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A B S T R A C T

Purpose: Quasi-stable electrical distribution in EEG called microstates could carry useful information on the
dynamics of large scale brain networks. Using machine learning techniques we explored if abnormalities in
microstates can identify patients with Temporal Lobe Epilepsy (TLE) in the absence of an interictal discharge
(IED).
Method: 4 Classes of microstates were computed from 2min artefact free EEG epochs in 42 subjects (21 TLE and
21 controls). The percentage of time coverage, frequency of occurrence and duration for each of these micro-
states were computed and redundancy reduced using feature selection methods. Subsequently, Fishers Linear
Discriminant Analysis (FLDA) and logistic regression were used for classification.
Result: FLDA distinguished TLE with 76.1% accuracy (85.0% sensitivity, 66.6% specificity) considering fre-
quency of occurrence and percentage of time coverage of microstate C as features.
Conclusion: Microstate alterations are present in patients with TLE. This feature might be useful in the diagnosis
of epilepsy even in the absence of an IED.

1. Introduction

Diagnosis of epilepsy is dependent on accurate clinical history and/
or identification of ictal or interictal discharges (IED) on EEG. Repeated
scalp EEG having a sensitivity upto 90% is considered gold standard in
the management of epilepsy owing to its wide availability and low cost
[1]. However, the detection of interictal discharges is dependent on
several factors including seizure frequency, sleep deprivation, type of
epilepsy, medications, interobserver variability etc. making the sensi-
tivity of scalp EEG in temporal lobe epilepsy (TLE) highly variable [2].
Temporal and spatial attributes of EEG such as Lyaponov exponent,
wavelet based analysis, fractal dimensions, time-frequency analysis,

etc. have been used as measures to enhance the detection of IED [3]. A
significant method in evaluating these attributes is based on machine
learning techniques. Machine learning is a “field of study that gives
computers the ability to learn without being explicitly programmed”
[4]. Gotman [5] first proposed possible applications of machine
learning in epilepsy with minimal clinical manifestation and classified
type of seizures by decomposing EEG signal into half waves. Support
vector machine (SVM) using Independent Component Analysis (ICA),
Principal Component Analysis (PCA), Linear Discriminant Analysis
(LDA) [6] and power spectrum [7] as feature extraction methods from
EEG have been used with overall accuracy of 86.1% in predicting sei-
zure. A major factor to be noted is that, all these attributes were
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dependent on the presence of an ictus or IED and will underperform in
identifying epilepsy in its absence. A notable exception in this regard is
a recent study that used directed functional connectivity measures in 40
TLE patients without IED. An automated diagnosis using decision tree
classification yielded an accuracy of 90.7% with 95.0% sensitivity and
85.7% specificity [8].

EEG microstates are quasi-stable brief patterns of coordinated
electrical activity on the cortical surface indicating large scale neuronal
networks [9]. They represent functional state variations in brain and
are considered as building blocks of mentation on EEG [10–12]. There
are four common topographical shapes of microstates namely A, B, C
and D. Simultaneous EEG- fMRI has revealed correlations of these mi-
crostates with phonological (microstate A), visual (microstate B), sal-
ience network (microstate C) and frontoparietal network (microstate D)

[13]. Despite the differences in the temporal resolution of microstates
and fMRI networks, due to their structural similarity, together with
evidence from simultaneous EEG-fMRI, more recent studies view these
four microstates as temporally distinct electrophysiological components
of default mode network (DMN) [13–16]. Quantitative measurements
of microstate duration and frequency could hold important information
[17] about epilepsy as it has found applications in understanding psy-
chiatric disorders [18–20].

To understand microstate alterations in TLE, we undertook this
exploratory study with a hypothesis that TLE also might have micro-
state alterations which could be useful in identifying it in the absence of
IED or an ictus. We used IED negative EEG in 21 patients with TLE and
compared them with 21 healthy controls. To ascertain the usefulness of
microstates in predicting epilepsy at a single subject level, we used two

Fig. 1. Methodology for EEG microstate - machine learning analysis.
fs→ sampling frequency; BPF→ Band Pass Filter; GFP→Global Field Power; ROC→ Receiver Operating Characteristics.
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contemporary machine learning algorithms viz. logistic regression and
Fishers Linear Discriminant Analysis (FLDA) owing to the exploratory
nature of the study, its limited sample size and relatively small number
of features. To the best of our knowledge, application of microstates in
epilepsy and implementation of machine learning using microstates are
novel components of this study.

2. Materials and methods

2.1. Participants

The study was conducted in a tertiary care neurological institute
with the approval of institute ethics committee for humans after ob-
taining written informed consent form. The data was acquired as part of
a larger study understanding hemodynamic correlates of IED in lesional
epilepsy. Twenty one male patients (age 25.14 ± 6.08) with TLE (based
on the Video EEG, MRI localization) having no interictal discharges
were retrospectively selected. Six patients had right TLE, 12 left TLE
and 3 bilateral TLE. The mean duration of illness was 13.43 ± 6.86
years, mean age at onset of disease was 12.0 ± 6.56 years, and the mean
frequency of seizures per month was 9.24 (0.03–100) and mean number
of antiepileptic drugs (AED’s) were 2.66 ± 0.79. All patients were re-
cruited in the interictal period with an average time of 38 days from the
last ictus. The matched control group comprised 21 healthy subjects
(age 28.1 ± 4.2) from the existing imaging data bank. There were no
significant differences in age or sex between the two groups
(p=0.075). None of the subjects had prior history of trauma, and were
not on medications for psychiatric illness. Scalp EEG was verified in all
subjects (SS, SC) to rule out the presence of an IED.

2.2. Data acquisition

EEG data was recorded using a 32 channel (Brain Products GmbH,
Germany) 10–20 acquisition system. Since, the data was acquired as
part of a larger study understanding hemodynamic correlates of IED
with simultaneous EEG-fMRI, (Skyra, Siemens, Erlangen, Germany) an
initial sampling frequency of 5000 Hz was used. ECG electrode, FCz
reference electrode, AFz ground electrode were part of the 32 channels.
A minimum threshold of 10 k Ω and EEG recording was performed
using brain recorder (version 1.03, Brain Products). All subjects were
awake with eyes closed during the entire procedure.

2.3. Data analysis (Fig. 1)

2.3.1. EEG pre-processing
The acquired raw EEG was pre-processed offline using Brain Vision

Analyzer (Brain Products GmbH, Gilching, Germany).
Ballistocardiogram (BCG) artifacts were removed using average sub-
traction method considering R peaks as reference [21]. Segments con-
taining sleep spindles and k complexes were visually removed. The
corrected EEG data was then filtered using a band pass filter with
minimum and maximum cut off frequency of 0.5 Hz and 47 Hz re-
spectively. A notch filter of 50 Hz was applied to reduce the baseline
artefact. The filtered data was then down sampled to 250 Hz sampling
frequency. Ocular motion and other artefacts were corrected visually
and using Independent Component Analysis. Similar to previous studies
[22,11], the first 120 s artefact free EEG data of each subject were re-
tained for microstate analyses, after applying a band pass filter (BPF) of
2–20 Hz, and re-computing against the average reference.

2.3.2. Microstates segmentation
EEG epochs were transformed into maps of momentary distributions

of scalp potentials [22,23] following standard steps in microstate seg-
mentation using sLORETA (KEY Institute for Brain Mind Research,
Zurich). The overall potential variance across the electrodes were
quantified by measuring the global field power (GFP). The momentary
peaks which were obtained by the GFP were extracted and further
clustered into four microstate classes using k-means based clustering
method as in previous study [24]. Group model maps were computed
based on individual model maps. The resulting class-labeled group
model maps were compared with templates to assign model maps of
each participant to four microstate classes (also known as back-fitting
procedure). Across topographies these four microstates explained
63.34± 0.06 of the total variance of GFP. Three parameters based on
temporal attributes of EEG data were derived from the 4 classes of
microstates. They were mean duration (ms) indicating the stability of
underlying neuronal structure, frequency of occurrence (/s) indicating
the tendency of a underlying neuronal generators to become activated
and the percentage of time coverage (%) representing the time of
coverage of each microstate compared to others. The microstate scalp
maps derived from epilepsy group, control group and the template are
represented in Fig. 2.

2.3.3. Feature selection
The data from the microstate parameters had a binary class con-

tinuous variable distribution with 42 instances (21 TLE and 21 Healthy
Controls) and 12 microstate attributes (4 classes x 3 parameters). Since
the microstate attributes had different units, the data was normalized to
[0,1] scale. An information based univariate feature evaluation method
was implemented which computes the gain of individual feature to its
class (Waikato Environment of Knowledge Analysis, version 3.8.2). A
ranking based search method was based on

= −G x y H x H x y( , ) ( ) ( )

Where, x → dependent variable (group); y → independent variable
(feature attributes).

On performing a Leave One Out Cross Validation (LOOCV), the
frequency of occurrence, duration and percentage of time coverage of
microstate class C resulted in higher average merit. To observe how
these individual characteristics of microstate C contribute as a set of
attributes in distinguishing TLE from healthy controls, a subset based
evaluation method with a Best First search method was implemented.
On performing LOOCV, the frequency of occurrence and percentage of
time duration of microstate C occurred in all folds.

Therefore, from the above methods it was concluded that these two
microstate parameters of class C were significantly different between
the groups. Hence, only % of time duration and frequency of occurrence
of class C were considered for classification.

Fig. 2. Microstate scalp maps of EEG signals obtained using sLORETA. a. EEG
microstate scalp maps of template data in 4 classes [24]; b. EEG microstate
scalp maps of epilepsy group; c. EEG microstate scalp maps of healthy controls.
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2.3.4. Classification
After feature selection, the dataset consisted of 2 independent

variables (feature attributes) and 42 instance labeled pairs. Considering
the developed feature set as multivariate in nature, FLDA was im-
plemented to determine the discriminating capability of microstate C
parameters to differentiate the two groups. FLDA transforms multi-
variate to univariate observations such that the observations derived
from each of these population are maximally separated. The sig-
nificance in using FLDA is its robustness to near normality and variation
in covariance matrices as compared to conventional methods of dis-
criminant analysis [25]. Further, multinomial logistic regression was
used to determine the predictive capability of these microstate para-
meters in distinguishing the two groups, following the steps as elabo-
rated in previous studies [26–28].

Though both the methods develop similar classifier models, the
discriminative and the predictive capabilities of microstate parameters
were evaluated considering measures pertaining to accuracy, sensi-
tivity, specificity, receiver operating characteristics (ROC) and F1
measure [29].

3. Results

3.1. Classifier performance

Considering the LOOCV based evaluation, FLDA resulted in an
overall accuracy of 73.80 with 81.0% sensitivity and 66.7% specificity.
This resulted in 31 correctly classified subjects among 42 subjects with
17 true positive instances (TPI) and 14 true negative instances (TNI).
Logistic regression had an overall accuracy of 66.7% with 71.4% sen-
sitivity and 61.9% specificity resulting in 28 correctly classified in-
stances from an overall of 42 instances (TPI= 15; TNI= 13).

To further evaluate the classifier performance using ROC (Fig. 3), a
10 fold stratified cross validation was performed for both the classifier
methods resulting in 37 training and 5 test instances. The measures
from the 10 fold cross validation also showed similar performance
characteristics as observed in LOOCV based evaluation. An optimal
threshold value of 0.49 was selected resulting in highest TPR of 0.85

and lowest FPR of 0.38 as observed in Table 1. Considering the multi-
nomial logistic regression classifier, an optimal threshold of 0.49 was
selected which resulted in highest TPR of 0.80 and lowest FPR of 0.42.

3.2. Clinical correlation

Frequency of occurrence and percentage of time coverage of mi-
crostate C was correlated with the age at onset of epilepsy, frequency of
seizures, duration of epilepsy and number of antiepileptic drugs using
Pearson’s linear correlation. There were no significant correlation of
microstate C with these clinical variables (Supplementary Table 1).

4. Discussion

The study of EEG microstates using machine learning techniques
suggests significant alterations in the frequency of neural generators of
microstate C in patients living with epilepsy. Alterations in microstate C
was 76.1% accurate in distinguishing epilepsy from healthy controls,
even in the absence of a visible IED on EEG. These findings, provide first
hand evidence for the use of EEG microstates in patients living with
TLE.

Microstate C has a midline topography with a frontal to occipital
alignment and is found most prominent at rest [12,30] and is pre-
dominated by a task inhibitory alpha activity [30]. Task inhibitory
alpha activity is one of the most basic cognitive processes and is known
to play a key role in coalescing brain activity at different frequencies
[30]. Inappropriate activation of a task inhibitory alpha state could
interfere with the normal syntax of the microstates [31]. It is possible
that the alterations in microstate C observed in our study could be re-
presentative of the changes in alpha rhythm seen in patients with epi-
lepsy. Abnormalities of alpha rhythm was known to be associated in
patients with epilepsy [32] and a recent study on EEG has reported
alpha rhythm abnormalities to be more specific for the diagnosis of
epilepsy and less dependent on the number of AED’s [33]. In the current
study, it needs to be noted that both frequency of occurrence and
percentage of time duration of microstate C were used as features for
classification, since these had the highest ranking during feature

Fig. 3. ROC analysis of classification methods.
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selection. Previous studies using microstates have reported decreased
frequency of microstate C in patients with panic disorder [19] and in-
creased frequency in schizophrenia [11,34,18], and syndrome of 22q11
deletion [35]. Drug induced [34,36] and memory deficit [37] induced
alterations in microstate C also have been reported. Though we did not
get significant correlations of selected microstate C features with
number of AED and duration of disease, it is possible that the altera-
tions in microstate C is not specific to epilepsy. It could reflect the
combined effect of drug, disease and cognitive deficits that a patient
living with epilepsy could harbour. Further studies will be required to
understand these changes further.

A recent study using machine learning and directed connectivity
measures in IED negative TLE patients [8] revealed an accuracy of
90.7% using a decision tree classifier. Other studies have reported ac-
curacies ranging from 76 to 93% in the diagnosis of TLE using MRI
[38,39]. Though the clinical relevance of 93% accuracy in automated
diagnosis of TLE in patients with MRI evidence of hippocampal sclerosis
might be peripheral, such methods could provide value addition in
difficult to diagnose TLE. Towards this end, our study and Verhoeven
et al. study [8] gains higher clinical momentum than MRI features
because of the choice of IED negative EEG as inputs in these studies.
Though the accuracy using microstates in our study is lesser, it is im-
portant to note that the Verhoeven et al. [8] classification was based on
pre-identified 14 regions of interest, while our study input was com-
pletely data driven. Another point is that Verhoeven et al. [8] used IED
negative segments in EEG whereas in our study we have excluded pa-
tients with IED in the total duration of EEG as it was possible that an
IED could continue to alter the connectivity for several seconds before
and after its onset [40]. While directed connectivity is an indicator of
local connectivity, microstates are indicators of large scale connectivity.
The choice of classifiers were also different using random forest and
FLDA algorithms respectively. While all these factors could have played
independent and important roles while determining accuracy, it is
important to note that these automated methods have sensitivity
comparable to an ictus in the diagnosis of epilepsy even without the
presence of an IED.

Inclusion of patients with refractory epilepsy as in the study by
Verhoeven et al. [8] could be a major limitation of our study together
with limited sample size. Replicability in large number of patients with
recent onset seizures might be required to assess the real validity of this
tool. As we did not have the neuropsychological scores we cannot be
certain that the microstate alterations are independent of the cognitive
deficits. Another factor is that only temporal characteristics of EEG data
was considered in this study. It remains to be seen whether adding other
features based on spatial characteristics and time-frequency analysis,
along with clinical variables could improve the performance measures
of classifiers. Despite these limitations, the findings of the current study
have advanced literature as it has reported microstate alterations in
patients with epilepsy with 76.1% accuracy in predicting epilepsy even
in the absence of an IED.

5. Conclusion

Large scale EEG microstate network alterations can provide subject
specific measures of disease and can be used to identify temporal lobe
epilepsy even when the interictal discharges are absent.
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