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• These lecture notes restate, in matrix form and with more details, the main
results of Sections 15-2, 15-3 and 15-6 of Wooldridge (2016).

1. Regression and instrumental variables estimation

• Instrumental variables estimation provides a way to consistently estimate the
parameters of a linear regression model when — for different possible reasons —
one or more of its explanatory variables are endogenous, i.e., are correlated (have
nonzero covariance) with the error term of the model. Instrumental variables
methods may be used with cross-sectional data, time series data as well as panel
data. We here focus on the cross-sectional case.

•We suppose that interest lies in estimating the parameters of an usual linear
regression model as described in the following assumption :

2SLS.1 Linearity in parameters

The population model, describing the relationship between the dependent
y and the explanatory variables (x2, ..., xk) for an individual i draw at
random from the population, can be written as :

yi = β1 + β2xi2 + ...+ βkxik + ui

⇔ yi = Xiβ + ui (1)

where Xi = (1, xi2, ..., xik) is a 1 × k (row) vector (including a constant),
β = (β1, β2, ..., βk) is a k× 1 (column) vector of unknown parameters, and
ui is an error term.
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As usual with cross-sectional data, it is also supposed that the observations are
obtained by random sampling :

2SLS.2 Random sampling

The available data are realizations of a random sample of size n, {(yi, Xi, Zi):
i = 1, ..., n}, following the population model in assumption 2SLS.1.

The supplemental vector Zi of data appearing in assumption 2SLS.2 stands for
a 1× l (row) vector of variables, which usually overlaps with Xi, and whose the
exact role will be explained below. Stacking all observations of a random sample
of size n, let Y , X, Z and u stand for :

Y =




y1
...
yn



 , X =




X1

...
Xn



 , Z =




Z1
...
Zn



 and u =




u1
...
un





where Y and u are n × 1 vectors, X is a n × k matrix (whose the i-th row is
equal to Xi), and Z is a n× l matrix (whose the i-th row is equal to Zi), so that
model (1) can as usual be written as :

Y = Xβ + u

• In model (1), it is usually assumed that E(ui|Xi) = 0, i.e., that the systematic
part Xiβ of model (1) is the conditional mean of yi given Xi : E(yi|Xi) = Xiβ.
As we know, by the law of iterated expectations, the zero conditional mean
assumption E(ui|Xi) = 0 implies that each explanatory variable is uncorrelated
with the error of the model :

E(X ′

iui) = 0 ⇔ E(ui) = 0 and Cov(xij , ui) = 0, for j = 2, ..., k (2)

From Property 6’ in the supplemental lecture notes I (hereafter SLN-I), we also
know that the zero correlation condition (2) is — along with random sampling and

no perfect collinearity — actually enough for the OLS estimator β̂ = (X ′X)−1X ′Y
to provide a consistent estimator of β in model (1). As a matter of fact, fol-

lowing the method of moments approach to estimation1, the OLS estimator β̂
may actually be directly derived from the zero correlation condition (2). The
method of moments approach simply suggests estimating β based on the sam-
ple counterpart of the moment condition E(X ′

iui) = E[X ′

i(yi −Xiβ)] = 0, i.e.,

choosing as an estimator β̂ of β the solution of the sample moment condition :

1

n

n�

i=1

X ′

i(yi −Xiβ̂) = 0

or equivalently :
n�

i=1

X ′

i(yi −Xiβ̂) = X ′(Y −Xβ̂) = 0

⇔ X ′Xβ̂ = X ′Y

1 For a discussion of the method of moments approach to estimation, see Wooldridge (2016), Appendix
C-4a.
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whose the solution is indeed the OLS estimator β̂ = (X ′X)−1X ′Y.

• Instrumental variables methods are concerned with the situation where the zero
correlation condition (2) does not hold, i.e., the situation where one or more of
the explanatory variables xij — which are then referred to as endogenous — are
correlated the error of the model. Two typical situations2 where this happens are
(i) when there is a measurement error in one (or more) explanatory variable(s),
and (ii) when a relevant explanatory variable is omitted from the model and that
this omitted variable is correlated with one (or more) of the included explanatory
variable(s) :

(i) In the classical errors-in-variables case, we are for example interested in
the population model :

yi = β1 + β2xi2 + β3x
∗

i3 + vi , where E(vi|xi2, x∗i3) = 0 (3)

but we do not observed x∗i3. Instead, we observe xi3, which is assumed to
be an unbiased measurement of x∗i3, unrelated to xi2 :

E(xi3|xi2, x∗i3) = x∗i3 ⇔ xi3 = x∗i3 + ei , where E(ei|xi2, x∗i3) = 0 (4)

and the model actually estimated is :

yi = β1 + β2xi2 + β3xi3 + ui , where ui = (vi − β3ei) (5)

Under (3) and (4), by the law of iterated expectations, we have :

E(vi) = 0 , E(xi2vi) = 0 , E(x
∗

i3vi) = 0

E(ei) = 0 , E(xi2ei) = 0 , E(x∗i3ei) = 0 (6)

so that we have :

E(ui) = 0 and Cov(xi2, ui) = E(xi2ui) = 0

but, because xi3 is by assumption correlated3 with ei, we however have4 :

Cov(xi3, ui) = E(xi3ui) = E [xi3(vi − β3ei)] �= 0

i.e., the estimated model (5) does not satisfy the zero correlation condition
(2).

(ii) In the omitted variable case, we are for example interested in the popula-
tion model :

yi = β1 + β2xi2 + β3xi3 + γqi + vi , where E(vi|xi2, xi3, qi) = 0 (7)

2A third typical situation is when dealing with simultaneous equations models. We will not cover
this case here. See Wooldridge (2016), Chapter 16.

3As a matter of fact, E(xi3ei) = E[(x∗i3 + ei)ei] = E(x∗i3ei) +E(e2i ) = σ2e.
4 In the population model (3), it is natural to assume that the mismeasured variable xi3 is redundant,

i.e., that E(yi|xi2, x∗i3, xi3) = β1 + β2xi2 + β3x
∗

i3 ⇔ E(vi|xi2, x∗i3, xi3) = 0, so that, by the law of iterated
expectations, we also have E(xi3vi) = 0.



4

where qi is a zero mean5 unobserved variable, so that it is omitted from
the model actually estimated :

yi = β1 + β2xi2 + β3xi3 + ui , where ui = (vi + γqi) (8)

As a concrete example, let yi stand for the wage of individual i, xi2 for his
working experience, xi3 for his level of education and qi for his unobserved
ability. Under (7), by the law of iterated expectations, we have :

E(vi) = 0, E(xi2vi) = 0 and E(xi3vi) = 0

If, according to the usual story, we assume that xi2 is uncorrelated with
qi, but we allow that xi3 is correlated with qi, then we have :

E(ui) = 0 and Cov(xi2, ui) = E(xi2ui) = 0

but, because xi3 is correlated with qi, we however have :

Cov(xi3, ui) = E(xi3ui) = E [xi3(vi + γqi)] �= 0

i.e., as in the errors-in-variables case, the estimated model (8) does not
satisfy the zero correlation condition (2).

Note that in empirical applications, endogeneity problems related to omitted
variables is by far a much more prevalent concern than endogeneity problems
related to errors-in-variables. Typically, concerns come from the fact that we are
interested in the partial effect of a variable whose values result from individual
choices — e.g., education — and that this variable is likely to be correlated with
unobserved characteristics — e.g., ability or motivation — of the individuals.

• In both examples given above, OLS estimation would not provide a consistent
estimator of β because the zero correlation condition (2) does not hold for one
of the explanatory variable — xi3 — of the estimated model. The basic idea of in-
strumental variables methods is to replace the endogenous variables responsible
of the failure of the zero correlation condition (2) by — a at least equal number
of — another variables, called instrumental variables or more simply instruments,
which satisfy the zero correlation condition (2), and then proceed by deriving
an estimator based on the same method of moments approach than outlined
above for the OLS estimator. In the two examples considered above, this means
finding at least one instrumental variable zi which must be such that :

Cov(zi, ui) = E(ziui) = 0 (9)

i.e., a variable zi which is not correlated with the error ui of the estimated model.
Note that finding an instrumental variable zi which is not correlated with ui is
not enough : zi must also be related to the endogenous variable that it replaces.
For now, we concentrate on the usually most difficult to fulfill requirement that
zi must be uncorrelated with ui, and examine what it means in the two examples
considered above :

5As the model contains an intercept, it can be assumed that E(qi) = 0 without loss of generality.
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(i) In the classical errors-in-variables case, a natural variable to instrument
— i.e., to be an instrumental variable for — the endogenous variable xi3
is an additional measurement of the x∗i3. To be a valid instrument, this
additional measurement zi should be such that :

(i.a) E(yi|xi2, x∗i3, zi) = β1 + β2xi2 + β3x
∗

i3 ⇔ E(vi|xi2, x∗i3, zi) = 0

(i.b) E(zi|x∗i3, ei) = x∗i3 ⇔ zi = x∗i3 + ri , where E(ri|x∗i3, ei) = 0

Condition (i.a) requires that the additional measurement zi is redundant
in the population model (3). Condition (i.b) supposes that the additional
measurement zi is an unbiased measurement of x∗i3, and is unrelated to
the measurement error ei of the mismeasured variable xi3 included in the
estimated model (5). Under condition (i.a) and (i.b), by the law of iterated
expectations, we have :

E(zivi) = 0 and E(riei) = 0
so that :

Cov(zi, ui) = E(ziui) = E[zi(vi − β3ei)] = −β3E(ziei)
= −β3E[(x∗i3 + ri)ei] = −β3E(x∗i3ei) = 0

where the last equality follows from (6). In words, under condition (i.a)
and (i.b), the zero correlation condition (9) holds. Condition (i.a) and (i.b)
are not very controversial : they basically require to have two independent
measures (xi3 and zi) of the same variable x∗i3. Also, by nature, the re-
quirement that the instrumental variable zi and the endogenous variable
xi3 must be related follows from their shared dependence on x∗i3. Yet, in
practice, having two measures of the same variable is not common6.

(ii) In the omitted variable case, to be a valid instrument for the endogenous
variable xi3, the instrumental variable zi should be such that :

(ii.a) E(yi|xi2, xi3, qi, zi) = β1 + β2xi2 + β3xi3 + γqi

⇔ E(vi|xi2, xi3, qi, zi) = 0

(ii.b) E(zi|qi) = E(zi)

Condition (ii.a) likewise requires that the instrumental variable zi is redun-
dant in the population model (7), i.e., that when controlling for (xi2, xi3, qi),
yi is unrelated to zi. Condition (ii.b) supposes that the instrumental vari-
able zi is unrelated to the omitted variable qi. Under condition (ii.a) and
(ii.b), by the law of iterated expectations, we have7 :

E(zivi) = 0 and E(ziqi) = 0
so that :

Cov(zi, ui) = E(ziui) = E[zi(vi + γqi)] = 0

6 For more discussion, see Wooldridge (2016), Section 15-4.
7E(ziqi) = E[E(ziqi|qi)] = E[qiE(zi|qi)] = E(qi)E(zi) = 0 · E(zi) = 0.
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In words, under conditions (ii.a) and (ii.b), the zero correlation condition
(9) holds. Unlike the errors-in-variables case where it is — at least concep-
tually — straightforward, finding an instrumental variable zi which fulfills
both8 the redundancy condition (ii.a) and the no correlation condition
(ii.b), while being at the same time related to the endogenous variable xi3,
is usually a very serious challenge, which may easily give rise to endless
debates9.

But there are some notable exceptions. Suppose for example that interest
lies in evaluating the effect of the participation xi3 to some training pro-
gram (xi3 = 1 if individual i participates, xi3 = 0 otherwise) on the wage
yi of some population of individuals (let xi2 stand for observable individual
characteristics ; in practice several control variables should be considered).
One might fear that individuals choose to participate to the training pro-
gram partly based on their ability or motivation qi, which is unobserved
and thus omitted, so that the participation xi3 is endogenous. If the access
to the training program is subject to a randomized eligibility10 zi (zi = 1
if individual i is eligible, zi = 0 otherwise), then the eligibility variable zi
may serve as a valid and indisputable instrument for the participation xi3 :
because zi is randomized, it is by construction both redundant in (7) and
uncorrelated with qi, and because only eligible individuals can participate
to the training program, zi is also correlated with xi3.

1.1. The IV estimator

• Suppose that in the model of interest defined in assumption 2SLS.1 :

yi = β1 + β2xi2 + ...+ βkxik + ui

⇔ yi = Xiβ + ui (10)

all variables are exogenous — i.e., are uncorrelated with the error of the model —
except the last variable xik, which is supposed endogenous, for example because
it is correlated with an unobserved omitted variable. Suppose further that we
managed to find a relevant instrumental variable zi for the endogenous variable
xik — i.e., a variable zi which satisfies the same redundancy and no correlation
conditions11 as (ii.a) and (ii.b) —, and let Zi be defined as the row vector :

Zi =
�
1 xi2 · · · xik−1 zi

�
(11)

The vector Zi is the same as Xi, except that the endogenous variable xik is
replaced by its instrument zi. The vector Zi is often referred to as the vector of
instrumental variables or vector of instruments, because besides zi which acts

8 In applied works, it is not uncommon that researchers concentrate on discussing the no correlation
condition (ii.b). It is worth emphasizing that the redundancy condition (ii.a) is equally important.

9 For numerous examples and some discussions, including our initial example where yi = wage, xi2 =
experience, xi3 = education and qi = ability, see Wooldridge (2016), throughout Chapter 16.

10 i.e., those who are proposed to participate to the training program are drawn at random.
11 Just let xi2 stand for the vector of variables (xi2, ..., xik−1), xi3 stand for xik, and accordingly redefine

the vector of parameters β.
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as an instrument for xik, the others variables (1, xi2, ..., xik−1) may likewise be
viewed as instruments for themselves.

If the variables (1, xi2, ..., xik−1) are as assumed indeed exogenous12 and the
instrumental variable zi is indeed valid, then the following assumption holds :

2SLS.4 Exogenous instrumental variables

The 1 × l (row) vector of instrumental variables Zi, where l ≥ k, is such
that :

E(Z ′iui) = 0 , i = 1, ..., n

Note the condition l ≥ k in assumption 2SLS.4 which requires that the vector
of instrumental variables contains at least as many variables (= l) as there are
parameters to be estimated (= k) in model (10). In the present considered case,
we have l = k.

• As outlined above for the OLS estimator, the method of moments approach to
estimation suggests estimating β based on the sample counterpart of the moment
condition :

E(Z ′iui) = E[Z ′i(yi −Xiβ)] = 0 (12)

i.e., choosing as an estimator β̂IV of β the solution of the sample moment con-
dition :

1

n

n�

i=1

Z ′i(yi −Xiβ̂IV ) = 0

or equivalently :
n�

i=1

Z ′i(yi −Xiβ̂IV ) = Z ′(Y −Xβ̂IV ) = 0

⇔ Z ′Xβ̂IV = Z ′Y

so that the so-called instrumental variables (IV) estimator β̂IV is given by :

β̂IV = (Z ′X)−1Z
′

Y

=

�
n�

i=1

Z ′iXi

	
−1 n�

i=1

Z ′iyi

Note that the IV estimator β̂IV contains as a special case the OLS estimator
(when Z = X). Note also that for the simple regression model yi = β1+β2xi+ui
with Zi = [ 1 zi ] as vector of instruments, the IV estimators of β1 and β2 are
given by13 :

β̂
IV1
= ȳ − β̂

IV2
x̄ and β̂

IV2
=

Covspl(zi, yi)

Covspl(zi, xi)
(13)

where Covspl(zi, yi) and Covspl(zi, xi) denote the sample covariance between,
respectively, zi and yi, and zi and xi.

• For the vector of parameters β in model (10) — which is sometimes called the

12Note that this is trivially the case for the intercept variable.
13 See Wooldridge (2016), Section 15-1.
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structural model14 — to be estimable from the data, or equivalently for the IV
estimator β̂IV to be well defined, it is not enough that assumption 2SLS.4 holds,
i.e., that we have at our disposal a proper instrumental variable zi to replace
the endogenous variable xik. As already outlined, we also need the instrumental
variable zi to be related to the endogenous variable xik that it replaces, as well
as quite naturally that there is no perfect collinearity among the variables in Zi.
This is formally stated in the following assumption :

2SLS.3 No perfect collinearity and rank condition

(a) There is no exact linear relationship among the variables (including
the constant) in the vector Zi of instrumental variables.

(b) The population moment Mzx = E(Z ′iXi) is full column rank, i.e.,
rank(Mzx) = k.

The no perfect collinearity assumption 2SLS.3a is self-explanatory. The rank
condition assumption 2SLS.3b ensures that the moment condition (12) identify15

the vector of parameters β, and that the IV estimator β̂IV is well defined16.
Note that the so-called order condition l ≥ k included in assumption 2SLS.4 is
a necessary condition17 for the rank condition 2SLS.3b to hold.

Maintaining assumption 2SLS.3a, it may be shown that, for the simple regression
model yi = β1 + β2xi + ui with Zi = [ 1 zi ] as vector of instruments, the rank
condition 2SLS.3b holds if and only if we have :

Cov(zi, xi) �= 0

or equivalently, if and only if the parameter π2 in the reduced form18 population
model :

xi = π1 + π2zi + νi (14)

is different form zero, i.e., if and only if the instrumental variable zi is correlated
with the endogenous variable xi (in the population). For the multiple regression
model (10) with the vector of instrumental variables (11), it may be likewise be
shown19 that the rank condition 2SLS.3b holds if and only if the parameter πk
in the reduced form population model :

xik = π1 + π2xi2 + ...+ πk−1xik−1 + πkzi + νi (15)

is different form zero, i.e., if and only if the instrumental variable zi is partially
correlated20 with the endogenous variable xik (in the population).

14 This terminology comes from the simultaneous equations models framework.
15 β is identified if there is an unique solution to the linear system of equation E[Z′

i(yi − Xiβ)]) =
0⇔ E(Z ′

iXi)β = E(Z′

iyi).
16 For β̂IV to be well defined, we need the square matrix Z′X =

�n

i=1 Z
′

iXi to be full rank, so that

it is invertible. As from law of large numbers we have 1
n

�n

i=1 Z
′

iXi
p→ E(Z ′

iXi) =Mzx, it will be the case,
at least for n sufficiently large (with probability equal to one as n→∞), if Mzx is, as assumed, full rank.

17We can not have rank(Mzx) = k if Mzx has less rows than columns, i.e., if l < k.
18 This terminology again comes from the simultaneous equations models framework, where a reduced

form equation refers to an equation expressing an endogenous variable in terms of all the exogenous
variables.

19 See Wooldridge (2010), Section 5.1.
20 i.e., still correlated after partialling out the other assumed exogenous variables (1, xi2, ..., xik−1).
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• To conclude this section, note that the assumption that zi is a valid instrument
for the endogenous variable xik in model (10), so that assumption 2SLS.4 holds,
can not be tested. But the rank condition assumption 2SLS.3b that the instru-
mental variable zi is sufficiently related to — i.e., is partially correlated with —
the endogenous variable xik can, and should always, be tested. This may simply
be done by estimating by OLS the reduced form population model (15), and
testing through a (preferably heteroskedasticity robust) t-test (or F -test) the
nullity of the parameter πk.

1.2. The 2SLS estimator

• The so-called two stage least squares (2SLS) estimator generalizes the IV esti-
mator for the case where multiple instruments are available.

• Suppose again that we are interested in the model defined in assumption 2SLS.1 :

yi = β1 + β2xi2 + ...+ βkxik + ui

⇔ yi = Xiβ + ui (16)

where all variables are assumed to be exogenous except the last variable xik,
which is supposed endogenous because it is correlated with an unobserved omit-
ted variable. But we now suppose that we managed to find more than one,
say p, relevant instrumental variables for the endogenous variable xik, i.e., p
different variables (zi1, ..., zip) which each likewise satisfies the same redundancy
and no correlation conditions as (ii.a) and (ii.b). In this generalized case with
multiple instruments, the vector Zi of instrumental variables — which includes
the assumed exogenous explanatory variables (1, xi2, ..., xik−1) — is given by the
1× l vector (where l = k + p− 1) :

Zi =
�
1 xi2 · · · xik−1 zi1 · · · zip

�
(17)

If the variables (1, xi2, ..., xik−1) are as assumed indeed exogenous and the in-
strumental variables (zi1, ..., zip) are indeed valid, then the vector Zi satisfies
assumption 2SLS.4., and we again have :

E(Z ′iui) = 0 , i = 1, ..., n (18)

Simply, we now have l > k. This situation is usually referred to by saying
that the structural model (16) is overidentified21 and that there is l − k =
p− 1 overidentifying restrictions, which means that the moment condition (18)
contains p− 1 more moments than needed for just identifying β and estimating
it using the IV estimator.

•With more exogenous variables (= l) in Zi than parameters to be estimated
(= k) in model (16), we can no longer use the IV estimator as it stands. The
basic idea underlying 2SLS estimation is to first choose k linear combinations of

21When l = k, the structural model is said just identified, and when l < k, it is said underidentified. This
terminology again comes from the simultaneous equations models framework.
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the original vector of instrumental variables Zi, sayWi = ZiΠ, where Π is a l×k
matrix of constants, such that Wi is now a 1× k vector, and then use this new
vector of instrumental variables Wi to estimate β with the usual IV estimator.
This means estimating β using the estimator :

β̂IV(Π) =

�
n�

i=1

W ′

iXi

	
−1 n�

i=1

W ′

iyi =

�
n�

i=1

Π′Z ′iXi

	
−1 n�

i=1

Π′Z ′iyi

i.e., in matrix form :

β̂IV(Π) = (W
′X)

−1
W ′Y = (Π′Z ′X)

−1
Π′Z ′Y

where obviously W is a n × k matrix whose the i-th row is equal to Wi. This
approach is justified because if Zi satisfies assumption 2SLS.4, we also have :

E(W ′ui) = Π
′E(Z ′iui) = 0 , i = 1, ..., n

i.e., if Zi is uncorrelated with ui, then any linear combination Wi = ZiΠ of Zi
is also uncorrelated with ui.

• There are as many different estimators β̂IV(Π) as there are choices for the matrix

Π. It may however be shown22 that, under assumptions23 2SLS.1 — 2SLS.4 and
the additional homoskedasticity24 assumption 2SLS.5 :

2SLS.5 Homoskedasticity

The error ui is such thatE(u2i |Zi) = σ2, i = 1, ..., n.

there exists an optimal choice for Π, which is given by :

Π∗ =M−1
zz Mzx = E(Z ′iZi)

−1E(Z ′iXi)

This choice is optimal in the sense that it yields the most efficient estimator
of β, i.e., the estimator of β with the smallest25 asymptotic variance among all
estimators of the form β̂IV(Π) = (Π

′Z ′X)−1Π′Z ′Y .

• The optimal choice Π∗ entails the population moments Mzz = E(Z ′iZi)
−1 and

Mzx = E(Z ′iXi), which are unknown, but which can be consistently estimated.
By the law of large numbers, consistent estimators of Mzz and Mzx are respec-
tively given by 1

n

�n

i=1 Z
′

iZi = Z ′Z/n and 1
n

�n

i=1 Z
′

iXi = Z ′X/n, so that a

consistent estimator Π̂ of Π∗ is given by :

Π̂ = (Z ′Z)−1Z ′X

and a consistent estimator Ŵ of the optimal matrix of instruments W ∗ = ZΠ∗

is given by :
Ŵ = ZΠ̂ = Z(Z ′Z)−1Z ′X = PZX

22 See Wooldridge (2010), Section 5.2.3, Theorem 5.3.
23 as well as the assumption that the rank condition 2SLS.3b holds for Wi.
24Note that if it is assumed that E(ui|Zi) = 0 (rather than merely E(Z′

iui) = 0), then E(u2i |Zi) =
V ar(ui|Zi).

25 in a matrix sense, just as in the Gauss-Markov theorem.
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• The 2SLS estimator β̂2SLS, which is also called the generalized instrumental

variables estimator (GIVE), is defined as the IV estimator β̂IV(Π) with Π = Π̂,

and thus Ŵ = PZX :

β̂2SLS = (X ′PZX)
−1X ′PZY

= (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′Y (19)

where26 PZ = Z(Z ′Z)−1Z ′, i.e., in detailed form :

β̂2SLS =


�
n�

i=1

X ′

iZi

	�
n�

i=1

Z ′iZi

	
−1� n�

i=1

Z ′iXi

	�−1

×
�

n�

i=1

X ′

iZi

	�
n�

i=1

Z ′iZi

	
−1� n�

i=1

Z ′iyi

	

• To understand what the 2SLS estimator β̂2SLS does, we need to examine the

matrix of instruments Ŵ = ZΠ̂ = Z(Z ′Z)−1Z ′X = PZX on which it relies.

Π̂ = (Z ′Z)−1Z ′X looks like an OLS estimator. As a matter of fact, each of

the k columns of Π̂ is equal to π̂j = (Z ′Z)−1Z ′Xj, where Xj denotes the j-th
column of X, i.e., a n × 1 vector containing the n observations of the variable
xij in (16). In other words, each π̂j is nothing but the OLS estimator of the
reduced form regression :

Xj = Zπj + ν (20)

i.e., the regression of the variable xij in (16) on all the variables contained in
the original vector of instrumental variables Zi. Likewise, each of the k columns
of Ŵ is equal to Ŵ j = Zπ̂j. In other words, each Ŵ j is nothing but a n × 1
vector containing the OLS fitted values X̂j from the regression (20) of Xj on

Z. In sum, the matrix of instruments Ŵ on which relies β̂2SLS is thus simply

equal to the OLS fitted values X̂ = PZX obtained from the k regressions of the
columns of the explanatory X on the original matrix of instrumental variables
Z. In a nutshell, the 2SLS estimator β̂2SLS uses as instruments the best linear
predictor (in the least squares sense) of Xi based on the available exogenous
variables Zi. For all exogenous explanatory variables (1, xi2, ..., xik−1) in (16),
this simply means taking the variable itself as its own instrument27, and this
choice is optimal28. For the endogenous variable xik, with Zi as defined in (17),
this means using as instrument the OLS fitted value x̂ik from the reduced form
population model :

xik = π1 + π2xi2 + ...+ πk−1xik−1 + πkzi1 + ...+ πk+p−1zip + νi (21)

and this choice, which will usually entail using some linear combination of all
exogenous explanatory variables and available instrumental variables (1, xi2, ...,

26Note that PZ is symmetric (i.e., PZ = P ′

Z).
27 If Xj is part of the original matrix of instrumental variables Z, then the OLS fitted values X̂j

from the regression of Xj on Z is simply the variable Xj itself : X̂j = Xj .
28 provided that the homoskedacticity assumption 2SLS.5 holds.
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xik−1, zi1, ...zip), is likewise optimal29. Note that this implies that using only one
instrument when multiple instruments are available is usually not optimal. This
is the all point of using multiple instruments.

• As suggested by the outlined above instrumental variable x̂ik actually used by
the 2SLS estimator β̂2SLS to instrument the endogenous variable xik in (16),
the 2SLS estimator will only work if at least one of the available instrumen-
tal variables (zi1, ...zip) is partially correlated with xik. This is exactly what
is required for the rank condition assumption 2SLS.3b to hold in the present
case. Maintaining assumption 2SLS.3a, it may indeed be shown30 that, for the
multiple regression model (16) with the vector of instrumental variables (17),
the rank condition 2SLS.3b holds if and only if at least one of the p parameters
(πk, ..., πk+p−1) in the reduced form population model (21) is different from zero.
As in the case of the usual IV estimator, this can, and should always, be formally
tested. In practice, this may simply be done by estimating by OLS the reduced
form population model (21), and testing through a (preferably heteroskedasticity
robust) F -test the joint nullity of the parameters (πk, ..., πk+p−1).

•When there is more than one endogenous variable, the 2SLS estimation mechan-
ics is essentially the same. If there are for example two endogenous variables in
the structural model (16), say xik−1 and xik, then at least two relevant exoge-
nous — i.e., uncorrelated with ui — instrumental variables (zi1, zi2) are needed. If
p ≥ 2 relevant exogenous instrumental variables (zi1, ..., zip) are available, then
the vector Zi of instrumental variables — which includes the assumed exoge-
nous explanatory variables (1, xi2, ..., xik−2) — is given by the 1× l vector (where
l = k + p− 2) :

Zi =
�
1 xi2 · · · xik−2 zi1 · · · zip

�
(22)

and the 2SLS estimator will actually use as matrix of instruments Ŵ = X̂ =
PZX, for all exogenous explanatory variables (1, xi2, ..., xik−2) in (16), the vari-
ables themselves (each of them is its own optimal instrument), and for the
endogenous variables xik−1 and xik, the OLS fitted values x̂ik−1 and x̂ik from the
reduced form population models :

xik−1 = πa1 + πa2xi2 + ...+ πak−2xik−2 + πak−1zi1 + ...+ πak+p−2zip + νi (23)

and

xik = πb1 + πb2xi2 + ...+ πbk−2xik−2 + πbk−1zi1 + ...+ πbk+p−2zip + νi (24)

For the 2SLS estimator to work, it is necessary that the endogenous instrumental
variables (zi1, ..., zip) be partially correlated with the endogenous variables xik−1
and xik. This requires that at least some of the parameters (πak−1, ..., π

a
k+p−2) and

(πbk−1, ..., π
b
k+p−2) in respectively (23) and (24) be different from zero. This may,

and always should, be formally tested through (preferably heteroskedasticity
robust) F -tests of their joint nullity. Note however that if this is necessary, this

29 provided again that the homoskedacticity assumption 2SLS.5 holds.
30 See Wooldridge (2010), Section 5.2.
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is actually not sufficient for the rank condition assumption 2SLS.3b to hold31.
More than two endogenous variables is similarly handled.

• If the 2SLS estimator β̂2SLS is used to estimate a just identified structural model,
i.e., whenever the vector of instrumental variables Zi contains the same number
of exogenous variables (= l) as there are parameters to be estimated (= k) — or
equivalently the number of available instrumental variables is exactly equal to
the number of endogenous variables in the structural model —, then it is simply
equal to the IV estimator β̂IV . As a matter of fact, if l = k, then Z ′X is a
square and invertible matrix, so that we have32 :

β̂2SLS = (X ′PZX)
−1X ′PZY = (X

′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′Y

= (Z ′X)−1Z ′Z(X ′Z)−1X ′Z(Z ′Z)−1Z ′Y

= (Z ′X)−1Z ′Y

In other words, the 2SLS estimator β̂2SLS contains as a special case (when l = k)

the IV estimator β̂IV , and thus also the OLS estimator (when Z = X).

• To conclude this section, a last remark. Because PZ = Z(Z ′Z)−1Z ′ is a sym-
metric (P ′Z = PZ) and idempotent (PZPZ = PZ) matrix, the 2SLS estimator

β̂2SLS may be rewritten as :

β̂2SLS = (X ′PZX)
−1X ′PZY = ((PZX)

′PZX)
−1(PZX)

′Y

= (X̂ ′X̂)−1X̂Y

where X̂ = PZX. In other words, the 2SLS estimator β̂2SLS may numerically

be obtained as the OLS estimator of the regression33 Y = X̂β+ residuals, where
X̂ may itself be obtained, as outlined above, as the OLS fitted values from the
k regressions (20) of Xj on Z. The name ‘two stage least squares’ comes from
this procedure. In practice, there is however no need to perform manually any
OLS regression to perform 2SLS estimation : all modern econometric software
provide built-in 2SLS estimation routines which automatically do the job.

2. Asymptotic properties of the 2SLS estimator

• Hereafter, we derive the asymptotic properties of the 2SLS estimator β̂2SLS, i.e.,
its sampling properties as the sample size n goes to infinity. Because the IV
estimator β̂IV is just a special case of the 2SLS estimator β̂2SLS, its properties

just follow from those of β̂2SLS. Note that the 2SLS estimator β̂2SLS has no
exact in finite sample properties. For example, it is not unbiased.

31As a matter of fact, if for example there is only one of the instrumental variables (zi1, ..., zip) which
has a parameter different from zero in each reduced form population model, and that this is the parameter of
the same variable, then the rank condition 2SLS.3 does not hold. For more details, see Wooldridge
(2010), Section 5.2.

32As a reminder, if A and B are nonsingular matrices, then : (AB)−1 = B−1A−1.
33 Be careful : the usual OLS standard errors and tests obtained from this regression are not valid.
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2.1. Consistency

•We have the following property :

Property 20 Consistency of β̂2SLS

Under assumptions 2SLS.1 — 2SLS.4, the 2SLS estimator β̂2SLS is a consistent
estimator of β :

β̂2SLS
p−→ β

A sketch of the proof is as follow. Under assumptions 2SLS.1 — 2SLS.3, we have :

β̂2SLS = (X ′PZX)
−1X ′PZY = (X

′PZX)
−1X ′PZ(Xβ + u)

= β + (X ′PZX)
−1X ′PZu

= β + (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′u

i.e., in detailed form :

β̂2SLS = β +


�
1

n

n�

i=1

X ′

iZi

	�
1

n

n�

i=1

Z ′iZi

	
−1�

1

n

n�

i=1

Z ′iXi

	�−1

×
�
1

n

n�

i=1

X ′

iZi

	�
1

n

n�

i=1

Z ′iZi

	
−1�

1

n

n�

i=1

Z ′iui

	
(25)

Under random sampling, X ′

iZi, Z
′

iZi, Z
′

iXi and Z ′iui are i.i.d. across i, so that
1
n

�n

i=1X
′

iZi,
1
n

�n

i=1 Z
′

iZi,
1
n

�n

i=1 Z
′

iXi and
1
n

�n

i=1 Z
′

iui are sample average to
which the law of large numbers34 (LLN) can be applied. From the LLN, we
have :

1

n

n�

i=1

X ′

iZi
p−→ E(X ′

iZi) =Mxz,
1

n

n�

i=1

Z ′iZi
p−→ E(Z ′iZi) =Mzz

and
1

n

n�

i=1

Z ′iXi
p−→ E(Z ′iXi) =Mzx =M ′

xz

Under assumption 2SLS.4, we have E(Z ′iui) = 0. From the LLN, we thus also
have :

1

n

n�

i=1

Z ′iui
p−→ 0

so that, from (25), we finally have :

β̂2SLS
p−→ β +

�
MxzM

−1
zz Mzx

�
−1
MxzM

−1
zz · 0 = β

34As a reminder, if {Wi: i = 1, ..., n} are i.i.d. random variables with E(Wi) = m, then by the LLN

we have : W̄n =
1
n

�n

i=1Wi
p−→ m. This holds for Wi being a scalar, a vector or a matrix.
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2.2. Asymptotic normality of β̂2SLS and inference

•We have the following property :

Property 21 Asymptotic normality of β̂2SLS

Under assumptions 2SLS.1 — 2SLS.5, the 2SLS estimator β̂2SLS is asymptotically
normally distributed :

√
n(β̂2SLS − β)

d−→ N(0, σ2A−1) (26)

where :

A = E(X ′

iZi)E(Z
′

iZi)
−1E(Z ′iXi)

A sketch of the proof is as follows. Under assumptions 2SLS.1 — 2SLS.3, from
(25), we have :

β̂2SLS = β +


�
1

n

n�

i=1

X ′

iZi

	�
1

n

n�

i=1

Z ′iZi

	
−1�

1

n

n�

i=1

Z ′iXi

	�−1

×
�
1

n

n�

i=1

X ′

iZi

	�
1

n

n�

i=1

Z ′iZi

	
−1�

1

n

n�

i=1

Z ′iui

	

⇔
√
n(β̂2SLS − β) =


�
1

n

n�

i=1

X ′

iZi

	�
1

n

n�

i=1

Z ′iZi

	
−1�

1

n

n�

i=1

Z ′iXi

	�−1

×
�
1

n

n�

i=1

X ′

iZi

	�
1

n

n�

i=1

Z ′iZi

	
−1�

n−
1
2

n�

i=1

Z ′iui

	

Under random sampling, X ′

iZi, Z
′

iZi, Z
′

iXi and Z ′iui are i.i.d. across i. As

already outlined, from the LLN, we have 1
n

�n

i=1X
′

iZi
p−→ E(X ′

iZi) = Mxz,
1
n

�n

i=1 Z
′

iZi
p−→ E(Z ′iZi) = Mzz,

1
n

�n

i=1 Z
′

iXi
p−→ E(Z ′iXi) = Mzx =M ′

xz, and
we can write :

√
n(β̂2SLS − β)

as
= A−1

�
MxzM

−1
zz n

−
1
2

n�

i=1

Z ′iui

	
(27)

where A = E(X ′

iZi)E(Z
′

iZi)
−1E(Z ′iXi) and

as
= means ‘asymptotically equiv-

alent’, so that
√
n(β̂2SLS − β) has asymptotically the same distribution as

A−1
�
MxzM

−1
zz n

−
1
2

�n

i=1 Z
′

iui



. As also already outlined, under assumption

2SLS.4, we have E(Z ′iui) = 0. From the central limit theorem35 (CLT), we
thus have :

n−
1
2

n�

i=1

Z ′iui
d−→ N(0, C), where C = V (Z ′iui) = E(u2iZ

′

iZi)

35 if {Wi: i = 1, ..., n} are i.i.d. (l×1) random vectors with E(Wi) = m and V (Wi) = Σ, then by the CLT

we have :
√
n(W̄n −m) = n−

1

2

�n

i=1(Wi −m)
d−→ N(0,Σ).
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and thus36 :

MxzM
−1
zz n

−
1
2

n�

i=1

Z ′iui
d−→ N(0, B)

where B = E(X ′

iZi)E(Z
′

iZi)
−1E(u2iZ

′

iZi)E(Z
′

iZi)
−1E(Z ′iXi), so that37 :

A−1
�
MxzM

−1
zz n

−
1
2

n�

i=1

Z ′iui

	
d−→ N(0, A−1BA−1)

and thus, from (27) :

√
n(β̂2SLS − β)

d−→ N(0, A−1BA−1) (28)

To complete the proof, it remains to show that, under the homoskedasticity as-
sumption 2SLS.5 E(u2i |Zi) = σ2, we have B = σ2A. Under assumption 2SLS.5,
by the law of iterated expectations, we have :

C = V (Z ′iui) = E(u2iZ
′

iZi) = E[E(u2iZ
′

iZi|Zi)]
= E[E(u2i |Zi)Z ′iZi] = E[σ2Z ′iZi] = σ2E(Z ′iZi)

and thus :

B = E(X ′

iZi)E(Z
′

iZi)
−1E(u2iZ

′

iZi)E(Z
′

iZi)
−1E(Z ′iXi)

= σ2E(X ′

iZi)E(Z
′

iZi)
−1E(Z ′iZi)E(Z

′

iZi)
−1E(Z ′iXi)

= σ2E(X ′

iZi)E(Z
′

iZi)
−1E(Z ′iXi) = σ2A

so that, from (28), we finally have :

√
n(β̂2SLS − β)

d−→ N(0, σ2A−1)

• The limiting distributional result (26) is similar to the limiting distributional
result given by Property 7 in SLN-I for the OLS estimator38. As for the OLS
estimator, it provides an approximate finite sample distribution for the 2SLS
estimator β̂2SLS : √

n(β̂2SLS − β) ≈ N(0, σ2A−1)

⇔ β̂2SLS ≈ N(β, σ2A−1/n) (29)

which can be used — when n is sufficiently large — for performing inference
(confidence interval, hypothesis testing) without having to rely on any other
assumption than assumptions 2SLS.1 — 2SLS.5.

• For inference based on the limiting distributional result (26), or equivalently on
the approximate distributional result (29), we need an estimator of the asymp-

36 because a linear function of jointly normally distributed random variables is itself normally distributed,
and M−1

zz = E(Z′

iZi)
−1 is a symmetric matrix.

37 likewise because a linear function of jointly normally distributed random variables is itself normally
distributed, and A−1 = [E(X′

iZi)E(Z
′

iZi)
−1E(Z ′

iXi)]
−1 is a symmetric matrix.

38As a matter of fact, Property 7 in SLN-I is just a special case of Property 21, where Zi = Xi.
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totic variance Avar(β̂2SLS) = σ2A−1/n. This requires consistent estimators of
σ2 and A = E(X ′

iZi)E(Z
′

iZi)
−1E(Z ′iXi). From the LLN, consistent estimators of

E(X ′

iZi), E(Z
′

iZi) and E(Z
′

iXi) are respectively given by 1
n

�n

i=1X
′

iZi = X ′Z/n,
1
n

�n

i=1 Z
′

iZi = Z ′Z/n and 1
n

�n

i=1 Z
′

iXi = Z ′X/n, so that a consistent estimator
of A is given by X ′Z(Z ′Z)−1Z ′X/n. A consistent estimator of σ2 is likewise

given39 by ŝ2 = 1
n−k

�n

i=1 û
2
i , where ûi = yi −Xiβ̂2SLS, so that an estimator of

Avar(β̂2SLS) = σ2A−1/n is given by :

V̂2SLS(β̂2SLS) = ŝ2
�
X ′Z(Z ′Z)−1Z ′X

�
−1

= ŝ2(X ′PZX)
−1 (30)

Note that V̂2SLS(β̂2SLS) contains as a special case (when Z = X) the estima-

tor V̂ (β̂) = ŝ2 (X ′X)−1 of the asymptotic variance of the OLS estimator. As

usual, the diagonal elements V âr2SLS(β̂2SLSj ) of the k × k matrix estimator

V̂2SLS(β̂2SLS) being the estimators of the variance Avar(β̂2SLSj) of the estimator

β̂2SLSj of different parameters βj (j = 1, ..., k), natural estimators of the asymp-

totic standard error As.e.(β̂2SLSj) =
�
Avar(β̂2SLSj ) of the estimator β̂2SLSj of

the different parameters βj, as well as a natural estimator of the asymptotic

standard error As.e.(R0β̂2SLS) =
�
Avar(R0β̂2SLS) =

�
R0Avar(β̂2SLS)R

′

0 of

the estimator R0β̂2SLS of a single linear combination R0β of β, are likewise
given by :

s.ê.2SLS(β̂2SLSj ) =
�
V âr2SLS(β̂2SLSj ), j = 1, ..., k (31)

and

s.ê.2SLS(R0β̂2SLS) =

�
R0V̂2SLS(β̂2SLS)R

′

0 (32)

where R0 is a 1× k (row) vector of constants.

• As for the OLS estimator, the limiting distributional result (26), or equivalently

the approximate distributional result (29), and the estimators V̂2SLS(β̂2SLS),

s.ê.2SLS(β̂2SLSj ) and s.ê.2SLS(R0β̂2SLS) given above in respectively (30), (31)

and (32), provide all which is needed for performing inference after 2SLS es-
timation. Following exactly the same reasoning as in Section 4.3 and Section
4.4.2 of SLN-I, it may readily be checked that if in all the usual OLS inference
procedures — confidence interval for βj or a single linear combination R0β, two-
sided and one-sided t-tests of βj or a single linear combination R0β, F -test (or

Wald test) of multiple linear restrictions — we replace the usual estimators V̂ (β̂),

s.ê.(β̂j) and s.ê.(R0β̂) by their 2SLS versions V̂2SLS(β̂2SLS), s.ê.2SLS(β̂2SLSj ) and

s.ê.2SLS(R0β̂2SLS), then we obtain inference procedures that are asymptotically
valid — i.e., approximately valid for n sufficiently large — under assumptions
2SLS.1 — 2SLS.5.

39 It is standard to use a degrees of freedom correction, i.e., to use 1/(n−k) rather than 1/n. Asymptoti-
cally, it actually does not matter.
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2.3. Heteroskedasticity robust inference

• The outlined above asymptotic properties of the 2SLS estimator require ho-
moskedasticity. If the homoskedasticity assumption 2SLS.5 does not hold, then
the outlined above usual-like inference procedures are no longer valid. However,
as for the OLS estimator, it is again possible to derive inference procedures which
are valid in the presence of heteroskedasticity of unknown form, i.e., which are
robust to arbitrary form of heteroskedasticity.

• Heteroskedasticity robust inference procedures basically rely on the following
property, which outlines the asymptotic properties of the 2SLS estimator β̂2SLS
under only assumptions 2SLS.1 — 2SLS.4 (Linearity in parameters, random sam-
pling, no perfect collinearity and rank condition, and exogenous instrumental
variables) :

Property 22 Asymptotic properties of β̂2SLS without homoskedasticity

Under assumptions 2SLS.1 — 2SLS.4, the 2SLS estimator β̂2SLS is a consistent
estimator of β :

β̂2SLS
p−→ β

and is asymptotically normally distributed as :

√
n(β̂2SLS − β)

d−→ N(0, A−1BA−1) (33)

where :
A = E(X ′

iZi)E(Z
′

iZi)
−1E(Z ′iXi)

and

B = E(X ′

iZi)E(Z
′

iZi)
−1E(u2iZ

′

iZi)E(Z
′

iZi)
−1E(Z ′iXi)

The fact that β̂2SLS is consistent for β under assumptions 2SLS.1 — 2SLS.4 was
already outlined in Property 20. On the other hand, the limiting distribution
result (33) has already be shown to hold likewise under assumptions 2SLS.1 —
2SLS.4 in the sketch of the proof of Property 21 : see the intermediary result
(28).

• The limiting distribution result (33) is similar to the limiting distributional result
given by Property 9 in the supplemental lecture notes III (hereafter SLN-III)
for the OLS estimator40. As for the OLS estimator, it provides an approximate
finite sample distribution for the 2SLS estimator β̂2SLS :

√
n(β̂2SLS − β)

d−→ N(0, A−1BA−1)

⇔ β̂2SLS ≈ N(β,A−1BA−1/n) (34)

which can be used — when n is sufficiently large — for performing robust inference
(confidence interval, hypothesis testing) without having to rely on any other
assumption than assumptions 2SLS.1 — 2SLS.4, i.e., in particular without having

40As a matter of fact, Property 9 in SLN-III is just a special case of Property 22, where Zi = Xi.
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to rely on the homoskedasticity assumption 2SLS.5.

• For inference based on the limiting distributional result (33), or equivalently on
the approximate distributional result (34), we need an estimator of the asymp-

totic variance Avar(β̂2SLS) = A−1BA−1/n. This requires consistent estimators
of A and B. We already outlined that X ′Z/n, Z ′Z/n and Z ′X/n are consistent
estimators of respectively E(X ′

iZi), E(Z
′

iZi) and E(Z ′iXi), so that a consistent
estimator of A is given by X ′Z(Z ′Z)−1Z ′X/n = X ′PZX/n. For B, we addi-
tionally need a consistent estimator of E(u2iZ

′

iZi), which is simply given41 by
1
n

�n

i=1 û
2
iZ

′

iZi, where obviously ûi = yi−Xiβ̂2SLS. A consistent estimator of B
is then given by X ′Z(Z ′Z)−1(

�n

i=1 û
2
iZ

′

iZi)(Z
′Z)−1Z ′X/n, so that an estimator

of Avar(β̂2SLS) = A−1BA−1/n is given by :

V̂2SLSHC(β̂2SLS) = (X ′PZX)
−1X ′Z(Z ′Z)−1

�
n�

i=1

û2iZ
′

iZi

	

×(Z ′Z)−1Z ′X(X ′PZX)
−1 (35)

where the subscript ‘HC’ simply stands for ‘Heteroskedasticity Consistent’.
Note that V̂2SLSHC(β̂2SLS) again contains as a special case (when Z = X) the

heteroskedasticity robust estimator V̂HC(β̂) = (X
′X)−1 (

�n

i=1 û
2
iX

′

iXi) (X
′X)−1

of the asymptotic variance of the OLS estimator. As usual, the diagonal ele-
ments V âr2SLSHC (β̂2SLSj ) of the k × k matrix estimator V̂2SLSHC (β̂2SLS) being

the estimators of the variance Avar(β̂2SLSj ) of the estimator β̂2SLSj of the differ-

ent parameters βj (j = 1, ..., k), natural estimators of the asymptotic standard

error As.e.(β̂2SLSj) =
�
Avar(β̂2SLSj ) of the estimator β̂2SLSj of different pa-

rameters βj, as well as a natural estimator of the asymptotic standard error

As.e.(R0β̂2SLS) =
�
Avar(R0β̂2SLS) =

�
R0Avar(β̂2SLS)R

′

0 of the estimator

R0β̂2SLS of a single linear combination R0β of β, are likewise given by :

s.ê.2SLSHC (β̂2SLSj ) =
�
V âr2SLSHC (β̂2SLSj ), j = 1, ..., k (36)

and

s.ê.2SLSHC(R0β̂2SLS) =

�
R0V̂2SLSHC (β̂2SLS)R

′

0 (37)

where R0 is a 1× k (row) vector of constants.

• As for the OLS estimator, the limiting distributional result (33), or equivalently

the approximate distributional result (34), and the estimators V̂2SLSHC (β̂2SLS),

s.ê.2SLSHC (β̂2SLSj ) and s.ê.2SLSHC (R0β̂2SLS) given above in respectively (35),

(36) and (37), provide all which is needed for performing robust inference after
2SLS estimation. Following exactly the same reasoning as in Section 4.3 and
Section 4.4.2 of SLN-I, it may again readily be checked that if in all the usual
OLS inference procedures — confidence interval for βj or a single linear combi-

41 From the LLN, 1
n

�n

i=1 u
2
iZ

′

iZi
p−→ E(u2iZ

′

iZi). As ûi converges to ui (because β̂2SLS
p−→ β),

we also have 1
n

�n

i=1 û
2
iZ

′

iZi
p−→ E(u2iZ

′

iZi).
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nation R0β, two-sided and one-sided t-tests of βj or a single linear combination
R0β, F -test (or Wald test) of multiple linear restrictions — we replace the usual

estimators V̂ (β̂), s.ê.(β̂j) and s.ê.(R0β̂) by their 2SLS heteroskedasticity robust

versions V̂2SLSHC (β̂2SLS), s.ê.2SLSHC (β̂2SLSj ) and s.ê.2SLSHC(R0β̂2SLS), then we
obtain inference procedures that are asymptotically valid — i.e., approximately
valid for n sufficiently large — under only assumptions 2SLS.1 — 2SLS.4, i.e., with-
out having to rely on the homoskedasticity assumption 2SLS.5.

•Modern econometric software usually provide options to compute heteroskedas-
ticity robust standard errors and to perform heteroskedasticity robust tests after
2SLS estimation. In applied works, heteroskedasticity robust standard errors
and tests should systematically be considered, at least for comparison.

2.4. Remarks

• In practice, 2SLS estimation tends to yield estimates with large standard errors,
typically much larger than standard errors from OLS estimation. This is all the
more so true that the instrumental variables used are weak, i.e. that the instru-
mental variables used are only weakly partially correlated with the endogenous
explanatory variable(s) of the estimated model. See Wooldridge (2016), Sections
15-1a and 15-3b for details42.

•Weak instruments do not only give rise to rather imprecise estimates. When the
instruments are weak :

— even small violations of the validity of the instruments, i.e., small violations
of the exogenous instrumental variables assumption 2SLS.4, may cause the
2SLS estimator to have a large asymptotic bias43.

—maintaining that the instruments are valid (so that there is no asymptotic
bias), the 2SLS estimator may be severely biased in finite sample, and its
asymptotic normal distribution may provide a very poor approximation of
its true finite sample distribution, leading to unreliable inference (confi-
dence interval, hypothesis testing), even with (very) large sample size44.

For details, as well as some guidelines about how to detect weak instruments,
see Wooldridge (2016), Sections 15-1b and 15-3c45.

• Assuming that the available instrumental variables are valid, it is possible to
formally test through a simple variable addition test whether an explanatory
variable is endogenous, i.e., to test if 2SLS estimation is actually necessary. In a
nutshell, this may simply be done by augmenting the considered structural model
(16) with the OLS estimated residuals ν̂i from the reduced form population
model (21) of explanatory variable xit whose the endogeneity is tested, and

42 For more details, see Wooldridge (2010), Section 5.2.6.
43 i.e., a bias which does not vanish as n→∞.
44Note that using too many instruments may have the same effect.
45 For more details, see again Wooldridge (2010), Section 5.2.6.



21

after OLS estimation, testing through a (preferably heteroskedasticity robust)
t-test the nullity of the coefficient of the added OLS estimated residuals variable
ν̂i. The mechanics is the same for jointly testing the endogeneity of multiple
explanatory variables46. Note that this variable addition test is equivalent to a
so-called Hausman test based on the direct comparison of the 2SLS and OLS
estimates of the considered structural model. See Wooldridge (2016), Section
15-5a, for details47.

•When the considered structural model is just identified, i.e., when the vector of
instrumental variables Zi contains the same number of exogenous variables (= l)
as there are parameters to be estimated (= k)48 , there is no room for testing
the validity the available instrumental variables, i.e. for testing the exogenous
instrumental variables assumption 2SLS.4. However, when the model is overi-
dentified, i.e., when l > k, then there is l− k overidentifying restrictions, which
means that the moment condition E(Z ′iui) = 0 contains l − k more moments
than actually needed for just identifying β, and it is now possible to globally test
the exogenous instrumental variables assumption 2SLS.4. This test is known as
an overidentifying restrictions test or Sargan test. In a nutshell, the test statistic
S is equal to n times the R-squared (= R2û) of the auxiliary regression of the
2SLS residuals ûi on all the variables contained in the vector of instrumental
variables Zi, and the decision rule of the test is : reject the null hypothesis H0
that E(Z ′iui) = 0 if S = nR2û > χ2l−k;1−α and do not reject otherwise, where

χ2l−k;1−α is the quantile of order 1− α of the χ2(l− k) distribution49. Note that
this regression-based test is equivalent to a so-called Hausman test based on the
direct comparison of the 2SLS estimate of the model obtained using all available
instrumental variables and the 2SLS estimate of the model obtained using only
a number of the instrumental variables equal to the number of the number of
endogenous variables in the structural model (the test is invariant to the chosen
subset of instrumental variables). Note also that this regression-based test is
only valid if the homoskedasticity assumption 2SLS.5 holds. See Wooldridge
(2016), Section 15-5b, for details50.
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