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Abstract 
The effective viscosity of nanoparticle dispersions has been investigated experimentally quite 
a lot and various behaviours have been observed. Many models have been proposed to predict 
the effective viscosity, but these are mainly empirical ones, correlations with a tuning parameter 
or based on fastidious molecular interactions simulations. In this work, we propose a new fully 
physics-based analytical expression for the effective viscosity implementing theories from 
extended thermodynamics, including nano-confinement effects, nanoparticle-fluid interactions, 
density effects, size effects and nanoparticle volume fraction. We validate this model against 
several different types of nanoparticle dispersions and emulsions and explain the different 
behaviours using the same model. It appears that the density ratio of the nanoparticles with 
respect to the fluid plays a crucial role affecting the viscosity. The nanoparticle-fluid 
interactions become increasingly important for smaller nanoparticle sizes. From these 
comparisons, we arrive at a universal simplified expression for the effective viscosity of 
nanoparticle dispersions, where it is observed that there is a direct universal relation between 
the nanoparticles and fluid densities and the nanodispersion viscosities. The validity of such a 
relation has been explicitly demonstrated.  
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1. Introduction 
Viscosity is a central property in the investigation of mechanical and thermal properties of 
nanoparticle dispersions. These nanodispersions, when concerning dispersions of solid particles 
in a liquid, are also called nanofluids. For many applications, nanodispersions are used to 
enhance heat transfer for solar energy harvesting and storage, provide for smart cooling, or 
control the thermal management for electronics [1-6]. Nanoparticle dispersions are also used as 
a precursor for the preparation of nanocomposites or self-assembled structures in view of other 
applications, e.g. supercapacitors, batteries, electrodes or membranes [7-9]. Liquid-liquid 
nanodispersions find particular applications in the medical sector, as means for drug delivery 
or pharmaceutics, cosmetics and food [10-12]. The required effects depend heavily on the 
presence of the nanoparticles in the fluid, so that it is important that those nanoparticles are well 
dispersed. For that, they need to be well stabilized in order to avoid flocculation, settlement or 
agglomeration, which is quite a challenge [13]. Some dispersion mechanisms exist, such as 
electrostatic, steric, or electro-steric stabilization. These mechanisms rely on inter-particle 
repulsive forces (nanoparticle surface treatment by e.g. adsorption of ions, physical adsorption 



 

of charged species, accumulation or depletion of electrons), van der Waals inter-particle 
screening by macromolecular barriers attached to the nanoparticle surfaces and a combination 
of both, where surfactants or dispersing agents can also play a role [2]. These stabilization 
mechanisms suggest that the nanofluids are not really entropically mixed but rather dispersed. 
This latter observation is of great importance for the thermophysical properties of 
nanodispersions, which should be well defined or at least known for the respective applications. 
Particular interest is given here fore the effective viscosity. Many experiments have been 
performed in order to characterize the effective viscosity 𝜇  as a function of the amount of 
nanoparticles, often expressed in the volume fraction. Although the vast majority of the data 
show an increasing tendency, the viscosity increments differ considerably from one 
nanodispersion to another [14-20]. Fig. 1 shows some examples of the relative effective 
viscosity 𝜇 /𝜇  for some nanodispersions, where 𝜇  is the viscosity of the base fluid. 
 

 
Figure 1: Experimental relative effective viscosity as a function of the volume fraction of nanoparticle dispersions. 
The legend shows the data in the form “size of nanoparticles” “type of nanoparticles” “type of fluid”, where W 
stands for water and EG for ethylene glycol with one W/EG mixture given in volumetric contents. The 
nanodispersions are: 25 nm Fe3O4-W [14], 30 nm SiC-40EG/60W [15], 43 nm Al2O3-EG [16], 8 nm Al2O3-EG 
[16], 8 nm GR-W [17], 25 nm Al2O3-W [18], 10 nm ND-W [19], 9 nm CNT-W [20], where GR stands for graphite, 
ND for nanodiamonds and CNT for carbon nanotubes. 

 
From Fig. 1, we can see that comparing, for instance, the nanodispersions 25 nm Fe3O4-W and 
25 nm Al2O3-W the former has a higher effective viscosity than the latter. The only difference 
being the type of nanoparticle, the difference could lie in the density of the nanoparticle and/or 
their interaction with the base fluid. From the comparison between the nanodispersions 43 nm 
Al2O3-EG and 8 nm Al2O3-EG, we can also see that the nanoparticle size can play a role. A 
useful tool to understand and predict the mechanisms that result into the behavior of the 
effective viscosity of nanodispersions is to propose a model, based on physical and fundamental 
principles. The latter aspect causes such a model to be universally applicable for different types 

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
1.0

1.5

2.0

2.5

3.0

nf
f

9 nm CNT W

10 nm ND W

25 nm Al2O3 W

8 nm GR W

8 nm Al2O3 EG

43 nm Al2O3 EG

30 nm SiC 40EG 60W

25 nm Fe3O4 W



 

of nanosdispersions. Furthermore, the model should be as less complicated as possible, which 
would make it more easily applicable in numerical 2D or 3D models or for industrial use. The 
aim can then be resumed to propose a physics-based analytical expression for the effective 
viscosity of nanodispersions. Most studies are based on Einstein’s model [21], which has served 
as inspiration for most descriptions used today. The subject is of interest as confirmed by the 
numerous papers published during the last decade, e.g.[22-28]. However, many of them rest on 
ad hoc correlations with the shortcoming of being of limited applicability and generally lack of 
physical background. In that respect, the present approach is different and original as it is 
grounded on a modern non–equilibrium thermodynamic theory, more specifically Extended 
Non-Equilibrium/Irreversible Thermodynamics [29,30], the main idea underlying this 
formalism is to elevate the dissipative fluxes, like the heat and matter fluxes and the viscous 
stress tensor to the status of independent variables. As such, we propose a physics-based 
approach, without adjustment parameters or empirical correlations, and lay out the effect of 
other material properties, such as the density of the fluid and nanoparticles. 
 
2. Model 
2.1 Evolution equation for the mass flux 
The nanofluid is  modelled as a two-component mixture consisting of nanoparticles, with 

volume fraction 𝜑 (= ), with 𝑛  the number of nanoparticles, 𝑉  the volume of one 

nanoparticle and 𝑉  the total volume 𝑉 = 𝑛 𝑉 + 𝑉 , where 𝑉  is the fluid volume), dispersed 
homogeneously in a Newtonian viscous incompressible fluid of mass density 𝜌  moving with 
a velocity 𝒗𝒇. The nanoparticles are assumed to be rigid spheres of mass density 𝜌  moving at 
velocity 𝒗 . The diffusion fluxes of the fluid and particles are defined as  
 
𝑱 = (1 − 𝜑)𝜌 𝒗 − 𝒗 ,                       (1) 
 
𝑱 = 𝜑𝜌 𝒗 − 𝒗 ,                                  (2) 
                           
with the subscripts "𝑓" and "𝑝" denoting the base fluid and nanoparticles respectively. Bold 
case letters will be used throughout this work to denote vectors. The barycentric velocity 𝒗 is 
given by 
 
𝜌𝒗 = (1 − 𝜑)𝜌 𝒗 + 𝜑𝜌 𝒗 .             (3) 
 
wherein the total mass density 𝜌 is 𝜌 = (1 − 𝜑)𝜌 + 𝜑𝜌 . Macroscopically, diffusion can be 
described by Fick’s law. However, when we work with nanoparticles, we expect non-local and 
relaxational effects of the diffusion flux, so that we can expect that the mass flux is dissipative 
of nature and needs an evolution equation to be well described. Furthermore, since the mass 
flux is considered to be dissipative, extended non-equilibrium thermodynamics elevates it to an 
independent variable at the same level as the mass fraction. The entropy production takes then 
another form than the usual one from Gibb’s equation for entropy production (see the appendix) 
and becomes 
 

𝜎 = 𝑱 ∙ −
∇

− 𝜌𝛼
𝑱

+  𝛾∇ 𝑱 + 𝛾∇𝑱 ⨂∇𝑱 ≥ 0,       (4) 

 
where 𝑱  is the dissipative mass flux of component 1, 𝜂 = 𝜂 − 𝜂  the chemical potential 
difference between the two components 1 and 2 (hereafter called the chemical potential), 𝛼 and 



 

𝛾 phenomenological coefficients to be determined, 𝑇 the temperature, 𝑡 the time and ⊗ 
standing for the tensorial product. The simplest way guaranteeing the positiveness of relation 
(4) is to assume that there exits a linear relation between the flux 𝑱  and its conjugated force 
represented by the terms between parenthesis and that 𝛾 is a positive factor. To summarize, one 
is led to  
 

𝑱 = −
∇

− 𝜌𝛼
𝑱

+  𝛾∇ 𝑱 ,   𝛾 ≥ 0,         (5) 

 
with 𝜒 a positive phenomenological coefficient in order to meet the condition 𝜎 ≥ 0. The term 

 has unity time and can be defined by the mass flux relaxation time as is the tradition in the 

time-evolution of fluxes in EIT, so that = 𝜏. Furthermore, it should be noted that ∇ 𝑱  

represents the non-local contribution of the mass flux, for which we can observe that  has a 

unit of length to the square. Typically, in EIT, this is defined as the square of the mean free path 
of the mass flux. When neglecting the non-local contribution and the relaxation effect, Eq. (5) 
reduces to Fick’s law. As such, expressing the chemical potential difference 𝜂 in terms of 𝑐 , 
leading to ∇𝜂 = (𝜕𝜂/𝜕𝑐 )∇𝑐 , we can easily see that we can write 
 

= 𝜌𝐷,            (6) 

 
Finally, defining the variables with subscript 1 to stand for the nanoparticles (subscript 𝑝) and 
the variables with subscript 2 for the fluid (subscript 𝑓), we obtain that the mass flux obeys the 
following time evolution equation expression  
 

𝜏
𝑱

+ 𝑱 = −𝜌𝐷∇𝑐 + ℓ²∇ 𝑱 ,                     (7) 

 
where we write, for simplicity, 𝑐 ≡ 𝑐 and thus 𝑐 = 1 − 𝑐. For later purposes, we find it more 
convenient to work with the fluid mass flux, 𝑱 . As 𝑱 + 𝑱 = 0, the mass flux evolution can 
be written as [29-32] 

 
𝜏𝜕 𝑱 + 𝑱 = −𝜌𝐷∇𝑐 + ℓ ∇ 𝑱 = 𝜌𝐷∇c + ℓ ∇ 𝑱 ,      (8)
  
wherein 𝜏, 𝜕 , 𝐷, 𝑐(= 𝜑𝜌 /𝜌), and ℓ are the mass flux relaxation time, partial time derivative, 
diffusion coefficient, mass fraction of the fluid and the mean free path of the mass flux, 
respectively. Relation (8) generalizes Fick’s law, which is recovered when 𝜏 and ℓ become 
negligible with respect to the characteristic time and size of the system, respectively (i.e. 
mathematically 𝜏𝜕  and ℓ ∇  tend to zero). As the fluid velocity remains small, all non-linear 
terms in the velocity (as 𝒗 ∙ ∇𝑱) are neglected, which justifies that the material time derivative 
is substituted by the partial time derivative. The last term in the right-hand side of (8) stands for 
the non-local effects, which are important in presence of nano systems.  
Substituting the definition (1) of the mass flux 𝑱  in (8) and assuming that the material densities 
and volume fractions do not change in time nor in space (closed system and perfectly mixed) 
leads to  
 
𝜏(1 − 𝜑)𝜌 𝜕 𝒗 − 𝒗 = 𝜌𝐷∇𝑐 − (1 − 𝜑)𝜌 𝒗 − 𝒗 + ℓ (1 − 𝜑)𝜌 ∇ 𝒗 − 𝒗 . (9) 
      



 

We will eliminate the term in 𝒗 by making use of the global momentum equation which, in 
absence of  body forces may be written as  
 
𝜌𝜕 𝒗 = −∇𝑝 + ∇ ∙ 𝝈                       (10)
      
wherein 𝑝 is the pressure and σ the stress tensor given by the following constitutive relation 
 
𝝈 = 𝜇 ∇𝒗 + 𝜇 ∇(𝒗 − 𝒗 ),            (11) 
 
where the quantity 𝜇  is the usual fluid kinematic viscosity, while 𝜇  designates the extra 
viscosity resulting from the mass diffusion flux of the nanoparticles, expressed into a 
nanoparticle velocity, different from that of the fluid, caused by friction between the 
nanoparticles and the fluid. Such a contribution is new and is justified because resistance to 
deformation will be influenced by the presence of particles, which gives raise to strong non-
localities expressed by the tem in ∇(𝒗 − 𝒗 ). Note that this is different from the bulk viscosity, 
which is zero as the fluid is assumed to be incompressible. 
More information about the new coefficient 𝜇  will be given in the forthcoming. Making use 
of the following equivalent definition of 𝐽  instead of (1) 
 

𝐽 = 𝜑(1 − 𝜑) (𝒗 − 𝒗 ),         (12) 

 
and filling relation (10) in (9), with 𝜎 given by (11), one obtains the time evolution equation 
for the velocity of the base fluid, namely  
 

𝜌𝜕 𝒗 = 

−∇𝑝 − ∇ln(1 − 𝑐) + 𝜇 ∇ 𝒗 − (𝒗 − 𝒗 ) + 𝜇 + ℓ ∇²(𝒗 − 𝒗 )  (13) 

  
There are two unusual terms in Eq. (13), the penultimate denoting a flux term and the last a 
diffusional flux term. The flux term stands for the kinetic force related to the partice-fluid 
velocity difference, while the diffusional flux term contains two parts, the first being the 
contribution of the presence of the particles to viscous dissipation and the second relating the 
same but due to size-effects. At steady state and neglecting diffusion with respect to the fluid 
velocity, Eq. (13) becomes  
 

𝜇 ∇ 𝒗 − (𝒗 − 𝒗 ) + ℓ ∇²(𝒗 − 𝒗 )  = ∇𝑝 ,                        (14) 

 
with ℓ  standing for 
 
ℓ = ℓ + 𝜇 .                     (15) 

 
2.2 Relaxation time of the mass flux 
Before, moving on, we should define first this relaxation time and mean free path of the mass 
flux. We start with the relaxation time. Following the definitions of the phenomenological 
parameters (see Eqs. (5)-(6) and the text between them), we can express the relaxation time as: 



 

 

𝜏 = = 𝛼𝜌 𝐷𝑇          (16) 

 
with 𝑇 the temperature and 𝜂 the difference in chemical potential of dispersion between the 

nanoparticles and the fluid. We need to know 𝛼 and  for finding the relaxation time. In 

comparison to two other thermodynamic theories (Internal Variable Theory for suspensions 
[29,33,34] and the Generic formalism [35]), an expression equivalent to the term 𝛼 in Eq. (11) 
is found. Comparing carefully the different terms for the mass flux in both the works to the ones 
in the present one, we come to the conclusion that 𝛼 is equivalent to  
       

𝛼 =
( )

           (17) 

 

The chemical potential for a nanodispersion is obtained by 𝜂 =
,

, where the indices stand 

for a constant temperature and pressure and 𝑔 is the free energy of dispersion of the 
nanoparticles in the fluid. This is not equal to the standard free energy of mixing of blends or 
binary liquids, but is newly derived for dispersions and suspensions in [36]: 
  

∆𝑔 , = (1 − 𝑐)𝑙𝑛(1 − 𝑐) − 𝑐(1 − 𝑐) .       (18) 

 
The chemical potential is then readily obtained as  
 

𝜂 = 𝑙𝑛
( )

+ (2𝑐 − 1) ,        (19) 

 

where 𝑉  is the volume of one nanoparticle, 𝜉 ≡ −2
∆

 is the nanoparticle-fluid interaction 

parameter, with 𝑧 the coordination number (number of nearest lattice neighbours for both the 

solvent and particles), 𝑘  Boltzmann’s constant and ∆𝑤 = 𝜀 − 𝜀 + 𝜀  the difference 

in interaction energy between like and unlike neighbours, with 𝜀 , 𝜀  and 𝜀 , respectively, 
the particle-fluid, particle-particle and fluid-fluid interaction energies (more information is 
given in [36]). The minus sign in the expression of the 𝜉  parameter indicates that for nanofluid 
dispersions to be stable, this suggests an exothermic enthalpy of mixing [37]. Taking the mass 
fraction derivative of the chemical potential  
 

=
( )

+ 𝜉           (20) 

 
gives mathematical closure for the relaxation time obtaining 
 

𝜏 =
( ) ( )

+ 𝜉 .         (21) 

 
The diffusion coefficient 𝐷 corresponds to the one in Eq. (7)-(8) and stands for the self-diffusion 
coefficient, the non-local and relaxation effects being taken into account by the time and space 
variations of the mass flux variable. Therefore, in case of nanoparticles suspended in a solvent, 



 

we can identify 𝐷 by the Einstein-Stokes diffusion coefficient for spherical particles 𝐷 =

, where 𝑎  is the nanoparticle radius and 𝜇  the base fluid dynamic viscosity. Knowing 

that 𝑉 = , we find the final expression for the relaxation time 

 

𝜏 = 𝜏
( )

           (22) 

 
where 𝜏  is defined as the well-known particle relaxation time (e.g. [38]) 
 

𝜏 =             (23) 

 
2.3 Interaction energies linked to nanolayer thickness 
Values for the interaction energies of nanoparticle dispersions are not often studied as for 
polymeric blends. Therefore, an interesting alternative, directly linked to the interchange energy 
∆𝑤, could be the thickness of the interfacial nanolayer of dense structured fluid around the 
nanoparticles, which are readily available in the literature and, in absence of information, is 
often typically of the size 𝑂(1) nm [39,40]. In order to find a link between the interaction 
energies 𝜀  and the nanolayer thickness ℓ , we can make some observations. First, for zero 
overall interaction energy, i.e. ∆𝑤 ≡ 0, there should not be any fluid nanolayer around the 
nanoparticles and the nanolayer thickness should be zero, i.e. ℓ ≡ 0. Second, if ∆𝑤 < 0, than 
it should follow that ℓ > 0. This means that for a negative overall interaction energy (which 
implies 𝜉 > 0), the particle-fluid interaction energy is smaller than the energies for the like-
interactions (it is more favourable to form links between the particles and the fluid than between 
like-components) and a dense fluid structure is formed around the nanoparticle. Third, if ∆𝑤 >
0, the unlike-energy is larger than the like-ones. If the interchange energy is not too large, the 
nanoparticle dispersion can still be stable due to entropic contribution. In such a case, we can 
mathematically have that ℓ < 0. It follows that the first two cases are realistic, whilst the latter 
would constitute a meta-stable dispersion, where the particle-fluid repulsion is modelled by a 
theoretical negative nanolayer, in reality representable by the well-known concept of a slip 
length on the particle surface [41]. Finally, for a too large interchange energy, the stability of 
the dispersion is no longer guaranteed. 
In order to propose a relation between the interchange energy and the interfacial nanolayer 
thickness, let us imagine the formation of such a nanolayer as follows. We assume that the only 
types of energies acting during the formation of a nanolayer, recalling that therefore ∆𝑤 < 0, 
are the Brownian surface energy and the net attractive interchange energy. The Brownian 

energy of a particle dispersed in a fluid equals 𝑘 𝑇 per degree of freedom [42,43]. The 

formation of the interfacial nanolayer is a surface phenomenon [40], which suggests two 
degrees of freedom. Since, moreover, this phenomenon is related to the fluid molecules 

diffusing from the nanoparticle surface, the Brownian surface energy is then given by 𝑘 𝑇, 

with 𝐴 = 4𝜋𝑎  the nanoparticle surface. The interchange energy, in the case ∆𝑤 < 0, that will 
result into the fluid being attracted to the nanoparticle surface is given by 𝑧∆𝑤. This interchange 
energy is responsible for the formation of the interfacial nanolayer, causing a difference in the 

surface ∆𝐴 = 𝐴 − 𝐴 , with 𝐴 = 4𝜋 𝑎 + ℓ . The interchange surface energy is then given 

by 
∆

∆
. The Brownian motion, responsible for the Brownian surface energy, tends to avoid the 

fluid molecules to attach to the nanoparticle surface.  On the other hand, the net interchange 



 

surface energy (in the case ∆𝑤 < 0) tends to cause an attraction of the fluid molecules towards 

the nanoparticle surface. The sum of the surface energies, the net surface energy ∆𝐸 =
∆

∆
+

𝑘 𝑇, will govern the process, depicted in Fig. 2.  

 
 

 
Figure 2: Competition between the Brownian and interchange surface energies governing the thickness of the 
interfacial nanolayer: (a) the interchange energy is more important than the Brownian surface energy in a way that 
it is favourable for the fluid particles  to attach to the particle substrate, (b) as the substrate is being covered by 
dense fluid layers, the interchange energy weakens, until (c) it is equal to the Brownian surface energy leading to 
a stable interfacial nanolayer 
 
At the beginning of the formation of the interfacial nanolayer, ∆𝐸 < 0. As long as this is the 
case, the interfacial nanolayer continues to grow. However, each layer of fluid adding up in this 
nanolayer will decrease the attraction between the nanoparticle surface and the fluid molecules 
and ∆𝐸  increases. When the interfacial nanolayer thickness is sufficiently large, the 
interchange surface energy will equal the Brownian surface energy, reaching an equilibrium 

situation, ∆𝐸 = 0 or 𝑘 𝑇 +
∆

∆
= 0. The relation between the interchange energy and the 

interfacial nanolayer thickness is then given by 
 

∆𝑤 = − 1 +
ℓ

− 1 𝑘 𝑇         (24) 

 
The interaction parameter is then finally given by 
 

𝜉 = 2 1 +
ℓ

− 1           (25) 

 
The interfacial nanolayer thickness can be obtained in several ways. One of them is in the 
experimental way by means of e.g. reflective X-ray, nano-ultrasonics, nuclear magnetic 
resonance studies [44-46], or by using molecular dynamics [47-49]. Another way is based on 
the electron density profile at the interface applied to a solid-liquid system, where the 
expression 𝛿 = √2𝜋𝜎 is proposed, with 𝛿 an average liquid-layer thickness and 𝜎 a 
characteristic length related to the diffuseness of the interfacial boundary, leading to a typical 
value that falls in the range 0.4 − 0.6 nm, from which  follows that 𝛿 is of the order of 1 − 1.5 
nm [50,51]. As a final option for ℓ , we can take for illustration the values ℓ = 1 − 1.5 nm. 
Such an approximation can be useful when no value for the interfacial nanolayer thickness is at 
hand. Both the aforementioned methods will be used in our model for the effective viscosity. 
 
2.4 Relative velocity 
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𝐴𝑝
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In Eqs. (10) and (11), two unknowns are still present, the extra viscosity factor 𝜇  and the 
relative velocity 𝒗 − 𝒗 . The relation between the nanoparticle and fluid velocities is 

established by assuming that the motion of the spherical nanoparticles of mass 𝑚  is essentially 

due to the presence of a Stokes force 𝑭 , in interaction with a buoyancy force 𝑭𝒃, caused by a 
pressure gradient. First, we can say that for one nanoparticle, the force balance is given by  
 

𝑚
𝒗

= 𝑭 + 𝑭            (26) 

 
where 𝑚  is the mass of one nanoparticle [38,52]. The same type of equation is proposed in 
[53] However, the nanoparticles in motion also exerce a force −𝑛 (𝑭 + 𝑭 ) on the fluid, 

which undergoes a total driving force 𝑭𝒅 due to the pressure gradient as well [38, 53]. The force 
balance on the fluid is then given by 
 

𝑚
𝒗

= 𝑭𝒅 − 𝑛 (𝑭 + 𝑭 )         (27) 

 
Here the force of the nanoparticles acting on the fluid is multiplied by 𝑛  to account for all the 
nanoparticles. The total driving force [38] is given by  
 
𝑭𝒅 = −𝑉 ∇𝑝,            (28) 
 
while that on one nanoparticle [38] writes 
 
𝑭 = −𝑉 ∇𝑝.            (29) 
 
The Stokes drag force on one spherical nanoparticle is well-known [38,52,54,55] and given by 
 
𝑭 = 6𝜋𝑎 𝜇 𝒗𝒇 − 𝒗𝒑 .          (30) 
 
Filling (28)-(30) in (27) and rearranging gives the force balance for the fluid in interaction with 
the nanoparticles as 
 

𝑚
𝒗

= − 𝑉 − 𝑛 𝑉 ∇𝑝 − 𝑛 6𝜋𝑎 𝜇 𝒗𝒇 − 𝒗𝒑              (31)  

 
Since we operate in the framework of a porous-like configuration, we can assume a local Darcy 
law, where the pressure gradient gives rise to  
 

−∇𝑝 = 𝒗𝒇            (32) 

 
wherein 𝐾 designates the local permeability expressed by [32]    
 

𝐾 =  
(  )

 
 ,                    (33) 

 



 

Filling (32)-(33) into (31), rearranging the terms and, to be consistent with (12)-(14), we 
evaluate at steady-state fluid flow, which leads finally to  
 

𝒗𝒇 − 𝒗𝒑 = 𝜉 𝑐(1 − 𝑐) + 𝑐 𝒗𝒇         (34) 
 
Here we see that the relative velocity depends on the volume fraction, the densities of the 
nanoparticles (or nanodroplets in case of a stabilized emulsion) and the fluid-particle 
interaction.  
 
2.5 Extra viscosity coefficient 
As for 𝜇 , we go back to the viscous stress tensor in Eq. (11). With (34), we can rewrite (11) 
into 
 
𝝈 = 𝜇 ∇𝒗 + 𝜇 𝜉 𝑐(1 − 𝑐) + 𝑐 ∇𝒗𝒇,           (35) 
 
A similar derivation is performed in a different context in references [56-58], proposing a 
viscous stress tensor 𝝈𝒅𝒅: these papers deal with  particles (in a strongly diluted suspension, i.e. 
𝜑 ≪ 1, with no density effects, i.e. 𝜌 ≡ 𝜌  and 𝑐 ≡ 𝜑, hard spheres without any type of 
interactions, i.e. 𝜉 ≡ 0, and no influence of other particles) with a dipole strength that are 
shown to give rise to an extra viscous contribution of the form  
 

𝝈𝒅𝒅 = 𝜇 ∇𝒗 + 𝜑𝜇 ∇𝒗           (36) 

 
Comparing (36) to (35), this gives   
    

𝜇 ≡ 𝜇             (37) 

 
The viscous stress tensor becomes 
 

𝝈 = 𝜇 1 + 𝑐 + 𝜉 𝑐(1 − 𝑐) ∇𝒗 ,           (38) 

        
2.6 Mean free path of the mass flux 
The mean free path ℓ in Eq. (15) is that of the mass flux, which is an unmeasured quantity. As 
we related the mass flux relaxation time to the particle relaxation time, we will do the same for 
the mean free path. Brownian kinetics predict the diffusion coefficient of a particle in a fluid 

(assuming that the particles behave as a gas in this framework) as 𝐷 ∝
ℓ

 [33]. From Eq. (8), 

one can suggest that 𝐷 ∝
ℓ

. As 𝐷 is the self-diffusion coefficient, we should make this 

evaluation without particle-fluid interaction (i.e. 𝜉 ≡ 0) and for 𝜌 = 𝜌 . With these 
conditions and using Eq. (22), we can easily obtain that 
 

 ℓ =
ℓ

           (39) 

 
2.7 Final description of the nanofluid dynamics 



 

Having developed expressions for the relaxation time 𝜏, the extra viscosity coefficient 𝜇 , the 
mass flux mean free path ℓ, and the relative velocity, we can rewrite Eqs. (14) and (15) in the 
known terms and one variable 𝒗 :  
 

𝜇 1 + 𝐾𝑛 (𝑐 + Ξ) + (𝑐 + Ξ) ∇ 𝒗 − 𝜇
 
𝜑(𝑐 + Ξ) 𝒗𝒇  = ∇𝑝,    (40) 

 
with 
 
Ξ = 2((1 + Σ ) − 1)𝑐(1 − 𝑐)         (41) 
 

Σ =
ℓ

            (42) 

𝐾𝑛 =
ℓ

           (43) 

 
2.8 Cylindrical-pore approximation                                                         
Eq. (40) is a general equation. As we describe the viscous behaviour of the nanoparticle 
dispersion as the interaction between the nanoparticles and the fluid flowing in between them, 
we need to make some specifications. Imagine now that the base fluid is percolating in between 
the nanoparticles, by similarity with a fluid flowing through a porous medium. As such, the 
fluid is assumed to move through a cylindrical cross section, with a radius equivalent to the 
hydraulic radius 𝑅, bounded by a wall, equivalent to a flat lining of the nanoparticles. This 
analogy is depicted in Fig. 3. 
 

 
Figure 3: Schematic representation of the porous description of fluid flow in stable 
nanodispersions and its equivalent developed tube flow with hydraulic radius 𝑅. 
 
In such a configuration, the fluid velocity becomes one-dimensional, being described by the 𝑥-
component, where 𝑥 is the coordinate in the flow direction. Flowing in between the 
aforementioned walls the fluid velocity is assumed to vary only radially as a function of the 𝑟-
coordinate, so that 𝒗 = 𝑣 (𝑟). The pressure is assumed to vary only across the flow direction. 
Note that the variables are now all one-dimensional and are no longer written in vector form. 
Eq. (40) will then be used to describe the fluid flow through a cylindrical cross section, with a 
radius 𝑟 varying from 0 to 𝑅. In presence of porous structures, the hydraulic radius, 𝑅 =
2𝑉 /𝐴 , is usually defined [59,60] as the volume 𝑉  open to flow divided by half the total wetted 



 

surface 𝐴 . Since the total volume 𝑉  is the volume 𝑉  occupied by the fluid plus the total 
volume 𝑛 𝑉  of the particles (𝑛  is the number of spherical particles of volume 𝑉  each), one 
may write  
 
𝑉 = 𝑉 + 𝑛 𝑉 ,                                    (44) 
 
and, in virtue of the definition of the volume fraction of nanoparticles 𝜑 = 𝑛 𝑉 /𝑉 , it follows 
from (12) that  
 
𝑉 = 𝑉 (1 − 𝜑).          (45) 
 
The total wetted surface, 𝐴 , equals the number of spherical particles, 𝑛  times its surface, 𝐴 , 
i.e. 𝐴 = 𝑛 𝐴 , whereas the number of spherical particles equals the volume of all particles, 
𝑉 𝜑 divided by the volume of one particle, 𝑉 , i.e. 𝑛 = 𝑉 𝜑 /𝑉 . The hydraulic radius may 
therefore be given the form 
 

𝑅 = 2
( )

= 2
( )

=        (46)       

        
after use of the expressions for the volume and surface of the spherical nanospheres, 𝑎  standing 
for the radius of the particles. Using such a description, Eq. (40) is then written as 
 

𝜇 1 + 𝐾𝑛 (𝑐 + Ξ) + (𝑐 + Ξ) 𝑟 − 𝜇
 
𝜑(𝑐 + Ξ) 𝑣  = ,   (47) 

 
with a no-slip condition:  
 
 
𝑣 (𝑟 = 𝑅) = 0.              (48)  
 
This boundary condition is justified as the interaction between the nanoparticles and the fluid 
is given by the interaction parameter, assuming that the influence of the dense interfacial 
nanolayer on the velocity profile is negligible. This assumption is especially justified when one 
notices that for volume fractions typical for nanoparticle dispersions 𝑅 ≫ ℓ . The second 
boundary condition expresses that the velocity is maximum at the centre of the cylinder:   
 

 | = 0.                      (49) 

 
2.9 Adaptation for non-spherical particles 
The deduction performed above is under the assumption that the particles are spherical or close 
to spherical. For cylindrical particles of which the length is of the order of their radius or for 
square-like particles, they can often be approximated as spherical-like particles. However, if 
the length 𝐿  of the cylindrical particles is much larger than the cylinder-radii 𝑎  of those 
particles, an adaptation is needed. Three changes are in order here. One in relation with the drag 
force, leading to a cylindrical-particle relaxation time 𝜏 , , the other in relation with the 
interfacial nanolayer and the third in relation with the hydraulic radius. It has been proposed 
that for a cylindrical particle the drag force in Eq. (30) should be given by [61]  
 



 

𝑭 = 6𝜋𝜇 𝑎 + 𝑎 𝒗𝒇 − 𝒗𝒑 .        (50) 

 
where 𝑎  is the radius of a sphere whose projection has an equal surface of that of the object 
projected normal to the flow direction and 𝑎  is the radius of a sphere having the same surface 
as that of the object on which friction occurs. For a cylindrical particle of which the axis is in 

the flow direction, these would be 𝑎 , = 𝐿  and 𝑎 , = . For a particle volume of 𝑉 =

𝜋𝑎 𝐿 , the cylindrical-particle relaxation time becomes 𝜏 , = . Comparing with 

Eq. (23), this means that for a cylindrical particle the radius 𝑎 , in the expressions depending 
on 𝜏 , , should be replaced as    
 

𝑎 → 𝑎 ,           (51) 

 
while for the interfacial nanolayer the interaction parameter 𝜉 ,  would rather be given, 
following the definitions in section 2.3, by 
 

𝜉 , = 2
ℓ

            (52) 

 
and the hydraulic diameter, following the definitions in section 2.8, would be given by  
 

𝑅 = 2
( )

= 𝑎 .         (53) 

 
Some remarks are in place here. It should be noted that the shape of the particle does not 
influence the development of the mass flux relaxation time via the chemical potential, since the 
difference is incorporated in the particle relaxation time. Together with the interaction 
parameter, they are responsible for the influence of the particle size in the velocity equation, 
whilst the length of the cylindrical particles does not play a role here. Moreover, it is interesting 
to remark that the development for cylindrical particles will lead to a particle radius that equals 

𝑎 ≈ 1,17𝑎 , which suggests that, as approximation, the model for spherical particles 

would be a good estimate. 
 
3. Effective viscosity for nanodispersions 
3.1 Full model 
Let us, for the sake of compactness, define     
 

𝐴 = 𝐾𝑛 (𝑐 + Ξ) + (𝑐 + Ξ),                    (54) 

 

𝐴 =
 
𝜑(𝑐 + Ξ) ,           (55)   

 
so that relation (47) reads as 
 

(1 + 𝐴 ) 𝑟 − 𝐴 𝑣 = .                                        (56) 



 

 
Having solved equation (56) coupled to the boundary conditions (48) and (49) for the velocity 

profile 𝑣 (𝑟), we can determine its mean value 〈𝑣 〉 = ∫ 2𝜋𝑟𝑣 (𝑟)𝑑𝑟), which is given by  

 

〈𝑣 〉 = − 1 −
 ℱ ,

 ℱ ,
         (57) 

          
where  ℱ (𝑛, 𝑥) is the 0/1 regularized hypergeometric function with parameters 𝑛 and 𝑥. We 
recall that our final goal is to determine an expression of the effective nanofluid viscosity. This 
is achieved  by comparing the results (37)-(38) with the mean velocity measured in a Poiseuille-
like flow with a viscosity 𝜇 . In other words, we assume that the mean fluid velocity is the 
same as that of Poiseuille flow in a cylindrical pipe with radius 𝑅, with an effective viscosity 
𝜇  that accounts for the presence of nanoparticles. The corresponding mean fluid velocity is 
the classical result    
  

〈𝑣 〉 = −                                   (58)

     
We can then readily seen that the effective viscosity is given by 
 

𝜇 = 1 −
 ℱ ,

 ℱ ,
         (59) 

 
which is valid for both spherical and cylindrical nanoparticles. The difference lies in the 
aforementioned definitions for 𝑅, 𝜉  and 𝜏 . Using these definitions in Eq. (59) will finally 
result into the effective viscosity of spherical nanoparticle dispersions, given by  
 

𝜇 = 𝜇
( )

1 +
 ℱ ( , )

 ℱ ( , )  ℱ ( , )
           (60) 

 
where  
 

𝑋 =
( )

,

        (61) 

Ξ = 2 1 +
ℓ

,
− 1 1 −         (62) 

𝐾𝑛 , =
ℓ

,
            (63) 

 
where 𝑎 ,  is a spherical radius. For cylindrical nanoparticle dispersions, we obtain the 
following effective viscosity 
 

𝜇 = 𝜇
( )

1 +
 ℱ ( , )

 ℱ ( , )  ℱ ( , )
           (64) 

 



 

where  
 

𝑋 =
( )

,

        (65) 

Ξ = 2
ℓ

,
1 −           (66) 

𝐾𝑛 , =
ℓ

,

           (67) 

 
where 𝑎 ,  is a cylindrical radius. The radii 𝑎 ,  and 𝑎 ,  will be written in the foregoing as 𝑎  
indicating clearly whether it concerns a spherical or cylindrical radius. 
 
3.2 Asymptotic cases  
In case ∇ 𝑣 ≫ 𝑣 /𝑅 , the mean value for the fluid velocity simplifies as  
 

〈𝑣 〉 = −             (68) 

 
Comparison between  (68) and  (58)  yields the simplified expression for the effective viscosity 
for spherical nanoparticle dispersions to be 
 

𝜇 = 𝜇 1 + + Ξ + 𝐾𝑛 , + Ξ                   (69) 

 
where Ξ  and 𝐾𝑛 ,  are given by (62) and (63), respectively. For cylindrical nanoparticle 
dispersions, the simplified effective viscosity is then given by 
 

𝜇 = 𝜇 1 + + Ξ + 𝐾𝑛 , + Ξ                   (70) 

 
where Ξ  and 𝐾𝑛 ,  are given by (66) and (67), respectively. For engineering applications and 
material functions for numerical modelling a simple expression is often needed. By analysing 
Eqs. (69) and (70), we can mention that often for nanoparticle dispersions in liquids, 𝐾𝑛 , ≪

1 and 𝐾𝑛 , ≪ 1. This leads to the following simplifications 
 

𝜇 = 𝜇 1 + + 2 1 +
ℓ

,
− 1 1 −                  (71) 

𝜇 = 𝜇 1 + + 2
ℓ

,
1 −                    (72) 

 
for spherical and cylindrical nanoparticles, respectively. For nanoparticle with larger sizes or 
for weak particle-fluid interaction, both of which lead to ℓ ≪ 𝑎 , the effective viscosity is 
given by a Einstein-like expression, corrected for density dependency: 
 

𝜇 = 𝜇 1 +                       (73) 

 



 

If, furthermore, the densities of the nanoparticles and the fluid are close to one another, i.e. 
𝜌 ≈ 𝜌 ≈ 𝜌, Einstein’s equation for the viscosity of dispersion is found back 
 

 𝜇 = 𝜇 1 + 𝜑                        (74) 

 
 
4 Results and discussion 
4.1 Material properties 
Table 1 reproduces  these material properties for several nanofluids. The base fluids considered 
in this study are water (W) and ethylene-glycol (EG) respectively. The nanoparticles are 
selected as alumina (Al2O3), magnetite (Fe3O4), silicon-carbide (SiC), carbon nanotube (CNT), 
graphite (GR) and nanodiamonds (ND). The values are taken at a reference temperature 𝑇 , 
corresponding to the one at which the experiments were performed. The fluid densities are well-
known standard values, which can be found in chemical handbooks. The mean free path is taken 
to be of the order of magnitude of the equivalent diameter of the fluid molecule, around 0.38 
nm for water and 0.56 for ethylene glycol. Wherever a value is non-standard, it is mentioned. 
The particle densities are assumed to be negligibly dependent on the temperature for the 
temperature range used in this work (10 – 60 °C), which is also the typical range of operating 
temperatures for nanodispersions. Other parameters are the volume fraction 𝜑 and the 
nanoparticle radius 𝑎 . 
  
Table 1: Material properties of nanodispersions 
Nanofluids 𝑇  

[°C] 
𝜌  
[kg/m3] 

𝜌  
[kg/m3] 

ℓ  
[nm] 

ℓ  
[nm] 

2𝑎  
[nm] 

Ref. 

Fe3O4 – water  20 998 5170 0.95 0.38 25 [14] 
SiC – 40EG/60W  10 1049 3510 1.23 0.49 30 [15] 
Al2O3 – EG 10 1123 3950 0.9 0.56 43 [16] 
Al2O3 – EG 10 1123 3950 0.9 0.56 8 [16] 
GR – water 60 983 2267 0.9 0.38 8 [17] 
Al2O3 – water 25 997 3950 1.2 0.38 25 [18] 
ND – alkalinated water  40 992 3100 1.5 0.38 10 [19] 
CNT – distilled water 10 & 20 1000 & 

998 
1800 1.2 0.38 9 [20] 

aReported value for alkalinated water in [32] 
 
The values for ℓ   need some comments. For Al2O3 – water nanofluids, nano-ultrasonics [45] 
and molecular dynamics [62] studies show that bulk values for the water density and viscosity 
are measured at a distance around 1 nm from the Al2O3 surface. Nuclear magnetic resonance- 
[46] shows the presence of  a thin ordered layer of water molecules of about 1.4 nm. We took 
the mean value of 1.2 nm. In [63], it was reported that the thickness of the nanolayer around 
alumina nanoparticles in water was somewhat larger than that in ethylene glycol, the latter of 
which would be around 1.6 the equivalent diameter, i.e. of the order of 0.9 nm.  As for the CNT 
– distilled-water nanofluid, molecular dynamics  [64]  predicts  a density attaining the mean 
value of that of water outside a layer thickness of 1.2 nm. For a graphene – water nanofluid the 
same molecular dynamics study shows a value of 0.9 nm [64], confirmed by potential-energy 
profiles [65]. Neglecting the effect of inner graphite layers, we assume that the same layer 
thickness would occur for the graphite – water nanodispersion, i.e. 0.9 nm. For the Fe3O4 – W 



 

and SiC – 40EG/60W nanofluids, we could not find recorded or precise measured layer 
thicknesses.  As mentioned above and resulting from molecular dynamics calculations, often 
values of the order of 1 nm are taken. Due to lack of  specific  information, we  to find it 
reasonable to assume a liquid layer of thickness 1 nm for these two nanofluids. The ND particles 
form stable nanosuspensions, reported to have a water interfacial layer going from around 1 nm 
and up to 4 molecular equivalent diameters, which corresponds to 1.5 nm [66,67]. The ND 
particles in [19] have a size of 10 nm, whereas X-ray diffraction indicates a size of 11.4 nm. 
This tends to favour the aforementioned value of 1.5 nm as the interfacial layer. Due to lack of 
specific information on the nanolayer thickness of a SiC – 40EG/60W nanodispersion, 
observing from the above findings from the literature that the nanolayer thickness is often 
roughly between 2 and 3 times the equivalent diameter. Therefore, we assume 2.5 times the 
equivalent diameter of a 40EG/60W fluid, leading to 1.23 nm. The same is done for the Fe3O4 
– water nanodispersion, leading to a nanolayer thickness of 0.95 nm, being close to the value 
for the Al2O3 – water system, which seems to be a realistic value.   

4.2 Comparison with other models 
The model proposed in the previous section, Eqs. (60)-(63) for the spherical nanoparticles and 
Eqs. (64)-(67) for the cylindrical ones, will be compared to experimental data, referenced in 
Table 1. For comparison, we also traced our model in the asymptotic behaviour of a zero-flux, 
neglecting thereby the rarity of the base fluid, i.e. Eqs. (71) and (72) for, respectively, spherical 
and cylindrical nanoparticles. Finally, we compared with a mass- and volume-fraction-
dependent Einstein equation, i.e. Eqs. (73) and (74), respectively. For all these models, the 
material properties are taken from Table 1. Fig. 4.1 shows these results for two cases, i.e. 43 
and 8 nm diameter Al2O3 nanoparticles dispersed in ethylene glycol.  
 

  
Figure 4:  Relative effective viscosity of (a) 43 nm Al2O3 nanoparticles and (b) 8 nm Al2O3 
nanoparticles, both dispersed in ethylene glycol. 
 
Fig. 4 clearly shows that a smaller nanoparticle diameter results, the only different parameter, 
into a considerably higher effective viscosity. From our model, we can see that the size of the 
nanoparticles intervenes in two terms, one in relation with ℓ  and the second in relation with 
ℓ . As, generally for liquid basefluids, ℓ ≪ 𝑎 , the second term can be safely neglected. 
However, when 𝑎 = 𝑂(ℓ ) (note that the case 𝑎 < ℓ  leads for liquid base fluids generally to 
atomic scales, and therefore is not relevant for the present discussion), the effect of the 
nanoparticle size becomes relevant. The nanoparticle-size dependence of the effective viscosity 

follows 
ℓ

, as our model shows. The observation that a smaller size leads to a higher viscosity, 

can here be explained by the strength of the particle-fluid interaction, represented here by ℓ . 
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The smaller the nanoparticle is, for a given volume fraction, the higher the particle-fluid 
interaction surface is, the higher the contribution of this interaction is for increasing the 
effective viscosity. It is then clear that for a diameter of 8 nm, i.e. 𝑎 = 4 nm, and for ℓ = 0.9 
nm, the effective viscosity is higher than for the nanodispersion with 43 nm nanoparticles. Such 
a tendency is largely observed in the literature, e.g. in [18,20,28,30,68-70], and our model 
explains this via the particle-fluid interaction that finds its source in the chemical potential of 
dispersion (Eq. (19), (24), (25) and (52)). Fig. 4.1 also shows that neglecting the effect of the 
flux would give a reasonable order of magnitude comparison with respect to the experimental 
data, especially at low volume fractions. The mass-fraction-dependent Einstein equation starts 
to deviate considerably, whilst the classical one is, as expected, far from the experimental data. 
Another interesting comparison that can be made is the comparison between two 
nanodispersions of 25 nm nanoparticles dispersed in water, where one nanoparticle is Fe3O4 
and the other Al2O3, presented in Fig. 5.  
 
 

  
Figure 5:  Relative effective viscosity of (a) 25 nm Fe3O4 nanoparticles and (b) 25 nm Al2O3 
nanoparticles, both dispersed in water. 
 
The only difference in Fig. 5 is the material of the nanoparticle. This difference is in our model 
represented by two aspects: the density of the material and its interaction with the base fluid. 
As the difference of ℓ  for the two nanodispersions is verified to be negligible with respect to 
the effect of the density, it can be put forward that the density of a nanoparticle, or rather its 
ratio with respect to that of the nanodispersion as the model shows, plays an important role. 
This is also responsible for the higher effective viscosity of the magnetite nanodispersion with 
respect to the alumina one. Our model suggests that a higher nanoparticle density results into a 
higher particle-fluid velocity difference (Eq. (34)), which means a higher drag force between 
the particles and the fluid, leading to a higher contribution to the effective viscosity of the 
nanodispersion. The effect of the particle density on the effective viscosity of a nanodispersion 
is an important observation, which is not explained before by a physics-based model. The effect 
of the liquid nanolayer and the density on the effective viscosity is furthermore shown by three 
carbon-based nanodispersions in Fig. 6. 
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Figure 6:  Relative effective viscosity of (a) 9 nm carbon nanotubes, (b) 8 nm graphite 
nanoparticles and (c) 10 nm diamond nanoparticles, all dispersed in water. 
 
Before commenting these results, we make two remarks. First, from Fig. 6a we can notice that 
our model for spherical particles and for cylindrical particles agree rather well with one another 
so that we can keep the model for spherical particles for our discussion. Second, we used 
experimental data with approximately the same size for the nanoparticles in order to exclude 
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the effect of size and focus more on the nanosized layer thickness and on the density. We can 
see that, although the nanolayer thickness for the graphite nanodispersion is lower than that for 
the CNT nanodispersion, the higher density of the former is enough to result into a considerably 
higher effective viscosity. This confirms that, although the effect of the nanolayer thickness is 
well-known, the density seems to have a far more important effect. It should be mentioned that 
most probably for nanoparticles of a size around 1 nm or less, the effect of the nanolayer 
thickness might well become more important, but these are dimensions that are out of the scope 
of a continuum model. For the nanodiamond dispersion the effective viscosity is clearly the 
hightest, which is not surprising noticing the higher nanolayer thickness and density of the 
diamond nanoparticles. This interplay between the interfacial energy (responsible for the 
formation of the interfacial nanolayer) and the density influencing viscous dissipation is 
represented in Fig. 7. 
 

 
Figure 7: Schematic representation of viscous dissipation due to the interfacial surface energy 
𝜏ℓ and density 𝜏  for a given fluid density 𝜌 , particle volume fraction 𝜑 and temperature 𝑇. 
 
As a final comparison, Fig. 8 presents a case where the nanoparticle is a mix between inorganic 
and carbon material and the base fluid is a mix between water and ethylene glycol. This result 
also shows a satisfactory agreement with the experimental data, which reinforces the physical 
mechanisms that are incorporated into our model in order to predict the effective viscosity of 
nanodispersions.  
 



 

 
Figure 8: Relative effective viscosity of 30 nm SiC nanoparticles dispersed in 40 vol% ethylene-
glycol and 60 vol% water.  
 
4.3 Whether there is a generality in the interfacial nanolayer thickness 
In an effort to propose a simplified universal expression, finding a value for the nanolayer 
thickness could be quite a difficult task. The most suitable would be to measure it 
experimentally as a material property. This is, however, not so straightforward and it might be 
argued to be empirical of character, which we would like to avoid in this paper. Alternatively, 
the nanolayer thickness could be calculated from molecular dynamics via interaction energies 
as discussed before. For many cases, it would, however, be useful to find out whether there is 
a general value that could be used if the correct value is unavailable. As mentioned before, the 
theoretically proposed nanolayer thickness is around ℓ = 1 − 1.5 nm [50,51]. It is therefore, 
interesting to assess the influence of the nanolayer thickness ℓ = 1 − 1.5 nm on the effective 
viscosity for the studied cases. For interest, the case ℓ = 0 nm is also considered. Fig. 4.5 
shows the relative effective viscosity 𝜇 /𝜇  as a function of the volume fraction for the various 
nanoparticle dispersions considered in the previous section. Here, for all cases, next to the liquid 
layer thickness tabulated in Table 1, also the theoretically proposed nanolayer thicknesses of 
ℓ = 0, 1 and 1.5 nm are considered. Eqs. (60) and (64) are used and compared to the 
experimental data from Figs. 5-6 and 8. 
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Figure 9: The relative effective viscosity 𝜇 /𝜇  as a function of the volume fraction compared 
to experimental data: (a) 25 nm Fe3O4 nanoparticles dispersed in water, (b) 30 nm SiC 
nanoparticles dispersed in 40 vol% ethylene-glycol and 60 vol% water, (c) 43 nm Al2O3 
nanoparticles dispersed in ethylene glycol, (d) 8 nm Al2O3 nanoparticles dispersed in ethylene 
glycol, (e) 8 nm graphite nanoparticles dispersed in water, (f) 25 nm Al2O3 nanoparticles 
dispersed in water, (g) 10 nm diamond nanoparticles dispersed in water, (h) 9 nm carbon 
nanotubes dispersed in water. The theoretically proposed liquid layer thicknesses of ℓ = 0, 1 
and 1.5 nm are also considered. 
 
From the parametric series ℓ = 0, 1 and 1.5 nm, it is interesting to notice that for ℓ = 𝑂(1 −

1.5) nm the model predicted the experimental values well, where it is also shown that the effect 
of the nanolayer thickness between values of 1 and 1.5 nm is relatively small. Although the 
effect is non-negligible for nanoparticle sizes below 10 nm, it remains reasonable to state that 
it is rather correct to follow the theoretical prediction [50,51] of nanolayer thicknesses of the 
order ℓ = 𝑂(1 − 1.5) nm. In choosing, for generality purposes, one value, it appeared that a 
nanolayer thickness around 1 nm seems to be the most appropriate one. 
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4.4 Universal expression for the viscosity of nanodispersions 
It appears from the results that neglecting the flux effect (neglecting the term 𝑣 (𝑟) in (47)) still 
underestimates the viscosity of the nanodispersion. In order to take this effect into account, yet 
pursuing a universal expression for the viscosity keeping it as simple as possible, we propose 

to seek an approximated conversion of the 𝑣  term into the double derivative term 𝑟 . 

For this purpose, we assume an ideal flow that can be both described by a local Darcy-flow (as 

discussed earlier) and a Poiseuille flow. The former would lead to 𝑣 = −  and the latter 

to 𝑟 = . Comparison gives that  

 

𝑣 ≈ − 𝑟           (75) 

 
Filling this in in Eq. (47), using the definitions of 𝑅, neglecting the term (1 − 𝜑) except there 
where it comes as 𝜑(1 − 𝜑), for the spherical and cylindrical particles, leads respectively, 
rearranging the terms, to  
 
 

𝜇 1 + 𝐾𝑛 , (𝑐 + Ξ ) + +
 

1 + 𝜉 , (𝑐 + Ξ ) 𝑟 = ,  (76) 

 

𝜇 1 + 𝐾𝑛 , (𝑐 + Ξ ) + +
 

1 + 𝜉 , (𝑐 + Ξ ) 𝑟 = ,  (77) 

 
with 𝜉 ,  and 𝜉 ,  are given, respectively, by Eqs. (25) and (52). For nanodispersions where 

the base fluid is a liquid, we assume that 𝐾𝑛 , ≪ 1 so that the corresponding term could be 
neglected. Using expressions (25), (52), (62) and (66), the effective viscosities for spherical and 
cylindrical nanodispersions are given, respectively, by  
 

𝜇 = 𝜇 1 + +
 

1 + 𝜉 , 𝑐 + 𝜉 , 𝑐(1 − 𝑐)      (78) 

 

𝜇 = 𝜇 1 + +
 

1 + 𝜉 , 𝑐 + 𝜉 , 𝑐(1 − 𝑐)       (79) 

 
 

recalling that 𝜉 , = 2 1 +
ℓ

,
− 1 , 𝜉 , = 2

ℓ

,
 and 𝑐 = . The approximate models 

(78) and (79) are compared with the complete model, using the experimental data from Table 
1 and the results are presented in Fig. 10.  
 



 

  

  

  

  
Figure 10: Relative effective viscosity given by the full model (60)-(67) and the approximate 
one (78)-(79), compared to the experimental data as in Fig. 9. 
 
Fig. 10 shows that the approximate model represents quite well the experimental data and is 
very close to the full model. In order to test the universality of the approximate model, with 
respect to the effective viscosity of nanodispersions, it should be compared to other 
experimental data with different sets of parameters (density, type of material, size). As is 
discussed earlier, we argued that it would be reasonable to take ℓ = 1.0 nm. As such, the 
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proposed universal expression of the effective viscosity of nanodispersions is, apart from the 
fluid/matrix density, solely dependent on the particle’s size, volume fraction and density.  
  
4.5 Application to solid-liquid and polymeric nanodispersions and emulsions 
We use our universal expression to compare with other experimental data concerning ceramic, 
carbon and polymer solid-liquid nanodispersions [71-74], polymeric nanodispersions [75,76] 
and stabilized liquid-liquid nano/micro dispersions (emulsions) [77-80]. It is important to note 
that it concerns here stabilized emulsions, where the nano/micro-droplets can be considered as 
hard spheres. The material properties are given in Table 2. Properties that are not standardly 
available (from the reference or from standard handbooks, such as [81]), are commented below 
the table. In Table 2, W stands for water, EG for ethylene glycol, SWCNT for single-wall 
carbon nanotubes, PSL for polystyrene latex, PEG400 and PEO400 for, respectively, poly-
ethylene glycol and poly-ethylene oxide (where 400 stands for the molar mass in g/mol) and 
GTO for glyceryl tri-octanoate. 
 
Table 2: Material properties for other nanodispersions and stabilized emulsions 
Nanofluids 𝑇  

[°C] 
𝜌  [kg/m3] 𝜌  

[kg/m3] 
2𝑎  
[nm] 

Ref. 

CuO – W  25 997 6310 11 [71] 
SWCNT – EG  60 1116 1600 45 [72] 
CuO –  Coconut oila 55 897b 6310 40 [73] 
PSL – W 20 998 1055 40 [74] 
SiO2 – PEG400 25 1130 1600c 127 [75] 
SiO2 – PEO400 75 1170d 1600c 44 [76] 
Silicon oil – W 25 997 971 220 & 

550 
[77] 

White mineral oil – W 25 997 850 14000 [78] 
GTO – W  25 997 956 110 [79] 
W – Mineral oil 10 870 1000 30000 [80] 

aValues at shear rates of 3.67, 7.34 and 14.68 s-1 [73] 
bFrom [82] 
cValue deviates from standard one, given by [75,76] 
dValue estimated from [83] and corrected for the temperature by extrapolation following the 
behaviour of PEG400 [84] 
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Figure 11: The relative effective viscosity as a function of the volume fraction from expressions 
(78) for spherical fillers and (79) for cylindrical ones. The solid lines represent the model and 
the markers the experimental data, which correspond to: (a) 11 nm CuO nanoparticles in water, 
(b) 45 nm single-walled carbon nanotubes in ethylene glycol, (c) 40 nm CuO nanoparticles in 
coconut oil for three low-shear rates in Newtonian regime, (d) 40 nm polystyrene latex 
nanoparticles in water, (e) 127 nm SiO2 nanoparticles in poly-ethylene glycol, (f) 44 nm SiO2 
nanoparticles in poly-ethylene oxide, (g) 220 and 550 nm silicon oil nanodroplets in water, (h) 
14 µm white mineral oil microdroplets in water, (i) 110 nm glyceryl tri-octanoate nanodroplets 
in water, (j) 30 µm water microdroplets in mineral oil.   

0.000 0.002 0.004 0.006 0.008 0.010
1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40
nf

f

0.00 0.02 0.04 0.06 0.08 0.10
1.0

1.2

1.4

1.6

1.8

2.0

nf
f

0.00 0.02 0.04 0.06 0.08 0.10
1.0

1.2

1.4

1.6

1.8

2.0

nf
f

0.00 0.02 0.04 0.06 0.08 0.10
1.0

1.2

1.4

1.6

1.8

2.0

nf
f

0.00 0.02 0.04 0.06 0.08 0.10
1.0

1.2

1.4

1.6

1.8

2.0

nf
f

0.00 0.02 0.04 0.06 0.08 0.10
1.0

1.2

1.4

1.6

1.8

2.0

nf
f

0.00 0.02 0.04 0.06 0.08 0.10
1.0

1.2

1.4

1.6

1.8

2.0

nf
f

0.00 0.02 0.04 0.06 0.08 0.10
1.0

1.2

1.4

1.6

1.8

2.0

nf
f

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 



 

 
Fig. 11 shows that the approximate model agrees well with several experimental data, 
suggesting its universality. Furthermore, besides the well-known size and nanolayer effects, it 
emphasizes the clear universal relation between the density of the nanoparticles or nano/micro 
droplets in emulsion on the effective viscosity. One could then argue that the density not only 
plays an important role, but could, in many case, well be the most important one at constant 
temperature. The densities alone, could even be sufficient, using Eqs. (78)-(79), to predict the 
effective viscosity of nanodispersions as a function of their content in nanoparticles or droplet 
emulsions. 
 
5. Conclusions 
Nanodispersions are considered in this paper to be, from a fluid-flow point of view, a 
heterogeneous system, where the stabilized particles are dispersed in a base fluid. The base 
fluid considered is a liquid, whereas the particle could be a solid spherical nanoparticle, a 
nanotube or even a stabilized liquid droplet, the latter of which constitutes an emulsion. Such 
systems find many applications and one of the main properties to control is their rheology. 
Especially the viscosity appears to behave differently from one nanodispersion to another and 
a universal expression predicting its behaviour is necessary. In striving to attain such a relation, 
many mechanisms that come into play should be well represented, retaining altogether a 
digestable formulation. This work proposes a framework, based on extended thermodynamics 
and fluid dynamics, that incorporates the effects of size, particle kinetics, mass density, 
interfacial nanolayer and volume fraction on the effective viscosity of nanodispersions. The 
model begins by proposing an evolution equation for the fluid velocity, allowing for a particle-
fluid flux and viscous dissipation due to the presence of nanoparticles and particle kinetics. By 
making an anology to a porous system, where the fluid flows in between the stabilized 
nanoparticles, solving the evolution equation and comparing to a developed stationary flow 
profile lead to resuming all the considered effects in the evoluation equation into one effective 
property defined as the effective viscosity. This equation was compared satisfactorily to several 
experimental data for nanodispersions with spherical and cylindrical nanodispersions. 
Asymptotic models allowed appreciating the importance of the included mechanisms. A much 
simpler relation is then proposed, Eqs. (78) and (79) and equivalently validated against a great 
number of ceramic and polymeric nanodispersions, as well as nano/micro emulsions, 
suggesting its universality for stable nanodispersions. It appeared that for small nanoparticles, 
the interfacial nanolayer  influenced in an enhancing way greatly the effective viscosity. The 
nanolayer’s influence is modelled as a competition between the Brownian surface energy and 
the net attractive interchange energy. As the nanoparticles size is smaller, for a given volume 
fraction, the total  interfacial surface becomes larger, leading to a higher contribution to viscous 
dissipation. It also appeared that the flux term (kinetic contribution of the particle-fluid 
interaction) is not to be neglected and makes clearly part of one of the mechanisms of viscous 
flow. Last but certainly not least, the density of the nanoparticles with respect to that of the 
dispersion seemed to have the most important influence on the effective viscosity, explained as 
viscous dissipation due to a higher drag force caused by a higher particle-fluid velocity for 
higher nanoparticle densities.  
In contrast with several other papers on the subject [21-28], wherein ad hoc relations involving 
adjustable parameters are proposed, we have tried to provide a model with strong theoretical 
bases and to back most of the assumptions underlying the study by physically grounded 
justifications, without adding any empirical coefficients, but merely using tabulated and 



 

measured material properties. Comparison with experimental data exhibits a good agreement, 
attesting of the quality and soundness of the theoretical model. For simplicity, the analysis has 
been limited to one-dimensional and linearized situations, whereas temperature effects have 
been omitted. There is, of course, room for further extensions of the present model like 
considering metastable dispersions of hydrophobic nanoparticles, considering concentration 
nanodispersion with inter-particle interaction or introducing rheological properties, such as the 
dependence of the material coefficients on imposed shear rates. Nonetheless, the universal 
expression, proposed in this work, has shown that there is a universal relation between the 
effective viscosity of nanodispersions and their densities. 
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Appendix: extended entropy relation  
Following the line of thought of EIT, whose main idea is to elevate the dissipative fluxes, like 
the heat or/and the mass fluxes to the status of independent variable, 𝑱  is an independent state 
variable. For pedagogical purpose, let us study the simple problem of matter diffusion in a two-
component mixture of mass fractions 𝑐  and 𝑐 , the temperature 𝑇 is assumed to be uniform. 
The main idea underlying EIT is to elevate the thermodynamic fluxes, here the diffusion fluxes 
𝑱  and 𝑱  to the status of independent variables, at the same level as the classical concentration 
varaiables. According to the definition of the barycentric velocity, it is directly seen that 𝑱 +
𝑱 = 0. Moreover, since 𝑐 + 𝑐 = 1, it  follows that the set of independent variables is given 
by 𝑐  and 𝐽 . Assuming that the entropy 𝑠 per unit mass of the system depends on both kinds of 
variables, one has 𝑠 =  𝑠(𝑐 , 𝑱 ) or, in terms of the material time derivative 
 

= +
𝑱

∙
𝑱

= − − 𝛼𝑱 ∙
𝑱

,       (A1) 

 

wherein use has been made of  the classical definition  = − , with 𝜂 designating the 

difference 𝜂 − 𝜂  between the chemical potentials of both constituents and wherein it has been 

assumed that 
𝑱

 is a linear function of 𝑱  with 𝛼 a phenomenological coefficient to be positive 

to guarantee that 𝑠 is maximum at equilibrium (Jou et al 2010). Entropy is also assumed to obey 
a time evolution equation of the general form  
 

𝜌 = −∇ ∙ 𝑱 + 𝜎 ,  with 𝜎 ≥ 0.                                                     (A2)

           
𝜎  is the rate of entropy production imposed to be positive definite in virtue of the second law 
of themodynamics and 𝑱 is the entropy flux classically given by  
 
𝑱 = − 𝑱 .             (A3) 

 

This result (A3) is easily obtained by setting 𝛼 = 0 in (A1) and substituting  by the mass 

conservation law  
 

𝜌 = −∇ ∙ 𝑱 .            (A4) 

 



 

By comparison with the time evolution (A1) of 𝑠, it is then directly checked that expression of 
𝑱  is given by (A3). Filling (A3) and (A1), with the use of (A4) and 𝛼 = 0, into (A2), we obtain 
the classical expression for the entropy production  
 

𝜎 = −𝑱 ∙
∇

≥ 0.            (A5) 

 
However, in presence of non-localities which are especially relevant in micro and nanosystems, 
it is rather natural to admit that 𝑱  depends, in addition, on the gradients of the diffusion flux  
𝑱 , for example,  
 
𝑱 = − 𝑱 + 𝛾𝑱 ∙ ∇𝑱 ,           (A6) 

 
wherein 𝛾 is a coefficient to be determined later on. The final task consists in deriving the time 
evolution equation of the state variables. The one corresponding to the classical mass fraction 
variable is given by (A4), while the time evolution equation of the diffusion flux is obtained by 
substituting (A1) and (A6) in (A2). The corresponding entropy production is now given by 
 

𝜎 = 𝑱 ∙ −
∇

− 𝜌𝛼
𝑱

+  𝛾∇ 𝑱 + 𝛾∇𝑱 ⨂∇𝑱 ≥ 0,       (A7) 

 
with ⊗ standing for the tensorial product. 
 
References  
[1] H. Machrafi, An extended thermodynamic model for size-dependent thermoelectric properties at nanometric 
scales: Application to nanofilms, nanocomposites and thin nanocomposite films, Appl. Math. Mod. (2016), 40, 
2143-2160. 
[2] F. Yu, Y. Chen, X. Liang, J. Xu, C. Lee, Q. Liang, P. Tao, T. Deng, Dispersion stability of thermal nanofluids, 
Progress in Natural Science: Materials International 27 (2017) 531–542. 
[3] H. Machrafi, Enhancement of a photovoltaic cell performance by a coupled cooled nanocomposite 
thermoelectric hybrid system, using extended thermodynamics, Current Appl. Phys. (2017), 17, 890-911. 
[4] J. Taha-Tijerina, T.N. Narayanan, G. Gao, M. Rohde, D.A. Tsentalovich, M. Pasquali, P.M. Ajayan, 
Electrically Insulating Thermal Nano-Oils Using 2D Fillers, ACS Nano 6 (2012) 1214–1220. 
[5] A. Cardellini, M. Fasano, M.B. Bigdeli, E. Chiavazzo, P. Asinari, Thermal transport phenomena in nanoparticle 
suspensions, J. Phys. Condens. Matter 28 (2016) 483003. 
[6] Y. Lin, S. Sun, Q. Zhang, H. Shen, Q. Shao, L. Wang, W. Jiang, W. Jiang, Preparation of AgNPs/Ca3Co4O9 
nanocomposites with enhanced thermoelectric performance, Materials Today Communications (2016), 6, 44-49. 
[7] H. Machrafi, G. Lebon, C.S. Iorio, Effect of volume-fraction dependent agglomeration of nanoparticles on the 
thermal conductivity of nanocomposites: Applications to epoxy resins, filled by SiO2, AlN and MgO 
nanoparticles, Composites Science and Technology (2016), 130, 78-87.  
[8] Z. Hai, M.K. Akbari, Z. Wei, C. Xue, H. Xu, J. Hu, L. Hyde, S. Zhuiykov, TiO2 nanoparticles-functionalized 
two-dimensional WO3 for high-performance supercapacitors developed by facile two-step ALD process, 
Materials Today Communications (2017), 12, 55-62.  
[9] R. Ahmad, O.S. Wolfbeis, Y.B. Hahn, H.N. Alshareef, L. Torsi, K.N. Salama, Deposition of nanomaterials: A 
crucial step in biosensor fabrication, Materials Today Communications (2018), 17, 289-321. 
[10] Y. Chevalier, M.A. Bolzinger, S. Briançon (2015) Pickering Emulsions for Controlled Drug Delivery to the 
Skin. In: Dragicevic N., Maibach H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration 
Enhancement. Springer, Berlin, Heidelberg. 
[11] M. Kumar, R.S. Bishnoi, A.K. Shukla, C.P. Jain, Techniques for formulation of nanoemulsion drug delivery 
system: A Review, Prev. Nutr. Food Sci. 2019, 24, 225-234 
[12] N.A.N. Azmi, A.A.M. Elgharbawy, S.R. Motlagh, N. Samsudin, H.M. Salleh, Nanoemulsions: factory for 
food, pharmaceutical and cosmetics (2019), Processes 7, 617. 
[13] R. Saidur, K.Y. Leong, H. Mohammad, A review on applications and challenges of nanofluids, Renew. 
Sustain. Energy Rev. 15 (2011), 1646–1668. 



 

[14] D. Toghraie, S. M. Alempour, M. Afrand, Experimental determination of viscosity of water based magnetite 
nanofluid for application in heating and cooling systems, Journal of Magnetism and Magnetic Materials (2016) 
417, 243-248. 
[15] X. Li, C. Zou, Thermo-physical properties of water and ethylene glycol mixture based SiC nanofluids: an 
experimental investigation, International Journal of Heat and Mass Transfer (2016) 101, 412-417. 
[16] M.J. Pastoriza-Gallego, L. Lugo, J.L. Legido, M.M. Piñeiro, Thermal conductivity and viscosity 
measurements of ethylene-glycol-based Al2O3 nanofluids, Nanoscale Research Letters (2011) 6, 221. 
[17] A.S. Dalkilic, A. Cebi, A. Celen, O. Yildiz, O. Acikgoz, C. Jumpholkul, M. Bayrak, K. Surana, S. Wongwises, 
Prediction of graphite nanofluids' dynamic viscosity by means of artificial neural networks, Int. Comm. Heat Mass 
Transf. 73 (2016) 33-42. 
[18] J.B. Mena, A.A. Ubices de Moraes, Y.R. Benito, G. Ribatski, J.A.R. Parise, Extrapolation of Al2O3-water 
nanofluid viscosity for temperatures and volume concentrations beyond the range of validity of existing 
correlations, Appl. Therm. Eng. 51 (2013) 1092-1097. 
[19] L.S. Sundar, M.J. Hortiguela, M.K. Singh, A.C.M. Sousa, Thermal conductivity and viscosity of water based 
nanodiamond (ND) nanofluids: An experimental study, Int. Comm. Heat Mass Trans. 76 (2016) 245-255. 
[20] S. Halelfadl, P. Estellé, B. Aladag, N. Doner, T. Maré, Viscosity of carbon nanotubes water-based nanofluids: 
Influence of concentration and temperature, Int. J. Therm. Sc. 71 (2013) 111-117. 
[21] A. Einstein, Eine Neue Bestimmung der Molekuldimensionen, Annals Phys. 324(2) (1906) 874-885. 
[22] M. Mooney, The viscosity of concentrated suspensions of rigid spheres, J. colloid.Sci 6(2) (1951)162-170.  
[23] I.M. Krieger, J.D. Thomas, A mechanism for non-Newtonian flow in suspensions of spherical particles, Trans. 
Soc. Rheol. 3(1) (1957) 137-152. 
[24] l.E. Nielsen, Generalized equation for the elastic moduli of composite materials, J Appl. Phys. 41(11) (1970) 
4626-4627. 
[25] G.K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. 
Fluid Mech. 83 (1977) 137-152. 
[26] C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys. 20(4) (1952) 571. 
[27] X. Wang, X.Xu, S.U.S. Choi, Thermal conductivity of nanoparticle fluid mixture, J. Thermophys. Heat 
Transfer 13 (1999) 474-480. 
[28] N. Masoumi, N. Shrabi, A.Behzadmehr,  A new model for calculating the effective  viscosity of nanofluids, 
J. Appl. Phys. 42 (2009) 055501. 
[29] D. Jou, J. Casas-Vàzquez, G Lebon.: Extended Irreversible Thermodynamics. 4th edition, Springer, New 
York (2010). 
[30] H. Machrafi, Extended Non-Equilibrium Thermodynamics: From Principles to Applications in Nanosystems. 
1st edition, Taylor & Francis Group, London (2019). 
[31] H. Machrafi , G. Lebon, General constitutive equations  for heat transport at small length and high frequencies 
with extension to mass and electrical scales transport, Appl. Math. Lett 22 (2016) 30-37. 
[32] H. Machrafi, G.Lebon, Fluid flow through porous and nanoporous  media within the prism of extended 
thermodynamics: emphasis on the notion of permeability, Microfluidics and Nanofluidics, 22:65 (2018)1-12. 
[33] G. Lebon, D. Jou, J. Casas-Vazquez, Understanding Non-equilibrium Thermodynamics, Springer, Berlin 
(2008). 
[34] G. Lebon, D. Lhuillier, A. Palumbo, A thermodynamic description of thermo-diffusion in suspensions of rigid 
particles, Eur. Phys. J. Special Topics 146, 3–12 (2007). 
[35] M. Grmela, G. Lebon, D. Lhuillier, A comparative study of the coupling of flow with non-Fickean 
thermodiffusion. Part II: GENERIC (2003), Journal of Non-Equilibrium Thermodynamics, 28, 23-50. 
[36] H. Machrafi, On the chemical potential of nanoparticle dispersion, In Press 
https://doi.org/10.1016/j.physleta.2020.126485 (2020). 
[37] K.R. Sharma, Nanostructuring of nanorobots for use in nanomedicine, International Journal of Engineering 
and Technology (2012), 2, 116-134. 
[38] M.A. Van der Hoef, R. Beetstra, J.A.M. Kuipers (2005), Lattice-Boltzmann simulations of low-Reynolds-
number flow past mono-and bidisperse arrays of spheres: results for the permeability and drag force, Journal of 
Fluid Mechanics 528, 233-254. 
[39] L. Wang, J. Fan, Toward nanofluids of ultra-high thermal conductivity, Nanoscale Research Letters (2011), 
6, 153. 
[40] K. Voïtchovsky, J.J. Kuna, S.A. Contera, E. Tosatti, F. Stellacci, Direct mapping of the solid-liquid adhesion 
energy with subnanometre resolution, Nature Nanotechnology (2010), 5, 401-405. 



 

[41] K. Wu, Z. Chen, J. Li, X. Li, J. Xu, X. Dong, Wettability effect on nanoconfined water flow (2017), PNAS 
114, 13. 
[42] C.J. van Oss, Interfacial forces in aqueous media, Marcel Dekker, New York (1994). 
[43] A.H. Nikoo, A. Kalantariasl, M.R. Malayeri, Propensity of gypsum precipitation using surface energy 
approach, Journal of Molecular Liquids (2020), 300, 112320. 
[44] Yu C. J., Richter A. G., Datta A., Durbin M. K., Dutta P.: Molecular layering in a liquid on a solid substrate: 
an X-ray reflectivity study, Physica B 283, 27-31 (2000). 
[45] P.A. Mante, C.C, Chen, Y.C. Wen, H.Y. Chen, S.C. Yang, Y.R. Huang, I.J. Chen, Y.W. Chen, V. Gusev, 
M.J. Chen, J.L. Kuo, J.K. Sheu, C.K. Sun, Probing hydrophilic interface of solid/liquid-water by nanoultrasonics, 
Scientific Reports 4 (2014) 6249. 
[46] C. Gerardi, D. Cory, J. Buongiorno, L.W. Hu, T. McKrell, Nuclear magnetic resonance-based study of ordered 
layering on the surface of alumina nanoparticles in water, Applied Physics Letters 95 (2009) 253104. 
[47] Xue L., Keblinski P., Phillpot S. R., Choi S. U. S., Eastman J. A.: Effect of liquid layering at the liquid-solid 
interface on thermal transport, Int. J. Heat Mass Transfer 47, 4277-4284 (2004). 
[48] A. Cardellini, M. Fasano, E. Chiavazzo, P. Asinari, Interfacial water thickness at inorganic nanoconstructs 
and biomolecules: Size matters, Physics Letters A 380 (2016) 1735-1740. 
[49] T.A. Ho, A. Striolo, Molecular dynamics simulation of the graphene-water interface: comparing water 
models, Molecular Simulation 40 (2014) 1190-1200. 
[50] Kole M., Dey T. K.: Role of interfacial layer and clustering on the effective thermal conductivity of CuO–
gear oil nanofluids, Exp. Thermal and Fluid Sci. 35, 1490–1495 (2011). 
[51] Z.H. Li, Y.J. Gong, M. Pu, D. Wu, Y.H. Sun, J. Wang, Y. Liu, B.Z. Don, Determination of interface layer 
thickness of a pseudo two-phase system by extension of the Debye equation, J. Phys. D: Appl. Phys. 34 (2001) 
2085–2088. 
[52] S.T. Wereley, R.M. Lueptow, Inertial particle motion in a Taylor Couette rotating filter, Physics of Fluids 11 
(1999) 325-333. 
[53] J.W. Wang, M.A. van der Hoef, J.A.M. Kuipers, The role of particle-particle interactions in bubbling gas-
fluidized beds of Geldart A particles: A discrete particle study, AIP Conference Proceedings (2010), 1207, 766. 
[54] H. Bruus, Theoretical microfluidics, Lecture notes, Technical University of Denmark, Copenhague (2005). 
[55] M.W. Reeks, On the constitutive relations for dispersed particles in nonuniform flows. I: Dispersion in a 
simple shear flow, Physics of Fluids A: Fluid Dynamics (1993) 5, 750. 
[56] R. Pal, Evaluation of theoretical viscosity models for concentrated emulsions at low capillary numbers, 
Chemical Engineering Journal 81 (2001) 15-21. 
[57] R. Pal, Modeling viscosity of concentrated nanoemulsions and nanosuspensions, Fluids 1 (2016) 11. 
[58] M.A. Lauffer, Motion in viscous liquids, Journal of Chemical Education 58 (1981) 250-256. 
[59] E. Walker, P.W.J. Glover, Permeability models of porous media: Characteristic length scales, scaling 
constants and time-dependent electrokinetic coupling, Geophysics 75 (2010) E235-E246. 
[60] V.V. Guryev, V.I. Nikitsin, V.A. Kofanov, Determination of the hydraulic radius of the porous structure of 
ceramic materials (2016), Glass and Ceramics 73, 258-265. 
[61] D. Leith, Drag on Nonspherical Objects (1987), Aerosol Science and Technology 6:153-161. 
[62] D. Argyris, T. Ho, D.R. Cole, A. Striolo, Molecular dynamics studies of interfacial water at the alumina 
surface, The Journal of Physical Chemistry C 115 (2011) 2038-2046. 
[63] N. Dolatabandi, R. Rahmani, H. Rahnejat, C.P. Garner, Thermal conductivity and molecular heat transport of 
nanofluids, RSC Adv. (2019) 9, 2516. 
[64] F. Jabbari, A. Rajabpour, S. Saedodin, S. Wongwises, Effect of water/carbon interaction strength on 
interfacial thermal resistance and the surrounding molecular nanolayer of CNT and graphene flake, Journal of 
Molecular Liquids (2019) 282, 197-204. 
[65] A. Akaishi, T. Yonemaru, J. Nakamura, Formation of water layers on graphene surfaces, ACS Omega 2 
(2017) 2184-2190. 
[66] T. Petit, H. Yuzawa, M. Nagasaka, R. Yamanoi, E. Osawa, N. Kosugi, E.F. Aziz, Probing interfacial water 
on nanodiamonds in colloidal dispersion, J. Phys. Chem. Lett. 6 (2015) 2909-2912. 
[67] M.V. Korobov, N.V. Avramenko, A.G. Bogachev, N.N. Rozhkova, E. Osawa, Nanophase of water in nano-
diamond gel, J. Phys. Chem. (2007) 111, 7330-7334. 
[68] P. K. Namburu, D. P. Kulkarni, A. Dandekar and D. K. Das, Experimental investigation of viscosity and 
specific heat and Silicon Dioxide nanofluids, Micro & Nano Letters, 2 (3) (2007) 67-71. 
[69] J. Chevalier, O. Tillement and F. Ayela, Rheological properties of nanofluids flowing through microchannels 
(2008), Appl. Phys. Lett. 91, 233103. 



 

[70] E. V. Timofeeva, D. S. Smith, W. Yu, D. M. France, D. Singh and J. L. Routbo, Particle size and interfacial 
effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids (2010), 
Nanotechnology 21, 215703. 
[71] M.J. Pastoriza-Gallego, C. Casanova, J.L. Legido, M.M. Piñeiro, CuO in water nanofluid: influence of particle 
size and polydispersity on volumetric behavior and viscosity (2011), Fluid Phase Equilibria 300, 188-196. 
[72] M. Baratpour, A. Karimipour, M. Afrand, S. Wongwises, Effects of temperature and concentration on the 
viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol (2016), Int. Comm. Heat Mass 
Transfer 74, 108-113. 
[73] M. N. Rashin, J. Hemalatha, Viscosity studies on novel copper oxide-coconut oil nanofluid (2013), Exp. 
Thermal Fluid Science 48, 67-72. 
[74] A. Weiss, N. Dingenouts, M. Ballauff, H. Senff, W. Richtering, Comparison of the effective radius of 
sterically stabilized latex particles determined by small-angle x-ray scattering and by zero shear viscosity (1998), 
Langmuir14, 5083-5087. 
[75] T. Jiang, C.F. Zukoski, Role of particle size and polymer length in rheology of colloid-polymer composites 
(2012), Macromolecules 45, 9791-9803. 
[76] B.J. Anderson, C.F. Zukoski, Rheology and Microstructure of an unentangled polymer nanocomposite melt 
(2008), Macromolecules 41, 9326-9334. 
[77] T.G. Mason, J. Bibette, D.A. Weitz, Yielding and flow of monodisperse emulsions (1996), J. Coll. Inter. Sci. 
179, 439-448. 
[78] U. Bains, R. Pal, In-situ continuous monitoring of the viscosity of surfactant-stabilized and nanoparticles-
stabilized pickering emulsions (2019), Appl. Sci. 9, 4044. 
[79] M. Roullet, P.S. Clegg, W.J. Frith, Viscosity of protein-stabilized emulsions: contributions of components 
and development of a semipredictive model (2019), J. Rheology 63, 179. 
[80] E. Harika, S. Jarny, P. Monnet, J. Bouyer, M. Fillon, Effect of water pollution on rheological properties of 
lubricating oil (2011), Appl. Rheol. 21, 12613. 
[81] D.W. Green, M.Z. Southard, Perry’s Chemical Engineer’s Handbook, McGraw Hill Education, 9th edition, 
(2018). 
[82] C. Sivaram, A.S.N.D. Murthy, The effect of temperature variation on studies of coconut and palmoline oils 
(2010), Int. J. Chem. Sci. 8, 2259-2266. 
[83] V. Bertola, An experimental study of bouncing Leidenfrost drops: comparison between Newtonian and 
viscoelastic liquids (2009), Int. J. Heat Mass Transfer 52, 1786-1793. 
[84] T.Y. Wu, B.K. Chen, L.P. Hao, Y.C. Peng, I.W. Sun, Effect of Temperature on the Physico-Chemical 
Properties of a Room Temperature Ionic Liquid (1-Methyl-3-pentylimidazolium Hexafluorophosphate) with 
Polyethylene Glycol Oligomer (2011), International journal of molecular sciences 12, 2598-2617.  

  
 
 
 
 
 

 


