
Binary response models

Bernard Lejeune

Supplemental lecture notes VII
Advanced Econometrics
HEC-University of Liège
Academic year 2021-2022

• These lecture notes restate, in matrix form and with more details, the main
results of Sections 17-1 of Wooldridge (2016).

1. Logit and Probit models for binary response

• As discussed in Wooldridge (2016), Section 7-5, the usual regression model :

yi = β1 + β2xi2 + ...+ βkxik + ui

⇔ yi = Xiβ + ui (1)

where i = 1, ..., n indexes the individuals, Xi = (1, xi2, ..., xik) is a 1 × k (row)
vector of explanatory variables (including a constant) and β = (β1, β2, ..., βk)
is k × 1 (column) vector of parameters, may perfectly be used for analyzing
data where the dependent variable yi is a binary variable, i.e., a variable which
by definition takes only two values, 0 and 1, and which is used to indicate
whether or not an individual has a certain characteristic or a particular event
has occurred1. The model is then called a linear probability model because in
this case the conditional expectation of yi givenXi is nothing but the probability
that yi is equal to 1 given Xi :

E(yi|Xi) = IP(yi = 1|Xi) = Xiβ

so that, accordingly, the vector of parameters β measures the partial effects of
the different explanatory variables on the probability that yi is equal to 1.

• The linear probability model has some drawbacks :

1 For example, yi = 1 if an individual i is employed, and yi = 0 otherwise.
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—Due to its linear functional form, the model may easily generate predicted
probabilities which are less than zero or greater than one. Also, the model
assumes that the partial effect of the different explanatory variables is
constant — i.e., that a unit increase in xij always changes IP(yi = 1|Xi) by
the same amount, regardless of its initial value —, which cannot literally be
true2.

—When yi is binary so that E(yi|Xi) = IP(yi = 1|Xi) = Xiβ, the conditional
variance of yi given Xi is by definition equal to V ar(yi|Xi) = Xiβ(1 −
Xiβ). As the homoskedasticity assumption does not hold, the usual OLS
estimator of model (1) is not efficient, and the usual inference procedures
(confidence interval, hypothesis testing) are not valid3.

• The logit and probit models overcome the shortcomings of the linear probabil-
ity model. But this comes at a price : these models are more complicated to
interpret.

• The logit model and the probit model are both a special case of the general
model :

IP(yi = 1|Xi) = G (β1 + β2xi2 + ...+ βkxik)

= G(Xiβ) i = 1, ..., n (2)

where G(.) is a function whose values are always between 0 and 1 : 0 < G(z) < 1,
for all z. This ensures that the probability IP(yi = 1|Xi) is always between 0
and 1. Several functions are possible for the G(.) function. The logit model
specifies for G(.) the logistic function :

G(z) =
ez

1 + ez
(3)

This logistic function is the cumulative distribution function4 (cdf) of the stan-
dard logistic distribution5. On the other hand, the probit model specifies for
G(.) the cdf of the standard normal distribution (which can not be written in
closed-form) :

G(z) =

z�

−∞

φ(x)dx , (4)

where φ(x) is the standard normal probability distribution function : φ(x) =
1√
2π
e−

1
2
x2 . Figure 1 below represents the logit and the probit G(.) functions.

2 because continually increasing one of the explanatory variable would eventually drive IP(yi = 1|Xi) less
than zero or greater than one.

3Of course, valid heteroskedasticity robust inference procedures may be used instead, or weighted
least squares may be used to obtain an (asymptotically) efficient estimator, but only provided that all
predicted probabilities lies between 0 and 1. See Wooldrige (2016), Section 8-5.

4As a reminder, the cumulative distribution function F (x) of a random variable X is defined as F (x) =
IP(X ≤ x).

5A random variable X follows a standard logistic distribution if its probability density function (pdf) is
f(x) = ex

(1+ex)2
.
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Figure 1 : the logit and the probit G(.) functions

Both the logit and the probit G(.) functions are strictly increasing, from zero
(for z → −∞) to one (for z → ∞). Note that model (2) may be derived from
an underlying latent variable model such as :

�
y∗i = Xiβ + ei
yi = 1 if y

∗
i > 0, 0 otherwise

(5)

where y∗i is an unobserved — i.e., latent — variable, ei is an error term assumed
independent ofXi, and yi is an observed variable equal to 1 if y∗i > 0, 0 otherwise.
Assuming that ei is distributed according to a standard logistic distribution or a
standard normal distribution yields, respectively, the logit model and the probit
model. This interpretation of the logit and the probit models is however usually
not especially useful. See Wooldridge (2016), Section 17-1a.

• In model (1), interest usually lies in the partial effect of the different explanatory
variables xij. If the variable xij is (at least roughly) continuous, its partial effect
on the probability IP(yi = 1|Xi) is given by :

∂IP(yi = 1|Xi)

∂xij
= g(Xiβ)βj (6)

where g(z) = dG(z)
dz

is given, for the logit model, by :

g(z) =
ez

(1 + ez)2
(7)

and for the probit model, by :

g(z) =
1√
2π

e−
1
2
z2 , (8)

i.e., by the probability density function (pdf) of, respectively, the standard lo-
gistic and the standard normal distribution. Figure 2 below represents the logit
and the probit g(.) functions.
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Figure 2 : the logit and the probit g(.) = dG(z)
dz

functions

Because the g(.) is always positive, the partial effect ∂IP(yi=1|Xi)
∂xij

of xij on the

probability IP(yi = 1|Xi) has always the same sign as βj. Both in the logit
and the probit models, for any given βj, this partial effect is the largest when
Xiβ = 0, i.e. when IP(yi = 1|Xi) = 0.5.

If the variable xij is discrete or binary, (6) usually provides only a crude ap-
proximation of the actual partial effect. It is preferable to compute the exact
partial effect. If, for example, xi2 is a binary variable, the exact partial effect
from changing xi2 from 0 to 1 is simply :

∆IP(yi = 1|Xi)

∆xi2
= G (β1 + β2 + β3xi3...+ βkxik)

−G (β1 + β3xi3...+ βkxik)

Also, if there is transformed variables and/or polynomials among the explana-
tory variables, then the partial effect formula (6) must be adapted. For example,
for the model :

IP(yi = 1|Xi) = G
�
β1 + β2xi2 + β3 lnxi3 + β4xi4 + β5x

2
i4

�

we have :

∂IP(yi = 1|Xi)

∂xi2
= g(Xiβ)β2

∂IP(yi = 1|Xi)

∂xi3
= g(Xiβ)

β3
xi3

∂IP(yi = 1|Xi)

∂xi4
= g(Xiβ)(β4 + 2β5xi4)

See Wooldridge (2016), Section 17-1a, for more examples and some discussion.

2. Maximum likelihood estimation and inference

• Hereafter, we assume that :

—The available data are realizations of a random sample of size n, {(yi, Xi):
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i = 1, ..., n}.

— In the sample (and thus in the population), there is no exact linear rela-
tionship among the explanatory variables Xi.

—The logit or the probit model of interest :

IP(yi = 1|Xi) = G(Xiβ), i = 1, ..., n

where the G(.) function is equal to (3) for the logit model and to (4) for
the probit model, is correctly specified, so that the pdf of the conditional
distribution of yi given Xi can be written :

f(yi|Xi;β) = G(Xiβ)
yi(1−G(Xiβ))

1−yi , i = 1, ..., n (9)

• Under random sampling, the observations are independent across i, so that the
joint pdf of (y1, ..., yn) given (X1, ..., Xn) — which is called the likelihood function
— is given by :

f(y1, ..., yn|X1, ..., Xn;β)

= f(y1|X1; β)× ...× f(yn|Xn;β) =
n�

i=1

f(yi|Xi; β) (10)

The log-likelihood function is obtained taking the natural logarithm of (10) :

L(β) = log f(y1, ..., yn|X1, ..., Xn; β)

=
n�

i=1

log f(yi|Xi; β)

=
n�

i=1

[yi logG(Xiβ) + (1− yi) log(1−G(Xiβ))] (11)

The maximum likelihood (ML) estimator6 β̂ML of the vector of parameters β
is defined as the value of β which maximizes the likelihood function (10), or
equivalently7, the log-likelihood function (11) :

β̂ML = Argmaxβ

n�

i=1

log f(yi|Xi; β)

= Argmaxβ

n�

i=1

[yi logG(Xiβ) + (1− yi) log(1−G(Xiβ))] (12)

The maximization problem (12) has no closed-form solution. The ML estimator

β̂ML can only be obtained numerically. All econometric software can do it well
and fast.

6 For a discussion of the maximum likelihood approach to estimation, see Wooldridge (2016), Appendix
C-4b.

7As the natural logarithm is a strictly increasing function, the likelihood and the log-likelihood are
necessarily maximum at the same value of β.
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• From the general maximum likelihood theory8, under general regularity condi-
tions, the ML estimator β̂ML is consistent and asymptotically normal :

β̂ML
p−→ β (13)

and √
n(β̂ML − β)

d−→ N(0, A−1) (14)

where9 :

A = −E

�
∂2 log f(yi|Xi; β)

∂β∂β′

�
= E

�
g(Xiβ)

2X ′
iXi

G(Xiβ)(1−G(Xiβ))

�
(15)

Moreover, the ML estimator β̂ML is asymptotically efficient, i.e., it has the
smallest (in a matrix sense) asymptotic variance among all consistent asymp-
totically normal estimators of β10.

• As for the OLS or the 2SLS estimator, the limiting distribution result (14)

provides an approximate finite sample distribution for the ML estimator β̂ML :

√
n(β̂ML − β)

d−→ N(0, A−1)

⇔ β̂ML ≈ N(β,A−1/n) (16)

which can be used — when n is sufficiently large — for performing inference
(confidence interval, hypothesis testing).

• For inference based on the limiting distributional result (14), or equivalently on
the approximate distributional result (16), we need an estimator of the asymp-

totic variance Avar(β̂ML) = A−1/n. This requires a consistent estimator of A.
A consistent estimator of A is simply given11 by the sample counterpart of (15),

i.e., 1
n

	n

i=1
g(Xiβ̂ML)

2X ′
iXi

G(Xiβ̂ML)(1−G(Xiβ̂ML))
, so that an estimator of Avar(β̂ML) = A−1/n

is given by :

V̂ML(β̂ML) =



n	

i=1

g(Xiβ̂ML)
2X ′

iXi

G(Xiβ̂ML)(1−G(Xiβ̂ML))

�−1
(17)

As usual, the diagonal elements V ârML(β̂MLj ) of the k × k matrix estimator

8 See Wooldridge (2010), Chapter 13.
9 The matrix ∂2 log f(yi|Xi;β)

∂β∂β′
is the hessian matrix of the function log f(yi|Xi;β), i.e., a square matrix

with elements (i, j) equal to the second derivatives ∂2 log f(yi|Xi;β)
∂βi∂βj

.
10 Consistency, asymptotic normality and asymptotic efficiency are general properties of ML estimators.

Whenever one wants to estimate the vector of parameters β of a correctly specified model f(yi|Xi;β) for the
conditional distribution of yi given Xi based on a random sample of observations {(yi,Xi): i = 1, ..., n},
then the ML estimator β̂ML = Argmaxβ

�n

i=1 log f(yi|Xi;β) always provides a consistent (β̂ML

p−→ β),

asymptotically normal (
√
n(β̂ML − β)

d−→ N(0, A−1), where A = −E[∂
2 log f(yi|Xi;β)

∂β∂β′
]) and asymptotically

efficient estimator of β.
11 From the law of large numbers (LLN), 1

n

�n

i=1

g(Xiβ)
2X′

iXi

G(Xiβ)(1−G(Xiβ))

p−→ E
�

g(Xiβ)
2X′

iXi

G(Xiβ)(1−G(Xiβ))

�
. As

β̂ML

p−→ β, we also have 1
n

�n

i=1

g(Xiβ̂ML)
2X′

iXi

G(Xiβ̂ML)(1−G(Xiβ̂ML))

p−→ E
�

g(Xiβ)
2X′

iXi

G(Xiβ)(1−G(Xiβ))

�
.
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V̂ML(β̂ML)
12 being the estimators of the variance Avar(β̂MLj) of the estimator

β̂MLj of the different parameters βj (j = 1, ..., k), natural estimators of the

asymptotic standard error As.e.(β̂MLj) =
�

Avar(β̂MLj ) of the estimator β̂MLj
of different parameters βj, as well as a natural estimator of the asymptotic

standard error As.e.(R0β̂ML) =

�
Avar(R0β̂ML) =

�
R0Avar(β̂ML)R

′
0 of the

estimator R0β̂ML of a single linear combination R0β of β, are likewise given
by :

s.ê.ML(β̂MLj ) =
�

V ârML(β̂MLj), j = 1, ..., k (18)

and

s.ê.ML(R0β̂ML) =

�
R0V̂ML(β̂ML)R

′
0 (19)

where R0 is a 1× k (row) vector of constants.

• The limiting distributional result (16), or equivalently the approximate

distributional result (16), and the estimators V̂ML(β̂ML), s.ê.ML(β̂MLj) and

s.ê.ML(R0β̂ML) given above in respectively (17), (18) and (19), provide all which
is needed for performing inference after ML estimation. Following exactly the
same reasoning as in Section 4.3 and Section 4.4.2 of SLN-I, it may again readily
be checked that if in all the usual OLS inference procedures — confidence inter-
val for βj or a single linear combination R0β, two-sided and one-sided t-tests
of βj or a single linear combination R0β, F -test or Wald test of multiple linear

restrictions — we replace the usual estimators V̂ (β̂), s.ê.(β̂j) and s.ê.(R0β̂) by

their ML versions V̂ML(β̂ML), s.ê.ML(β̂MLj) and s.ê.ML(R0β̂ML), then we obtain
asymptotically valid — i.e., approximately valid for n sufficiently large — infer-
ence procedures. Note however that, in the present context, for the confidence
intervals and the t-tests, it is more common to use quantiles from the standard
normal distribution than from the student distribution. Likewise, for testing
multiple linear restrictions, it is more common to use the Wald test than the
F -test13. Another possibility is to use a likelihood ratio test (see Wooldridge
(2016), Section 17-1c, for practical details).

3. Remarks

• All modern software provide built-in routines for ML estimation and hypothesis
testing of both the logit and the probit models.

• In practice, the logit model and the probit model usually yield very similar re-
sults regarding both the estimated probabilities IP(yi = 1|Xi) and the estimated

marginal effects ∂IP(yi=1|Xi)
∂xij

or ∆IP(yi=1|Xi)
∆xij

. This basically follows from the fact

12As a reminder, the usual estimator of the asymptotic variance of the OLS estimator is V̂ (β̂) =

ŝ2(X′X)−1, which may be written V̂ (β̂) =
��n

i=1
1
ŝ2
X′
iXi

�−1
. Viewed in this way, V̂ML(β̂ML) appears

a little bit less exotic : the factor 1
ŝ2

is simply replaced by g(Xiβ̂ML)
2

G(Xiβ̂ML)(1−G(Xiβ̂ML))
.

13 From an asymptotic point of view, it actually does not matter which one is used.
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that the G(.) function of the logit model and the probit model are actually
much less different than one might think at first glance. With proper scaling,
we indeed have :

Glogit(z) ≃ Gprobit(
z

1, 6
) (20)

where Glogit(.) and Gprobit(.) respectively stand for the logit G(.) function (3)
and the probit G(.) function (4). Figure 3 illustrates the approximate equality
(20).
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Figure 3 : the logit and the probit G(.) functions with proper scaling

As a result, estimation of the logit and the probit models typically yields β̂logit ≃
1, 6 β̂probit, and we have Glogit(Xiβ̂logit) ≃ Gprobit(Xi

β̂logit
1,6
) ≃ Gprobit(Xiβ̂probit). In

practice, it thus usually does not really matter which model is used14.

• Some goodness-of-fit measures may be computed after logit or probit estimation.
The most common measure is the percentage of correctly predicted outcomes
by the estimated model. Various pseudo R-squared measures may also be com-
puted. See Wooldridge (2016), Section 17-1c, for details.

• A distinctive characteristic of the logit and the probit models is that the partial
effect of the different explanatory variables xij — continuous, discrete or binary
— is not constant : it depends on the value of Xi at which it is computed. As
a summary of the magnitudes of the partial effect of the different explanatory
variables, it is standard either to compute them at some typical value of Xi such
as its sample average X̄ (these are the so-called partial effects at the average15),
or to compute them for all observed values of Xi, and then average these com-
puted individual partial effects (these are the so-called average partial effects).
For details and some discussion, see Wooldridge (2016), Section 17-1d.

• It is possible to compute standard errors, and thus confidence intervals, for
any estimated partial effect, and thus the partial effects at the average (PEA),
and further the average partial effects (APE). This is however complicated be-

14 The probit model tends to be more popular, but the logit model is actually easier to handle because of
its closed-form G(.) function.

15Note that special attention is needed to properly define X̄ when the explanatory variables include
dummy variables, transformed variables or polynomials.
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cause these effects entail nonlinear functions of the vector of parameters β. See
Wooldridge (2010), Section 15.6, for details. Some econometric software provide
special options to do it.
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