume of a nanoparticle, i.e. 𝑉 = 𝑉 ) leads to the free energy of mixing per unit volume 
of 
 

∆𝐺 , = 𝜑𝑙𝑛(𝜑) + (1 − 𝜑)𝑙𝑛(1 − 𝜑) − 𝜑(1 − 𝜑) ,     (9) 

 
which resembles the well-known Flory-Huggins model for the free energy of mixing in a 
regular solution [1-3]. However, the effect of mass transport is not taken into account here. For 
this, we should consider the effect of the material densities. 
 
2.2 Effect of material densities 
Imagine there is a diluted solution that behaves like a gas (in the way one would do for 
Brownian particles). This solution contains a solute (regarded equivalent to the nanoparticles 

for the purposes of the present discussion) with pressure 𝑝  and specific volume  and a solvent 
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(the base fluid or matrix) with pressure 𝑝  and specific volume . Here 𝜌  and 𝜌  are the mass 

densities of the particles and the fluid, respectively. Combining the First and Second Law of 
Thermodynamics, we have that the internal energy 𝑑𝑢 per unit mass, for a fixed composition 
of the solution, changes by  
 
𝑑𝑢 = 𝑇𝑑𝑠 − 𝑑𝑤           (10) 
 
where 𝑑𝑤 is the change in work per unit mass. Let us now imagine that in a reversible process, 
the solute and solvent are slowly compressed each one of them in a different part within the 
system, separated by an impermeable membrane. Moreover, in case of an ideal solution, the 
internal energy does not change during this compression, so that 𝑑𝑢 = 0. In a reverse process, 
taking that imaginary membrane away, the solute and solvent expand to equilibrium, resulting 
spontaneously into an ideal mixture. The latter process generates an entropy of mixing per unit 
mass for an ideal solution. This image is given schematically in Fig. 1. 
 
 

 
Figure 1: Schematic representation of the specific-volume-pressure work generating entropy of 
mixing for an ideal solution 
 
During this ideal mixing, the work can be expressed by a specific volume-pressure work 
 

𝑑𝑤 = 𝑝 𝑑 + 𝑝 𝑑           (11) 

 

with the specific volume  (defined as the total volume a component occupies in a certain 

control volume divided by the mass of that component) as variable and 𝑝 = 𝑝 + 𝑝  is the total 
pressure, assumed to be constant. The indices 𝑓 and 𝑝 of the vertical bars in Eq. (11) stand for 
keeping the value of the corresponding variable for, respectively, the fluid and the particle 
constant at derivation. As the changes in the volume-pressure work are per unit mass, we deal 
here with ‘mass clusters’ of solutes and solvents with different densities and volumes (contrary 
to the lattice model, discussed previously) i.e. 𝑚 ≡ 𝑚 . The mass fraction is defined here as 

𝑐 = , with 𝑚 = 𝑁 𝑚 + 𝑁 𝑚  is the total mass. In the present model, the pressure 

of the solute and solvent can be given as 𝑝 𝑉 = 𝑁 𝑘 𝑇 and 𝑝 𝑉 = 𝑁 𝑘 𝑇, respectively. Per 
unit mass, we can write the following state equations: 
 

𝑝 = 𝑘 𝑇           (12) 



6 

 

 

𝑝 = 𝑘 𝑇           (13) 

 
Filling this in Eqs. (10)-(11) leads to   
 

 𝑇𝑑𝑠 = 𝑘 𝑇  +          (14) 

 
Integrating 𝑑𝑠 in Eq. (14) from a state of separation to a state of full mixing gives simply the 
entropy of mixing per unit mass ∆𝑠 , . We can observe that for the nanoparticles the variable 

 is initially given by the total volume of nanoparticles divided by the total mass of the 

nanoparticles in the separated compartment, which corresponds to the total volume divided by 

the total mass in the separated compartment, i.e. . In state of mixing the variable  becomes 

the total volume of nanoparticles divided by the total mass of nanoparticles, the latter of which 
corresponds to the mass fraction of nanoparticles multiplied by the total mass in the mixed state, 

i.e. . The mass fraction is defined as 𝑐 = =
( )

. For the base fluid, we can make 

the same reasoning and conclude that the variable  goes from  to 
( )

. Furthermore, we can 

notice from the previous definitions that =  and = =  with 𝑚 = 𝜌 𝑉  and 

𝑚 = 𝜌 𝑉 . The integration of Eq. (14) leads finally to 
 

∆𝑠 , = − 𝑐𝑙𝑛(𝑐) + (1 − 𝑐)𝑙𝑛(1 − 𝑐)        (15) 

 
For a regular solution, we remind that 𝑧𝑁  is the number of nearest-neighbour sites to all the 
particles. As we proposed for the entropy, we suggest that also the interaction energy depends 
on the density of the particle and fluid clusters. We can say that two clusters with the same 
volume and a different mass affect each other’s interaction per unit mass in a different way. 
Therefore, per unit mass of the system, the probability that a particle’s interaction is affected 
by a neighbouring site should be mass-averaged. As such, the probability that a particle’s 

interaction per unit mass is affected by a neighbouring fluid cluster is = 1 − 𝑐. The 

total number of particle-solvent interactions per unit mass is then 𝑧𝑁 (1 − 𝑐). The enthalpy of 
mixing per unit mass equals   
 

∆ℎ , =
∆ , = 𝑧 (1 − 𝑐)∆𝜔        (16) 

 
Such a mass-fraction dependence for the enthalpy of mixing is similar to what is used for 

studying state transitions in polymer blends [30,34,35]. Defining again 𝜉 ≡ −2
∆

, the 

enthalpy of mixing per unit mass becomes 
 

∆ℎ , = −𝑘 𝑇 𝑐(1 − 𝑐)          (17) 
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Finally, we obtain the Gibbs free energy of mixing per unit mass for a regular solution to be  
 

∆𝑔 , = 𝑐𝑙𝑛(𝑐) + (1 − 𝑐)𝑙𝑛(1 − 𝑐) − 𝑐(1 − 𝑐)      (18) 

 
The discussion lead between Eqs. (7) and (8) apply here as well, observing that, keeping in 
mind 𝜉 > 0, the sign of ∆ℎ ,  is negative as well, so that 𝜉 > 0 favours the stability of a 
nanoparticle dispersion and guarantees ∆𝑔 , < 0.  
The entropy of mixing is argued to be valid for an ideal solution of a solute with mixing on 

atomic level. Indeed, often the free energy of mixing is shortened as ∆𝑔 , = 𝑐𝑙𝑛(𝑐) for 

an ideal solution, resulting into the well-known chemical potential for strongly diluted solutions 

(𝑐 ≪ 1): 𝜂 = 𝜂 = 1 + 𝑙𝑛(𝑐) , which would give = , similar to the result in 

[8]. Beyond the dilute-limit, the chemical potential for polymer blends or binary liquid solutions 

can be argued to be reasonably given by 𝜂 = 𝑙𝑛 , with =
( )

.  

As mentioned earlier, this is not correct for nanoparticle dispersions and a new development is 
proposed. We can easily see that for 𝜌 = 𝜌 = 𝜌 , Eq. (9) is found back by multiplying with 
the density, which shows that the present thermodynamic representation leads to the same result 
as the kinetic one. This encourages the use of such a thermodynamic representation for 
proposing a new development applicable to nanoparticle dispersions.   
 
3.  Chemical potential of dispersion 
At constant temperature and pressure and in absence of a chemical reaction, a change of the 
Gibbs free energy per unit mass for a regular solution is given by  
 
𝑑𝑔 = 𝜂 𝑑𝑐 + 𝜂 𝑑𝑐 = 𝜂 𝑑𝑐 − 𝜂 𝑑𝑐 = 𝜂𝑑𝑐       (19) 
 
recalling that 𝑑𝑐 = −𝑑𝑐  and that we define 𝑐 ≡ 𝑐. As such, the chemical potential 
difference, hereafter simply called the chemical potential, is defined as  
 

𝜂 =
, ,

            (20) 

 
where the subscripts 𝑇, 𝑝 and 𝑁 denote a constant temperature, pressure and mass fraction of 
the other components. Stabilization of nanoparticle dispersions, due to the various 
aforementioned mechanisms (including also dispersing agents or surfactants), causes an 
entropy decrease, suggesting that the overall entropic contribution due to the nanoparticles 
could be neglected [22-24]. This motivates the use of the porous-like model in this work. Let 
us imagine that the nanoparticles, although allowed to flow simultaneously in one direction, 
keep a constant position with respect to one another. The fluid, however, is free to move 
between the nanoparticles as if the latter forms a porous medium. This image is schematized in 
Fig. 2.  
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Figure 2: A scheme showing the nanoparticles going in a direction as if they constituted a 
porous medium going at a constant speed not changing positions to one another, while the fluid 
travels freely in between them 
 
Let us imagine a control volume compartment that contains a certain volume of the dispersion, 
which is then slowly and reversibly separated into two compartments, where the nanoparticles 
are placed into a compartment with the same volume, while the fluids are compressed. Since 
this process is taken as reversible, we now allow the nanoparticles to be moved to the 
compartment of the dispersion, for which the volume does not change, which means that per 
unit mass of nanoparticles, the total volume remains constant, i.e. there is no change in the 
specific volume. At the same time, the fluid is allowed to expand in between the nanoparticles, 
which causes a change in the volume of the fluid per unit mass of fluid and thereby a specific-
volume-pressure work. This means that the entropic contribution to the free energy, in the 
present model, comes from the specific-volume-pressure work caused by the fluid. This process 
is shown in Fig. 3.  
 

 
Figure 3: Schematic representation of the specific-volume-pressure work generating entropy of 
mixing for an ideal dispersion as proposed by our model 
 
This process is thermodynamically described by using Eqs. (10)-(11), but in this case we have 
that the specific-volume-pressure work due to the nanoparticles is negligible, so that we take 

𝑝 𝑑 = 0 and 𝑑𝑤 = 𝑝 𝑑 . We can then write for the entropy 

 

𝟏

𝝆

𝟏

(𝟏 − 𝒄)𝝆

𝟏

𝒄𝝆
𝟏

𝒄𝝆
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 𝑇𝑑𝑠 = 𝑘 𝑇            (21) 

 

Integrating, where  goes from  to 
( )

, reminding that in our model we defined = ≡

, gives 

 

∆𝑠 = 𝑘 𝑙𝑛           (22) 

 
For an ideal solution, the Gibbs free energy for ideal nanoparticle dispersion is then easily 
obtained as 
 

∆𝑔 = (1 − 𝑐)𝑙𝑛(1 − 𝑐)         (23) 

 
For a regular solution, the enthalpy of mixing, Eq. (17), should be added to Eq. (23). The non-

dimensional free energy for an ideal dispersion, ∆𝑔 = ∆𝑔 , is shown in Fig. 4. For 

comparison, the same is shown for the free energy of mixing of an ideal solution (𝜉 ≡ 0) 
from Eq. (18).   
 
 

 
Figure 4: Non-dimensional free energy for ideal nanoparticle dispersion ∆𝑔  as a function of 
nanoparticle mass fraction 𝑐 for nanoparticle dispersions, Eq. (23) and ideal solutions, Eq. (18). 
 
4. Results and Discussion  
4.1 Osmosis 
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Eq. (23) (this work)   
Eq. (18), 𝜉 = 0   
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In a kinetic explanation for the entropy of mixing [36], it is proposed that there exists an 
equivalence between the mechanisms responsible for diffusive osmosis and the free energy of 
mixing in case of an ideal solution. Proposing a kinetic solution-blocking model, they suggest 
that the Boltzmann factor 𝜀 = 𝑒 /  should be equal to the molar fraction of the fluid in the 
solution. The osmosis would then be responsible for the mixing entropy [36,37]. Using 
variables per unit mass, it would mean that the Boltzmann factor 𝜀 = 𝑒 /  is equal to the 
mass fraction of the fluid. It is then easy to verify that the osmotic pressure for such an osmosis 
case is proportional to the natural logarithm of the fluid concentration [36]. It is interesting to 
use our model to verify such an equivalence. For this, we first take the chemical potential of the 
fluid  
 

𝜂 =
∆

( )
= −

∆
= 1 + 𝑙𝑛(1 − 𝑐) = 𝜂 , + 𝑙𝑛(1 − 𝑐)   (24) 

 

with 𝜂 , ≡ . In analogy with [36,38], but taking into account density differences, the 

osmotic pressure for an osmosis setup is defined as Π = −𝜌 𝜂 − 𝜂 , . With Eq. (24), this 
leads to   
 
Π = −𝑘 𝑇 𝑙𝑛(1 − 𝑐)          (25) 

 
For a strongly diluted dispersion, we can make the assumption that 𝑙𝑛(1 − 𝑐) ≈ −𝑐. Eq. (25) 
becomes 
 

Π = 𝑘 𝑇 𝑐 = [𝑐]          (26) 

 
with [𝑐] the mass concentration of nanoparticles. Eq. (26) can also be written as  
 

Π = [𝑐] = 𝑘 𝑇 ≈ 𝑅𝑇[𝑀],         (27) 

 
with [𝑀] the molar concentration, which corresponds interestingly to Van’t Hoff’s equation. 
We can observe that the same result for the osmotic pressure is obtained as in [36]. This also 
means that our porous-like model gives the same results as the solute-blocking model in what 
concerns the osmotic pressure, although departing from different principles. Moreover, a 
similar deduction is also performed by [39,40], motivating the use of the free energy of 
dispersion in Eq. (23).  
 
4.2 Behaviour of the free energy of dispersion 
Reflecting on the previous discussions and recalling that the initial model that we proposed to 
work on is fluid flow through a porous-like structure, we can say the following. Whether it is 
assumed that the nanoparticle contribution to the increase of the entropy of mixing is cancelled 
out by a decrease of entropy due to the stabilization of the dispersion, or whether its contribution 
can be neglected due to the heterogeneous character of the dispersion or whether a kind of 
osmotic-pressure model can be proposed, all seem to suggest it is reasonable to use Eq. (23) for 
the ideal free energy of nanoparticle dispersion. Adding finally the contribution of the enthalpy 
of mixing, Eq. (17), the following Gibbs free energy for nanoparticle dispersions is proposed: 
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∆𝑔 , = (1 − 𝑐)𝑙𝑛(1 − 𝑐) − 𝑐(1 − 𝑐)       (28) 

 
As mentioned in the discussion between Eqs. (7) and (8), for 𝜉 > 0, it can be easily seen that 
∆𝑔 , < 0, which is a criterion for nanofluid dispersion stability. Without the effect of the 
dispersing agents, the free energy would most probably be closer to Eq. (18). It is interesting to 
show the qualitative effect of 𝜉  (recall that in this paper 𝜉 > 0 and 𝜉 < 0 stand for 
particle-fluid attraction and repulsion, respectively) on the free energy and for this purpose the 

non-dimensional free energy ∆𝑔 , = ∆𝑔 ,  from Eq. (28) is drawn in Fig. 5 as a 

function of the nanoparticle mass fraction.  
 

 
Figure 5: Non-dimensional free energy for regular nanoparticle dispersion ∆𝑔 ,  as a function 
of nanoparticle mass fraction 𝑐. 
 
A negative value of 𝜉  would correspond to a less stable nanofluid that could exhibit a weak 
interaction between the nanoparticles and the fluid, due to the weak affinity between them. It 
should be noted that if the negative value of 𝜉  is not too large, the nanoparticle dispersion can 
still be stable due to entropic contribution Theoretically, as long as ∆𝑔 , < 0, there is a mass 
fraction for which the nanofluid could be stable. This would correspond to a criterion of  
 
𝜉 > 2𝑐 𝑙𝑛(1 − 𝑐).          (29) 
 
From Fig. 5, we can see that for the curve corresponding to 𝜉 = −2.5 a small range of mass 
fractions would give theoretically a slightly unstable nanofluid. For example, for 𝑐 = 0.1, 
stability is achieved if 𝜉 ≳ −2.11, so that for the curve with 𝜉 = −2.5, the nanofluid would 
not be stable. 
Finally, from Eq. (27) we can find the proposed chemical potential for nanoparticle dispersion 

0.0 0.2 0.4 0.6 0.8 1.0
1.5

1.0

0.5

0.0

0.5

c

g m
,n

p
n

𝜉 = −5   
𝜉 = −2.5   𝜉 = 2.5 
𝜉 = 0    𝜉 = 5 

 



12 

 

 

𝜂 , = 𝑙𝑛(𝑒 (1 − 𝑐) ) + (2𝑐 − 1)       (30) 

 
4.3 Application to mass diffusion of a nanoparticle suspension 
There is a gap in experiments or modelling concerning the chemical potential of nanoparticle 
dispersion. Therefore, the present model can only be verified in the context of an application. 
Since mass diffusion is often linked to a chemical potential gradient rather straightforwardly, it 
would be quite logical to use our model and compare it to modelling and experimental works 
dealing with mass diffusion. For pedagogical purpose, let us study the simple problem of matter 
diffusion in a two-component suspension of mass fractions 𝑐  and 𝑐 , the temperature 𝑇 is 
assumed to be uniform. Since 𝑐 + 𝑐 = 1, it follows that the set of independent variables is 
given by 𝑐 , the entropy 𝑠 per unit mass of the system depends on this mass fraction and one 
has 𝑠 =  𝑠(𝑐 ) or, in terms of the material time derivative 
 

= = − ,         (31) 

 
with 𝜂 designating the difference 𝜂 − 𝜂  between the chemical potentials of both constituents. 
Entropy is also assumed to obey a time evolution equation of the general form  
 

𝜌 = −∇ ∙ 𝑱 + 𝜎 ,  with 𝜎 ≥ 0.                                                     (32)

           
𝜎  is the rate of entropy production imposed to be positive definite in virtue of the Second Law 
of Thermodynamics and 𝑱  is the entropy flux. The mass conservation law is given by 
 

𝜌 = −∇ ∙ 𝑱 ,            (33) 

 
where 𝑱  is the mass flux of component 1. Comparing (31)-(33) with one another at equilibrium 
(𝜎 ≡ 0), we easily find that the equilibrium entropy flux is classically given by 
 
𝑱 = − 𝑱 .             (34) 

 
At non-equilibrium the entropy production is positive (second law), and we obtain, by filling 
(33) in (31), (34) in (32) and comparing the two results, the classical expression for the entropy 
production  
 

𝜎 = −𝑱 ∙
∇

≥ 0.            (35) 

 
The simplest way guaranteeing the positiveness of relation (35) is to assume that there exists a 

linear relation between the flux 𝑱  and its conjugated force represented by
∇

, which leads to  

 

𝑱 = −
∇

,             (36) 

 
defining component 1 by the fluid. The symbol 𝜒 can be found by considering that in the case 
of equilibrium diffusion, Eq. (36) should reduce to Fick’s law, 𝑱 = −𝜌𝐷∇(1 − c), with 𝐷 the 
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self-diffusion coefficient [8,29]. In this case, the chemical potential gradient can be defined as 

∇𝜂 =
( )

∇(1 − c) = − ∇(1 − c). This leads to 

 

𝜒 ≡
( )

           (37) 

 
For nanoparticle dispersions, we mentioned earlier that in our model we consider that the fluid 
flows in between the particles, like in a porous-like medium. In such a case, we can say that 
diffusion happens rather by a non-Fickian local pressure-diffusion mechanism. The chemical 

potential gradient in such a case should then be written as  ∇𝜂 ≡ ∇𝑝. Such different 

formulations of the chemical potentials have been proposed and used in the literature [41-45]. 

At constant temperature and composition, we can deduce from Gibbs equation that ≡ . 

From Eq. (13), we have for 𝜚 ≡ 𝜌 that ∇𝑝 = ∇𝑝 = ∇(1 − c) (recall that in our model, 

for a dispersion, ∇𝑝 = 0). It is proven experimentally that 𝜉  can depend on the concentration 

[46-48]. We should then write the enthalpic contribution as −
( )

𝑐(1 − 𝑐). With this in mind 

and as Eq. (30) has been obtained by deriving Eq. (28) with respect to c, we have to rewrite 

( )
=

∆ ,

( )
= + Ξ (𝑐) , with Ξ (𝑐) = −2𝜉 (𝑐) + (2 − 4𝑐)𝜕 𝜉 (𝑐) +

𝑐(1 − 𝑐)𝜕 𝜉 (𝑐). Now, recalling that under our model 𝜌 𝑉 = 𝜌 𝑉 , Eq. (36) becomes  
 

𝑱 = −
( )

∇(1 − c),           (38) 

 
Comparing this with an effective Fick’s law, i.e. 𝑱 = −𝜌𝐷 ∇(1 − c) leads to  
 

𝐷 = 𝐷
( )( )

         (39) 

 
where we rewrite the self-diffusion coefficient as 𝐷 ≡ 𝐷 , for conventional reasons. The 
symbol 𝜉  depends on the interaction the dispersing agents cause between the nanoparticles 
and the fluid. If there are no nanoparticles, one would deduct that the enthalpy of dispersion 
should vanish. This suggests that, for the present approach, we can say that lim

→
Ξ = 0, which 

is a phenomenon supported by the literature for nanoparticle or colloidal suspensions [49-51]. 
The precise expression for 𝜉 (𝑐) is not the subject of this paper, but for the sake of the 
discussion, we can, motivated by other works [46-48], take a simple linear relation for 𝜉  of 
the type 𝜉 (𝑐) = 𝜉 , (1 + 𝛼𝑐), with 𝛼 = 𝑂(1). We will take for simplicity 𝛼 ≡ 1 and 𝜉 ,  
is now given by Eq. (6). Then, we would obtain Ξ = 3𝜉 , 𝑐, and we can easily see that 
lim

→
𝐷 = 𝐷 , which is what would be expected from a nanoparticle suspension or dispersion. 

In [49], they stated that in the limit of very small volume fractions, the repulsive interactions 
between colloids (we make an analogy with nanoparticles) are negligible and propose a 
diffusion coefficient from hydrodynamic predictions of the form 𝐷 = 𝐷 (1 − 2.1𝜑). The 
factor -2.1 is a theoretical value obtained by [52,53]. If we neglect the interaction forces in Eq. 
(39), we end up with 
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𝐷 , = 𝐷 1 − 𝜑 ,          (40) 

 
which shows a similar behaviour. For appreciation, the hydrodynamic prediction and our model 
neglecting interaction forces, Eq. (40), are traced in Fig. 6 together with some Molecular 
Dynamics (MD) data of the diffusion coefficient for a colloid with = 5 [49,54]. The MD 

data differ in the mean free paths for the diffusion being a treated subject in that work, but this 
is not of importance for the present discussion (more information on this can be found in [49]). 
We can see in Fig. 6 that Eq. (40) actually depicts the general tendency quite well. 
 
 

 
Figure 6: Comparison MD data (markers) from [49] to equations for the diffusion coefficient: 
𝐷 , , 𝐷  and 𝐷 , .  
 
Let us recall that these results have been obtained by using Eq. (28) and that the same tendency 
has been observed in other works [55-57]. If we had used Eq. (18), we would have obtained 
that  
 

𝐷 = 𝐷
( )

( ) ( )
                  (41) 

 
which is not at all suitable for nanoparticle suspensions. Moreover, for Eq. (41) it holds that 
lim

→
𝐷 , = 0, which is not valid for nanoparticle suspensions, but rather widely used for 

polymeric blends [58-60]. Neglecting interaction forces, Eq. (41) becomes 
 

𝐷 , = 𝐷 𝜑 1 − 𝜑                   (42) 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

D
D

0

 𝐷 ,  (this work) 
 𝐷 ,  ([58]-[60]) 
 𝐷  ([49]) 



15 

 

For comparison, Eq. (42) is plotted in Fig. 6, which clearly shows that Eq. (40) seems to portrait 
the behaviour of the diffusion coefficient as a function of the volume fraction much better than 
Eq. (42). Moreover, we can see, recalling that 𝜌 = 𝜑𝜌 + (1 − 𝜑)𝜌 , that for small 𝜑, 𝐷 , =

𝐷 1 − 𝜑 = 𝐷
( )

( )
≈ 𝐷 = 𝐷  and that for large 𝜑, 𝐷 , =

𝐷 1 − 𝜑 ≈ 𝐷 1 − = 𝐷 (1 − 𝜑). This behaviour of a reciprocal dependence on 𝜑, 

when small, and a linear dependence on 𝜑, when large, is also observed in [49,54].  
There are works where the behaviour of the diffusion coefficient as a function of the 
nanoparticle or colloid concentration is different, but these involve often electrostatic or 
chemical mechanisms that tend to influence the particles’ trajectory, e.g. [61]. Incorporating 
such effects would necessitate the extension of the chemical potential. Moreover, in some 
studies, adding a soluble substance, such as a solute (and not a particle), to a nanofluid seems 
to increase the diffusion coefficient, which could be understood by a supplementary entropy 
increase due the combinatorial mixing of this solute, e.g. [62]. Such contradictory behaviour 
can be understood by examining Eq. (39) and recalling the example Ξ = 3𝜉 , 𝑐 mentioned 
there. If 𝜉 , < 0, the nanoparticles would be repulsive to the base fluid. Looking at Eq. (39), 
we can easily see that, depending on the magnitude 𝜉 , , the diffusion coefficient will either 
increase continuously as a function of the nanoparticle mass fraction (remaining in the diluted 
range) or may go through a maximum before decreasing. If, however, 𝜉 , > 0, the 
nanoparticles would be attractive to the base fluid and Eq. (39) shows that the diffusion 
coefficient would decrease continuously with the nanoparticle mass fraction. Such behaviours 
and the concept of nanoparticle-base fluid (or liquid matrix which may be polymeric) repulsion 
or attraction and its influence on the diffusion coefficient has been observed by molecular 
dynamics simulations in [63,64]. A similar maximum in the diffusion coefficient is also 
experimentally measured in [65]. Nevertheless, there are quite some experimental data that 
show a decreasing trend of the diffusion coefficient of nanoparticles or colloids suspended or 
dispersed in fluids in the same manner as predicted by Eqs. (39)-(40). For illustration, we will 
compare our model, Eq. (40), with experimental data where particle-fluid interaction is weak 
or can be neglected. In [66], they measured the diffusion coefficients of silica particles in 
cycloheptane. Although it concerned two types of hard, spherical silica particles [66], they used 
an experimental technique (photon correlation spectroscopy) that allowed to measure the 
diffusion coefficient 𝐷 ,  as a function of the overall mass concentration. For our model, we 
convert the mass concentration to volume fraction, we use the average density of the silica 
particles they used, i.e. 𝜌 ≈ 1825 kg/m3, a cyclohexane density of 𝜌 = 807 kg/m3 and a self-
diffusion coefficient 𝐷 ≈ 4.5 ∗ 10  m2/s [66]. On a side note, in order to include size effects, 
Eqs. (31) and (34) can be extended in the same manner as in [29,67]. However, the silica 
particles had sizes of approximately 35 nm, for which size effects could be neglected for 
diffusion in cycloheptane under their experimental conditions. The results are traced in Fig. 7. 
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Figure 7: The effective diffusion coefficient 𝐷 ,  from Eq. (40) compared to experimental data 
of silica nanoparticles in cyclohexane [66].  
 
We also compare our model with experiments of nanoparticle dispersion in a weakly entangled 
polymer blend, where the latter is defined such that 𝜀 = 𝜀 = 𝜀 , so that 𝜉 = 0 and we 
can neglect the enthalpic contribution [68]. The density of the polymer melt, poly-methyl 
methacrylate (PMMA), is not given there explicitly, but from information on the interaction 
energy 𝜀 , the inter-monomer interaction distance 𝜎 , the operating pressure and temperature 
[68] as well as the glass temperature [69,70], we can estimate by extrapolation [69] a density 
of 𝜌 ≈ 880 kg/m3. At such temperatures and pressure, the density of silica is not much 
changed [71] and an approximate value of 𝜌 ≈ 2400 kg/m3 can be found [71,72]. The results 
are shown in Fig. 8. 
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Figure 8: The effective diffusion coefficient 𝐷 ,  from Eq. (40) compared to experimental data 
of silica nanoparticles in PMMA melts [68].  
 
The results in Figs. 7 and 8 show a good comparison with the experimental data, which suggests 
a correct representation of the chemical potential of dispersion proposed in this work. 
Moreover, it also suggests the density-dependence of the chemical potential. Still other works 
show similar behaviour of the diffusion coefficient, e.g. nanoparticle diffusion in electrolytic 
solutions for batteries [73,74], protein diffusion in membranes [75], nanoparticle diffusion in 
volatile liquids [76] and aqueous cellulose nanofibers diffusion [77]. This substantiates the use 
of the chemical potential for nanoparticle/colloidal suspensions/dispersions proposed in this 
work.    
 
5. Conclusions 
For nanoparticle suspensions, a new analytical model is proposed for the chemical potential of 
nanoparticle dispersions that could be straightforwardly used for material properties. We have 
discussed that it is conceptually not reasonable to consider nanofluids (as they are used for 
practical applications) as mixtures in the sense of binary solutions on a molecular level. By 
means of thermodynamic considerations and proposing a porous-like model for fluid diffusion 
in between nanoparticles, we obtained an expression for the chemical potential for nanoparticle 
dispersion. From this expression, the same expression for the osmotic pressure of a dispersion 
was obtained as by a kinetic study [36]. Moreover, by a series of simplifications, the Van’t Hoff 
equation was readily deduced. In order to illustrate the importance of a correct chemical 
potential, we used the one in this paper and the standard one to deduce the diffusion coefficient 
of nanoparticle diffusion in a fluid as a function of the mass fraction. There are, of course, other 
parameters on which the diffusion coefficient depends, such as particle size, surface chemistry, 
fluid composition, electrostatic effects, active particles. For purposes related to the chemical 
potential, we rather deal here with entropic dispersing effect (having also discussed the 
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enthalpic one). The proposed chemical potential is verified further by developing a mass 
diffusion coefficient using both approaches, the standard chemical potential of mixing and that 
of dispersion. The behaviour of the diffusion coefficient is also explained in [78] by a mean-
field hydrodynamic theory in porous medium. Interestingly, this seems to coincide with the 
porous-like model we used in our work, which lead finally to expression Eq. (28). The 
comparison with molecular dynamics and experimental data has shown that the use of the 
standard formulation for the free energy of mixing is not suitable for nanoparticle 
suspensions/dispersions. The chemical potential we proposed describes, however, correctly the 
behaviour of nanoparticle diffusion in fluids. The reason for this is explained by the present 
model itself. It appears from the model that, such as in a porous medium, it is the fluid that 
diffuses through the nanoparticles, which governs the mechanism behind the chemical potential 
of dispersion. Moreover, the density-dependence of the chemical potential of dispersion is 
hereby implied as well. It should be mentioned that, if the base fluids are polymeric of nature 
in a way that nanoparticles could alter their configuration either chemically or physically, other 
effects come into play and the model should be extended. It could be argued that the application 
of our model could also be extended to emulsions and dispersions of materials that are not 
considered to be a mixture or even to solutions of which the solute is a solid [79]. Finally, the 
interchange energy ∆𝑤, discussed in relation with the particle-matrix interaction, can be linked 
to a nano-layer of dense structured fluid around the nanoparticles [80,81]. This could be an 
interesting alternative to using interaction energies 𝜀 , since nano-layer thicknesses are 
sometimes more readily available and can often be taken to be typically of the size 𝑂(1) nm 
[80,81]. This work shows that the present expression for the chemical potential, resulting from 
a porous-medium-like behaviour, gives quite good results for nanofluid dispersions and 
suspensions and could be an incentive for further development. 
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