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1  |  INTRODUC TION

Sleep stage scoring is a first, crucial step in analysing a sleep electro-
encephalogram (EEG) recording, whether in research settings or clini-
cal practice. As it is partly subject to expert interpretation, it can carry 

substantial inter- expert variability. Although the algorithm for automated 
scoring methods is becoming increasingly available, time- consuming 
human expert sleep stage scoring remains the reference method.

Previous studies on inter- expert agreement have reported average 
kappa values showing almost perfect agreement (κ ~ 0.82) after prior 
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Abstract
Sleep stage scoring can lead to important inter- expert variability. Although likely, 
whether this issue is amplified in older populations, which show alterations of sleep 
electrophysiology, has not been thoroughly assessed. Algorithms for automatic sleep 
stage scoring may appear ideal to eliminate inter- expert variability. Yet, variability be-
tween human experts and algorithm sleep stage scoring in healthy older individuals 
has not been investigated. Here, we aimed to compare stage scoring of older indi-
viduals and hypothesized that variability, whether between experts or considering the 
algorithm, would be higher than usually reported in the literature. Twenty cognitively 
normal and healthy late midlife individuals’ (61 ± 5 years; 10 women) night- time sleep 
recordings were scored by two experts from different research centres and one algo-
rithm. We computed agreements for the entire night (percentage and Cohen's κ) and 
each sleep stage. Whole- night pairwise agreements were relatively low and ranged 
from 67% to 78% (κ, 0.54– 0.67). Sensitivity across pairs of scorers proved lowest 
for stages N1 (8.2%– 63.4%) and N3 (44.8%– 99.3%). Significant differences between 
experts and/or algorithm were found for total sleep time, sleep efficiency, time spent 
in N1/N2/N3 and wake after sleep onset (p	≤	0.005),	but	not	for	sleep	onset	latency,	
rapid eye movement (REM) and slow- wave sleep (SWS) duration (N2 + N3). Our re-
sults confirm high inter- expert variability in healthy aging. Consensus appears good 
for REM and SWS, considered as a whole. It seems more difficult for N3, potentially 
because human raters adapt their interpretation according to overall changes in sleep 
characteristics. Although the algorithm does not substantially reduce variability, it 
would favour time- efficient standardization.
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training aiming to standardize the interpretation of the scoring rules 
in the same research centre (Whitney et al., 1998). However, lower 
agreement is reached when comparing scorers across different cen-
tres, with mean kappa values ranging from moderate (κ = 0.57; Zhang 
et al., 2015) to good agreement (κ = 0.72– 0.76; Basner, Griefahn, & 
Penzel, 2008; Danker- Hopfe, Anderer, & Zeitlhofer, 2009). Several 
factors may lead to lower inter- expert agreement, including pa-
thologies affecting sleep quality, such as periodic limb movements 
syndrome and obstructive sleep apnoea, and also depression or neu-
rodegenerative diseases such as Parkinson's disease (Danker- Hopfe 
et al., 2004). Agreement has also been reported to vary between sleep 
stages, with lower agreement in non- rapid eye movement (NREM) 1 
sleep (N1; Basner et al., 2008; Rosenberg & Van Hout, 2013) and slow- 
wave sleep (SWS; Do Kim, Kurachi, Horita, Matsuura, & Kamikawa, 
2007; Monroe, 1969). Lastly, increasing the number of scorers being 
compared decreases the number of epochs upon which they all agree.

It is now well established that sleep changes across the lifespan, 
with regards to its architecture, but also its fine microstructure. 
These changes are detectable starting at age 40 (Carrier et al., 2011). 
Studies have reported that advancing in age is associated with an 
increased prevalence of N1 and N2 sleep stages, as well as a dim-
inution of time spent in SWS and rapid eye movement (REM) sleep 
(Březinová,	 1975;	 Ohayon,	 Carskadon,	 Guilleminault,	 &	 Vitiello,	
2004; Redline et al., 2004). In addition, frequent awakenings may lead 
to more frequent N1 transitions, which can be strenuous to score. 
At a finer level, aging has been related to a drop of EEG power and 
amplitude, particularly for the delta band (0.5– 4 Hz) in anterior der-
ivations (Gaudreau, Carrier, & Montplaisir, 2001; Landolt & Borbély, 
2001; Silber et al., 2007), and of the density (number per minutes of 
NREM sleep) and amplitudes of detected slow waves (SW), (Carrier 
et al., 2011). These changes are considered to arise from a decrease 
in the build- up of sleep need during wakefulness (Cajochen, Münch, 
Knoblauch, Blatter, & Wirz- Justice, 2006; Gaudreau, Morettini, 
Lavoie, & Carrier, 2001), associated with a decrease in the need for 
sleep (Klerman & Dijk, 2008), as well as a reduction in neurite den-
sity (Pannese, 2011) and/or cortical thickness (Dubé et al., 2015). A 
recent investigation showed that taking into account the reduced 
amplitude of sleep slow waves does not abolish age- related differ-
ence in SW density, and allows inclusion of SWs of lower amplitude 
that are seen in increased amounts in older individuals (Rosinvil, 
Bouvier, & Dubé, 2020). The impact of age on inter- expert agree-
ment remains scarcely investigated (Danker- Hopfe et al., 2009). 
One study that compared visual scoring in older individuals without 
using a fixed amplitude threshold for considering an oscillation as 
a slow wave showed good agreement in scoring for deep SWS (N3 
and N4 sleep stages) (Webb & Dreblow, 1982). Yet, the American 
Academy of Sleep Medicine (AASM) recommends that scoring the 
N3 stage should be based on the percentage of slow oscillations 
reaching at least a 75 µV amplitude (Iber et al., 2007). Whether scor-
ing agreement is good when applying (or trying to apply) AASM rules 
is not established (Berry, Brooks, & Gamaldo, 2017).

The aim of this study was to assess inter- expert variability of 
visual and automatic sleep stage scoring in a population composed 

of healthy individuals in late midlife/early old age (i.e., between 50 
and 70 years when sleep is significantly altered by age, although 
potentially moderately). We compared the scorings of three raters, 
two experts from different research centres and an automatic sleep 
scoring algorithm that was previously validated in healthy young in-
dividuals and across several sleep disorders (Berthomier, Drouot, & 
Herman- stoïca, 2007; Peter- Derex et al., 2020). We hypothesised 
that given the changes in EEG density/amplitude associated with 
aging, agreement would prove lower than what is usually reported 
in the literature for healthy young individuals, whether between ex-
perts or between experts and algorithm scoring, particularly over 
the N3 stage.

2  |  METHODS

2.1  |  Dataset

Twenty sleep EEG recordings from healthy individuals in late midlife/
early older age (61 ± 5 years; 10 women) were analysed in this study. 
The sample size was determined based on a prior sensitivity analysis, 
which indicated that with a sample of N = 20, with a power of 0.8 and 
alpha of 0.05 in a multiple regression scheme, we were in a position 
to detect medium effect (r > 0.28; R2 > 0.078), which we considered 
as likely prior to starting the study (as assessed using Gpower 3.1.9.4) 
(Faul, Erdfelder, Buchner, & Lang, 2009). Exclusion criteria were: 
self- reported sleep or cognitive complaints, smoking, intake of medi-
cation affecting the sleep– wake cycle or the central nervous system, 
a chronic medical condition that may affect sleep (e.g. pain) as as-
sessed via an in- house questionnaire and semi- structured interview, 
and shift work or transmeridian travel in the 3 months preceding 
participation in the study. An extensive expert neuropsychological 
assessment allowed to rule out any potential cognitive impairment. 
Before proper data acquisition, an adaptation and screening night 
under polysomnography was performed, and volunteers with ap-
noea/hypopnoea index >10/h or periodic limb movements of sleep 
associated with an arousal >10/h were further excluded. All partici-
pants signed a written consent form and the study was approved by 
the Hospital of Sacré- Coeur de Montréal ethical committee.

Sleep recordings were acquired using a Grass Model 15A54 am-
plifier system. The sampling rate was set at 256 Hz, gain at 10.000, 
and hardware filters were set at 0.3 Hz and 100 Hz for EEG, with a 
notch filter at 60 Hz. Twenty EEG derivations were placed according 
to the 10– 20 system, referenced against the mean of the two mas-
toids, as well as submental electromyogram (EMG) and electroocu-
logram (EOG) bipolar channels.

2.2  |  Algorithm scoring (ALGO)

Aseega (PHYSIP, Paris, France) is an algorithm for automatic sleep 
scoring that relies on the analysis of a single EEG bipolar channel, 
either Cz- Pz or C4- O2, without further input from either EMG or 
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EOG channels. The detailed procedure can be found in Berthomier 
et al. (2007). Sleep recordings were analysed twice independently, 
first using Cz- Pz and then C4- O2, thus providing two sets of auto-
matic hypnograms. Cz- Pz results can be found in the results sec-
tion, whereas C4- O2 analysis can be found in the supplementary 
materials (boxplot of kappa and percentage of agreement in Figure 
S1, contingency matrix in Table S1, and agreement coefficient for 
comparisons with the algorithm [sensitivity, specificity, positive and 
negative predictive values; see Statistical analysis] in Table S2).

2.3  |  Expert scoring

Visual scoring was performed independently by two human sleep 
experts, EXPERT_1 and EXPERT_2, one at the CARSM in Montréal, 
Canada, and one at the GIGA- CRC- IVI in Liège, Belgium, using AASM 
rules (Iber et al., 2007). No attempt at alignment was made prior to 
the execution of the study. The expert consensus, EXPERT_CON, 
was defined as the set of epochs for which EXPERT_1 and EXPERT_2 
agreed.

2.4  |  Statistical analysis

Scores were first compared on an epoch- by- epoch basis. Pairwise 
comparisons between EXPERT_1, EXPERT_2, EXPERT_CON and 
ALGO, for both Cz- Pz and C4- O2 analyses, were performed. The 
following agreement coefficients were computed: percentage of 
agreement, calculated as the number of epochs that were assigned 
the same sleep stage over the number of epochs for each record-
ing; and Cohen's kappa (Cohen, 1960) (see Landis & Koch, 1977 for 
Cohen's kappa values’ interpretation). Additionally, for ALGO ver-
sus EXPERT_CON, we computed the kappa value on pooled nights’ 
scorings; that is, obtained by concatenating all the nights together, 
in order to counter a potential night- length effect (i.e., without at-
tributing more/less weight to short/long nights, as is the case when 
computing the mean of kappa across separate nights) (Berthomier 
et al., 2007). For each sleep stage, we also computed the following: 
sensitivity (Se), defined as the number of epochs assigned a specific 
sleep stage by both scorers over the number of epochs scored as 
that stage by the rater used as reference; positive predictive value 
(PPV), calculated as the number of epochs assigned a specific sleep 
stage by both scorers over the number of epochs scored as that 
stage by the scorer being compared; specificity (Sp), defined as the 
number of epochs assigned as other than a specific stage by both 
scorers divided by the number of epochs assigned as other than a 
specific stage by the rater used as reference; and negative predictive 
value (NPV), defined as the number of epochs assigned as other than 
a specific stage by both scorers over the number of epochs assigned 
any other sleep stage by the rater used as reference (Altman, 1997).

Finally, potential rater effects on sleep variables (sleep onset la-
tency to the first N2 epoch [SOL]; wake after sleep onset [WASO]; 
total sleep time [TST]; time spent in N1/N2/N3/REM [tN1/tN2/tN3/TA
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tREM]; sleep efficiency [SE]; number of stage shifts [NSS]) were as-
sessed through several generalized linear mixed models (GLMMs) 
with each sleep variable as a dependent variable in turn, using SAS 
version 9.4 (SAS Institute). The distribution of dependent variables 
was determined by fitting all parametric probability distributions to 
data, using the “allfitdist” function in Matlab (http://amir.eng.uci.edu/
MvCAT.php; The Mathworks Inc.) and GLMMs were adapted accord-
ingly. Subject was put as a random factor (intercept) and statistical 
significance was set at p < .05. Degrees of freedom were estimated 
using Kenward- Roger's correction and p- values in post- hoc contrasts 
(differences of least square means) were adjusted for multiple testing 
using Tukey's procedure.

3  |  RESULTS

3.1  |  EXPERT_1 versus EXPERT_2: whole- night 
agreements

We first considered the agreement between the two experts. 
Percentage of agreement ranged between 56% and 86%, with a mean 
of 76% (Figure 1A). Kappa values oscillated between 0.41 and 0.82, with 
0.67 on average (Figure 1B), which constitutes a substantial agreement.

3.2  |  ALGO versus EXPERTs: whole- 
night agreements

For the comparisons with ALGO, results were quite similar when 
using Cz- Pz or C4- O2. We detail here the results on Cz- Pz (see 
Supplementary Material for results using C4- O2).

Percentage of agreement between ALGO and EXPERT_1 ranged 
from 50% to 80%, with a mean of 67%, and κ ranged from 0.34 to 
0.70 (mean 0.54; moderate agreement) (Figure 1A,B). For ALGO 

versus EXPERT_2, agreement values reached 64% to 81%, with a 
mean of 74%, and κ values went from 0.49 to 0.70, with a mean of 
0.60 (substantial agreement). After discarding the epochs of ex-
pert disagreement, percentages of agreement between ALGO and 
EXPERT_CON were highest and ranged from 70% to 90%, with a 
mean of 78%. Kappa values oscillated between 0.54 and 0.84, with 
a mean of 0.66 (substantial agreement; mean = 0.68 following the 
concatenation procedure for potential night- length effect, see 
Methods). The contingency matrix (Table 1) provided the sensitivity, 
specificity, PPV and NPV for each sleep stage (Table 2).

3.3  |  Rater effect on sleep variables

GLMMs showed significant rater effects for all sleep variables 
(Figure 2 A- F, H- I) except SOL and tREM (Figure 2G, Table 3). Post- 
hoc analyses showed that for tN1, the experts did not significantly 
differ between themselves, but both differed from ALGO, with higher 
tN1 values than ALGO. For WASO, tN2 and tN3, EXPERT_1 differed 
from both EXPERT_2 and ALGO, with lower WASO and tN2 values, 
and higher tN3. TST and SE showed lower values for EXPERT_2 than 
for EXPERT_1, and lower values for ALGO than for EXPERT_2. For 
the number of stage shifts, ALGO showed significantly lower values 
than the two experts, who showed no statistical difference for this 
variable. Interestingly, when pooling N2 and N3 duration together 
(i.e., SWS duration), no significant differences between scorers were 
detected (Table 3, Figure 3G). Figure 3 shows EXPERT_1, EXPERT_2 
and ALGO scoring in a representative participant.

4  |  DISCUSSION

Sleep stage scoring is of prime importance in sleep research, as well 
as in sleep medicine. It remains mostly performed through visual 

F I G U R E  1 (a)	Boxplot	of	percentage	of	agreement	between	visual	scorers	(EXPERT_1	and	EXPERT_2),	algorithm	scoring	(ALGO)	and	
EXPERT_1, ALGO and EXPERT_2 and ALGO and consensus of expert rater scores (EXPERT_CON); (b) boxplot of Cohen's kappa for the same 
comparisons. The boxes’ central line represents mean values, whereas one dot corresponds to one recording, and outliers were not removed 
from the plot

http://amir.eng.uci.edu/MvCAT.php
http://amir.eng.uci.edu/MvCAT.php
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inspection of the EEG. This leads to notable intra-  and inter- expert 
variability when no alignment process is performed between ex-
perts (Berthomier et al., 2020). Inter- expert variability is likely to 
be higher when scoring sleep in individuals aged 40 years or older, 
as their sleep, although normal and healthy, shows more frequent 
transitions between wake and sleep, and lower SW density and am-
plitude (Carrier et al., 2011; Gaudreau, Carrier, et al., 2001; Landolt 
& Borbély, 2001; Silber et al., 2007). Yet, investigation of this likely 
phenomenon remains insufficient. Hence, we investigated inter- 
expert variability at a relatively early stage of the aging process, 
by comparing three sleep stage scorings, two performed by visual 
experts from different centres (EXPERT_1 and EXPERT_2) without 
prior alignment between them, and automatic scoring (ALGO) using 
a previously validated stage scoring algorithm (Berthomier et al., 
2007; Peter- Derex et al., 2020).

Our analyses show that agreement between the two experts 
was substantial (κ = 0.67 on average), while it was lower, at moderate 
levels (κ = 0.54 and 0.60), when comparing ALGO to the two experts, 
but attained substantial levels when ALGO was compared to the con-
sensus of experts (κ = 0.66; κ = 0.68 for the concatenation of all re-
cordings). These results fall into the lower range of previous Cohen's 
coefficient values for comparison between experts from different 
centres. Previous studies with prior expert alignment showed kappa 
values ranging from 0.57 to 0.78 in a mixed population (Basner et al., 
2008; Danker- Hopfe et al., 2009; Zhang et al., 2015) or equal to 0.76 
in a mainly healthy population (Danker- Hopfe et al., 2009) where 
the level of agreement was found to decrease with subjects’ age. 
Without prior expert alignment, kappa values ranged from 0.54 to 
0.58 in a population mainly composed of patients (Zhang et al., 2015) 

or from 0.61 to 0.82 in various patient populations (Danker- Hopfe 
et al., 2004).

The main output of this study is the anticipated low agreement 
between the experts for N3 sleep. Agreement values showed 
that if nearly all the epochs scored as N3 by EXPERT_2 got the 
same label from EXPERT_1 (Sensitivity= 99.3%), about only one 
out of three epochs of N3 epochs of EXPERT_1 was scored the 
same way by EXPERT_2 (PPV = 37.6%). Regarding algorithm anal-
ysis, N3 assignment seemed to be intermediate between both ex-
perts. N3 scoring differences are illustrated in the representative 
subject displayed in Figure 3. These differences may arise from 
the fact that N3 is a sleep stage heavily relying on an amplitude 
criterion (75 µV), when amplitude is known to be affected by 
several factors, such as skull or scalp thickness (Cuffin, 1993), or 
even the contact quality between the scalp and the EEG sensor. 
Furthermore, it is now well established that sleep undergoes a se-
ries of changes during aging, starting as early as 40 years, amongst 
which a reduction in time spent in SWS and SW density (Carrier 
et al., 2011; Landolt, Dijk, Achermann, & Borbély, 1996; Mander, 
Winer, & Walker, 2017). It was suggested that this reduction ob-
served in aging was due to an overall decrease in sleep EEG am-
plitude not specific to SW generation (Webb & Dreblow, 1982). 
Recent findings propose, however, that adapting the detection 
threshold decreases the differences seen between younger and 
older individuals, as it allows picking up of lower amplitude slow 
waves that are still generated in aged populations, but does not 
abolish them (Rosinvil et al., 2020). Our findings and these estab-
lished variations in EEG signal call the 75 µV criterion into ques-
tion, particularly in the aged population.

TA B L E  2 Sensitivity	(Se),	Specificity	(Sp),	Negative	Predictive	Value	(NPV)	andPositive	Predictive	Value	(PPV)	for	agreement	between	
scorers for each sleep stage

W REM N1 N2 N3

EXPERT_1 vs EXPERT_2 Se 74.2 84.8 63.4 73.3 99.3

Sp 98.7 98.2 93.2 92.5 87.7

PPV 89.9 90.8 50.3 91.5 37.6

NPV 95.9 96.9 95.9 76.0 99.9

ALGO vs EXPERT_1 Se 83.9 83.9 8.2 83.1 44.8

Sp 92.6 93.8 97.8 71.9 96.4

PPV 59.8 71.0 34.2 68.3 74.1

NPV 97.8 97.0 88.5 85.4 88.4

ALGO vs EXPERT_2 Se 85.1 85.0 11.6 80.0 60.4

Sp 94.9 95.0 98.0 80.7 92.5

PPV 73.2 77.1 38.0 82.2 38.0

NPV 97.5 97.0 91.2 78.3 96.8

ALGO vs EXPERT_CON Se 90.5 86.9 12.5 85.7 60.4

Sp 94.8 96.0 98.1 82.8 96.0

PPV 73.4 82.7 36.7 83.7 60.4

NPV 98.4 97.1 92.8 84.8 96.0

Abbreviations: ALGO, algorithm scoring; EXPERT, human experts from 2 different research centres; EXPERT_CON, expert consensus. REM, rapid eye 
movement sleep.
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The automatic scoring algorithm used here (Aseega) does not 
use absolute amplitude criteria, but rather relies on data- driven 
individual thresholds for scoring. Yet, it does not appear to assign 
more epochs to N3 than EXPERT_1. Although visual scorers are re-
lying on the AASM rules and should observe the 75 µV criterion, in 
practice, scoring habits may emerge in sleep research centres (e.g., 
due to reliance on other criteria such as slow wave continuity or be-
cause of the typical population most recorded). Importantly, when 
considering both N2 and N3 duration together (SWS as whole), 
staging methods do not differ anymore, further suggesting that it is 
the identification of lower amplitude oscillations as slow waves and 
whether they cover more than 20% of a 30- s epoch that drives the 
differences between raters. This means that computation of SWS 
parameters, including slow- wave activity (SWA) (i.e., the EEG power 
within the delta band [0.5- 4 Hz] during NREM sleep, which is con-
sidered to reflect sleep need) (Achermann, Dijk, Brunner, & Borbély, 
1993), based on either of the experts or on ALGO would be similar. 
Because agreement was also high between raters for REM (Table 2, 
Figure 2), computation of EEG power during REM (e.g., in the theta 
band, 4– 8 Hz) should also be similar across staging methods.

We also find low agreement for N1 sleep. The number of epochs 
scored N1 by any rater was low and significantly differed between 
experts, but it was even lower when using ALGO. This may not come 
as a surprise and might result from the low EEG characterizability 
of N1, as, apart from the occasional vertex sharp wave, stage N1 is 
mainly characterized by a reduction of alpha rhythm or activity in the 

theta range. It is thus a relatively unspecific stage, and ALGO might 
tend to prioritize classification in other stages. Indeed, 31% and 38% 
of epochs scored by both experts as N1 are scored as wakefulness 
and N2 by ALGO, respectively. This first suggests that the disagree-
ment over N1 epochs happens in part at the beginning of the sleep 
opportunity, where ALGO is inclined to favour wakefulness longer 
and tends to score sleep onset directly to N2. The second may re-
flect the fact that ALGO better detects spindles embedded into a 
mixed frequency background. Importantly, only 16% of N1 epochs 
of experts are categorized as REM by ALGO. Notably, SOL, the time 
between lights off and the first N2 epoch, which is an important 
sleep variable, including in clinical practice, was not significantly dif-
ferent across staging methods. Also, TST and SE differed between 
all three scorers.

Overall, we report non- negligible inter- expert variability on 
several classically used sleep variables when considering sleep 
recordings of individuals in their late midlife/early old age scored 
by experts from different centres, with no prior alignment pro-
cess. Although beyond the scope of the current paper, because 
age- related changes are progressive, we suspect that this vari-
ability would be further exacerbated in even older individuals. 
This would, however, deserve further investigation. Inter- expert 
scoring variability across research centres does not imply that 
the effect of an experiment manipulation cannot be detected in 
older individuals within a research centre where sleep record-
ings are usually scored the same way (and often by the same 

F I G U R E  2 Boxplot	of	sleep	variable	values	for	each	rating	method	(EXPERT_1,	EXPERT_2	and	ALGO).	Panel	(a)	sleep	onset	latency	
(SOL); (b) wake after sleep onset (WASO); (c) total sleep time (TST); (d) time spent in non- rapid eye movement (NREM) 1 sleep (tN1); (e) time 
spent in NREM2 (tN2); (f) time spent in NREM3 (tN3); (g) time spent in NREM2 and NREM3 without distinction; (h) time spent in rapid eye 
movement (REM) sleep (tREM); (i) sleep efficiency (SE); (j) number of stage shifts (NSS). The boxes’ central line represents mean values, 
whiskers extend to the most extreme data points not considered outliers, and outliers were not removed from the plot.* means p	≤	0.05;	**	
means p	≤	0.01;	***	means	p	≤	0.001;	****	means	p	≤	0.0001

TA B L E  3 Outcomes	of	GLMMs	with	each	sleep	variable	assessing	differences	between	rating	methods

Main effect

Post- hoc

EXPERT_1 vs. EXPERT_2 EXPERT_1 vs. ALGO EXPERT_2 vs. ALGO

F(2,38) p t p t p t p

SOL 0.97 0.39 NA

WASO 6.24 0.0045 −3.32 0.0055 −2.70 0.0272 0.63 0.8073

TST 21.36 <0.0001 2.44 0.0495 6.47 <0.0001 4.03 0.0007

tN1 40.28 <0.0001 1.30 0.4064 .34 <0.0001 7.04 <0.0001

tN2 28.21 <0.0001 −7.06 <0.0001 −5.75 <0.0001 1.31 0.3977

tN3 20.27 <0.0001 6.29 <0.0001 4.02 0.0008 −2.26 0.0738

tN2- N3 2.44 0.10 NA

tREM 1.97 0.1540

SE 21.54 <0.0001 2.51 0.0426 6.50 <0.0001 3.99 0.0008

NSS 93.88 <0.0001 −0.52 0.8618 11.60 <0.0001 12.12 <0.0001

Abbreviations: ALGO, algorithm scoring; EXPERT, human experts from two different research centres; NSS, number of stage shifts; REM, rapid eye 
movement sleep; SE, sleep efficiency; SOL, sleep onset latency; tN1/N2/N3/N2- N3/REM, time spent in N1/N2/N3/N2- N3 (without distinction)/
REM; TST, total sleep time; WASO, wake after sleep onset.
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experts). Caution is required, however, when comparing results 
across research centres (e.g., in BIG data studies), and may pre-
vent normative values being obtained from the literature. It also 
highlights the importance of scoring rules and scoring criteria 
for sleep stage scoring. Although sleep unarguably undergoes 
a series of changes with aging, an important question remains 
over to what extent the reported changes are influenced by the 
potentially considerable variability between sleep staging ex-
perts. It may be particularly important to regularly set a common 
ground for scoring, as recommended by the AASM, or to turn to 
automatic algorithms. The latter may not be better than human 
experts but will be systematic and consistent across and within 
research centres. Without such standardization, it may prove 
difficult to compare scorings and thus extracted sleep variables, 
probably particularly so in aged populations where sleep is more 
fragile.
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