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Machine learning identifies “rsfMRI epilepsy networks” in temporal
lobe epilepsy
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Abstract
Objectives Experimental models have provided compelling evidence for the existence of neural networks in temporal lobe
epilepsy (TLE). To identify and validate the possible existence of resting-state “epilepsy networks,” we used machine learning
methods on resting-state functional magnetic resonance imaging (rsfMRI) data from 42 individuals with TLE.
Methods Probabilistic independent component analysis (PICA) was applied to rsfMRI data from 132 subjects (42 TLE patients
+ 90 healthy controls) and 88 independent components (ICs) were obtained following standard procedures. Elastic net-selected
features were used as inputs to support vector machine (SVM). The strengths of the top 10 networks were correlated with clinical
features to obtain “rsfMRI epilepsy networks.”
Results SVM could classify individuals with epilepsy with 97.5% accuracy (sensitivity = 100%, specificity = 94.4%). Ten net-
works with the highest ranking were found in the frontal, perisylvian, cingulo-insular, posterior-quadrant, thalamic, cerebello-
thalamic, and temporo-thalamic regions. The posterior-quadrant, cerebello-thalamic, thalamic, medial-visual, and perisylvian
networks revealed significant correlation (r > 0.40) with age at onset of seizures, the frequency of seizures, duration of illness, and
a number of anti-epileptic drugs.
Conclusions IC-derived rsfMRI networks contain epilepsy-related networks and machine learning methods are useful in iden-
tifying these networks in vivo. Increased network strength with disease progression in these “rsfMRI epilepsy networks” could
reflect epileptogenesis in TLE.
Key Points
• ICA of resting-state fMRI carries disease-specific information about epilepsy.
• Machine learning can classify these components with 97.5% accuracy.
• “Subject-specific epilepsy networks” could quantify “epileptogenesis” in vivo.

Keywords Temporal lobe epilepsy . Magnetic resonance imaging . Support vector machine . Seizures

Abbreviations
CA1-CA4 Cornus amonis
FD Fascia dentata
FDR False discovery rate

HGMV Hippocampal gray matter volume
ICA Independent component analysis
ICs Independent components
ML Machine learning
MTS Mesial temporal sclerosis
PICA Probabilistic independent component analysis
ROI Region of interest
rsfMRI Resting-state functional magnetic

resonance imaging
SUB Subiculum
SVM Support vector machine
TLE Temporal lobe epilepsy

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00330-019-5997-2) contains supplementary
material, which is available to authorized users.

* Tapan K. Gandhi
cns.researchers1@gmail.com; gandhitk@gmail.com

Extended author information available on the last page of the article

European Radiology (2019) 29:3496–3505
https://doi.org/10.1007/s00330-019-5997-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s00330-019-5997-2&domain=pdf
http://orcid.org/0000-0001-7693-8095
https://doi.org/10.1007/s00330-019-5997-2
mailto:cns.researchers1@gmail.com
mailto:gandhitk@gmail.com


Introduction

Volumetric imaging studies have corroborated the increasing
evidence that temporal lobe epilepsy (TLE) is a network disor-
der and extends beyond the evident hippocampal atrophy and
signal changes in a patient with mesial temporal sclerosis
(MTS). Whole brain network analysis using graph theoretical
methods has further intensified the evidence and has allowed
in vivo imaging of its pathophysiology [1]. Network abnormal-
ities probably reflecting the combination of the disease process
and compensatory plasticity response are noted in frontal, pari-
etal, and occipital lobes [2, 3]. Independent component analysis
(ICA), another data-driven whole brain network analysis of
resting-state functional magnetic resonance imaging (rsfMRI),
has also provided evidence for widespread network alterations,
involving default mode network [4, 5], auditory, sensorimotor,
visual [6], language [7], basal ganglia, and cerebellum networks
[8] in patients with epilepsy. Though ICA derives 15–80 com-
ponents, rsfMRI research typically focuses on 10 well-
identified networks, namely sensorimotor, visual, auditory, de-
fault-mode, attention, salience, executive, basal ganglia, and
cerebellar networks. One of the main reasons why remaining
components are not used is because their spatial structure is not
pertinent to our concept of brain function as defined by task-
based fMRI [9]. With the availability of probabilistic ICA
(PICA)methods, the accuracy and efficiency of modeling noise
[10] and extracting signals of interest in the spatiotemporal and
subject-session domain in multisubject/multisession fMRI data
[10–14] have created a renewed interest in these less popular
components. In addition, EEG-fMRI studies also have reported
physiological correlations with mathematically eliminated
global signal [15] and spike-wave discharges have revealed
spatial and temporal correlations with these components [16].
It is possible that epilepsy could reveal disease proportionate
changes within these discarded components and allow us to
measure disease progression.

Machine learning (ML) is an application of artificial intel-
ligence that allows computers to learn from the data in hand
without being explicitly programmed [17]. ML has found crit-
ical clinical applications in better understanding complex
multi-factorial diseases by establishing a diagnosis [18], mea-
suring disease progression [19], detecting high-risk healthy
subjects, and even predicting survival [20]. The fundamental
building block in ML is a “neuron” with an input and output
function strikingly similar to the structure of the human uni-
polar neuron. Based on the extent of learning, these algorithms
can be broadly divided into supervised learning and unsuper-
vised learning. Support vector machine (SVM) is a popular
supervised learning technique because of its power to deal
with complex nonlinear data [18]. One critical aspect in ML
is the suitable feature selection. Prior studies have used fea-
tures like task-based functional connectivity, ROI-based rest-
ing functional connectivity [21], and independent component

analysis (ICA)–derived resting networks [22] as input fea-
tures. In recent trends, ML algorithms can extract the weight
of every feature in a set of features used for the data classifi-
cation by a process called “feature ranking.” Some popular
algorithms used for this task are sparse logistic regression,
lasso, kernel ridge regression, Bayesian regularization, elastic
net regression, etc. Over these, elastic net is one of the efficient
algorithms for feature selection in neuroimaging data [23–25].

With an aim to characterize ICs that could be indicative of
TLE, we undertook this exploratory study using 88 ICA-
derived resting networks as inputs to one of the most popular
ML algorithms, SVM. We hypothesized that there could be
“disease-specific IC networks” (reflective of the alterations in
the epileptogenic brain), that can be correctly identified with
the help of the ML model. Elastic net-based ranking was used
to characterize these networks on the basis of their anatomical
structure and also on disease-defining clinical variables like
age at onset of disease, the frequency of seizure, number of
anti-epileptic drugs, etc. This ranking was critical for us to link
ICs with disease progression.

Materials and methods

Participants

The study was conducted in a tertiary neurological institute in
patients referred for imaging evaluation for refractory TLE
following approval of the institute ethics committee and writ-
ten informed consent. Forty-two TLE patients (male:female,
27:15; mean age, 24 ± 7.9 years) with 11.8 ± 7.4 years of age
at onset of disease and 12 ± 6.4-year duration of illness, hav-
ing a mean seizure frequency of 5.6 ± 8.4 per month, were
recruited in the interictal period. Structural MRI (RDB) and
scalp EEG (GC/PSC/SS) were verified and 18 patients had
right mesial temporal sclerosis (MTS), 19 left MTS, and 5
bilateral MTS. All patients were on poly-pharmacy on leveti-
racetam, valproate, phenytoin, carbamazepine, etc. (22 pa-
tients were on two drugs, 16 on three, and 4 on more than
three drugs). For the control group, data of 90 age- and
gender-matched (M:F = 53:37; age, 26.7 ± 10.2 years) sub-
jects were selected from the existing healthy-subject imaging
data bank.

Image acquisition

Patients underwent rsfMRI thrice in succession and controls
once (185 dynamics; TR/TE/FA: 3000 ms, 30 ms, 90°, 34
slices, 64 × 64, 3 × 3 × 4 mm). Hence, the total acquired data
were 216 (126 patient data and 90 controls). All subjects had
one T1-MPRAGE (TR/TE/FA, 1900ms, 2.43ms, 90° and ST,
1 mm) in a 3T MRI (Skyra-Siemens).
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Data analysis

Independent components

Preprocessing was done using FSL (FMRIB’s Software
Library) following brain extraction, motion correction, spatial
smoothing, intensity normalization and band-pass filtering,
co-registration with structural volume in MNI152, and resam-
pling of the filtered data into standard space [26]. Fourteen
data sets were discarded due to head motion. ICs were ana-
lyzed with probabilistic independent component analysis
(PICA). ICs were extracted and visually inspected at individ-
ual subject level. The ICs having obvious non-physiological
activity were discarded. Multivariate group PICAwas carried
out to derive temporally concatenated maximal spatially ICs
across the 202 data sets (90 controls and 112 patient data).
Decomposition of the data set into 88 independent vectors
was performed through automated data specific IC decompo-
sition using the Fast ICA algorithm [26]. To extract the indi-
vidual ICs and to test for group-wise comparisons, dual re-
gression was performed. The set of spatial maps derived from
the group-mean analysis was used to generate individual
subject-specific spatial maps and their time series [27].
Statistical analysis was done using a randomized, non-
parametric permutation, adapting the threshold-free cluster
enhancement (TFCE) technique at p < 0.05 threshold.

Feature set construction and selection

The feature set was composed of a Pearson’s correlation ma-
trix created from the time courses corresponding to ICs.
Taking all 88-time series corresponding to each IC and pick-
ing up the upper triangular region and unraveling it into a
vector we obtained a feature vector of dimension 3828. We
opted for elastic net [28] for feature selection among all
candidates.

Elastic net is a regularized linear regression model which
includes two kinds of regularizes such as L1 and L2. L1
regularizer allows learning weights for features, which are
sparse in nature while L2 regulates their magnitude.

O Xð Þ ¼ argminW Y−XWj j2 þ λ1jW j þ λ2 Wj j2

“Y” is the label of categories (i.e., patient or healthy con-
trol), “W” is the weight of the matrix, λ1 is the coefficient of l1
regularize, and λ2 is the coefficient of l1 regularize. The above
functions find the loss function, which consists of mean
squared loss along with two regularizer terms. Elastic net
learns weights for features, which are sparse in nature facili-
tating the selection of features by picking features which have
non-zero weights. Mathematically describing:

I selected ¼ i∈I jWi > 0f g

I is the set of indexes in features where Iselected selected set
of indexes [1]. In order to rank a region, the weights corre-
sponding to the correlation features with respect to all other
region are taken. A region is ranked higher if it has in general
higher aggregated feature weights indicating its importance.
Rankings for different regions are obtained as follows:

Ri ¼ ∑
j∈ 0;colsMf g

Wij

whereMij is the correlation feature between ith and jth region,
then Wij is the weight assigned by elastic net to Mij, and Ri is
the score based on which ith region is ranked [1].

The superiority of elastic net over other techniques such as
lasso and sparse canonical correlation analysis is highlighted
in an article of Zou et al [29].

It consists of a mean square cost function along with l1
(sparsity) and l2 (smoothness) regularizers for the weights
shown above in the equation with α being the coefficient of
the l1 term and β for the l2 term. X is the training data matrix
and Y is the set of labels with weights. The model leads to a
sparse weight vector which is used to select features. All fea-
tures with positive weights were picked while the rest were
dropped. The resulting feature vector was of dimension 187
which was comparable to the count of data-points. αwas kept
at 0.0075 to ensure sufficient sparsity and β at 0.021.

Data classification

For classification pattern recognition, model “linear SVM”
was employed. Two class SVM was trained with its penalty
parameter set to 1.0 using Sklearn library in python.

Ranking of independent components

The elastic net feature selection step provided a weight for
each correlation feature and by summing up the weights for
the correlations for a particular IC, we could obtain a score for
each IC. The coefficient of regressor was also reduced to
0.0035 as the original feature dimension was also reduced.

This approach can be interpreted in another fashion in the
form of a graph. In this, the ICs represent the nodes and a pair
of ICs has an edge between them if their correlation feature
has a positive weight obtained from the elastic net. This
weight represents the edge weight leading to a weighted un-
directed graph. Ranking of ICs is based on the degree central-
ity measure for weighted graphs [30].

Hippocampal volume calculation

Hippocampal graymatter volume (HGMV)was calculated using
(HV-SPM8) toolbox (https://www.fil.ion.ucl.ac.uk/spm/ext/#
HV) following Suppa et al [31]. This toolbox allows fully
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automated tissue segmentation and stereotactical normalization
of high-resolution 3D MPRAGE images. To calculate HGMV,
we included cornus amonis (CA1-CA4), fascia dentata (FD), and
subiculum (SUB). HGMV was calculated by multiplying the
subject’s GM component image with a predefined binary mask
from atlas [32] adding all voxel intensities.

Clinical correlation

The strength of the ICs which showed the top 10 ranking in
predicting TLEwas correlatedwith various clinical features and
hippocampal volume using Pearson’s correlation. To calculate
the strength of ICs, the effect size was calculated by taking the
sum of the intensity of all clusters divided by the total number
of voxels in the network. Correction for multiple comparisons
was done using false discovery rate (FDR), p < 0.01.

Results

ML identified 10 ICs in TLE patients capable of predicting
epilepsy with an accuracy of 97.5% with fivefold cross-vali-
dation. These ICs involved frontal, temporal, perisylvian, cin-
gulate, posterior-quadrant, thalamic, and cerebellar regions.
The strength of some of these networks was proportional to
clinical variables.

Classification of patients with TLE

As evident in Table 1, the SVM algorithm produced 97.5%
accuracy and correctly identified all patient trials with epilepsy,
while interpreting 5 out of 90 healthy controls as having epilepsy.

Elastic net ranking of independent components

Elastic net-based top 10 networks were IC12, IC10, IC22,
IC3, IC18, IC15, IC23, IC19, IC25, and IC32 in descending
order of their significance.

Spatial correlation of these networks [33] revealed that these
networks matched the 70 component template more than 25%.
The networks and their correlations are provided in Table 2.

Structural anatomy of top 10 independent components

The regions and their coordinates in the order of their ranks are
presented in Fig. 1 and supplementary Table 1.

Rank1: IC12: involved the posterior quadrant including
posterior temporal, occipital, and parietal lobes bilaterally.

Rank2: IC10: involved the posterior temporal and occipital
lobes bilaterally.

Rank3: IC22: predominantly involved the orbitofrontal,
lateral frontal, cingulate, and anterior insula bilaterally.

Rank4: IC3: had dense involvement of the cerebellum, ver-
mis, brain stem, and medial thalamus bilaterally.

Rank5: IC18: involved the entire cingulate gyrus and ante-
rior insula bilaterally.

Rank6: IC15: involved the entire thalamus bilaterally with-
out involving the brain stem.

Rank7: IC23: involved the medial occipital lobes
bilaterally.

Rank8: IC19: involved the insula and perisylvian region
bilaterally with anterior cingulate gyrus.

Rank9: IC25: involved the superior and middle frontal gy-
rus bilaterally.

Rank10: IC32: involved the antero-medial temporal lobes,
brain stem, and thalamus bilaterally.

Clinical correlation

Since the frequency of seizures ranged from 0.3 to 50, five
patients with a frequency higher than 8 (> 2 SD) were exclud-
ed from the correlation analysis (Fig. 2, Table 3). The
posterior-quadrant network (IC12) correlated positively with
the duration of epilepsy (r = 0.58) and the number of anti-
epileptic drugs (r = 0.41). The cerebello-thalamic network
(IC03) correlated negatively (r = − 0.48) with the age at onset
of seizures. The thalamic network (IC15) correlated positively
with the duration of epilepsy (r = 0.48). The medial-visual
network (IC23) correlated negatively with the age at onset of
seizures (r = − 0.53). The perisylvian network (IC19) correlat-
ed positively with the frequency of seizures (r = 0.72).

Hippocampal volume correlation

For the purpose of correlation, we classified hippocampus into
the affected and unaffected sides. For example, the right hip-
pocampus in patients with right MTS was classified as affect-
ed and the left hippocampus in the same patient was classified
unaffected. In patients with bilateral MTS, both hippocampi
were classified affected. We found a significant correlation (<
0.05 FDR) between affected hippocampus with rank 1(IC 12)
network (r = − 38, p = 3.02e−05) and rank 10 (IC 32) network
(r = − 45, p = 3.87e−07) (Fig. 3). Unaffected hippocampal
volume did not correlate with the network strength.

Table 1 SVM classification model

Model SEN SPE PPV NPV ACC

SVM 100 94.4 95.72 100 97.52

SEN classification sensitivity, SPE classification specificity, PPV positive
predictive values, NPV negative predictive values, ACC classification
accuracy
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Discussion

The study provides a novel proof of concept evidence for the
existence of “rsfMRI epilepsy networks” in patients with TLE.
Powerful ML algorithm like SVM identified these ICs with
100% sensitivity and 97.5% accuracy, providing initial and

crucial evidence for the possible existence of these disease-
specific networks. The spatial organization of networks in the
fronto-polar, cingulo-insular, perisylvian, posterior quadrant,
cerebello-thalamic, and temporo-thalamic areas provided addi-
tional evidence for their existence as these areas have been
strongly implicated in temporal plus syndrome [34]. Another

Table 2 Elastic net-derived
networks Ranks Epilepsy

networks
20 component ICA template 70 component ICA template

Template IC r value Template IC r value

1 IC12 1020 0.28 1170 0.39
2 IC10 1020 0.61 2570 0.54
3 IC22 820 0.40 4370 0.42
4 IC3 920 0.48 470 0.36
5 IC18 820 0.46 770 0.29
6 IC15 820, 420 0.29 870 0.59
7 IC23 620 0.33 5470 0.41
8 IC19 320 0.36 1670 0.39
9 IC25 1120 0.27 2270 0.30
10 IC32 420 0.26 4070 0.56

Fig. 1 The spatial maps of the top 10 networks identified through elastic net which identified patients living with epilepsy most accurately. This figure
shows the most informative orthogonal slices of each network ranked from 1 to 10
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important indication for their existence came from the survival of
contemporary noise correction methods and having > 25% cor-
relation with the IC70 template indicating that these ICs could not
have been noise. We employed labor intensive but gold standard
[35] hand classification of components in each and every patient;
this step was critical for differentiating “epilepsy networks” from
noise [36]. Several known pitfalls while using MLmethods [18]
were carefully addressed, with validation through fivefold strat-
ified cross-validation, reporting of the entire confusion matrix of
results, relatively larger sample size with 202 data sets and the
fact that the individuals who actually performed the analysis (RP,
TG, and JRaj) were blind to the clinical relevance of these net-
works. However, the conclusive evidence for their existence has
come from the significant correlation of networks with disease-
defining clinical features and diseased hippocampal volume.

Though there are no prior reports on IC-based “rsfMRI epi-
lepsy networks,” the existence of disease-specific metabolic net-
works is knownwith FDG-PETusing spatial covariance analysis
techniques. Such disease-specific metabolic networks subordi-
nating healthy networks and strengthening with disease progres-
sion have been observed in Parkinson’s disease [37]. Prior stud-
ies have provided evidence for epilepsy subordinating resting
networks in patients with epilepsy [4–8]. Significant correlations
with cognitive scores [6] also support cognitive deficits associat-
ed alterations of rsfMRI networks. From the current results, we
can only infer that these networks are significantly associated
with epilepsy. We cannot differentiate networks subordinated
by disease, drugs, and cognitive deficits from disease-specific
networks. Nevertheless, it is compelling to note the significant
(p < 0.05 FDR) negative correlation of IC 12 and 32 with

hippocampal volume and the positive correlation of IC 12, 3,
15, 23, and 19 with the clinical variables like age at onset, dura-
tion of epilepsy, frequency of seizures, and number of anti-

Table 3 Clinical correlation of networks

Ranks Epilepsy
networks

Anatomical regions Age of seizure onset Duration of epilepsy Average frequency
of seizures

No. of anti-epileptic
drugs

r value p value r value p value r value p value r value p value

1 IC12 Posterior quadrant − 0.23 0.01 0.58 2.32e−10* − 0.01 0.85 0.41 0.00001*

2 IC10 Lateral visual − 0.07 0.44 0.01 0.91 − 0.09 0.34 − 0.01 0.89

3 IC22 Frontopolar − 0.01 0.86 0.09 0.36 − 0.09 0.35 − 0.15 0.11

4 IC3 Cerebello-thalamic − 0.48 3.23e−07* 14 0.14 0.11 0.25 21 0.03

5 IC18 Cinguloinsular − 0.06 0.53 0.11 0.24 − 0.27 0.006 − 0.07 0.46

6 IC15 Thalamic − 0.29 0.002 0.48 2.71e−07* − 0.06 0.95 0.24 0.01

7 IC23 Medial-visual − 0.53 1.12e−08* 0.15 0.13 0.08 42 0.14 0.13

8 IC19 Perisylvian − 0.01 0.99 − 0.01 0.85 0.53 1.5e−08* 0.19 0.04

9 IC25 Superior frontal − 0.07 0.48 0.04 0.62 0.11 0.26 0.07 0.46

10 IC32 Temporo-thalamic − 0.03 0.75 − 0.11 0.24 0.31 0.0016 − 0.01 0.99

* p values indicate network strength significantly correlated with clinical features and survive after FDR correction

�Fig. 2 Clinical correlations of the networks. IC12 (rank 1), IC03 (rank 4),
IC15 (rank 6), IC23 (rank 7), and IC19 (rank 8) increased in their network
strength with duration of disease, the frequency of seizures and to a
younger age at onset of disease

Fig. 3 Affected hippocampal volume correlation with effect size of ICs. a
Rank 1. b Rank 10
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epileptic drugs indicating a “hyper-connected plasticity” re-
sponse in the brain proportional to the disease [38]. Progressive
atrophy of hippocampus is a well-known finding in patients with
MTS and the negative correlation of the posterior quadrant (IC
12) and temporo-thalamic networks (IC 32) with hippocampal
volume gives direct evidence of the recruitment of these areas
with progressive loss of hippocampal volume. The absence of a
correlation with unaffected hippocampal size in the same
patients also further supports the epilepsy specific nature
of these networks. Clinically earlier age at onset, increased
duration of epilepsy, higher frequency of seizure, and a
requirement for the higher number of drugs of seizure con-
trol are often implicated in “epileptogenesis” indicating
disease progression [39]. In patients with temporal lobe ep-
ilepsy (TLE), it is now known that various factors including
genes, environment, and neuronal plasticity can continue to
alter the brain by a process called “epileptogenesis.” It is an
evolving process and the seizures that we see clinically are
superimposed on this epileptogenic brain, making epilepsy a
complex disease with diverse clinical and electrophysiological
features [40]. Simulated neuronal models using rsfMRI on rat
dentate gyrus have revealed hyperconnectivity response with
an increased small-worldness of the network (increase in path
length and clustering coefficient), in the early stage of the
disease with a rapid reduction in path length associated with
near total loss of hilar neurons [41] supporting epileptogenesis
can be measured in vivo. Based on these evidences, we spec-
ulate that the observation of network hyperconnectivity with
disease progression found in our study could be indicative of
“epileptogenesis.” However, longitudinal studies in patients
with different kinds of epilepsy, and its correlation with
post-operative seizure freedom will further throw light on
the predictive relevance of this observation.

It is interesting to note that the 97.52% accuracy of
SVM is higher than reported interictal scalp EEG sensitiv-
ity of 80–90% [42]. However, since the detection of
interictal discharges depends on several factors including
seizure frequency, sleep deprivation, type of epilepsy, med-
ications, and inter-observer variability, the sensitivity of
scalp EEG is highly variable [43]. Complimentary methods
like automated spike detection have increased the sensitiv-
ity of IED by reducing the inter-observer variability [44].
Prior imaging studies using SVM also have revealed accu-
racies up to 93% with anatomical data and DTI as inputs in
the diagnosis of TLE [45] and up to 95% using rsfMRI
graph in the lateralisation of TLE [46]. Apart from compa-
rable accuracy in the current study using rsfMRI, a notable
point is the report of the anatomy top 10 networks using
the elastic net. Objective visualization of these networks
apart from the assisting in the diagnosis of disease, if found
valid in future studies, could also assist in tracking its pro-
gression in the period prior to the onset of refractory
seizures.

It needs to be noted that, since this was an exploratory
study, we only considered the top ranking 10 networks.
Even among these ten, some of the ICs (IC 10, 22, 18,
25) did not reveal significant correlations with clinical fea-
tures. We presume the lack of clinical correlation could be
because the clinical features that we had in hand were few
and might not be reflective of epilepsy and epileptogenesis
in its entirety. Objective capture of seizure semiology, elec-
trophysiological spread during ictus, and nature of
interictal discharges could help in further characterizing
these epilepsy networks. The method of hand classification
of ICA, though has its own advantages, its replicability
needs further validation. Comparative studies using auto-
mated classification methods like FSL-FIX and ICA-
AROMA might provide additional inputs. It also needs to
be noted that the patients belonged to the drug-resistant
TLE and hence, the application of these findings to recent
onset epilepsy and extra-temporal and generalized epilep-
sies needs further validation. Correlation of these networks
with the neuropsychological scores would have helped us
attribute changes to disease/drug-dependent effects on cog-
nitive functions.

Despite these limitations, the findings from the current
study have advanced literature, as it has introduced the con-
cept of disease induced “rsfMRI epilepsy networks.” Though
the evidence is not as compelling as the imaging evidence of
hippocampal sclerosis in MTS, it is now possible to believe
that ICA-derived resting-state networks, apart from providing
important information with regard to brain function, also
carries relevant information about diseases and in future could
be important markers in heterogeneous diseases like epilepsy.

Conclusion

The findings from the current study have provided proof of
concept evidence for rsfMRI epilepsy networks. It is now
possible to believe that ICA networks could also carry
disease-sensitive information about epilepsy.
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