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Abstract 
The measurement of biological fluid uptake into a scaffold sensor has been modeled by 
measuring the response of induced high-frequency temperature pulses. For this, a heat transport 
equation is used, developed from Extended Thermodynamics, also equivalent to Cattaneo’s 
equation, as well as an effective thermal conductivity. The effective thermal conductivity is 
experimentally validated against data measurements of a carbon nanotube porous 
nanocomposite, embedded with silica nanoparticles. This nanocomposite serves also as the case 
study for the scaffold sensor. The uptake of the biological fluid in this scaffold sensor is 
equivalent to a change in the effective thermal conductivity, monitored by an increase of the 
interstitial volume fraction. By imposing a high-frequency temperature oscillation, the 
temperature response at the other end of the porous medium is calculated. Depending on the 
ratio of the relaxation time and the thermal diffusion time, the temperature response can be of 
oscillatory nature or of an exponential growth to an asymptotic limit. It is observed that an 
observed phase lag in the temperature response indicates a change in the effective thermal 
conductivity and thus is a criterion denoting the amount of uptake.   
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1. Introduction 
In the medical field, it is of interest in measuring the uptake of certain fluids that are indicators 
of corresponding complications. One way to do so is placing a scaffold on the spot where those 
biological fluids may be present. Such scaffolds are typically of porous nature and may contain 
also nanoparticles for structure reinforcement. The porous scaffolds have their own properties 
depending on the porosity and nanoparticle content, besides the scaffold itself. The properties 
in question may be of thermal, electrical or mass diffusional nature. When the scaffold absorps 
some biological fluid, it is natural to say that this changes the aforementioned properties. We 
are interested here by the thermal properties. By introducing thermal pulses of high frequency 
on one side of such a porous scaffold and measuring the response on the other side, one is able 
to deduce from the response whether some biological fluid has been taken up. Since many 
factors may play a role in such an analysis, modelling can provide for useful tools that can be 
used to compose such sensors. It is well known that Fourier’s law is not valid for high pulse 
responses. For information from biosensors in case of continuous monitoring, other models 
should be proposed. We propose a model that can be used for such purposes concerning a 
porous medium, in which nanoparticles are dispersed. Besides the model representing the 
evolution of the heat flux and the temperature, we need also a model that describes how the 



thermal diffusion through the porous medium is affected by the biological fluid uptake. We 
propose to do this by using an effective thermal conductivity, adapted from [1,2]. This effective 
thermal conductivity is valid at the condition that the thermal conductivity of the scaffold is 
much higher than that of air and the nanoparticles. This is justified since we use as scaffold a 
medium self-assembled from carbon nanotubes (CNT), wherein silica (SiO2) nanoparticles are 
embedded for reinforcement and alignment of the CNTs for a better conductivity [3]. The 
fabrication process and characterisation of this scaffold has been presented in previous work 
[3]. Since it is important to use a correct effective thermal conductivity, we validate this against 
experiments of self-assembled CNT-SiO2 porous nanocomposites.  
The self-assembly procedure is applied in various forms in many fields [4-12]. The one against 
which we validate the effective thermal conductivity is explained in details in [3]. Essentially 
it resumes to the following. By using drop-by-drop evaporation of aqueous solutions of CNT 
and SiO2, we deposit multiple self-assembled layers of CNTs and SiO2 on a substrate. The 
obtained dry residu is a porous structure that, depending on the initial parametric conditions, 
can have different properties. As mentioned before, the focus is on the thermal conductivity. 
The porosity of the scaffolds and the volume fraction of the nanoparticles are also determined 
from those experiments. The data are imported in our model, leading to a heat flux and 
temperature evolution depending on the porosity and volume fraction of the scaffold medium. 
Since in the model used for the effective thermal conductivity, the thermal conductivity of air 
and the nanoparticles are considered to be negligible with respect to that of CNT, it is solely 
dependent on the porosity and nanoparticles. The biological fluid that is being taken up in the 
scaffold has also a thermal conductivity negligible to that of CNT, so that it can be treated on 
the same level as the nanoparticles. So, an uptake of the biological fluid is equivalent to an 
increase of the volume fraction of nanoparticles in the scaffold. The idea is to impose high-
frequency temperature pulses and calculating their response at the other side. By varying the 
volume fraction, one is able to calculate the response to a fixed heat pulse, being indicative of 
measuring biological fluid intake. Our model is developed in section 2 and the experimental 
data needed for the model in section 3. Section 4 discusses the results and section 5 concludes.   
 
2. Theory  
A previously developed model from Extended Thermodynamics [13] proposes constitutive 
equations for the thermal transport taking into account non-localities. In case the system size is 
much larger than the mean free path of the thermal and electric carriers, a one-dimensional 
version of the constitutive equations for the heat flux, 𝑞, and the electric current, 𝐼, can be given 
by 
 
𝜏௥𝜕௧𝑞 + 𝑞 = −𝜆௘௙௙𝜕௫𝑇         (1) 
 
where 𝜏௥, 𝑡, 𝑥, 𝜆௘௙௙ and 𝑇 are the relaxation time of the heat flux, the time and space 
coordinates, the effective thermal conductivity and the temperature, respectively. The one-
dimensional balance equation for energy is 
 
 𝜌𝑐௣𝜕௧𝑇 = −𝜕௫𝑞          (2) 
 
with 𝜌 and 𝑐௣ the density and heat capacity, respectively. In (1)-(2), the thermal conductivity 
for a porous structure is given by [2,14] 



 

𝜆௣ = 𝜆଴
ଶିଶఌ

ଶାఌ
.                     (3) 

 
where 𝜆଴ denotes the thermal conductivity for the bulk material. If nanoparticles are 
homogeneously inserted in such a porous matrix (for instance, by depositing a droplet 
containing a mixture of CNTs and nanoparticles) then, for the thermal conductivity, (3) should 
be adapted: 
 

𝜆௘௙௙ = 𝜆௣
ଶିଶఝ

ଶାఝ
= 𝜆଴

ଶିଶఌ

ଶାఌ

ଶିଶఝ

ଶାఝ
           (4) 

 
Note that in (3)-(4), simplifications are introduced with respect to [2,14], because of the much 
higher thermal conductivity of CNT with respect to air and even with respect to the silica 
nanoparticles. The difference in the phonon relaxation times of CNTs, SiO2 and biological 
fluids being less important here than the difference in thermal conductivity, we will assume that 
its dependence on the volume fraction is negligible, so that:  
 
𝜏௥ = 𝜏௥଴           (5) 
 
with 𝜏௥଴ the relaxation time of the bulk material. For computational purposes, our model is 
rendered dimensionless. We choose for the time scale 𝜏௥଴, for the spatial scale the system’s size 

𝛿, for the heat flux 
ఒబ୼்

ఋ
, and for the temperature 𝑇 →

்ି బ்

୼்
. Herein, Δ𝑇 = 𝑇௜ − 𝑇଴, where the 

subscripts 𝑖 and 0 indicate both respective sides of the material. This gives for heat transport, 
writing the same symbols for the dimensionless characters, the following set of equations 
 

𝜕௧𝑞 + 𝑞 = −
ଶିଶఌ

ଶାఌ

ଶିଶఝ

ଶାఝ
𝜕௫𝑇         (6) 

𝜕௧𝑇 = −𝛼௧௛𝜕௫𝑞          (7) 
 

with 𝛼௧௛ =
ఛೝబ

ఛ೟೓
, the thermal diffusion characteristic time being defined by 𝜏௧௛ =

ఋమ

఑೟೓
, with 𝜅௧௛ =

ఒబ

ఘ௖೛
 the thermal diffusivity. The boundary conditions are given by a zero-flux condition at the 

measuring point (𝑥 = 0) and an imposed oscillatory temperature at the other side (𝑥 = 1), with 
frequency 𝜔 = 𝑃/𝜏௥଴, where 𝑃 is a value determining the periodicity of the oscillations with 
respect to the relaxation time. The dimensionless versions are 
 
𝜕௫𝑇|௫ୀ଴ = 0           (8) 
 

𝑇|௫ୀଵ =
ଵ

ଶ
(1 − cos (2𝑃𝜋𝑡))         (9) 

 
3. Experimental 
This section presents experimental data, which will serve in section 4 to validate the model for 
the effective thermal conductivity as a function of the porosity for a certain determined fixed 
volume fraction of dispersed nanoparticles.  
 



3.1 Experimental procedure for the scaffold formation 
The process of the drop-deposition experiment is described by the deposition of droplets that 
contain nanomaterial, letting them evaporate at room temperature and ambient humidity (60 % 
humidity) for seven hours. The duration of the process was needed not so much to evaporate 
the droplets as such, but rather to evacuate the water that is held back in the pores due to the 
capillary pressure, since the deposited nanomaterial creates a nano-porous network. The 
droplets, used for the depositions, contain a mixture of CNTs and SiO2 nanoparticles. The 3 g/L 
aqueous 5 nm multi-walled CNT dispersion has been supplied by Nanocyl and the 0.3 g/L 
aqueous 175 nm SiO2 has been supplied by Bangs-Laboratories. The CNT solutions are kept in 
homogeneous dispersion by the presence of anionic surfactants, which guarantee a long-lasting 
stable homogeneous aqueous dispersion of the CNTs. As for the SiO2 solutions, they are found 
to remain in a stable homogeneous aqueous dispersion due to Si-OH surface groups. As 
recommended by the fabricants, the aqueous solutions are sonicated before depositing the 
droplets. The position of the droplet is controlled by a motor with a precision of 0.01 mm. Each 
droplet is deposited by a syringe on a spot that is delimited by a groove, which creates pinning 
conditions. This results into 40 µl droplets with a diameter of 12 mm. The drop deposition setup 
has been developed in the lab (Physical Chemistry Group) and is made of a bi-dimensional 
translation stage (Moons STM17S-1AE) and a home-made double syringe pump using the same 
motorized stages. The software drives automatically the setup and acquires images of the drop 
after each deposition (camera JAI BM-500GE) to control the volume of the drop. As soon as 
the droplets are deposited, the start to evaporate, which induces convectional instabilities. The 
CNTs and SiO2 nanoparticles move along the flow lines. After the fluid has evaporated, the 
nanoparticles and CNTs settle on the substrate, forming a porous nanostructure.  
 

3.2 Material properties 
The porosity of the matrix is defined as 
 

𝜀 =
௏೛
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= 1 −

௏೘
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       (10) 

 
where 𝑉௣, 𝑉௠ and 𝑉௡௣ are the pore volume (air in our case), the volume occupied by the matrix 
(CNT) and the volume occupied by the nanoparticles (SiO2), respectively (note that the total 
volume is 𝑉௧ = 𝑉௣ + 𝑉௠ + 𝑉௡௣). Moreover, 𝐶௠ is the matrix material concentration in the 
deposited droplet (𝐶௠ = 3 g/l), 𝐶௡௣ is the silica concentration in the deposited droplet (𝐶௡௣ =

0.3 g/l), 𝜌௠ the CNT “tap” density (𝜌௠ = 1.6 kg/l), 𝜌௡௣ the silica density (𝜌௡௣ = 2.65 kg/l) 
and 𝑉ௗ the volume of each deposited droplet (𝑉ௗ = 40 µl). The term (𝑁ௗ + 1) in (10) stands 
for the fact that before depositing the CNT-SiO2 mixtures, one layer of pure CNT is deposited 
[3]. The calculated porosity presents an error of less than 0.5% and is presented in Table 1 as a 
function of the number of deposited droplets. Furthermore, in (10), 𝛿௠ and 𝑟௠ are the thickness 
of the deposited material and the radius, respectively. The radius is measured to be 𝑟௠ = 6 mm 
and 𝛿௠ is measured by means of a confocal probe [3] and also given in Table 1. 
 
Table 1: Calculated 𝜀 and 𝛿௠ as a function of 𝑁ௗ 

𝑁ௗ 1 2 3 4 5 6 7 
𝜀 0.83 0.83 0.85 0.84 0.82 0.80 0.81 



𝛿௠ [µ𝑚] 8.0 11.9 18.1 20.9 22.3 24.0 28.0 
 
The volume fraction of the nanoparticles used in the aforementioned material can be calculated 
via 
 

𝜑 =
஼೙೛

ഐ೙೛

ഐ೘
஼೘ା஼೙೛

          (11) 

 
which gives 𝜑 = 0.057. 
Since it is quite difficult to find the exact values for 𝜆଴, they will be taken from experimental 
findings from [3] of pure CNT depositions. It is found that for a pure monolayer nanoporous 
CNT, 𝜆௣ = 0.88 kW/Km. With a porosity (calculated from data from [3], with a droplet volume 
of 45 µl and using Eq. (10) with 𝑁ௗ = 2 and 𝛿௠ = 20 µm) of 𝜀 = 0.85, we find easily from 
Eq. (3) as approximation that 𝜆଴ = 8.4 kW/Km (which is, taking into account experimental 
uncertainty, not far from the 6600 W/Km found in the literature [14]).  
 
4. Results and Discussion 
4.1 Experimental data 
The deposited nanostructures, for several number of deposited droplets (see Table 1), are 
measured for their effective thermal conductivity, 𝜆௘௫௣. The results are presented in Table 2. 
 
Table 2. Measured thermal conductivities   

𝑁ௗ 1 2 3 4 5 6 7 
𝜀 0.83 0.83 0.85 0.84 0.82 0.80 0.81 

𝜆∥ [kW/Km] 0.88 0.89 0.93 0.89 0.96 1.00 0.98 
 
 
Table 2 shows that, in overall, the thermal conductivities increase, with an overall decreasing 
porosity, which suggests indeed that a denser structure is obtained, which can be explained by 
a better alignment of CNTs. In general, a composite structure that becomes denser than the CNT 
structure, would lead to a relative increase of the thermal conductivity with respect to its initial 
value. As for the alignment of the CNTs, this is confirmed by SEM images in [3] and is not the 
subject of the present work. In general, as the degree of alignment of CNTs is higher, the 
thermal conductivity should increase in the axial direction of the nanotubes.  
 

4.2 Validation  
For practical purposes (applications as biosensors, batteries, rather than insulators, semi-
conductors), the interest lies more into the conductivities in the longitudinal direction of the 
CNTs. For a preferred substrate direction, even though the CNTs are not perfectly aligned, the 
longitudinal axis of the majority of the CNTs will still be in that preferred direction. The 
experimental data used for this purpose are taken from section 4.1. Nevertheless, for the sake 
of completeness, important details are represented next. With our model, the effective thermal 
conductivities are calculated from the model in section 2 and compared to the experimental 
values. The results are presented in Fig. 1. 
 
 



 
Fig. 1: Effective thermal conductivity of the porous SiO2-CNT nanocomposite as a function of 
porosity. Squares are the experimental results from Table 2 and the lines represent our model. 
 
Fig. 1 shows a good agreement between the model and the experiments, showing that a lower 
porosity corresponds to higher thermal conductivities. The results confirm the validity of the 
model for the effective thermal conductivities for the purposes of this work. 
 

4.3 High frequency response for thermal and electric transport 
In the expression of the thermal characteristic time, the thermal conductivity is that of the bulk 
material (i.e. 𝜆଴ = 6600 W/(Km)), whilst the density and heat capacity are those of the porous 
medium. Taking a volume-fraction-based weighted average (the densities of CNT and air are 
1600 and 1.2 kg/m3, respectively, whilst the heat capacities of CNT and air are 620 [16] and 
1005 J/(kgK) , respectively), noting that the porosity is defined on volume basis and that 𝜀 =
𝑂(0.85), we find 𝜌 = 241 kg/m3 and 𝑐௣ = 947 J/(kgK). The relaxation time for a CNT-SiO2 
system is given in [17] to be 𝜏௥଴ = 85 ps. Taking for the thickness a value of the same order of 
magnitude as Table 1, let us say 𝛿 = 𝑂(10) µm, we find a thermal characteristic time of 𝜏௧௛ =

31 ns. This gives 𝛼௧௛ ≈ 2.5 ∗ 10ିଶ. For this value, our model is used for the calculations by 
means of the programme Mathematica. Fig. 1 shows a 3D example for 𝜑 = 0.057.  
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Fig. 1: Temperature 𝑇 across the one-dimensional porous nanocomposite layer 𝑥 as a function 
of time 𝑡 for 𝛼௧௛ ≈ 2.5 ∗ 10ିଶ, 𝜑 = 0.057 and 𝑃 = 0.5. 
 
Fig. 1 shows that the oscillations at 𝑥 = 1 (not clearly visible, because the period of the 
temperature oscillations is equivalent to 2𝑡 on a scale of 400𝑡 in the Figure) are quickly 
damped. This is due to the relaxation time being much smaller than the thermal diffusion time. 
Furthermore, this damping also results in to a delayed response, due to the presence of a 
relaxation time in se. The temperature at the other side increases to a value equal to the mean 
value of the oscillatory temperature, i.e. 𝑇 = 0.5. In order to visualize this more, it is more 
convenient to plot the response temperature (i.e. 𝑇  at 𝑥 = 0) as a function of time. We do this 
for four values of 𝜑 = 0.057, 0.1, 0.2 and 0.5. The results are presented in Fig. 2.  
 

  
Fig. 2: Temperature 𝑇 at 𝑥 = 0 as a function of time 𝑡 for 𝛼௧௛ ≈ 2.5 ∗ 10ିଶ and different values 
of the volume fraction 𝜑 (the volume fraction of the biological fluid uptake is given by 𝜑௕ =

𝜑 − 0.057).  
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Note that the volume fraction for the biological uptake is given by 𝜑௕ = 𝜑 − 0.057. So, 𝜑 =

0.057 is the reference state (the value corresponding to the silica nanoparticles), where no 
biological fluid has been taken up yet. We can see indeed that no oscillations are present (fully 
damped) and that the uptake of the biological fluid (𝜑 > 0.057) results into a decrease of the 
temperature response, which is attributed to the decrease in the effective thermal conductivity. 
A way to measure the evolution of the uptake of biological fluid would be following the gradient 
of the temperature evolution, indicative for the time needed to attain the final value of 𝑇 = 0.5. 
For illustrative purposes, we perform the same calculations also for 𝛿 = 𝑂(3.5), 𝛿 = 𝑂(1.5) 
and 𝛿 = 𝑂(1) µm, so that 𝛼௧௛ = 𝑂(0.2), 𝛼௧௛ = 𝑂(1) and 𝛼௧௛ = 𝑂(2.5), respectively. These 
results are presented in Figs 3 to 5, respectively. 
 

 
Fig. 3: Temperature 𝑇 at 𝑥 = 0 as a function of time 𝑡 for 𝛼௧௛ = 0.2 and different values of the 
volume fraction 𝜑 (the volume fraction of the biological fluid uptake is given by 𝜑௕ = 𝜑 −

0.057). See Fig. 2 for the legend. 
 
Fig. 3 shows that a higher value of 𝛼௧௛ (the thermal diffusion time becomes smaller than in the 
previous case, which could be due to another material or another thickness of the same material) 
results into a small “left-over” of the imposed oscillations, but keeping approximately the same 
incremental tendency. 
 

 



Fig. 4: Temperature 𝑇 at 𝑥 = 0 as a function of time 𝑡 for 𝛼௧௛ = 1 and different values of the 
volume fraction 𝜑 (the volume fraction of the biological fluid uptake is given by 𝜑௕ = 𝜑 −

0.057). See Fig. 2 for the legend. 
 
Fig. 4 shows that, for a relaxation time of the order of magnitude of a thermal diffusion time, 
the incremental behaviour is only slightly visible, but rather the oscillatory behaviour of the 
temperature response becomes more important. As such, for higher values of 𝜑 (higher uptake 
of the biological fluid), the measurement could be indicated by a phase lag of the oscillations. 
This phase lag becomes even more important when augmenting 𝛼௧௛ in Fig. 5. There, the 
incremental behaviour has completely vanished and only the phase lag is observable as an 
indication of biological fluid uptake. 
 

 
Fig. 5: Temperature 𝑇 at 𝑥 = 0 as a function of time 𝑡 for 𝛼௧௛ = 2.5 and different values of the 
volume fraction 𝜑 (the volume fraction of the biological fluid uptake is given by 𝜑௕ = 𝜑 −

0.057). See Fig. 2 for the legend. 
 
Figs. 3 to 5 show that, depending on the ratio of the thermal relaxation time and the thermal 
diffusion characteristic time, the detection of the biological fluid uptake can be monitored by 
two distinctive ways. If the thermal diffusion time is smaller for a certain relaxation time, the 
fluid uptake can be monitored by a gradient of the temperature response, whilst for larger 
thermal diffusion times the uptake can be followed by measuring the phase lag of an oscillatory 
temperature response. This can open ways to several types of biosensors.  
 
5. Conclusions 
In this work, a study on the response of an imposed temperature oscillation at high frequency 
is performed, using as material a porous carbon nanotube-silica nanocomposite. The purpose is 
to measure the uptake of biological fluids by noting that the temperature response can be altered 
by the thermal properties of the material, which depends also on the uptake of the biological 
fluids. For this study, a heat flux from Extended Thermodynamics has been employed, 
combined with an energy balance and an equation for the effective thermal conductivity. It is 
important to note that the evolution equation for the heat flux, although taken from 
developments from Extended Thermodynamics and neglecting thereby non-local effects [1], 
corresponds also to Cattaneo’s equation for heat transport [18]. The model for the effective 
thermal conductivity has been satisfactorily validated against experiments of a porous CNT-



SiO2 nanocomposite. The experiments concern a procedure of self-assembled porous 
nanocomposite structures, of which the thermal conductivities have been measured. 
Subsequently, the temperature response (induced by the imposed oscillatory temperature) is 
calculated using the heat transport equations. The ratio of the relaxation time and the thermal 
diffusion time is also varied in order to appreciate the effect the thickness of a material could 
have on the response. The uptake of the biological fluid has an influence on the effective thermal 
conductivity, which will change the temperature response. Although, for a final application, 
such methodology should be implemented in electrical circuits (implying indirectly induced 
temperature pulses), the source of the temperature pulses is not the subject of this study. Rather, 
it provides the mathematical and conceptual tools allowing such possible implementations. It 
appeared indeed that the uptake of biological fluid, simulated here by an increase of the volume 
fraction, alters clearly the temperature response, and this even in two distinct ways. It appeared 
that this response was of oscillatory nature with a phase lag when the thermal diffusion time 
was much lower than the relaxation time. On the other hand, when the thermal diffusion time 
was much higher than the relaxation time, the response was rather of exponential growing 
nature towards an asymptotic value.  
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