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• These lecture notes restate, in matrix form and with more details, the main
results of Sections 13-5, 14-1 and 14-2 of Wooldridge (2016).

1. Regression and panel data

• Panel data are basically cross-sectional data where, for each individual (person,
firm, city ,...) drawn at random from a given population, some dependent and
explanatory variables are observed not only once (at some point in time), but
repeatedly over a certain number of time periods. Typically, the number N of
observed individuals is large (from tens to thousands), and the number T of
observed time periods is small (from 2 to, say, 10).

• As cross-sectional data and time series data, panel data may be analyzed using
a multiple linear regression model such as :

yit = β1 + β2xit2 + ...+ βkxitk + uit

⇔ yit = Xitβ + uit (1)

where i = 1, ...,N indexes the individuals, t = 1, ..., T is a time index, Xit =
(1, xit2, ..., xitk) is a 1 × k (row) vector of explanatory variables (including a
constant, as well as usually a set of time dummies) and β = (β1, β2, ..., βk) is
a k × 1 (column) vector. Stacking (with the correct temporal ordering) the T
periods of observations of an individual, for any individual i drawn from the
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population, we can write :




yi1
...
yiT


 =



1 xi12 · · · xi1k
...

...
...

1 xiT2 · · · xiTk






β1
...
βk


+




ui1
...
uiT




⇔ Yi = Xiβ + ui , i = 1, ..., N

where Yi and ui are T × 1 vectors, and Xi is a T × k matrix, whose the t-th
row is equal to Xit. Stacking further the (T -variate) individual observations of
a random sample of N individuals, which means a total number of observations
equal to NT , we can finally write :




Y1
...
Yi
...
YN



=




· · · X1 · · ·
...

· · · Xi · · ·
...

· · · XN · · ·







β1
...
βk


+




u1
...
ui
...
uN




⇔ Y = Xβ + u

where Y and u are NT × 1 vectors, and X is a NT × k matrix, whose the i-th
T × k block row is equal to Xi.

• The most important feature of panel data is that they allow to evaluate partial
effects — i.e., the effect of variables, the other variables being held constant — free
from omitted variable bias due to unobserved time-constant individual-specific
variables, so that these partial effects may more confidently be interpreted as
genuine causal effects. The basic idea is to view the error uit in (1) as consisting
of two components : on the one hand, a component, noted ai, standing for all
time-constant individual-specific variables that affect yit but have been omitted
because they are unobserved, and on the other hand, a remaining error term,
noted εit :

uit = ai + εit (2)

The component ai is usually called an (unobserved) individual effect or a fixed
(individual) effect, and the remaining error εit is often referred to as the idio-
syncratic error. With the composite error (2), (1) can be writtenas1 :

yit = Xitβ + ai + εit (3)

where it is naturally assumed that :

E(εit|Xit, ai) = 0 (4)
which is equivalent to :

E(yit|Xit, ai) = Xitβ + ai (5)

1 Be aware : in Woodridge (2016), uit is noted νit and εit is noted uit, so that the composite error term is
written as : νit = ai + uit.
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In the error component model (3), under assumption (4), or equivalently (5), the
vector of parameters β measures the partial effect of the different explanatory
variables on y, the other observed variables as well as any other unobserved
time-constant individual-specific variables being held constant.

With cross-sectional data only, unbiased estimation of such partial effects — i.e.,
controlling for both observed variables and unobserved individual effects — is
not possible. Being unobserved, the individual effects can not be included in the
regression, so that, as a result of the usual omitted variable bias, the OLS esti-
mator is generally biased, unless of course the individual effects are uncorrelated
with the observed explanatory variables. The same omitted variable problem
likewise arises with panel data if the vector of parameters β is merely estimated
by pooled OLS, i.e., by merely regressing yit on the observed explanatory vari-
ables Xit = (1, xit2, ..., xitk) using all available NT observations.

Panel data however offer ways to solve the problem. Because the individuals
are observed more than once, and the individual effects are by definition time-
constant, it is actually possible to get rid of the unobserved individual effects by
simple transformations of the data, namely either by first differencing the data
or by time-demeaning the data, so that the partial effects measured by the vector
of parameters β in (5) may be estimated without requiring the individual effects
to be observed. The first differencing and time-demeaning transformations are
the basis of the so-called first-difference estimator and fixed effects (or within)
estimator. Both estimators provide an unbiased and consistent estimator of the
vector of parameters β in model (5) without any assumption — i.e., no restriction
— about the way the individual effects ai are related to the observed explanatory
variables Xit, with however one caveat : only the parameters — and thus the par-
tial effects — of time-varying variables can actually be estimated. This is because
the effect of any time-constant variable is by construction indistinguishable from
time-constant individual effects.

If the individual effects are assumed unrelated with the observed explanatory
variables, as suggested above, the individual effects may be ignored and the
mere pooled OLS estimator provides an unbiased and consistent estimator of
the vector of parameters β in model (5). But in this case, a more efficient
estimator, which takes into account the dependence in time of the errors uit
induced by the presence of the (assumed uncorrelated with the xitk’s) individual
effects ai, may be derived. This more efficient estimator takes the form of a
feasible generalized least squares (FGLS) estimator and is called the random
effects estimator.

• Hereafter, we define and outline the properties of, successively, the first-difference
(FD), the fixed effects (FE) and the random effects (RE) estimators of the error
component model (3). Preliminarily, because it is of interest of its own, but
foremost because the FD, the FE and the RE estimators actually are nothing
but pooled OLS estimators applied to transformed models, we first look at the
properties of pooled OLS estimation.
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2. Preliminary : pooled OLS estimation

• The pooled OLS (POLS) estimator can be written as :

β̂POLS = (X ′X)
−1

X
′

Y

=

�
N�
i=1

X ′

iXi

	−1 N�
i=1

X ′

iYi

=

�
N�
i=1

T�
t=1

X ′

itXit

	−1 N�
i=1

T�
t=1

X ′

ityit

•We first outline generic properties of the POLS estimator, ignoring the error
component structure (2). We then consider pooled OLS estimation of the so-
called ‘random effects model’, i.e., the error component model (3) where it is
assumed that the (unobserved) individual effects ai are unrelated with the ob-
served explanatory variables Xit.

2.1. Generic properties of the pooled OLS estimator

• Hereafter, we show that the pooled OLS estimator β̂POLS has the same finite
sample and asymptotic properties as the OLS estimator in the cross-sectional
case under the following generic assumptions :

— POLS.1 Linearity in parameters

The model can be written as :

yit = Xitβ + uit , i = 1, ..., N, t = 1, ..., T

⇔ Yi = Xiβ + ui , i = 1, ..., N

where β is a k × 1 vector of unknown parameters and ui is a T × 1 error
term.

— POLS.2 Random sampling

The available data are realizations of a random sample of size N , {(Xi, Yi):
i = 1, ...,N}, following the model in assumption POLS.1.

— POLS.3 No perfect collinearity

In the sample (and thus in the population), there is no exact linear rela-
tionship among the explanatory variables (including the constant).

— POLS.4 Zero conditional mean

For each i, the expected value of ui given any values of Xi is equal to zero,
which is equivalent to say that the expected value of Yi given any values
of Xi is equal to Xiβ :

E(ui|Xi) = 0 ⇔ E(Yi|Xi) = Xiβ , i = 1, ..., N

— POLS.5 Homoskedasticity and no serial correlation
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For each i, the matrix of variance-covariance of ui given any values of Xi

is constant and equal to σ2IT , which is equivalent to say that the matrix
of variance-covariance of Yi given any values of Xi is constant and equal
to σ2IT :

V (ui|Xi) = σ2IT ⇔ V (Yi|Xi) = σ2IT , i = 1, ..., N

where σ2 is an unknown parameter2.

— POLS.6 Normality

For each i, the distribution of ui is the same given any values of Xi — i.e., ui
is independent of Xi — and is jointly normal with zero mean and variance-
covariance equal to σ2IT , which is equivalent to say that the distribution
of Yi given any value of Xi is jointly normal with mean equal to Xiβ and
variance-covariance equal to σ2IT :

ui|Xi ∼ N(0, σ2IT ) ⇔ Yi|Xi ∼ N(Xiβ, σ
2IT ) , i = 1, ..., N

• In a nutshell, assumptions POLS.1 —POLS.6 are a multivariate (T -variate) ver-
sion of the cross-sectional assumptions MLR.1 —MLR.6. As a matter of fact, the
cross-sectional assumptions MLR.1 —MLR.6 are just a special case of assump-
tions POLS.1 —POLS.6, where T = 1. This multivariate version deserves a few
comments :

— In detailed form, for each i, assumption POLS.4 must be read : E(yit|Xi) =
E(yit|Xit) = Xitβ ⇔ E(uit|Xi) = E(uit|Xit) = 0, for all t = 1, ..., T .
In other words, it is assumed that the explanatory variables are strictly
exogenous.

— By the law of iterated expectations, assumption POLS.4 implies, for each
i, that the unconditional mean of uit is zero (i.e., E(uit) = 0, for all t =
1, ..., T ), and that uit is uncorrelated (have zero covariance) with each
explanatory variable, in each time period (i.e., E(xisjuit) = 0, for all s, t =
1, ..., T , j = 2, ..., k).

— In detailed form, for each i, assumption POLS.5 must be read : V ar(uit|Xi)
= σ2 ⇔ V ar(yit|Xi) = σ2, for all t = 1, ..., T , and Cov(uit, uis|Xi) = 0 ⇔
Cov(yit, yis|Xi) = 0, for all t 	= s. It thus assumes both constant variance
and no correlation across time of the errors, conditional on the explanatory
variables (in all time periods) Xi.

— As in the cross-sectional case, assumptions POLS.5 and POLS.6 are auxil-
iary assumptions. They are only crucial for exact in finite sample inference.

2.1.1. Finite sample properties of POLS

• As in the cross-sectional case, because the random sampling assumption POLS.2
implies independence of the observations across i, assumptions POLS.1 —POLS.6

2 IT denotes a T × T identity matrix.
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imply the so-called ‘classical linear model’ assumptions E.1 —E.5 stated in the
supplemental lecture notes I (hereafter SLN-I)3. Under assumptions POLS.1 —
POLS.6, the POLS estimator has thus the same finite sample properties as the
OLS estimator in the cross-sectional case. More specifically :

— Under assumptions POLS.1 —POLS.4 (linearity in parameters, random
sampling, no perfect colinearity and zero conditional mean), which imply

assumptions E.1 — E.3, from Property 1 in SLN-I, β̂POLS is an unbiased
estimator of β.

— If assumption POLS.5 (homoskedasticity and no serial correlation) is added
to assumptions POLS.1 —POLS.4, so that assumptions E.1 — E.4 hold, from
Property 2 and 3 in SLN-I, the (conditional) variance-covariance matrix

of β̂POLS is given by V (β̂POLS|X) = σ2 (X ′X)−1 and β̂POLS is the best
linear unbiased estimator (BLUE) of β. Also, from Property 5 in SLN-I,

ŝ2 = 1

NT−k

�N

i=1

�T

t=1 û
2
it =

û′û
NT−k

is an unbiased estimator of σ2.

— If assumption POLS.6 (normality) is added to assumptions POLS.1 —
POLS.5, so that assumptions E.1 — E.5 hold, from Property 4 in SLN-I,
the (conditional) distribution of β̂ is normal and given by β̂POLS|X ∼
N (β, σ2(X ′X)−1).

• Needless to say, as under assumptions POLS.1 —POLS.6 the finite sample prop-
erties of the POLS estimator β̂POLS are the same as the finite sample properties
of the OLS estimator in the cross-sectional case, all usual inference procedures
derived in Section 4.1, 4.2 and 4.4.1 of SLN-I4 — i.e., the confidence intervals for
βj or a single linear combination R0β, the two-sided and one-sided t-tests of βj
or a single linear combination R0β, and the F -test of multiple linear restrictions
— are of course valid and exact in finite sample.

2.1.2. Asymptotic properties of POLS

• In the present panel data context, asymptotic properties refer to sampling dis-
tribution properties which are valid when the number of sampled individuals N
goes to infinity, while the number T of time periods over which the individuals
are observed remains fixed (i.e., N →∞, T fixed).

A. Consistency of β̂POLS

•We have the following property :

Property 16 Consistency of β̂POLS

Under assumptions POLS.1 —POLS.4, the POLS estimator β̂POLS is a consistent
estimator of β :

β̂POLS
p−→ β

3 i.e., assumptions E.1 — E.5 hold whenever assumptions POLS.1 — POLS.6 hold. Note that the converse
is not true.

4 The only notable difference is that the number of observations n is now equal to NT , so that the
number of degrees of freedom n− k is now equal to NT − k.
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A sketch of the proof is the same as for the consistency of the OLS estimator
in the cross-sectional case (Property 6 in SLN-I) : the only notable difference is
that here Xi refers to a T × k matrix (rather than a 1 × k (row) vector), and
Yi and ui to T × 1 vectors (rather than scalars). Hereafter is a concise version
of it. Under assumptions POLS.1 —POLS.3, we have :

β̂POLS =

�
N�
i=1

X ′

iXi

	−1� N�
i=1

X ′

iYi

	
= β+

�
1

N

N�
i=1

X ′

iXi

	−1�
1

N

N�
i=1

X ′

iui

	
(6)

Under random sampling, both X ′

iXi and X ′

iui are i.i.d. across i, so that
1

N

�N

i=1X
′

iXi and
1

N

�N

i=1X
′

iui are both sample average to which the law of
large numbers5 (LLN) can be applied. From the LLN, we have :

1

N

N�
i=1

X ′

iXi
p−→ E(X ′

iXi) = A

Under the zero conditional mean assumption POLS.4 E (ui|Xi) = 0, by the law
of iterated expectations, we have :

E (X ′

iui) = E [E (X ′

iui|Xi)] = E [X ′

iE (ui|Xi)] = E [X ′

i · 0] = 0 (7)

From the LLN, we thus also have :

1

N

N�
i=1

X ′

iui
p−→ 0

so that, from (6), we finally have :

β̂POLS
p−→ β +A−1 · 0 = β

B. Asymptotic normality of β̂POLS and inference

•We have the following property :

Property 17 Asymptotic normality of β̂POLS

Under assumptions POLS.1 —POLS.5, the POLS estimator β̂POLS is asymptot-
ically normally distributed :

√
N(β̂POLS − β)

d−→ N(0, σ2A−1), where A = E(X ′

iXi) (8)

A sketch of the proof is as follows. It is again basically the same as for the
OLS estimator in the cross-sectional case (Property 7 in SLN-I). Hereafter is a
concise version of it. Under assumptions POLS.1 —POLS.3, from (6), we have :

β̂POLS = β +

�
1

N

N�
i=1

X ′

iXi

	−1�
1

N

N�
i=1

X ′

iui

	

5 If {Zi: i = 1, ..., n} are i.i.d. random variables with E(Zi) = m, then by the LLN we have : Z̄n =
1

n

�n

i=1
Zi

p−→ m.
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⇔
√
N(β̂POLS − β) =

�
1

N

N�
i=1

X ′

iXi

	−1�
N−

1

2

N�
i=1

X ′

iui

	

Under random sampling, both X ′

iXi and X ′

iui are i.i.d. across i. As already

outlined, from the LLN, we have 1

N

�N

i=1X
′

iXi
p−→ E(X ′

iXi) = A, and we can
write : √

N(β̂POLS − β)
as
= A−1

�
N−

1

2

N�
i=1

X ′

iui

	
(9)

so that
√
N(β̂POLS − β) has asymptotically the same distribution as

A−1


N−

1

2

�N

i=1X
′

iui

�
. As also already outlined, under the zero conditional

mean assumption POLS.4, we have E (X ′

iui) = 0. From the central limit theo-
rem6 (CLT), we thus have :

N−
1

2

N�
i=1

X ′

iui
d−→ N(0, B), where B = V (X ′

iui) = E(X ′

iuiu
′

iXi)

so that :

A−1
�
N−

1

2

N�
i=1

X ′

iui

	
d−→ N(0, A−1BA−1)

and thus, from (9) :

√
N(β̂POLS − β)

d−→ N(0, A−1BA−1) (10)

To complete the proof, it remains to show that, under the homoskedasticity and
no serial correlation assumption POLS.5, we have B = σ2A. Under assumption
POLS.5, by the law of iterated expectations, we have :

B = V (X ′

iui) = E(X ′

iuiu
′

iXi)

= E [E(X ′

iuiu
′

iXi|Xi)] = E [X ′

iE(uiu
′

i|Xi)Xi]

= E
�
X ′

i(σ
2IT )Xi



= σ2E(X ′

iXi) = σ2A

so that, from (10), we finally have :

√
N(β̂POLS − β)

d−→ N(0, σ2A−1)

• The limiting distributional result (8) is the same as the limiting distributional
result given by Property 7 in SLN-I for the OLS estimator in the cross-sectional
case7. As in the cross-sectional case, it provides an approximate finite sample
distribution for the POLS estimator β̂ :

√
N(β̂POLS − β) ≈ N(0, σ2A−1)

⇔ β̂POLS ≈ N(β, σ2A−1/N) (11)

6 if {Zi: i = 1, ..., n} are i.i.d. (k × 1) random vectors with E(Zi) = m and V (Zi) = Σ, then by

the CLT we have :
√
n(Z̄n −m) = n−

1

2

�n

i=1
(Zi −m) d−→ N(0,Σ).

7As a matter of fact, Property 7 in SLN-I is just a special case of Property 17, where T = 1.
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which can be used — when N is sufficiently large — for performing inference
(confidence interval, hypothesis testing) without having to rely on any other as-
sumption than assumptions POLS.1 —POLS.5, i.e., in particular without having
to rely on any normality assumption.

• As in the cross-section case, an estimator of the asymptotic variance
Avar(β̂POLS) = σ2A−1/N is simply obtained by replacing σ2 and A by con-
sistent estimators. From the LLN, a consistent estimator of A = E(X ′

iXi) is

given by 1

N

�N

i=1X
′

iXi = X ′X/N , and a consistent estimator of σ2 is likewise

still given by ŝ2 = 1

NT−k

�N

i=1

�T

t=1 û
2
it, where ûit = yit −Xitβ̂POLS, so that an

estimator of Avar(β̂POLS) = σ2A−1/N is given by :

V̂ (β̂POLS) = ŝ2 (X ′X)
−1

(12)

• As the limiting distributional result (8), or equivalently the approximate
distributional result (11), and the estimator (12) of the asymptotic variance

Avar(β̂POLS) are the same as in the cross-sectional case, from the results de-
rived in Section 4.3 and Section 4.4.2 of SLN-I, it follows that all usual inference
procedures8 — confidence interval for βj or a single linear combination R0β, two-
sided and one-sided t-tests of βj or a single linear combination R0β, F -test (or
Wald test) of multiple linear restrictions — are likewise asymptotically valid — i.e.,
approximately valid for N sufficiently large — in the present panel data context
under assumptions POLS.1 —POLS.5.

C. Heteroskedasticity and autocorrelation robust inference

• The outlined above asymptotic properties of the POLS estimator do not rely on
any normality assumption, but they require homoskedasticity and no serial cor-
relation. If the homoskedasticity and no serial correlation assumption POLS.5
does not hold, then the POLS estimator is still unbiased and consistent, but all
usual inference procedures are no longer valid. However, it is again possible to
derive inference procedures which are valid in the presence of both heteroskedas-
ticity and serial correlation of unknown form, i.e., which are robust to arbitrary
form of both heteroskedasticity and autocorrelation.

• Heteroskedasticity and autocorrelation robust inference procedures basically rely
on the following property, which outlines the asymptotic properties of the POLS
estimator β̂POLS under only assumptions POLS.1 —POLS.4 (Linearity in para-
meters, random sampling, no perfect collinearity and zero conditional mean) :

Property 18 Asymptotic properties of β̂POLS without homoskedasticity and no
serial correlation

Under assumptions POLS.1 —POLS.4, the POLS estimator β̂POLS is a consistent
estimator of β :

β̂POLS
p−→ β

and is asymptotically normally distributed as :

8Note that the appropriate number of degrees of freedom is here NT − k (and not N − k).
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√
N(β̂POLS − β)

d−→ N(0, A−1BA−1) (13)

where :
A = E(X ′

iXi) and B = E(X ′

iuiu
′

iXi)

The fact that β̂POLS is consistent for β under assumptions POLS.1 —POLS.4 was
already outlined in Property 16. On the other hand, the limiting distribution
result (13) has already be shown to hold likewise under assumptions POLS.1 —
POLS.4 in the sketch of the proof of Property 17 : see the intermediary result
(10).

• The limiting distribution result (13) is a direct extension of the limiting dis-
tributional result given by Property 9 in the supplemental lecture notes III
(hereafter SLN-III) for the OLS estimator in the cross-sectional case9. As in
the cross-sectional case, it provides an approximate finite sample distribution
for the POLS estimator β̂ :

√
N(β̂POLS − β)

d−→ N(0, A−1BA−1)

⇔ β̂POLS ≈ N(β,A−1BA−1/N) (14)

which can be used — when N is sufficiently large — for performing robust in-
ference (confidence interval, hypothesis testing) without having to rely on any
other assumption than assumptions POLS.1 —POLS.4, i.e., in particular with-
out having to rely on the homoskedasticity and no serial correlation assumption
POLS.5.

• For inference based on the limiting distributional result (13), or equivalently on
the approximate distributional result (14), we need an estimator of the asymp-

totic variance Avar(β̂POLS) = A−1BA−1/N . This requires consistent estimators
of A and B. We already know that X ′X/N is a consistent estimator of A (this
directly follows from the LLN). A consistent estimator of B = E(X ′

iuiu
′

iXi) is

simply given by 1

N

�N

i=1X
′

iûiû
′

iXi, where obviously ûi = Yi −Xiβ̂POLS. This is
formalized in the following property10 :

Property 19 Consistent estimator of B

Under POLS.1 —POLS.4, 1

N

�N

i=1X
′

iûiû
′

iXi is a consistent estimator of B :

1

N

N�
i=1

X ′

iûiû
′

iXi
p−→ B

Here is the intuition of this property : from the LLN, 1

N

�N

i=1X
′

iuiu
′

iXi
p−→

E(X ′

iuiu
′

iXi) = B. As ûi converges to ui (because β̂POLS
p−→ β), we also have

9As a matter of fact, Property 9 in SLN-III is just a special case of Property 18, where T = 1.
10 For more details, see Wooldridge (2010) p. 171-172. Note that Wooldridge (2010) relies on weaker

assumptions than those considered here.
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1

N

N�
i=1

X ′

iûiû
′

iXi
p−→ B.

• Using the outlined above consistent estimators of A and B, an estimator of
Avar(β̂POLS) = A−1BA−1/N is given by :

V̂R(β̂POLS) = (X
′X)

−1

�
N�
i=1

X ′

iûiû
′

iXi

	
(X ′X)

−1
(15)

where the subscript ‘R’ simply stands for ‘Robust’11. As usual, the diagonal
elements V ârR(β̂POLSj) of the k × k matrix estimator V̂R(β̂POLS) being the es-

timators of the variance Avar(β̂POLSj ) of the estimator β̂POLSj of the different

parameters βj (j = 1, ..., k), natural estimators of the asymptotic standard er-

ror As.e.(β̂POLSj ) =
�
Avar(β̂POLSj ) of the estimator β̂POLSj of the different

parameters βj, as well as a natural estimator of the asymptotic standard error

As.e.(R0β̂POLS) =
�
Avar(R0β̂POLS) =

�
R0Avar(β̂POLS)R

′

0 of the estimator

R0β̂POLS of a single linear combination R0β of β, are likewise given by :

s.ê.R(β̂POLSj ) =
�
V ârR(β̂POLSj), j = 1, ..., k (16)

and :

s.ê.R(R0β̂POLS) =

�
R0V̂R(β̂POLS)R

′

0 (17)

where R0 is a 1× k (row) vector of constants.

• As for heteroskedasticity robust inference in the cross-sectional case, the limiting
distributional result (13), or equivalently the approximate distributional result

(14), and the robust estimators V̂R(β̂POLS), s.ê.R(β̂POLSj ) and s.ê.R(R0β̂POLS)

given above in respectively (15), (16) and (17), provide all which is needed for
performing heteroskedasticity and autocorrelation robust inference after POLS
estimation. Following exactly the same reasoning as in Section 4.3 and Sec-
tion 4.4.2 of SLN-I, it may readily be checked that if in all the usual inference
procedures12 — confidence interval for βj or a single linear combination R0β,
two-sided and one-sided t-tests of βj or a single linear combination R0β, F -test
(or Wald test) of multiple linear restrictions — we replace the usual estimators

V̂ (β̂POLS), s.ê.(β̂POLSj ) and s.ê.(R0β̂POLS) by their robust versions V̂R(β̂POLS),

s.ê.R(β̂POLSj) and s.ê.R(R0β̂POLS), then we obtain inference procedures that
are asymptotically valid — i.e., approximately valid for N sufficiently large —
under only assumptions POLS.1 —POLS.4, i.e., without having to rely on the
homoskedasticity and no serial correlation assumption POLS.5 (as well as on
any normality assumption).

11 This robust estimator, which is a direct extension of the heretoskedasticity robust estimator outlined in
SLN-III for the cross-sectional case, is sometimes referred to as ‘panel robust’ or ‘cluster robust’. Most often,
it is simply referred to as ‘robust’.

12Note again that the appropriate number of degrees of freedom is here NT − k (and not N − k).
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• Remarks :

— Modern econometric software provide special options to compute robust
standard errors and perform robust tests after pooled OLS estimation.

— The asymptotic results outlined above (i.e., Properties 16 — 19) actually
hold under weaker assumptions than those considered here13. In particular,
it may be shown that Properties 16, 18 and 19 still hold if the zero condi-
tional mean assumption POLS.4 is replaced by the weaker cross-sectional
like assumption14 :

POLS.4’ : for each i and t, E(uit|Xit) = 0 ⇔ E(yit|Xit) = Xitβ

i.e., Properties 16, 18 and 19 still hold without actually having to assume
that the explanatory variables are strictly exogenous. In a nutshell, under
assumption POLS.4’, by the law of iterated expectations, for each i and t,
we have :

E(X ′

ituit) = E [E(X ′

ituit|Xit)]

= E [X ′

itE(uit|Xit)] = E [X ′

it · 0] = 0

so that :

E (X ′

iui) = E

�
T�
t=1

X ′

ituit

	
=

T�
t=1

E(X ′

ituit) = 0, i = 1, ..., N

which actually is the key condition — implied by assumption POLS.4 — for
Properties 16, 18 and 19 to hold. Pooled OLS thus provides consistent es-
timation and robust inference without actually requiring strict exogeneity
of the explanatory variables.

— Be warned : the strict exogeneity assumption can not be relaxed without
losing the outlined finite sample properties of the POLS estimator. For
these finite sample properties to hold, assumptions POLS.1 —POLS.6 are
required.

— Note finally that none of the outlined properties of the POLS estimator
requires restrictions on the dependence of the data — such as weak depen-
dence — in the time dimension. This is basically because they rely on LLN
and CLT for independent data with N →∞ and T fixed15.

2.1.3. POLS estimation of the random effect model

•We now consider pooled OLS estimation of the so-called ‘random effects model’,
i.e., in a nutshell, the error component model (3) where it is assumed that the
(unobserved) individual effects ai are unrelated with the observed explanatory

13 See Wooldridge (2010), Section 7.8 for a detailed discussion.
14 Likewise, it may be shown that Property 17 also still holds if, besides replacing assumption POLS.4 by

POLS.4’, assumption POLS.5 is similarly replaced by the weaker time-series like assumption POLS.5’ : for
each i, V ar(uit|Xit) = σ

2 ⇔ V ar(yit|Xit) = σ
2, for all t = 1, ..., T , and E(uituis|Xit,Xis) = 0, for all t 	= s.

15 For more details, see Wooldridge (2010), Section 7.8.
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variables Xit. Formally, the random effects model assumes that the following
assumptions hold16 :

— EC.1 The model can be written as :

yit = Xitβ + ai + εit , i = 1, ..., N, t = 1, ..., T

⇔ Yi = Xiβ + aiiT + εi , i = 1, ..., N

where β is a k × 1 vector of unknown parameters, iT is a T × 1 vector of
ones, ai is an (unobserved) individual effect and εi is a T × 1 error term.

— EC.2 The available data are realizations of a random sample of size N ,
{(Xi, Yi): i = 1, ..., N}, following the model in assumption EC.1.

— EC.3 In the sample (and thus in the population), there is no exact linear
relationship among the explanatory variables (including the constant).

— EC.4 (a) E(εi|Xi, ai) = 0 ⇔ E(Yi|Xi, ai) = Xiβ + aiiT , i = 1, ...,N

(b) E(ai|Xi) = E(ai) = 0 , i = 1, ..., N

— EC.5 (a) V (εi|Xi, ai) = σ2εIT ⇔ V (Yi|Xi, ai) = σ2εIT , i = 1, ..., N

(b) V ar(ai|Xi) = σ2a , i = 1, ..., N

where σ2ε and σ2a are unknown parameters.

• The above set of assumptions deserves the following comments :

— Assumptions EC.1 —EC.3 are the same as assumptions POLS.1 —POLS.3,
where it is assumed that the error uit consists of two components : an
(unobserved) individual effect ai and a remaining error term εit, i.e., uit =
ai + εit (in vector form, ui = aiiT + εi).

— In detailed form, for each i, assumption EC.4a must be read : E(yit|Xi, ai) =
E(yit|Xit, ai) = Xitβ + ai ⇔ E(εit|Xi, ai) = E(εit|Xit, ai) = 0, for all
t = 1, ..., T . In other words, it is assumed that the explanatory variables
are strictly exogenous conditional on the individual effects. As discussed
in the supplemental lecture notes IV (hereafter SLN-IV), this implies that
neither feedback from the current value of the dependent variable to the
future values of the explanatory variables nor lagged dependent variables
are allowed.

— Assumption EC.4b is the distinctive assumption of the random effects
model : it states that the individual effects ai are unrelated with — sta-
tistically, mean independent of — the observed explanatory variables (in
all time periods) Xi. The assumption that E(ai) = 0 is without loss of
generality, provided that an intercept is included in Xit.

16 The abbreviation ‘EC’ stands for ‘Error Component’. The assumptions listed here and in the following
sections are the same as those listed in Appendix 13A and Appendix 14A of Wooldridge (2016), but
are organized in a different (simpler and more concise) way.
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— By the law of iterated expectations, assumption EC.4a implies, for each
i, that the unconditional mean of εit is zero (i.e., E(εit) = 0, for all
t = 1, ..., T ), that εit is uncorrelated (have zero covariance) with each
explanatory variable, in each time period (i.e., E(xisjεit) = 0, for all
s, t = 1, ..., T , j = 2, ..., k), and that εit is uncorrelated with ai (i.e.,
E(aiεit) = 0, for all t = 1, ..., T ). On the other hand, assumption EC.4b
implies, for each i, that ai is uncorrelated (have zero covariance) with
each explanatory variable, in each time period (i.e., E(xitjai) = 0, for all
t = 1, ..., T , j = 2, ..., k).

— In detailed form, for each i, assumption EC.5a must be read : V ar(εit|Xi, ai)
= σ2ε ⇔ V ar(yit|Xi, ai) = σ2ε, for all t = 1, ..., T , and Cov(εit, εis|Xi, ai) =
0 ⇔ Cov(yit, yis|Xi, ai) = 0, for all t 	= s. It thus assumes both constant
variance and no correlation across time of the errors εit, conditional on the
explanatory variables (in all time periods) Xi and the individual effects ai.
On the other hand, assumption EC.5b assumes constant variance of the
individual effects ai, conditional on the explanatory variables (in all time
periods) Xi.

• Under assumption EC.4a, by the law of iterated expectations, we have :

E(εi|Xi) = E [E(εi|Xi, ai)|Xi] = E [ 0 |Xi] = 0 (18)

and :

E(aiεi|Xi) = E [E(aiεi|Xi, ai)|Xi]

= E [aiE(εi|Xi, ai)|Xi] = E [ai · 0|Xi] = 0

so that, if assumption EC.4b also holds, for the composite error term ui =
aiiT + εi, we have :

E(ui|Xi) = iTE(ai|Xi) + E(εi|Xi) = iT · 0 + 0 = 0

If in addition assumption EC.5a holds, by the law of iterated expectations, we
have:

V (εi|Xi) = E(εiε
′

i|Xi) = E [E(εiε
′

i|Xi, ai)|Xi]

= E [V (εi|Xi, ai)|Xi] = E
�
σ2εIT |Xi



= σ2εIT (19)

so that, if assumption EC.5b also holds, for the composite error term ui =
aiiT + εi, we also have :

V (ui|Xi) = E(uiu
′

i|Xi) = E[(aiiT + εi)(aiiT + εi)
′|Xi)]

= iT i
′

TE(a
2
i |Xi) + iTE(aiε

′

i|Xi) + E(aiεi|Xi)i
′

T + E(εiε
′

i|Xi)

= iT i
′

TV ar(ai|Xi) + 0 + 0 + V (εi|Xi)

= σ2aJT + σ2εIT

where JT stands for a T × T matrix of ones, i.e., in detailed form :
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V (ui|Xi) =




σ2a + σ2ε σ2a · · · σ2a
σ2a σ2a + σ2ε · · · σ2a
...

...
. . .

...
σ2a σ2a · · · σ2a + σ2ε




• According to the above discussion, under the random effects model assumptions
EC.1 —EC.5, the generic POLS assumptions POLS.1 —POLS.4 (linearity in pa-
rameters, random sampling, no perfect colinearity and zero conditional mean)
hold, but, by definition, the POLS assumption POLS.5 (homoskedasticity and
no serial correlation) does not hold. As a consequence, from the generic proper-
ties of the POLS estimator :

— Under assumptions EC.1 —EC.4, which imply assumptions POLS.1 —
POLS.4, the POLS estimator β̂POLS is an unbiased estimator of β. How-

ever, because assumption POLS.5 does not hold, neither β̂POLS is the best
linear unbiased estimator (BLUE) of β, nor the usual inference procedures
are valid (even asymptotically).

— Under the same assumptions EC.1 —EC.4, the POLS estimator β̂POLS is
also consistent for β, and asymptotically valid — i.e., approximately valid
for N sufficiently large — inference procedures are provided by the het-
eroskedasticity and autocorrelation robust inference procedures outlined
in Section 2.1.2 - C.

• Remarks :

— The best linear unbiased estimator of β under the random effects model
assumptions EC.1 —EC.5, which properly accounts for the dependence in
time of the errors uit induced by the presence of the individual effects, is
given by the so-called random effects estimator which will be considered
later in Section 5.

— The consistency — but not the unbiasedness — of β̂POLS and the asymptotic
validity of the robust inference procedures outlined above actually hold
under weaker assumptions than those considered here17. In particular,
according to the second remark made at the end of Section 2.1.2 -C, it
may be shown that they still hold if assumption EC.4 is replaced by the
weaker cross-sectional like assumption :

EC.4’ : for each i and t,

(a) E(εit|Xit, ai) = 0 ⇔ E(Yit|Xit, ai) = Xitβ + ai

(b) E(ai|Xit) = E(ai) = 0

i.e., they still hold without actually having to assume that the explanatory
variables are strictly exogenous conditional on the individual effects, with
however one caveat : if feedback from the current value of the dependent

17 See Wooldridge (2010), Section 10.3 for a detailed discussion.
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variable to the future values of the explanatory variables is allowed un-
der assumption EC.4’, lagged dependent variables are still not allowed
(because with Xit containing a lagged dependent variable, assumption
EC.4’ (b) can not be true18).

3. First differencing estimation

•When, in the error component model described in assumption EC.1 :

yit = Xitβ + ai + εit , i = 1, ..., N, t = 1, ..., T

⇔ Yi = Xiβ + aiiT + εi , i = 1, ..., N (20)

both the random sampling assumption EC.2 and the zero conditional mean
assumption EC.4a :

E(εi|Xi, ai) = 0 ⇔ E(Yi|Xi, ai) = Xiβ + aiiT , i = 1, ..., N

are maintained, but nothing — i.e., no restriction — is assumed regarding the
relationship between the (unobserved) individual effects ai and the observed
explanatory variables Xit — i.e., assumption EC.4b E(ai|Xi) = 0 is not main-
tained —, then the model is usually referred to as a ‘fixed effects model’ (or, less
commonly, an ‘unobserved effects model’).

•When assumption EC.4b does not hold, the pooled OLS estimator of model (20)
is generally biased, due to the usual omitted variable bias. This problem can
however be circumvented by getting rid of the problematic individual effects ai
through a very simple transformation of the data, namely by first differencing
the data. Let D stands for the (T − 1) × T first differencing transformation
matrix :

D =




−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
. . . . . .

...
0 0 · · · −1 1




Because DiT = 0, premultiplying both sides of (20) by D yields the transformed
model:

∆Yi = ∆Xiβ +∆εi , i = 1, ..., N (21)

where ∆Yi = DYi and ∆εi = Dεi are (T − 1)× 1 vectors equal to :

∆Yi =



∆yi2
...

∆yiT


 =




yi2 − yi1
...

yiT − yiT−1


 and ∆εi =



∆εi2
...

∆εiT


 =




εi2 − εi1
...

εiT − εiT−1




18 See Wooldridge (2010), Section 10.3.
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and ∆Xi = DXi is a (T − 1)× k matrix equal to :

∆Xi =



∆Xi2

...
∆XiT


 =




Xi2 −Xi1

...
XiT −XiT−1




i.e., in detailed form :

∆yit = ∆Xitβ +∆εit , i = 1, ..., N, t = 2, ..., T

where ∆yit = yit − yit−1, ∆Xit = Xit −Xit−1 and ∆εit = εit − εit−1.

Note that in differencing the data, we lose the first time period for each individ-
ual : we now have T − 1 observations for each i, rather than T . If we start with
T = 2, then, after differencing, we arrive at one observation for each individual,
and the transformed model (21) is just a cross-sectional model.

• The first-difference (FD) estimator of model (20) is defined as the pooled OLS
estimator of the transformed model (21) :

β̂FD =

�
N�
i=1

∆X ′

i∆Xi

	−1 N�
i=1

∆X ′

i∆Yi

=

�
N�
i=1

T�
t=2

∆X ′

it∆Xit

	−1 N�
i=1

T�
t=2

∆X ′

it∆yit

• For the FD estimator β̂FD to be well defined, only time-varying (for at least some
individuals) variables can actually be included in the explanatory variables Xit.
Otherwise, ∆Xit would contain elements which are identically zero for all i and
t. For the FD estimator β̂FD to be well defined, the following assumption must
thus holds :

EC.3’ : In the sample (and thus in the population), each explanatory
variable changes over time (for at least some i), and there is
no exact linear relationship among them.

In practice, this means that any time-constant variable originally included in
the model — this includes the intercept — must be removed from Xi before dif-
ferencing the data and computing the FD estimator19. As a result, only the
parameter — and thus the partial effect — of the time-varying variables of the
original model can actually be estimated. For more details, in particular re-
garding issues related to the presence of time dummies among the explanatory
variables, see Wooldridge (2016), Section 13-5 (and also 14-1).

• Under assumptions EC.1, EC.2 and EC.3’, the transformed model (21) satisfies
the generic POLS assumptions POLS.1 —POLS.3 (linearity in parameters, ran-
dom sampling, no perfect colinearity). Under assumption EC.4a, from (18), we

19All time-constant variables originally included in the model are ‘differenced away’ along with the
individual effects when differencing the data. Formally, they are thus here simply treated as left in — be part
of — the unobserved invididual effects.
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have E(εi|Xi) = 0, so that :

E(∆εi|Xi) = E(Dεi|Xi) = DE(εi|Xi) = D · 0 = 0

and, as ∆Xi is a function of Xi, by the law of iterated expectations20, we also
have :

E(∆εi|∆Xi) = E [E(∆εi|Xi)|∆Xi] = E [ 0 |∆Xi] = 0

In words, if in addition to assumptions EC.1, EC.2 and EC.3’, assumption
EC.4a also holds, then the transformed model (21) also satisfies the generic
POLS assumption POLS.4 (zero conditional mean). Further, if in addition the
conditional variance assumption EC.5a holds, from (19), we have V (εi|Xi) =
E(εiε

′

i|Xi) = σ2εIT , so that :

V (∆εi|Xi) = E(∆εi∆ε
′

i|Xi) = E(Dεiε
′

iD
′|Xi)

= DE(εiε
′

i|Xi)D
′ = D(σ2εIT )D

′ = σ2εDD′

and, as ∆Xi is a function of Xi, by the law of iterated expectations, we also
have :

V (∆εi|∆Xi) = E(∆εi∆ε
′

i|∆Xi) = E [E(∆εi∆ε
′

i|Xi)|∆Xi]

= E [V (∆εi|Xi)|∆Xi] = E
�
σ2εDD′|∆Xi



= σ2εDD′ (22)

In words, as V (∆εi|∆Xi) = σ2εDD′ 	= σ2εIT−1, under assumption EC.5a, the
transformed model (21) does not satisfy the generic POLS assumption POLS.5
(homoskedasticity and no serial correlation). For assumption POLS.5 to hold,
assumption EC.5a must be replaced by the assumption :

EC.5a’ : V (∆εi|Xi) = σ2εIT−1 , i = 1, ..., N

As a matter of fact, under assumption EC.5a’, from (22), we have :

V (∆εi|∆Xi) = E [V (∆εi|Xi)|∆Xi] = E
�
σ2εIT−1|∆Xi



= σ2εIT−1

In detailed form, for each i, assumption EC.5a’ must be read : V ar(∆εit|Xi) =
σ2ε, for all t = 2, ..., T , and Cov(∆εit,∆εis|Xi) = 0, for all t 	= s. It thus assumes
both constant variance and no correlation across time of the first-differenced
errors ∆εit, conditional on Xi. Assumption EC.5a’ holds if, conditional on Xi,
εit follows a random walk21, which is a rather strong assumption, but sometimes
reasonable. Note that when T = 2, as the transformed model (21) is just a cross-
sectional model, assumption EC.5a’ actually only requires constant variance of
the scalar errors ∆εi, conditional on Xi.

• According to the above discussion, under assumptions EC.1, EC.2, EC.3’ and
EC.4a, the transformed model (21) satisfies the generic POLS assumptions
POLS.1 —POLS.4 (linearity in parameters, random sampling, no perfect col-
inearity and zero conditional mean), and if assumption EC.5a’ also holds, the

20As a reminder, in its most general form, the law of iterated expectations states that, if x is a function of
w, then E(y|x) = E [E(y|w)|x]. See Wooldridge (2010) p. 19 for details.

21 See Wooldridge (2016), Section 11-3a.
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POLS assumption POLS.5 (homoskedasticity and no serial correlation) likewise
holds. As a consequence, from the generic properties of the POLS estimator :

— Under assumptions EC.1, EC.2, EC.3’ and EC.4a, the FD estimator β̂FD
is an unbiased and consistent estimator of β, and asymptotically valid —
i.e., approximately valid for N sufficiently large — inference procedures are
provided by the heteroskedasticity and autocorrelation robust inference
procedures outlined in Section 2.1.2 -C computed after POLS estimation
of the transformed model (21).

— If, in addition to assumptions EC.1, EC.2, EC.3’ and EC.4a, assumption
EC.5a’ also holds, the FD estimator β̂FD is not only an unbiased and con-
sistent estimator of β, but also the best linear unbiased estimator (BLUE)
of β, and the usual inference procedures computed after POLS estimation
of the transformed model (21) are asymptotically valid, i.e., approximately
valid for N sufficiently large. If, in addition, an appropriately stated nor-
mality assumption22 EC.6a’ holds, the usual inference procedures com-
puted after POLS estimation of the transformed model (21) are not only
asymptotically valid, but also exact in finite sample.

• Remarks :

— Modern econometric software provide panel data management tools which
make easy to compute first-differenced data. In applied works, heteroskedas-
ticity and autocorrelation robust standard errors and tests should system-
atically be considered, at least for comparison.

— Assumption EC.4a requires that the explanatory variables are strictly ex-
ogenous conditional on the individual effects. This is necessary for both
the finite sample and the asymptotic properties of the FD estimator to
hold, and essentially can not be relaxed23. As a reminder, this implies that
neither feedback from the current value of the dependent variable to the
future values of the explanatory variables nor lagged dependent variables
are allowed.

4. Fixed effects estimation

• First differencing estimation is not the only way to consistently estimate the
so-called fixed effects model, i.e., the error component model described in as-
sumption EC.1 :

yit = Xitβ + ai + εit , i = 1, ..., N, t = 1, ..., T

22 EC.6a’ : ∆εi|Xi ∼ N(0, σ2εIT−1) , i = 1, ..., N .
23 In a nutshell, from Wooldridge (2010), Section 7.8, the essentially weakest assumption under which the

POLS estimator of the transformed model (21) is consistent for β is that E(∆X ′

it∆εit) = 0, for all i =
1, ..., N and t = 2, ..., T . But E(∆X ′

it∆εit) = E [(X′

it −X ′

it−1)(εit − εit−1)] = E(X′

itεit) − E(X′

itεit−1) −
E(X ′

it−1εit) +E(X
′

it−1εit−1), so that for having E(∆X′

it∆εit) = 0, it is not only needed that εit is uncor-
retaled with the contemporaneous explanatory variables Xit, but also with the past and future ex-
planatory variables Xit−1 and Xit+1, i.e., the explanatory variables must be strictly exogeneous (con-
ditional on the individual effects).
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⇔ Yi = Xiβ + aiiT + εi , i = 1, ..., N (23)

where the random sampling assumption EC.2 and the zero conditional mean
assumption EC.4a :

E(εi|Xi, ai) = 0 ⇔ E(Yi|Xi, ai) = Xiβ + aiiT , i = 1, ..., N

are maintained, but nothing — i.e., no restriction — is assumed regarding the
relationship between the (unobserved) individual effects ai and the observed ex-
planatory variables Xit (i.e., assumption EC.4b E(ai|Xi) = 0 is not maintained).

• Another method, which is more popular and works better under certain as-
sumptions, is fixed effects estimation. Instead of getting rid of the problematic
individual effects ai by first differencing the data, fixed effects estimation elimi-
nates the unobserved effects ai by time-demeaning the data. Let M stands for
the T × T time-demeaning — or within — transformation matrix :

M = IT − iT (i
′

T iT )
−1i′T = IT − 1

T
JT

=




1− 1

T
− 1

T
· · · − 1

T

− 1

T
1− 1

T
· · · − 1

T
...

...
. . .

...
− 1

T
− 1

T
· · · 1− 1

T


 (24)

Note that M is symmetrical (i.e., M = M ′) and idempotent (i.e., MM = M).
BecauseMiT = 0, premultiplying both sides of (23) byM yields the transformed
model:

Ÿi = Ẍiβ + ε̈i , i = 1, ..., N (25)

where Ÿi =MYi and ε̈i =Mεi are T × 1 vectors equal to :

Ÿi =




ÿi1
...
ÿiT


 =




yi1 − ȳi
...

yiT − ȳi


 and ε̈i =




ε̈i1
...
ε̈iT


 =




εi1 − ε̄i
...

εiT − ε̄i




with ȳi =
1

T

�T

t=1 yit and ε̄i =
1

T

�T

t=1 εit, and Ẍi =MXi is a T ×k matrix equal
to :

Ẍi =




Ẍi1

...

ẌiT


 =




Xi1 − X̄i

...
XiT − X̄i




with likewise X̄i =
1

T

�T

t=1Xit, i.e., in detailed form :

ÿit = Ẍitβ + ε̈it , i = 1, ..., N, t = 1, ..., T

where ÿit = yit − ȳi, Ẍit = Xit − X̄i and ε̈it = εit − ε̄i.

Note that Ÿi is nothing but the T×1 vector of residuals from the OLS regression
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of yit on a constant using the T observations of individual i.24 Likewise, Ẍi is
nothing but the matrix of residuals from the OLS regressions of each explanatory
variables xitj (j = 1, ..., k) on a constant using the T observations of individual i.
Note also that no observation is lost after time-demeaning the data : we still have
T observations for each individual i. But because by construction

�T

t=1 ÿit = 0

and
�T

t=1 Ẍit = 0, these T observations are linearly dependent : one of the
observations is redundant (for each i and for any variable, any observation is
equal to minus the sum of the (T − 1) other observations).

• The fixed effects (FE) estimator — or within estimator — of model (23) is defined
as the pooled OLS estimator of the transformed model (25) :

β̂FE =

�
N�
i=1

Ẍ ′

iẌi

	−1 N�
i=1

Ẍ ′

iŸi

=

�
N�
i=1

T�
t=1

Ẍ ′

itẌit

	−1 N�
i=1

T�
t=1

Ẍ ′

itŸi

• As in the case of first differencing estimation, for the FE estimator β̂FE to
be well defined, only time-varying (for at least some individuals) variables can
actually be included in the explanatory variables Xit. Otherwise, Ẍit would
contain elements which are identically zero for all i and t. For the FE estimator
β̂FE to be well defined, assumption EC.3’ must thus likewise hold. In practice,
this likewise means that any time-constant variable originally included in the
model — this includes the intercept — must be removed from Xi before time-
demeaning the data and computing the FE estimator25, so that, as a result,
only the parameter — and thus the partial effect — of the time-varying variables
of the original model can likewise actually be estimated.

• The FE estimator β̂FE may alternatively be obtained from the following so-called
dummy variable regression model, where the individual effects ai (i = 1, ..., N)
are treated as parameters to estimate along with β :




Y1
Y2
...
YN


 =




iT 0 · · · 0
0 iT · · · 0
...

...
. . .

...
0 0 · · · iT







a1
a2
...
aN


+




· · · X1 · · ·
· · · X2 · · ·

...
· · · XN · · ·







β1
...
βk


+




ε1
ε2
...
εN




⇔ Y = Wa+Xβ + ε (26)

where, as already defined, Y is a NT × 1 vector, X is a NT × k matrix and
β is k × 1 vector, ε is likewise a NT × 1 vector, and W is a NT × N matrix
containing a set of N individual dummies and a is a N × 1 vector containing
the individual effects treated as parameters to estimate. In more detailed form,

24As a reminder, the OLS estimator of the regression yit = α + νit, t = 1, ..., T ⇔ Yi = iTα + νi,
is given by α̂ = (i′T iT )

−1i′TYi =
1

T

�T

t=1
yit = ȳi.

25As in the first differencing case, all time-constant variables originally included in the model are
‘time-demeaned away’ along with the individual effects when time-demeaning the data. Formally, they
are thus again simply treated as left in — be part of — the unobserved individual effects.
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at the level of the individuals, model (26) can be written :

Yi =Wia+Xiβ + εi , i = 1, ..., N (27)

where all elements have already been defined, except Wi which quite obviously
is a T ×N matrix with a T × 1 vector iT of ones in the i-th column and zeros
elsewhere. By definition, because for each i, Wia = aiiT , model (27) is identical
to the fixed effects model (23). Simply, because the ai are now treated as pa-
rameters to estimate along with β, it accordingly contains N + k independent
variables (the N individual dummies and the k explanatory variables26).

Let γ̂DV = (â
′, β̂

′

DV )
′ denote the pooled OLS estimator of dummy variable re-

gression model (26) :

γ̂DV =

�
â

β̂DV

�
= (Q′Q)

−1
Q′Y =

�
N�
i=1

Q′

iQi

	−1 N�
i=1

Q′

iYi (28)

where Q = [W X] is a NT × (N + k) matrix, and accordingly, Qi = [Wi Xi]
is a T × (N + k) matrix. Using algebra on partitioned regression27, it may be

shown28 that β̂DV and the i-th element âi of the N × 1 fixed effects estimator â,
are given by :

β̂DV =

�
N�
i=1

Ẍ ′

iẌi

	−1 N�
i=1

Ẍ ′

iŸi = β̂FE (29)

âi = ȳi − X̄iβ̂FE (30)

In words, the FE estimator may equivalently be obtained as the pooled OLS
estimator of the transformed model (25) or the pooled OLS estimator of the
dummy variable regression model (26).

• Under assumptions EC.1, EC.2 and EC.3’, the transformed model (25) satisfies
the generic POLS assumptions POLS.1 —POLS.3 (linearity in parameters, ran-
dom sampling, no perfect colinearity). Under assumption EC.4a, from (18), we
have E(εi|Xi) = 0, so that :

E(ε̈i|Xi) = E(Mεi|Xi) =ME(εi|Xi) =M · 0 = 0

and, as Ẍi is a function of Xi, by the law of iterated expectations, we also have :

E(ε̈i|Ẍi) = E[E(ε̈i|Xi)|Ẍi] = E[ 0 |Ẍi] = 0

In words, if in addition to assumptions EC.1, EC.2 and EC.3’, assumption EC.4a
also holds, then the transformed model (25) also satisfies the generic POLS as-
sumption POLS.4 (zero conditional mean). As a consequence, from the generic

properties of the POLS estimator, the FE estimator β̂FE is thus an unbiased and
consistent estimator of β, and asymptotically valid inference procedures are pro-
vided by the heteroskedasticity and autocorrelation robust inference procedures

26Which are all supposed time-varying (for at least some individuals), as assumed by assumption EC.3’.
27 See the so-called Frisch-Waugh theorem in Wooldridge (2016), Appendix E-1a.
28 For more details, see Wooldridge (2010), Section 10.5, and Matyas and Sevestre (2008), Chapter 2.
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outlined in Section 2.1.2 -C computed after POLS estimation of the transformed
model (25).

Further, if in addition to assumptions EC.1, EC.2, EC.3’ and EC.4a, the con-
ditional variance assumption EC.5a also holds, from (19), we have V (εi|Xi) =
E(εiε

′

i|Xi) = σ2εIT , so that29 :

V (ε̈i|Xi) = E(ε̈iε̈
′

i|Xi) = E(Mεiε
′

iM
′|Xi)

= ME(εiε
′

i|Xi)M
′ =M(σ2εIT )M

′ = σ2εMM ′ = σ2εM (31)

and, as Ẍi is a function of Xi, by the law of iterated expectations, we also have :

V (ε̈i|Ẍi) = E(ε̈iε̈
′

i|Ẍi) = E[E(ε̈iε̈
′

i|Xi)|Ẍi]

= E[V (ε̈i|Xi)|Ẍi] = E[σ2εM |Ẍi] = σ2εM

In words, as V (ε̈i|Ẍi) = σ2εM 	= σ2εIT , under assumption EC.5a, the trans-
formed model (25) does not satisfy the generic POLS assumption POLS.5 (ho-
moskedasticity and no serial correlation). As a result, we can not use Property
17 for arguing that, under assumptions EC.1, EC.2, EC.3’, EC.4a and EC.5a,
asymptotically valid inference procedures are provided by the usual inference
procedures computed after POLS estimation of the transformed model (25).

However, because of the very special form30 of V (ε̈i|Ẍi) = σ2εM , it turns out that
only a slight modification of these usual inference procedures is actually needed
for making them asymptotically valid under assumptions EC.1, EC.2, EC.3’,
EC.4a and EC.5a. As a matter of fact, under assumptions EC.1, EC.2, EC.3’
and EC.4a, the transformed model (25) satisfies the generic POLS assumptions
POLS.1 —POLS.4, so that from Property 18 we have :

√
N(β̂FE − β)

d−→ N(0, A−1BA−1) (32)

where :
A = E(Ẍ ′

iẌi) and B = E(Ẍ ′

iε̈iε̈
′

iẌi)

As M is symmetrical and idempotent, we have :

Ẍ ′

iε̈i = (MXi)
′Mεi = X ′

iM
′Mεi = X ′

iM
′εi = Ẍ ′

iεi (33)

On the other hand, if assumption EC.5a also holds, from (19), we have V (εi|Xi)
= E(εiε

′

i|Xi) = σ2εIT , so that, as Ẍi is a function of Xi, by the law of iterated
expectations, we also have :

E(εiε
′

i|Ẍi) = E
�
E(εiε

′

i|Xi)|Ẍi

�
= E

�
σ2εIT |Ẍi

�
= σ2εIT (34)

29As a reminder, M is symmetrical (i.e., M =M ′) and idempotent (i.e., MM =M).
30Note that the variance-covariance matrix V (ε̈i|Ẍi) = σ2εM is actually singular (i.e., not full rank :

its rank is equal to T − 1). This is basically a consequence of the already outlined fact that, after
time-demeaning, one of the T observations of each individual i is redundant.
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From (33) and (34), by the law of iterated expectations, we thus have :

B = E(Ẍ ′

iε̈iε̈
′

iẌi) = E(Ẍ ′

iεiε
′

iẌi)

= E
�
E(Ẍ ′

iεiε
′

iẌi|Ẍi)
�
= E

�
Ẍ ′

iE(εiε
′

i|Ẍi)Ẍi

�

= E
�
Ẍ ′

i(σ
2
εIT )Ẍi

�
= σ2εE(Ẍ

′

iẌi) = σ2εA

so that, from (32), we finally have :

√
N(β̂FE − β)

d−→ N(0, σ2εA
−1) (35)

or in terms of approximate finite sample distribution which can be used — when
N is sufficiently large — for performing inference :

β̂FE ≈ N(β, σ2εA
−1/N) (36)

Although the transformed model (25) does not satisfy assumption POLS.5, be-
cause of the very special form of V (ε̈i|Ẍi) = σ2εM , the distributional result (35),
or equivalently the approximate distributional result (36), is still the same as
the distributional result (8), or equivalently the approximate distributional re-
sult (11), on which is based the usual POLS inference procedures. For these
usual POLS inference procedures to be valid, it is however not enough to have
the distributional result (35), or equivalently the approximate distributional re-
sult (36). It is also necessary that consistent estimators of σ2ε and A are used to

estimate the asymptotic variance Avar(β̂FE) = σ2εA
−1/N . This is where there is

a catch : the usual POLS inference procedures computed after POLS estimation
of the transformed model (25) use as an estimator of the asymptotic variance

Avar(β̂FE) = σ2εA
−1/N :

V̂ (β̂FE) = ŝ2
�
1

N

N�
i=1

Ẍ ′

iẌi

	−1
/N = ŝ2(Ẍ ′Ẍ)−1 (37)

where :

ŝ2 =
1

NT − k

N�
i=1

T�
t=1

�̈ε2it , �̈εit = ÿit − Ẍitβ̂FE and Ẍ =




Ẍ1

...

ẌN




The catch is that ŝ2 is not a consistent estimator of σ2ε. To see that ŝ2 is not
a consistent estimator of σ2ε, suppose that ε̈it is actually observed and consider
the estimator :

ŝ∗2 =
1

NT

N�
i=1

T�
t=1

ε̈2it =
1

N

N�
i=1

�
1

T

T�
t=1

ε̈2it

	

From (31), we have E(ε̈2it) = (1 − 1

T
)σ2ε =

T−1
T
σ2ε, so that by the law of large

numbers (LLN), we have :

ŝ∗2
p−→ E

�
1

T

T�
t=1

ε̈2it

	
=
1

T

T�
t=1

E(ε̈2it) =
T − 1
T

σ2ε
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As �̈εit converges to ε̈it (because β̂FE
p−→ β), and NT

NT−k
→ 1 as N →∞, we also

have ŝ2
p−→ T−1

T
σ2ε 	= σ2ε.

An obvious fix to the problem is to replace ŝ2 in (37) by an estimator which is
consistent for σ2ε. Following the same reasoning as above, it is easily checked
that such a consistent estimator of σ2ε is given by :

ŝ2FE =
1

N(T − 1)− k

N�
i=1

T�
t=1

�̈ε2it , where �̈εit = ÿit − Ẍitβ̂FE (38)

With the estimator ŝ2FE replacing ŝ2 in (37), so that the asymptotic variance

Avar(β̂FE) = σ2εA
−1/N is instead estimated using the estimator :

V̂FE(β̂FE) = ŝ2FE(Ẍ
′Ẍ)−1 (39)

the usual POLS inference procedures computed after POLS estimation of the
transformed model (25) are now asymptotically valid. We will hereafter refer to
these modified inference procedures as the ‘FE modified usual inference proce-
dures’.

• Further properties of the FE estimator may be outlined by looking at β̂FE as
the pooled OLS estimator of the dummy variable regression model (26). As a
matter of fact, under assumptions EC.1, EC.2, EC.3’, EC.4a and EC.5a, the
dummy variable regression model (26) — where the vector of individual effects
a is treated as a vector of parameters to estimate and W is nonstochastic31 —
actually satisfies the classical linear model assumptions E.1 —E.4 stated in SLN-
I32. Accordingly, under assumptions EC.1, EC.2, EC.3’, EC.4a and EC.5a, from

Property 1 and 2 in SLN-I, the pooled OLS estimator γ̂DV = (â
′, β̂

′

DV )
′ defined

in (28) is an unbiased estimator of γ = (a′, β′)′ :

E (γ̂DV |X) = γ =

�
a
β

�

and its variance-covariance matrix is given by :

V (γ̂DV |X) = σ2ε (Q
′Q)

−1
, where Q = [W X]

Also, from Property 3 in SLN-I, γ̂DV is the best linear unbiased estimator
(BLUE) of γ = (a′, β′)′, and from Property 5 in SLN-I, an unbiased estima-
tor of σ2ε is given by :

ŝ2DV =
1

NT − (N + k)

N�
i=1

T�
t=1

�ε2it , where �εit = yit − âi −Xitβ̂DV

As from (29) β̂DV = β̂FE, this implies that, under assumptions EC.1, EC.2,

EC.3’, EC.4a and EC.5a, the FE estimator β̂FE is not only unbiased, but it is
also the best linear unbiased estimator (BLUE) of β. Note that â, and thus

31 i.e., fixed in repeated sample, and may thus be treated as a matrix of constant.
32 i.e., E.1 : Y =Wa+Xβ+ε, E.2 : rank([W X]) = N+k, E.3 : E(ε|X) = 0⇔ E(Y |X) =Wa+Xβ, and

E.4 : V (ε|X) = σ2εINT ⇔ V (Y |X) = σ2εINT , where INT is a NT ×NT identity matrix.
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each âi as defined in (30), is also the best linear unbiased estimator (BLUE) of

a, but contrary to β̂FE, it is not consistent
33 with T fixed, as N →∞. Further,

as β̂DV = β̂FE and, from (30), âi = ȳi − X̄iβ̂FE, we have :

�εit = yit − âi −Xitβ̂DV = yit − (ȳi − X̄iβ̂FE)−Xitβ̂FE

= (yit − ȳi)− (Xit − X̄i)β̂FE = ÿit − Ẍitβ̂FE = �̈εit
so that, noting that NT − (N + k) = N(T − 1)− k, we also have :

ŝ2DV =
1

NT − (N + k)

N�
i=1

T�
t=1

�ε2it =
1

N(T − 1)− k

N�
i=1

T�
t=1

�̈ε2it = ŝ2FE (40)

In words, the estimator ŝ2FE that we suggested above in (38) as a replacement
of ŝ2 in order to make the usual inference procedures computed after POLS
estimation of the transformed model (25) asymptotically valid is actually equal
to ŝ2DV . This implies that ŝ2FE is not only a consistent estimator of σ2ε, but also
an unbiased estimator of σ2ε.

If in addition to assumptions EC.1, EC.2, EC.3’, EC.4a and EC.5a, the following
normality assumption also holds :

EC.6a : εi|Xi, ai ∼ N(0, σ2εIT ) ⇔ Yi|Xi, ai ∼ N(Xiβ+ aiiT , σ
2
εIT ) , i = 1, ...,N

then the dummy variable regression model (26) actually satisfies the full set34 of
classical linear model assumptions E.1 —E.5, so that, from Property 4 in SLN-
I, the pooled OLS estimator γ̂DV = (â′, β̂DV )

′ has an exact in finite sample
distribution given by :

γ̂DV |X ∼ N(γ, σ2ε (Q
′Q)

−1
), where γ = (a′, β′)′ and Q = [W X]

and an unbiased estimator of its variance-covariance matrix V (γ̂DV |X) = σ2ε
(Q′Q)−1 is given by :

V̂DV (γ̂DV ) = ŝ2DV (Q
′Q)

−1

Accordingly, all usual inference procedures — regarding both a and β — computed
after POLS estimation of the dummy variable regression model (26) are valid
and exact in finite sample.

Unsurprisingly, using algebra on partitioned regression35, as β̂FE = β̂DV , it may

33 Each time a new individual i is added, another unknown parameter ai is added, so that information
does not accumulate on a as N → ∞. This situation is usually refered to as an ‘incidental parameters
problem’. By the way, â provides a practical exemple of an estimator which is unbiased but not consistent.

34 i.e., assumptions E.1 — E.4 as defined above, and E.5 : ε|X ∼ N(0, σ2εINT ) ⇔ Y |X ∼ N(Wa +
Xβ, σ2εINT ).

35Using algebra on partitioned regression, it may be shown that β̂FE = β̂DV has an exact in finite sample
distribution given by :

β̂FE |X ∼ N(β, σ2ε(Ẍ′
Ẍ)−1)

and that an unbiased estimator of its variance-covariance matrix is given by :

V̂DV (β̂FE) = ŝ
2
DV (Ẍ

′
Ẍ)−1 = ŝ2FE(Ẍ

′
Ẍ)−1 = V̂FE(β̂FE)

For more details, see again Wooldridge (2010), Section 10.5, and Matyas and Sevestre (2008), Chapter 2.
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be shown that regarding β, all these usual inference procedures computed after
POLS estimation of the dummy variable regression model (26) are — provided
that the same appropriate number of degrees of freedom NT − (N + k) =
N(T − 1)− k (and not NT − k) is used — exactly the same as the FE modified
usual inference procedures computed after POLS estimation of the transformed
model (25) outlined above. This in particular means that the FE modified usual
inference procedures computed after POLS estimation of the transformed model
(25) are not only asymptotically valid, but also exact in finite sample if normality
actually holds.

• The whole above discussion about the properties of the FE estimator may be
summarized as follows :

— Under assumptions EC.1, EC.2, EC.3’ and EC.4a, the FE estimator β̂FE
is an unbiased and consistent estimator of β, and asymptotically valid —
i.e., approximately valid for N sufficiently large — inference procedures are
provided by the heteroskedasticity and autocorrelation robust inference
procedures outlined in Section 2.1.2 -C computed after POLS estimation
of the transformed model (25).

— If, in addition to EC.1, EC.2, EC.3’ and EC.4a, assumption EC.5a also
holds, the FE estimator β̂FE is not only an unbiased and consistent es-
timator of β, but also the best linear unbiased estimator (BLUE) of β,
and the FE modified usual inference procedures — i.e., the usual proce-
dures where V̂ (β̂FE) is replaced by V̂FE(β̂FE) — computed after POLS
estimation of the transformed model (25) are asymptotically valid, i.e.,
approximately valid for N sufficiently large. If, in addition, the normality
assumption EC.6a holds, the FE modified usual inference procedures com-
puted after POLS estimation of the transformed model (25) are not only
asymptotically valid, but also exact in finite sample36.

• Remarks :

— Modern econometric software provide a built-in fixed effects estimation
routine, usually including options to compute robust standard errors and
perform robust tests. In applied works, it is not uncommon that only the
heteroskedasticity and autocorrelation robust standard errors and tests are
considered and reported.

— Assumption EC.4a requires that the explanatory variables are strictly ex-
ogenous conditional on the individual effects. As in the case of first dif-
ferencing estimation, this is necessary for both the finite sample and the
asymptotic properties of the FE estimator to hold, and essentially can
not be relaxed37. As a reminder, this implies that neither feedback from
the current value of the dependent variable to the future values of the

36 provided that the appropriate number of degrees of freedom N(T − 1)− k (and not NT − k) is used.
37 In a nutshell, from Wooldridge (2010), Section 7.8, the essentially weakest assumption under which

the POLS estimator of the transformed model (25) is consistent for β is that E(Ẍ′

itε̈it) = 0, for all
i = 1, ..., N and t = 1, ..., T . But E(Ẍ′

itε̈it) = E
�
(X′

it − X̄ ′

i)(εit − ε̄i)
�
= E(X′

itεit)−E(X ′

itε̄i)−E(X̄′

iεit)+

E(X̄ ′

i ε̄i), so that for having E(Ẍ ′

itε̈it) = 0, it is not only needed that εit is uncorretaled with the contem-
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explanatory variables nor lagged dependent variables are allowed.

— In applied works, fixed effects estimation is more popular than first dif-
ferencing estimation, for some good reasons (at least when T > 2)38 : FE
estimation is efficient (BLUE) under more appealing conditions (assump-
tion EC.5a versus assumption EC5.a’ for FD estimation), may be shown
to be less sensitive to violation of the assumption of strict exogeneity of
the explanatory variables, and most modern software provide built-in rou-
tines which makes it effortless to compute. FD estimation may however be
preferable in some situations, in particular when the idiosyncratic errors
are expected to be strongly positively serially correlated and/or when N
is small and T large39.

5. Random effect estimation

•We finally return to the estimation of the so-called random effects model, i.e.,
the error component model described in assumption EC.1 :

yit = Xitβ + ai + εit , i = 1, ..., N, t = 1, ..., T

⇔ Yi = Xiβ + aiiT + εi , i = 1, ..., N (41)

where the random sampling and the no perfect collinearity assumptions EC.2
and EC.3, the (full) zero conditional mean assumption EC.4 :

(a) E(εi|Xi, ai) = 0 ⇔ E(Yi|Xi, ai) = Xiβ + aiiT , i = 1, ...,N

(b) E(ai|Xi) = E(ai) = 0 , i = 1, ..., N

as well as the (full) conditional variance assumption EC.5 :

(a) V (εi|Xi, ai) = σ2εIT ⇔ V (Yi|Xi, ai) = σ2εIT , i = 1, ..., N

(b) V ar(ai|Xi) = σ2a , i = 1, ..., N

are assumed to hold. As a reminder, the most distinctive assumption of this
model is assumption EC.4b, which states that the individual effects ai are un-
related with — statistically, mean independent of — the observed explanatory
variables (in all time periods) Xi.

•We saw in Section 2.1.3 that, letting ui stand for the composite ui = aiiT + εi,
under assumption assumptions EC.1 —EC.5, we have :

E(ui|Xi) = 0 , i = 1, ..., N

poraneous explanatory variablesXit, but also with the explanatory variables in all other periods, i.e., the ex-
planatory variables must be strictly exogeneous (conditional on the individual effects).

38When T = 2, the FE estimator and the FD estimator may be shown to be identical (numerically equal).
39 For more details, see Wooldridge (2016), Section 14-1b, and further, Wooldridge (2010), Section 10-7.
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and

V (ui|Xi) = σ2aJT + σ2εIT

=




σ2a + σ2ε σ2a · · · σ2a
σ2a σ2a + σ2ε · · · σ2a
...

...
. . .

...
σ2a σ2a · · · σ2a + σ2ε


 , i = 1, ..., N

so that assumptions POLS.1 —POLS.4 (linearity in parameters, random sam-
pling, no perfect colinearity and zero conditional mean) hold, but, by definition,
the POLS assumption POLS.5 (homoskedasticity and no serial correlation) does

not hold. As a consequence, the POLS estimator β̂POLS is an unbiased and con-
sistent estimator of β, but it is not the best linear unbiased estimator (BLUE)
of β, i.e., it is not efficient.

• As for heteroskedasticity in the cross-sectional case, using the generalized least
squares theory developed in Section 3.1 of SLN-III, a more efficient estima-
tor, which properly takes into account the form of the conditional variance
V (ui|Xi) = σ2aJT + σ2εIT , i.e., which properly accounts for the dependence in
time of the errors uit induced by the presence of the individual effects, may
readily be obtained. Before proceeding, note that V (ui|Xi) can be written as :

V (ui|Xi) = σ2aJT + σ2εIT = σ2ε(IT +
σ2a
σ2ε
JT ) = σ2εΣ

where Σ = IT +
σ2a
σ2ε
JT .

• Under assumptions EC.1 —EC.4, the error component model (41) satisfies the
classical linear model assumptions E.1 —E.3 stated in SLN-I. If in addition as-
sumption EC.5 also holds, then the following special case of assumption E.4bis
stated in SLN-III also holds :

E.4” Error component : V (u|X) = σ2Ω ⇔ V (Y |X) = σ2Ω

where σ2 = σ2ε and Ω is a block-diagonal NT × NT matrix with T × T block-

diagonal elements equal to Σ = IT +
σ2a
σ2ε
JT :

Ω =




Σ 0 · · · 0
0 Σ · · · 0
...

...
. . .

...
0 0 · · · Σ




so that :

Ω−1 =




Σ−1 0 · · · 0
0 Σ−1 · · · 0
...

...
. . .

...
0 0 · · · Σ−1


 and Ω−

1

2 =




Σ−
1

2 0 · · · 0

0 Σ−
1

2 · · · 0
...

...
. . .

...

0 0 · · · Σ−
1

2






30

Note that the nullity of all off-diagonal elements in Ω just follows from the inde-
pendence of the observations across individuals implied by the random sampling
assumption EC.2.

• From Property 11 in SLN-III, under assumptions E.1 —E.3 and assumption E.4”,
and thus likewise under assumptions EC.1 —EC.5, the best linear unbiased esti-
mator (BLUE) of β is given by the special case of the generalized least squares
(GLS) estimator :

β̂GLS−EC =
�
X ′Ω−1X

�
−1

X
′

Ω−1Y

=

�
n�
i=1

X ′

iΣ
−1Xi

	
−1 n�

i=1

X ′

iΣ
−1Yi (42)

which by definition is the pooled OLS estimator of the transformed model :

Y ∗ = X∗β + u∗ , where Y ∗ = Ω−
1

2Y and X∗ = Ω−
1

2X

i.e., in more detailed form, at the level of the individuals, the pooled OLS esti-
mator of the transformed model :

Y ∗

i = X∗

i β + u∗i , i = 1, ..., N (43)

where the transformed variables are :

Y ∗

i = Σ
−
1

2Yi and X∗

i = Σ
−
1

2X , i = 1, ..., N

It may be shown40 that the transformation matrix Σ−
1

2 may be written as :

Σ−
1

2 = IT − θ 1
T
JT

=




1− θ 1
T

−θ 1
T

· · · −θ 1
T

−θ 1
T

1− θ 1
T
· · · −θ 1

T
...

...
. . .

...
−θ 1

T
−θ 1

T
· · · 1− θ 1

T


 (44)

where θ = 1−
�

σ2ε
σ2ε+Tσ

2
a
, so that we have:

Y ∗

i =




y∗i1
...
y∗iT


 =




yi1 − θȳi
...

yiT − θȳi


 and X∗

i =




X∗

i1
...

X∗

iT


 =




Xi1 − θX̄i

...
XiT − θX̄i




In words, the transformation matrix Σ−
1

2 simply means quasi-time-demeaning
the data, i.e., expressing each variable in deviation from a fraction θ — necessarily
between 0 and 1 — of its individual-specific mean. Note that the GLS estimator
β̂GLS−EC contains as limiting cases both the FE estimator (when θ → 1) and the
POLS estimator (when θ → 0). Note also that, contrary to the time-demeaning
— or within — transformation (24), the quasi-time-demeaning transformation (44)
allows for time-constant variables.

40 See Wooldridge (2010), Section 10.7.2.
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• According to the generalized least squares theory developed in Section 3.1 of
SLN-III, under assumptions EC.1 —EC.5 — which imply assumptions E.1 —E.3
and assumption E.4” —, the transformed model (43) satisfies the corresponding
generic POLS assumptions POLS.1 —POLS.5 (linearity in parameters, random
sampling, no perfect colinearity, zero conditional mean, homoskedasticity and
no serial correlation). As a result :

— Under assumptions EC.1 —EC.5, the GLS estimator β̂GLS−EC is not only
an unbiased and consistent estimator of β, but also the best linear unbiased
estimator (BLUE) of β, and the usual inference procedures computed after
POLS estimation of the transformed model (43) are asymptotically valid,
i.e., approximately valid for N sufficiently large. If, in addition, an ap-
propriately stated normality assumption41 EC.6 holds, the usual inference
procedures computed after POLS estimation of the transformed model (43)
are not only asymptotically valid, but also exact in finite sample.

— Under assumptions EC.1 —EC.4, i.e., without assuming that the condi-
tional variance assumption EC.5 is correct, the GLS estimator β̂GLS−EC is
still an unbiased — but no longer BLUE — and consistent estimator of β,
and asymptotically valid — i.e., approximately valid for N sufficiently large
— inference procedures are provided by the heteroskedasticity and autocor-
relation robust inference procedures outlined in Section 2.1.2 -C computed
after POLS estimation of the transformed model (43).

• The GLS estimator β̂GLS−EC depends on the unknown parameter θ, which itself
depends on the unknown parameters σ2a and σ2ε. But these parameters can be
estimated from the data. There are different ways to this. The easiest way is
to first estimate model (41) by pooled OLS, and retrieve the POLS residuals

ûit = yit − Xitβ̂POLS. It may be shown that42, based on these POLS residuals
and under assumptions EC.1 —EC.5, consistent estimators of σ2a and σ

2
ε are given

by :

σ̂2a =
1

NT (T − 1)/2− k

N�
i=1

T−1�
t=1

T�
s=t+1

ûitûis and σ̂2ε = σ̂2u − σ̂2a

where :

σ̂2u =
1

NT − k

N�
i=1

T�
t=1

û2it

The consistency of these estimators basically relies on the law of large numbers
(LLN) and on the facts that σ2u = σ2a + σ2ε, E(uituis) = σ2a for all i and s 	= t,

E(u2it) = σ2u for all i and t, and that ûit converges to uit (because β̂POLS
p−→ β).

• The random effects (RE) estimator of model (41) is defined as the GLS esti-

mator β̂GLS−EC where the unknown parameters σ2a and σ2ε are replaced by any

41 EC.6 : (a) εi|Xi, ai ∼ N(0, σ2εIT ) ⇔ Yi|Xi, ai ∼ N(Xiβ + aiiT , σ
2
εIT ) , i = 1, ..., N

(b) ai|Xi ∼ N(0, σ2a) , i = 1, ..., N
42 For details, see Wooldridge (2010) Section 10.4.1.
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consistent estimators such as σ̂2a and σ̂2ε :

β̂RE =

�
n�
i=1

X ′

iΣ̂
−1Xi

	
−1 n�

i=1

X ′

iΣ̂
−1Yi , where Σ̂ = IT +

σ̂2a
σ̂2ε
JT (45)

which by definition is the pooled OLS estimator of the transformed model :

Y̌ ∗

i = X̌∗

i β + ǔ∗i , i = 1, ..., N (46)

where the transformed variables are :

Y̌ ∗

i = Σ̂
−
1

2Yi and X̌∗

i = Σ̂
−
1

2X , i = 1, ..., N

with :

Σ̂−
1

2 = IT − θ̂ 1
T
JT and θ̂ = 1−

�
σ̂2ε

σ̂2ε+T σ̂
2
a

i.e. :

Y̌ ∗

i =




y̌∗i1
...
y̌∗iT


 =




yi1 − θ̂ȳi
...

yiT − θ̂ȳi


 and X̌∗

i =




X̌∗

i1
...

X̌∗

iT


 =




Xi1 − θ̂X̄i

...

XiT − θ̂X̄i




• It may be shown that the replacement of σ2a and σ2ε by any consistent estimators

such as σ̂2a and σ̂2ε, which turns the GLS estimator β̂GLS−EC into a feasible
estimator, does not change its asymptotic properties43. More specifically :

— Under assumptions EC.1 —EC.5, the RE estimator β̂RE is consistent for β
and asymptotically more efficient than the POLS estimator44, and all usual
inference procedures computed after POLS estimation of the transformed
model (46) are still asymptotically valid, i.e., approximately valid for N
sufficiently large.

— Likewise, under only assumptions EC.1 —EC.4, i.e., without assuming that
the conditional variance assumption EC.5 is correct, both β̂RE is still con-
sistent for β and the heteroskedasticity and autocorrelation robust infer-
ence procedures outlined in Section 2.1.2 -C computed after POLS esti-
mation of the transformed model (46) are still asymptotically valid, i.e.,
approximately valid for N sufficiently large.

• Remarks :

— Due to the estimation of the unknown parameters σ2a and σ2ε, the RE

estimator β̂RE has no longer exact in finite sample properties : it is not
unbiased, and the usual inference procedures computed after POLS esti-
mation of the transformed model (46) are not exact even if the normality
assumption EC.6 is assumed to hold.

— Modern econometric software provide a built-in random effects estimation

43 For a discussion, see Wooldridge (2010), Section 10.4.1 (and Section 7.5.1).
44 This is just the asymptotic analog of the BLUE property of the GLS estimator.
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routine, usually including options to compute robust standard errors and
perform robust tests, so that there is no need to carry out multiple steps
to perform RE estimation. In applied works, heteroskedasticity and au-
tocorrelation robust standard errors and tests should systematically be
considered, at least for comparison.

— If the conditional variance assumption EC.5 is not correct — for example
due to heteroskedasticity in ai and/or εit, or serial correlation in εit —, al-
though still consistent45, the RE estimator is no longer necessarily more
efficient than the POLS estimator. In practice however, because the de-
pendence in time — captured by σ2a — of the composite errors uit induced
by the presence of the individual effects is usually found large, resorting
to RE estimation along with robust inference procedures will often yield a
more precise estimate of β than ignoring the individual effects altogether
and using POLS likewise along with robust inference procedures.

— Assumption EC.4a requires that the explanatory variables are strictly ex-
ogenous conditional on the individual effects. As in the case of first dif-
ferencing and fixed effects estimation, this is necessary for the properties
of the RE estimator to hold, and essentially can not be relaxed46. As a
reminder, this implies that neither feedback from the current value of the
dependent variable to the future values of the explanatory variables nor
lagged dependent variables are allowed. If one wants to allow for feedback
from the current value of the dependent variable to the future values of
the explanatory variables (allowing for dependent variables requires more
sophisticated estimation techniques47), then the POLS estimator must be
used (see the remark made at the end of Section 2.1.3).

— In empirical works, random effect estimation is notably useful when inter-
est lies in the estimation of the partial effect of time-constant variables,
something which can not be done with fixed effect or first differencing esti-
mation. Just as in the cross-sectional case, if the estimated partial effects
are to be confidently interpreted as genuine causal effects, then as many as
possible relevant control variables, and in particular here as many as pos-
sible relevant time-constant control variables (with FE or FD estimation,
such controls are not needed), should be included among the explanatory
variables. This hopefully will minimize possible omitted variable bias and
make more plausible the assumption that the (remaining) individual effects
are unrelated with the observed explanatory variables.

— The assumption EC.4b that the individual effects are unrelated the ob-
served explanatory variables may in practice be readily tested through a

45 provided of course that assumptions EC.1 — EC.4 hold.
46 In a nutshell, from Wooldridge (2010), Section 7.8, the essentially weakest assumption under which

the POLS estimator of the transformed model (46) is consistent for β is that E(X∗′

it u
∗

it) = 0, for all
i = 1, ..., N and t = 1, ..., T . But E(X∗′

it u
∗

it) = E
�
(X′

it − θX̄′

i)(uit − θūi)
�
= E[(X′

it − θX̄′

i)(εit − θε̄i +
(1−θ)ai)] = E(X′

itεit)−θE(X′

itε̄i)+(1−θ)E(X′

itai)−θE(X̄′

iεit)+θ
2E(X̄′

i ε̄i)−θ(1−θ)E(X̄ ′

iai), so that for
having E(X∗′

it u
∗

it) = 0, it is not only needed that εit is uncorretaled with the contemporaneous explanatory
variables Xit, but also with the explanatory variables in all other periods (as well as that ai is uncorretaled
with the explanatory variables in all periods).

47 See Wooldridge (2010), Section 11.6.2.
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variable addition test. In a nutshell, this may simply be done by augment-
ing the considered model — which may contain both time-varying and time-
constant variables — with the (individual) time-averages of its time-varying
variables, and after RE estimation testing through a (preferably robust)
F -test the nullity of the coefficients of the added time-average variables.
See Wooldridge (2016), Section 14-3, for details. Note that this variable
addition test is equivalent to the usual so-called Hausman test based on the
direct comparison of RE and FE estimates (of the time-varying variables)
of the considered model48.
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