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• These lecture notes restate, in matrix form and with more details, the main
results of Sections 10-3 and 11-2 of Wooldridge (2016).

1. Regression and time series data

• Regression analysis is not reserved to cross-sectional data. A multiple linear
regression model such as :

yt = β1 + β2xt2 + ...+ βkxtk + ut

⇔ yt = Xtβ + ut

where t = 1, ..., T is a time index, Xt = (1, xt2, ..., xtk) is a 1 × k (row) vector
of explanatory variables (including a constant) and β = (β1, β2, ..., βk) is a
k × 1 (column) vector, may likewise be used for analyzing time series data.
As with cross-sectional data, stacking (with the correct temporal ordering) the
observations of a sample of size T , we can write :




y1
...
yT



 =




1 x12 · · · x1k
...

...
...

1 xT2 · · · xTk








β1
...
βk



+




u1
...
uT





⇔ Y = Xβ + u

where Y and u are T × 1 vectors, and X is a T × k matrix, whose the t-th row
is equal to Xt.
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• Time series regression models may be used to evaluate the causal effect — i.e., the
effect, the other factors being held constant — of some variables of interest on the
dependent variable yt, or more simply for forecasting. Depending on the case at
hand and the question of interest, the set of independent variables (xt2, ..., xtk)
may contain contemporaneous explanatory variables zt (static model), lagged
explanatory variables zt−1, zt−2, ... (distributed lag model), and/or lagged de-
pendent variables yt−1, yt−2, ... (autoregressive model).

• From a statistical point of view, the most distinctive feature of time series data is
that the observations — which are viewed as realizations of a stochastic process
— can almost never be assumed to be independent across time. In contrast,
cross-sectional data are typically assumed to be obtained by random sampling
in some population, which implies that they are independent across individuals.
This independence property does no longer hold with time series data, and this
is the basic reason why regression with time series data requires special attention
when applying OLS.

2. Finite sample properties of OLS

• Following Wooldridge (2016), Section 10-3, the finite sample properties of the
OLS estimator :

β̂ = (X ′X)
−1
X

′

Y =

�
T�

t=1

X ′

tXt

�−1 T�

t=1

X ′

tyt

are exactly the same as in the cross-sectional case under the following assump-
tions :

—TS.1 Linearity in parameters

The available data are realizations of a stochastic process {(xt2, ..., xtk, yt):
t = 1, ..., T} following the linear model :

yt = β1 + β2xt2 + ...+ βkxtk + ut

where (β1, ..., βk) are unknown parameters and {ut: t = 1, ..., T} is a se-
quence of error.

—TS.2 No perfect collinearity

In the sample (and thus in the underlying time series process), none of the
explanatory variables (xt2, ..., xtk) is constant, and there is no exact linear
relationship among them.

—TS.3 Zero conditional mean

For each t, the expected value of ut given any values of X ≡ (X1, ..., XT ) is
equal to zero, which is equivalent to say that the expected value of yt given
any values of X ≡ (X1, ..., XT ) is equal to β1 + β2xt2 + ...+ βkxtk = Xtβ :

E(ut|X) = 0 ⇔ E(yt|X) = Xtβ , t = 1, ..., T
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—TS.4 Homoskedasticity

For each t, the variance of ut given any values of X ≡ (X1, ..., XT ) is
constant, which is equivalent to say that the variance of yt given any values
of X ≡ (X1, ..., XT ) is constant :

V ar(ut|X) = σ2 ⇔ V ar(yt|X) = σ2 , t = 1, ..., T

where σ2 is a unknown parameter.

—TS.5 No serial correlation

For all t 	= s, the covariance between of ut and us given any values of
X ≡ (X1, ...,XT ) is equal to zero, which is equivalent to say that the
covariance between of yt and ys given any values of X ≡ (X1, ..., XT ) is
equal to zero :

Cov(ut, us|X) = 0 ⇔ Cov(yt, ys|X) = 0 , for all t 	= s

—TS.6 Normality

The distribution of the errors ut is the same given any values of X ≡
(X1, ...,XT ) — i.e., the errors ut are independent of X — and they are
independently1 normally distributed with zero mean and variance equal to
σ2, which is equivalent to say that, given any value of X ≡ (X1, ..., XT ),
the dependent variables yt are likewise independently normally distributed
with mean equal to Xtβ and variance equal to σ2 :

ut|X ∼ N(0, σ2) ⇔ yt|X ∼ N(Xtβ, σ2), t = 1, ..., T

• The above set of assumptions deserves several comments :

—Assumption TS.1 is the basically same as assumption MLR.1 for the cross-
sectional case. Written in matrix form, it is the same as the linearity in
parameters assumption E.1 : Y = Xβ + u stated in the supplemental
lecture notes I (hereafter SNL-I).

— Likewise, assumption TS.2 is the same as assumption MLR.3 for the cross-
sectional case. Written in matrix form, it is likewise the same as the no
perfect collinearity assumption E.2 : rank(X) = k stated in SNL-I.

—Assumption TS.3 is a time series analog of assumption MLR.4 for the
cross-sectional case. As assumption MLR.4, it says that the systematic
part of the model in TS.1 is the conditional mean of yt given Xt, i.e.,
E(yt|Xt) = β1 + β2xt2 + ... + βkxtk = Xtβ. But this assumption says
more : it also requires that the conditional mean of yt given the explanatory
variables of all time periods X ≡ (X1, ..., XT ) does actually only depend
on the explanatory variables of the contemporaneous period Xt :

E(yt|X) = E(yt|X1, ..., XT ) = E(yt|Xt) = Xtβ, t = 1, ..., T

1Note that under (joint) normality, independence and zero correlation are equivalent.
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When this assumption — which may equivalently be written as E(ut|X) =
E(ut|X1, ..., XT ) = E(ut|Xt) = 0, t = 1, ..., T — holds, it is said that the
explanatory variables are ‘strictly exogenous’. In the cross-sectional case,
this strict exogeneity assumption was automatically satisfied, as a result
of the random sampling assumption MLR.2, which implies independence
across individuals. Assumption TS.3 may be viewed as retaining the strict
exogeneity assumption implicit in the cross-sectional case — which is needed
for OLS to have the same finite sample properties — without maintaining an
independence assumption, i.e., while allowing for (arbitrary) dependence
across time.
Written in matrix form, assumption TS.3 is the same as the zero condi-
tional meanassumption E.3 : E(u|X) = 0 ⇔ E(Y |X) = Xβ stated in
SNL-I.

— Similarly to assumption MLR.4 in the cross-sectional case, by the law of
iterated expectations, the zero conditional mean assumption TS.3 implies
that the unconditional mean of ut is zero (i.e., E(ut) = 0, t = 1, ..., T ),
and that ut is uncorrelated (have zero covariance) with each explanatory
variable, in each time period (i.e., E(xsjut) = 0, s, t = 1, ..T ; j = 2, ..., k)).

—The strict exogeneity assumption included in assumption TS.3 is much
more restrictive than it might seem at first sight. On the one hand, it
does not allow for the possibility of feedback from the current value of the
dependent variable to the future values of the explanatory variables. For
example, in the simple static model :

yt = β1 + β2zt + ut = Xtβ + ut, where Xt = [ 1 zt ]

we can not have that zt+1 is partly determined by yt. If it was the case,
the strict exogeneity assumption :

E(yt|X) = E(yt|z1, ...zT ) = E(yt|zt)

would certainly be violated2. On the other hand, it does not allow for
models with lagged dependent variables. As a matter of fact, for the first
order autoregressive model :

yt = β1 + β2yt−1 + ut = Xtβ + ut, where Xt = [ 1 yt−1 ]

we have :

E(yt|X) = E(yt|y0, ..., yT−1) = yt
	= E(yt|Xt) = E(yt|yt−1) = β1 + β2yt−1

i.e., the strict exogeneity assumption is by construction violated.

—Assumption TS.4 is a time series analog of the homoskedasticity assump-
tion MLR.5 for the cross-sectional case. Also, assumption TS.5 may be

2 i.e., yt would certainly depends not only on zt, but also on zt+1. See Wooldridge (2016) p. 319
for a practical example. Note that, in this simple static model, the strict exogeneity assumption also
forbids that yt depends on zt−1, zt−2, .... But this is usually not really a concern : it can simply be
circumvented by adding enough lags of zt in the original model, i.e., by estimating a distributed lag model.
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viewed as a time series analog of the no correlation across individuals prop-
erty which automatically holds in the cross-sectional case, as a result of the
random sampling assumption MLR.2, which implies independence across
individuals. Note that, similarly to assumption TS.3, both the constant
variance and the no serial correlation assumption are assumed to hold not
only for any value of the contemporaneous explanatory variables, but for
any value of the explanatory variables of all time periods X ≡ (X1, ..., XT ).
Note also that if assumption TS.5 restrict the temporal dependence of ut,
and equivalently of yt, conditional on X, it assumes nothing — i.e., puts no
restriction — about the temporal dependence of the explanatory variables.
Written in matrix form, jointly considered, assumption TS.4 and assump-
tion TS.5 are the same as the homoskedasticity & no correlation assumption
E.4 : V (u|X) = σ2I ⇔ V (Y |X) = σ2I stated in SLN-I.

— Finally, assumption TS.6 is likewise a time series analog of the normality
assumption MLR.6 for the cross-sectional case. Written in matrix form, it
is likewise the same as the normality assumption E.5 : u|X ∼ N(0, σ2I)⇔
Y |X ∼ N(Xβ, σ2I) stated in SLN-I.

• As outlined in the above discussion, assumptions TS.1 —TS.6 are the same as
the so-called ‘classical linear model’ assumptions E.1 —E.5, i.e., the assumptions
under which we actually established the finite sample properties of the OLS
estimator in the cross-sectional case3. Under assumptions TS.1 —TS.6, the OLS
estimator has thus the same finite sample properties as in the cross-sectional
case. More specifically :

—Under assumptions TS.1 —TS.3 (linearity in parameters, no perfect colin-
earity and zero conditional mean, which are the same as assumptions E.1
— E.3), from Property 1 in SNL-I, β̂ is an unbiased estimator4 of β.

— If assumptions TS.4 — TS.5 (homoskedasticity and no serial correlation,
which are the same as assumption E.4) are added to assumptions TS.1 —
TS.3, from Property 2 and 3 in SNL-I, the (conditional) variance-covariance

matrix of β̂ is given5 by V (β̂|X) = σ2 (X ′X)−1 and β̂ is the best lin-
ear unbiased estimator6 (BLUE) of β. Also, from Property 5 SNL-I,

ŝ2 = 1

T−k

�T

t=1 û
2
t =

û′û
T−k

is an unbiased estimator7 of σ2.

— If assumption TS.6 (normality, which is the same as assumption E.5) is
added to assumptions TS.1 —TS.5, from Property 4 in SNL-I„ the (condi-

tional) distribution of β̂ is normal and given8 by β̂|X ∼ N (β, σ2(X ′X)−1).

3 In the cross-sectional case, we used these assumptions because, on the one hand, they are more
convenient to work with, and on the other hand, they hold whenever the seminal assumptions MLR.1 —
MLR.6 hold (i.e., the seminal assumptions MLR.1 — MLR.6 imply assumptions E.1 — E.5 ; note that
the converse is not true).

4 This property is the same as Theorem 10.1 in Wooldridge (2016), Section 10-3.
5 This property is the same as Theorem 10.2 in Wooldridge (2016), Section 10-3.
6 This property is the same as Theorem 10.4 in Wooldridge (2016), Section 10-3.
7 This property is the same as Theorem 10.3 in Wooldridge (2016), Section 10-3.
8 This property is the same as Theorem 10.5 in Wooldridge (2016), Section 10-3.
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• Needless to say, as under assumptions TS.1 —TS.6 the finite sample properties of
the OLS estimator are the same as in the cross-sectional case, all usual inference
procedures derived in Section 4.1, 4.2 and 4.4.1 of SNL-I — i.e., the confidence
intervals for βj or a single linear combination R0β, the two-sided and one-sided
t-tests of βj or a single linear combination R0β, and the F -test of multiple linear
restrictions — are of course valid and exact in finite sample.

3. Asymptotic properties of OLS

• The classical assumptions TS.1 —TS.6, which are equivalent to the matrix as-
sumptions E.1 —E.5, are pretty restrictive for time series applications. This is
in particular the case of the strict exogeneity assumption included in the zero
conditional mean assumption TS.3 — which allows neither for the possibility of
feedback from the current value of the dependent variable to the future values
of the explanatory variables, nor for lagged dependent variables — and of the
normality assumption TS.6.

• Fortunately, these somewhat restrictive assumptions are not needed for the OLS
estimator to again actually have the same asymptotic properties as in the cross-
sectional case. This however comes at a price : it requires the dependence of the
observations across time not to be too strong, so that law of large numbers and
central limit theorem for dependent data hold.

• Following Wooldridge (2016), Section 11-2, the asymptotic properties of the OLS
estimator :

β̂ = (X ′X)
−1
X

′

Y =

�
T�

t=1

X ′

tXt

�−1 T�

t=1

X ′

tyt

are again exactly the same as in the cross-sectional case under the following
assumptions :

—TS.1’ Linearity in parameters and weak dependence

The available data are realizations of a stochastic process {(xt2, ..., xtk, yt):
t = 1, ..., T} which is stationary, weakly dependent and follows the linear
model :

yt = β1 + β2xt2 + ...+ βkxtk + ut

where (β1, ..., βk) are unknown parameters and {ut: t = 1, ..., T} is a se-
quence of error.

—TS.2’ No perfect collinearity

In the sample (and thus in the underlying time series process), none of the
explanatory variables (xt2, ..., xtk) is constant, and there is no exact linear
relationship among them.

—TS.3’ Zero conditional mean

For each t, the expected value of ut given any values of Xt = (1, xt2, ..., xtk)
is equal to zero, which is equivalent to say that the expected value of yt
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given any values of Xt = (1, xt2, ..., xtk) is equal to β1+β2xt2+ ...+βkxtk =
Xtβ :

E(ut|Xt) = 0 ⇔ E(yt|Xt) = Xtβ , t = 1, ..., T

—TS.4’ Homoskedasticity

For each t, the variance of ut given any values of Xt = (1, xt2, ..., xtk) is
constant, which is equivalent to say that the variance of yt given any values
of Xt = (1, xt2, ..., xtk) is constant :

V ar(ut|Xt) = σ2 ⇔ V ar(yt|Xt) = σ2 , t = 1, ..., T

where σ2 is a unknown parameter.

—TS.5’ No serial correlation

For all t 	= s, the expected value of the cross-product between of ut and us
given any values of (Xt, Xs) = (1, xt2, ..., xtk, xs2, ..., xsk) is equal to zero :

E(utus|Xt,Xs) = 0 , for all t 	= s

• The above set of assumptions deserves several comments :

—Assumption TS.1’ is the same as assumption TS.1 plus the assumption
that the stochastic process {(xt2, ..., xtk, yt) : t = 1, ..., T} is stationary
and weakly dependent. It may be viewed as the time series analogue of
assumptions MLR.1 and MLR.2, where the random sampling assumption
MLR.2 is replaced by an assumption of stationarity and weak dependence.

—The stationarity assumption included in assumption TS.1’ is mainly for
convenience and is not crucial. As matter of fact, the asymptotic properties
outlined hereafter also hold if the data are trended, provided appropriate
time trends are included in the model. A similar statement holds for data
with seasonality. See Wooldridge (2016) p. 348 for a short discussion.

— In contrast, the weak dependence assumption included in assumption TS.1’
is of primary importance : it is needed for law of large numbers and central
limit theorem on which are based the asymptotic properties of OLS to
hold. Intuitively, weak dependence requires that the correlation between
observations at time t and time t + h goes to zero sufficiently quickly as
h → ∞. For a discussion and examples of weakly dependent time series,
see Wooldridge (2016), Section 11-1. For a discussion and examples of time
series which are not weakly dependent (they are called ‘highly persistent’
or ‘strongly dependent’), and how such highly persistent time series can be
transformed into a weakly dependent series by differencing, see Wooldridge
(2016), Section 11-3.

—Assumption TS.2’ is exactly the same as assumption TS.2, as well as the
same as assumption MLR.3 for the cross-sectional case.

—Assumption TS.3’ is the same as assumption TS.3, but without the strict
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exogeneity assumption. It is the exact analogue of assumption MLR.4 for
the cross-sectional case. As assumption MLR.4, by the law of iterated
expectations, the zero conditional mean assumption TS.3’ implies that the
unconditional mean of ut is zero (i.e., E(ut) = 0, t = 1, ..., T ), and that
ut is uncorrelated (have zero covariance) with each explanatory variable in
the same (and only the same) time period (i.e., E(xtjut) = 0, t = 1, ..T ;
j = 2, ..., k)).

—Assumption TS.4’ is the same as assumption TS.4, except that the constant
variance is assumed to hold only for any value of the contemporaneous
explanatory variablesXt, and not for any value of the explanatory variables
of all time periodsX ≡ (X1, ..., XT ). It is the exact analogue of assumption
MLR.5 for the cross-sectional case.

—Assumption TS.5’ is a little bit more tricky to grasp. Essentially, it may
be viewed as the same as assumption TS.5 — which under assumption
TS.3 is equivalent9 to E(utus|X) = 0, for all t 	= s —, except that it en-
tails conditioning only on the explanatory variables Xt and Xs in time
periods coinciding with ut and us rather than on the explanatory vari-
ables X ≡ (X1, ..., XT ) of all time periods. Likewise, it may be viewed
as the time series analog of the no correlation across individuals prop-
erty which automatically holds in the cross-sectional case, as a result
of the random sampling assumption MLR.2, which implies independence
across individuals. Formally, assumption TS.5’ is however not equivalent
to Cov(ut, us|Xt, Xs) = 0, for all t 	= s : for this equivalence to hold, we
would need that E(ut|Xt, Xs) = E(us|Xt, Xs) = 0 holds10, i.e., a stronger
assumption (including strict exogeneity) than assumption TS.3’. We will
see hereafter in Section 3.3 that assumption TS.5’ may formally be inter-
preted in terms of ‘dynamic completeness’ of the model.

— In a nutshell, assumptions TS.1’ —TS.5’ may be viewed as a version of
assumptions TS.1 —TS.5 where the strict exogeneity assumption has been
traded for a (stationarity and) weak dependence assumption.

—On the other hand, assumptions TS.1’ —TS.5’ are the same as the semi-
nal cross-sectional assumptions MLR.1 —MLR.5 with the random sampling
assumption replaced by the weaker stationarity, weak dependence and no
serial correlation assumptions. As matter of fact, assumptions MLR.1 —
MLR.5 are just a special case11 of assumptions TS.1’ —TS.5’.

9 By definition, Cov(ut, us|X) = E(utus|X) − E(ut|X)E(us|X), so that under Assumption TS.3
E(ut|X) = E(us|X) = 0, we have Cov(ut, us|X) = E(utus|X) = 0.

10 By definition, Cov(ut, us|Xt,Xs) = E(utus|Xt,Xs) − E(ut|Xt,Xs)E(us|Xt,Xs), so that for having
Cov(ut, us|Xt,Xs) = E(utus|Xt,Xs) = 0 we would need that E(ut|Xt,Xs) = E(us|Xt,Xs) = 0 holds,
while assumption TS.3’ only ensures that E(ut|Xt) = E(us|Xs) = 0.

11 In other words, assumptions MLR.1 —MLR.5 imply assumptions TS.1’ — TS.5’.
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3.1. Consistency of β̂

•We have the following property12 :

Property 12 Consistency of β̂

Under assumptions TS.1’ —TS.3’, the OLS estimator β̂ is a consistent estimator
of β :

β̂
p−→ β

A sketch of the proof is as follows. It is basically the same as in the cross-sectional
case. Under assumptions TS.1’ —TS.2’, we have :

β̂ =

�
T�

t=1

X ′

tXt

�−1 T�

t=1

X ′

tyt = β +

�
1

T

T�

t=1

X ′

tXt

�−1�
1

T

T�

t=1

X ′

tut

�
(1)

Under the stationarity and weak dependence assumptions, the observations
(Xt, yt) are identically but non independently distributed (i.n.i.d.) across t,
so that both X ′

tXt and X
′

tut are likewise i.n.i.d. across t. If, as supposed by the
weak dependence assumption, the dependence between observations at time t
and time t+ h goes to zero sufficiently quickly as h→∞, then, as in the cross-
sectional case, a law of large numbers (LLN) can be applied to both sample

average 1

T

�T

t=1X
′

tXt and
1

T

�T

t=1X
′

tut.
If {Zt: t = 1, ..., T} is a stationary and weakly dependent stochastic process with
E(Zt) = m, then by the LLN we have13 :

Z̄T =
1

T

T�

t=1

Zt
p−→ m

Under the zero conditional mean assumption TS.3’ E(ut|Xt) = 0, by the law of
iterated expectations, we have :

E (X ′

tut) = E [E (X
′

tut|Xt)] = E [X ′

tE (ut|Xt)] = E [X ′

t · 0] = 0 (2)

Noting E(X ′

tXt) = A, from the LLN, we thus have :

1

T

T�

t=1

X ′

tXt
p−→ A and

1

T

T�

t=1

X ′

tut
p−→ 0

so that, from (1), we finally have :

β̂
p−→ β +A−1 · 0 = β

• As in the cross-sectional case, equation (2) in the above proof suggests that β̂
would be consistent for β under a weaker assumption than the zero conditional
mean assumption TS.3’. It is actually sufficient to have E (X ′

tut) = 0, i.e., the
assumption TS.3” :

12 This property is the same as Theorem 11.1 in Wooldridge (2016), Section 11-2. For a sketch of
the proof similar to the one developed below, see Wooldridge (2016) p. 728-729. For a more detailed
and rigorous treatment, see Hayashi (2000).

13 This holds for Zt being a scalar, a vector or a matrix.
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TS.3” Zero mean and zero correlation

For each t, the expected value of ut is zero and ut is uncorrelated with each
explanatory variable (xt2, ..., xtk) :

E(ut) = 0 and Cov(xtj , ut) = 0, t = 1, ..T ; j = 2, ..., k

Property 12’ Consistency of β̂ (bis)

Under assumptions TS.1’ —TS.2’ and assumption TS.3”, the OLS estimator β̂ is
a consistent estimator of β :

β̂
p−→ β

3.2. Asymptotic normality of β̂ and inference

•We have the following property14 :

Property 13 Asymptotic normality of β̂

Under assumptions TS.1’ —TS.5’, the OLS estimator β̂ is asymptotically nor-
mally distributed :

√
T (β̂ − β) d−→ N(0, σ2A−1), where A = E(X ′

tXt) (3)

A sketch of the proof is as follows. Besides additional complications due to the
dependence of the observations across time, it is again basically the same as in
the cross-sectional case. Under assumptions TS.1’ —TS.2’, from (1), we have :

β̂ = β +

�
1

T

T�

t=1

X ′

tXt

�−1�
1

T

T�

t=1

X ′

tut

�

⇔
√
T (β̂ − β) =

�
1

T

T�

t=1

X ′

tXt

�−1�
T−

1
2

T�

t=1

X ′

tut

�
(4)

As already outlined, under the stationarity and weak dependence assumptions,
both X ′

tXt and X
′

tut are identically but non independently distributed (i.n.i.d.)
across t, and the dependence between observations at time t and time t+h goes to
zero sufficiently quickly as h→∞, so that, as in the cross-sectional case, a law of
large numbers but also a central limit theorem can be applied to sample averages.

From the law of large numbers (LLN), we have 1

T

�T

t=1X
′

tXt
p−→ E(X ′

tXt) = A,
and we can write :

√
T (β̂ − β) as= A−1

�
T−

1
2

T�

t=1

X ′

tut

�
(5)

where
as
=means ‘asymptotically equivalent’, so that

√
n(β̂−β) has asymptotically

the same distribution as A−1
�
T−

1
2

�T

t=1X
′

tut

	
.

14 This property is the same as Theorem 11.2 in Wooldridge (2016), Section 11-2. For a sketch of
the proof similar to the one developed below, see Wooldridge (2016) p. 729-730. For a more detailed
and rigorous treatment, see Hayashi (2000).
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Now, if {Zt: t = 1, ..., T} is a (k×1) stationary and weakly dependent stochastic
process with E(Zt) = m, then by the central limit theorem (CLT) we have15 :

√
T (Z̄T −m) = T−

1
2

T�

t=1

(Zt −m) d−→ N(0,Σ), where Σ = V
�
T−

1
2

�T

t=1 Zt
	

As already outlined, under the zero conditional mean assumption TS.3’
E(ut|Xt) = 0, from (2), we have E (X ′

tut) = 0. From the CLT, we thus have :

T−
1
2

T�

t=1

X ′

tut
d−→ N(0, B), where B = V

�
T−

1
2

�T

t=1X
′

tut
	

so that16 :

A−1
�
T−

1
2

T�

t=1

X ′

tut

�
d−→ N(0, A−1BA−1)

and thus, from (5) :

√
T (β̂ − β) d−→ N(0, A−1BA−1) (6)

To complete the proof, it remains to show that, under the homoskedasticity and
the no serial correlation assumptions TS.4’ and TS.5’, we have B = σ2A. The
variance-covariance matrix B can be written :

B = V
�
T−

1
2

�T

t=1X
′

tut

	
= E


�
T−

1
2

�T

t=1X
′

tut

	�
T−

1
2

�T

t=1X
′

tut

	
′

�

= E



1

T

T�

t=1

T�

s=1

X ′

tutusXs

�
=
1

T

T�

t=1

T�

s=1

E(utusX
′

tXs) (7)

Under the no serial correlation assumption TS.5’ E(utus|Xt, Xs) = 0, for all
t 	= s, by the law of iterated expectations, we have :

E(utusX
′

tXs) = E [E(utusX
′

tXs|Xt, Xs)]
= E [E(utus|Xt, Xs)X ′

tXs]

= E [0 ·X ′

tXs] = 0

so that all terms with t 	= s in (7) are equal to zero, and B is thus equal to :

B =
1

T

T�

t=1

E(u2tX
′

tXt)

Further, under the homoskedasticity assumption TS.4’ V ar(ut|Xt) = E(u2t |Xt) =
σ2, for all t, by the law of iterated expectations, we have :

15Note that if Zt is identically and independently distributed (i.i.d.), then Σ = V
�
T−

1

2

�T

t=1
Zt

�
=

1

T

�T

t=1
V (Zt) = V (Zt).

16 because a linear function of jointly normally distributed random variables is itself normally distributed,
and A−1 is a symmetric matrix.
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E(u2tX
′

tXt) = E
�
E(u2tX

′

tXt|Xt)


= E

�
E(u2t |Xt)X ′

tXt



= E
�
σ2X ′

tXt


= σ2E(X ′

tXt) = σ
2A

so that B is equal to :

B =
1

T

T�

t=1

σ2A = σ2A

and, from (6), we finally have :

√
T (β̂ − β) d−→ N(0, σ2A−1)

• The limiting distributional result (3) is the exact analogue of the limiting distri-
butional result given by Property 7 in SNL-I for the cross-sectional case17. As
in the cross-sectional case, it provides an approximate finite sample distribution
for the OLS estimator β̂ :

√
n(β̂ − β) ≈ N(0, σ2A−1)

⇔ β̂ ≈ N(β, σ2A−1/T ) (8)

which can be used — when n is sufficiently large — for performing inference
(confidence interval, hypothesis testing) without having to rely on any other
assumption than assumptions TS.1’ —TS.5’, i.e., in particular without having to
rely on any normality assumption.

• As in the cross-section case, an estimator of the asymptotic variance Avar(β̂) =
σ2A−1/T is simply obtained by replacing σ2 and A by consistent estimators.

From the LLN, a consistent estimator ofA = E(X ′

tXt) is given by 1

T

�T

t=1X
′

tXt =
X ′X/T , and a consistent estimator of σ2 is likewise still given18 by ŝ2 =
1

T−k

�T

t=1 û
2
t , where ût = yt −Xtβ̂ :

Property 14 Consistency of ŝ2

Under TS.1’ —TS.5’, ŝ2 is a consistent estimator of σ2 :

ŝ2
p−→ σ2

With ŝ2 and X ′X/T as consistent estimators of σ2 and A, an estimator of

Avar(β̂) = σ2A−1/T is given by :

V̂ (β̂) = ŝ2 (X ′X)
−1

(9)

• As the limiting distributional result (3), or equivalently the approximate distri-

butional result (8), and the estimator (9) of the asymptotic variance Avar(β̂)
are the same as in the cross-sectional case, from the results derived in Section

17As a matter of fact, Property 7 in SNL-I is just a special case of Property 13.
18 For a detailed proof, see Hayashi (2000) p. 115-116.
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4.3 and Section 4.4.2 of SNL-I, it follows that all usual inference procedures
— confidence interval for βj or a single linear combination R0β, two-sided and
one-sided t-tests of βj or a single linear combination R0β, F -test (or Wald test)
of multiple linear restrictions — are likewise asymptotically valid — i.e., approx-
imately valid for T sufficiently large — in the present time series context under
assumptions TS.1’ —TS.5’.

3.3. Heteroskedasticity and autocorrelation robust inference

• The outlined above asymptotic properties of the OLS estimator does not rely
on any normality assumption, but they require both homoskedasticity and no
serial correlation. If the homoskedasticity assumption TS.4’ and/or the no se-
rial correlation assumption TS.5’ do not hold, then the OLS estimator is still
consistent (only assumptions TS.1’ —TS.3’ are required for consistency), but all
usual inference procedures are no longer valid.

• In time series, heteroskedasticity is usually a lower concern than with cross-
sectional data19. On the other hand, serial correlation is often an issue, unless
the model is dynamically complete : when a model is dynamically complete,
then the no serial correlation assumption TS.5’ is automatically satisfied. As
matter of fact, a regression model :

yt = Xtβ + ut, t = 1, ..., T (10)

is said to be dynamically complete if, for each t, we have :

E(yt|Xt, yt−1, Xt−1, ..., y1,X1) = E(yt|Xt) = Xtβ, t = 1, ..., T (11)

or equivalently :

E(ut|Xt, yt−1,Xt−1, ..., y1,X1) = E(ut|Xt) = 0, t = 1, ..., T (12)

In words, the regression model (10) is dynamically complete if enough lags has
been included in Xt — which in all generality may contain contemporaneous ex-
planatory variables zt, lagged explanatory variables zt−1, zt−2, ... and/or lagged
dependent variables yt−1, yt−2, ... —, so that adding further lags of y and the
explanatory variables do not matter for explaining yt. For example20, the au-
toregressive distributed lag model :

yt = β1 + β2zt ++β3yt−1 + β2zt−1 + ut = Xtβ + ut, t = 1, ..., T

where Xt = [1 zt yt−1 zt−1 ], is dynamically complete if we have :

E(yt|zt, yt−1, zt−1, ..., y1, z1) = E(yt|zt, yt−1, zt−1), t = 1, ..., T

= β1 + β2zt ++β3yt−1 + β2zt−1

If (12) hold — i.e., if the model is dynamically complete —, then the no serial cor-

19 Financial time series is a notable exception.
20 For a discussion and other examples, see Wooldridge (2016), Section 11-4.
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relation assumption TS.5’ automatically hold. The proof is as follows. Suppose
that s < t, by the law of iterated expectations, we have :

E(utus|Xt, Xs) = E [E(utus|Xt, Xs, us)|Xt, Xs]
= E [usE(ut|Xt, Xs, us)|Xt, Xs]

Because s < t and us is a function of ys and Xs, (Xt, Xs, us) is a subset of the
conditioning set in (12). Therefore, (12) imply that E(ut|Xt, Xs, us) = 0, and
thus :

E(utus|Xt, Xs) = E [us · 0|Xt,Xs] = 0

so that, for all t 	= s, we have :

E(utus|Xt, Xs) = 0

•When a model is not dynamically complete — it is most often the case of static
and distributed lag models21 —, then, along with the possible presence of het-
eroskedasticity, the no serial correlation assumption TS.5’ is generally violated,
and thus all usual inference procedures are no longer valid. However, as for het-
eroskedasticity (only) in the cross-sectional case, it is possible to derive inference
procedures which are valid in the presence of both heteroskedasticity and serial
correlation of unknown form, i.e., which are robust to arbitrary form of both
heteroskedasticity and autocorrelation.

• Heteroskedasticity and autocorrelation robust inference procedures basically rely
on the following property, which outlines the asymptotic properties of the OLS
estimator β̂ under the minimal set of assumptions TS.1’ —TS.3’ (linearity in
parameters and weak dependence, no perfect colinearity and zero conditional
mean) :

Property 14 Asymptotic properties of β̂ without homoskedasticity and no serial
correlation

Under assumptions TS.1’ —TS.3’, the OLS estimator β̂ is a consistent estimator
of β :

β̂
p−→ β

and is asymptotically normally distributed as :

√
T (β̂ − β) d−→ N(0, A−1BA−1) (13)

where :
A = E(X ′

tXt) and B = V
�
T−

1
2

�T

t=1X
′

tut

	

The fact that β̂ is consistent for β under assumptions TS.1’ —TS.3’ was already
outlined in Property 12. On the other hand, the limiting distribution result (13)
has already be shown to hold likewise under assumptions TS.1’ —TS.3’ in the

21A time series regression model without any lagged dependent variable is quite unlikely to be dy-
namically complete.
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sketch of the proof of Property 13 : see the intermediary result (6).

• The limiting distribution result (13) is the analogue of the limiting distributional
result given by Property 9 in the supplemental lecture notes III (hereafter SNL-
III) for the cross-sectional case22. As in the cross-sectional case, it provides an

approximate finite sample distribution for the OLS estimator β̂ :

√
T (β̂ − β) d−→ N(0, A−1BA−1)

⇔ β̂ ≈ N(β,A−1BA−1/T ) (14)

which can be used — when n is sufficiently large — for performing robust inference
(confidence interval, hypothesis testing) without having to rely on any other
assumption than assumptions TS.1’ —TS.3’, i.e., in particular without having to
rely on the homoskedasticity and no serial correlation assumptions.

• For inference based on the limiting distributional result (13), or equivalently on
the approximate distributional result (14), we need an estimator of the asymp-

totic variance Avar(β̂) = A−1BA−1/T . This requires consistent estimators of
A and B. We already know that X ′X/T is a consistent estimator of A (this
directly follows from the LLN). It may be shown that a consistent estimator of

B = V
�
T−

1
2

�T

t=1X
′

tut
	
is given by :

B̂ =
1

T

T�

t=1

û2tX
′

tXt +
1

T

q�

τ=1

(1− τ
q+1
)

T�

t=τ+1

(X ′

tûtût−τXt−τ +X
′

t−τ ût−τ ûtXt)

where ût = yt −Xtβ̂. This is formalized in the following property23 :

Property 15 Consistent estimator of B

Under TS.1’ —TS.3’ (and some regularity conditions), B̂ is a consistent estimator
of B :

B̂
p−→ B

To help intuitively understanding why B̂ is a consistent estimator of B, it must

be noted that B = V
�
T−

1
2

�T

t=1X
′

tut

	
can be written as :

B =
1

T

T�

t=1

E(u2tX
′

tXt) +
1

T

T−1�

τ=1

T�

t=τ+1

E(X ′

tutut−τXt−τ +X
′

t−τut−τutXt)

It then appears that B̂ is basically the empirical counterpart of B, where (1) ut
is replaced by its consistent estimator ût, (2) the averages of expectations are
replaced by sample averages, and (3) the covariances betweenX ′

tut andX
′

t−τut−τ
are supposed to be equal to zero for all lags τ > q (i.e., only the covariances
between observations with at most q lags are considered). The integer q controls

22As a matter of fact, Property 9 in SNL-III is just a special case of Property 14.
23 For more details, see for example Hamilton (1994) p. 281-283.
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how much autocorrelation is allowed. Theory states that B̂ works for fairly
arbitrary forms of autocorrelation, provided that q grows with sample size T .
For annual data, choosing a small q, such as q = 1 or q = 2, is likely to be
enough. For quarterly or monthly data, q should be larger (q = 4 or 8 for
quarterly and q = 12 or 24 for monthly, provided enough data are available)24.

• Using the outlined above consistent estimators of A and B, an estimator of
Avar(β̂) = A−1BA−1/T is given by :

V̂HAC(β̂) = (X
′X)−1

×
�

T�

t=1

û2tX
′

tXt +
q�

τ=1

(1− τ
q+1
)

T�

t=τ+1

(X ′

tûtût−τXt−τ +X
′

t−τ ût−τ ûtXt)

�

× (X ′X)
−1

(15)

where the subscript ‘HAC’ stands for ‘Heteroskedasticity and Autocorrelation
Consistent’. As usual, the diagonal elements V ârHAC(β̂j) of the k×k matrix es-

timator V̂HAC(β̂) being the estimators of the variance Avar(β̂j) of the estimator

β̂j of the different parameters βj (j = 1, ..., k), natural estimators of the asymp-

totic standard error As.e.(β̂j) =
�
Avar(β̂j) of the estimator β̂j of the different

parameters βj, as well as a natural estimator of the asymptotic standard error

As.e.(R0β̂) =
�
Avar(R0β̂) =

�
R0Avar(β̂)R′0 of the estimator R0β̂ of a single

linear combination R0β of β, are likewise given by :

s.ê.HAC(β̂j) =
�
V ârHAC(β̂j), j = 1, ..., k (16)

and :

s.ê.HAC(R0β̂) =

�
R0V̂HAC(β̂)R′0 (17)

where R0 is a 1× k (row) vector of constants.

• As for heteroskedasticity robust inference in the cross-sectional case, the limiting
distributional result (13), or equivalently the approximate distributional result
(14), and the heteroskedasticity and autocorrelation consistent (or robust) esti-

mators V̂HAC(β̂), s.ê.HAC(β̂j) and s.ê.HAC(R0β̂) given above in respectively (15),
(16) and (17), provide all which is needed for performing heteroskedasticity and
autocorrelation robust inference after OLS estimation. Following exactly the
same reasoning as in Section 4.3 and Section 4.4.2 of SLN-I, it may readily be
checked that if in all the usual inference procedures — confidence interval for βj
or a single linear combination R0β, two-sided and one-sided t-tests of βj or a
single linear combination R0β, F -test (or Wald test) of multiple linear restric-

tions — we replace the usual estimators V̂ (β̂), s.ê.(β̂j) and s.ê.(R0β̂) by their

heteroskedasticity and autocorrelation consistent (or robust) versions V̂HAC(β̂),

s.ê.HAC(β̂j) and s.ê.HAC(R0β̂), then we obtain inference procedures that are
asymptotically valid — i.e., approximately valid for T sufficiently large — under

24 For more details, see Wooldridge (2016), Section 12-5.
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only assumptions TS.1’ —TS.3’, i.e., without having to rely on neither the ho-
moskedasticity assumption TS.4’ nor the no serial correlation assumption TS.5’
(as well as any normality assumption).

• Remarks :

—All modern econometric software optionally provide heteroskedasticity and
autocorrelation robust standard errors and allow to perform heteroske-
dasticity and autocorrelation robust tests. In applied works, when there is
serial correlation, heteroskedasticity and autocorrelation robust standard
errors are typically found larger than the usual OLS standard errors. This
is because, in most cases, both data and errors are positively autocorre-
lated25.

—When there is substantial serial correlation and the sample size is small
(where small can be as large as, say, 100), the heteroskedasticity and auto-

correlation consistent estimator V̂HAC(β̂) can be poorly behaved, so that
the robust inference procedures may be poorly reliable. This partly ex-
plains why the use of heteroskedasticity and autocorrelation robust infer-
ence procedures are not as common in applied time series works as the use
of heteroskedasticity robust inference procedures in cross-sectional empir-
ical applications, where the available sample sizes are often much larger.

—The presence of serial correlation may easily be checked by running an
auxiliary regression of the form26 :

ût = Xtb+ δ1ût−1 + δ2ût−2 + ...+ δpût−p + vt (18)

An usual F -test of H0 : δ1 = ... = δp = 0 provides an asymptotically valid
test of the null hypothesis of no serial correlation, which may also be viewed
as a convenient test of the null hypothesis that the model is dynamically
complete. In practice, choosing a number p of lagged residuals equal to
1 or 2 should be enough for annual data. For quarterly or monthly data,
p should probably be larger. An asymptotically equivalent test may be
performed using the LM statistic27 :

LM = T ·R2û2

where R2
û2

is the R-squared from the auxiliary regression (18)28. This test
is known as the Breush-Godfrey test for serial correlation.

The validity of the above tests requires that the homoskedasticity assump-
tion TS.4’ hold. If heteroskedasticity is suspected, this may be addressed

25 For more details, see Wooldridge (2016), Section 12-1.
26Note that, unless the explanatory variables are assumed strictly exogenous, beside lagged residuals, to

yield a valid test, the auxiliary regression must include all explanatory variables Xt = (1, xt2, ..., xtk)
of the model. For more details, see Wooldrige (2016), Section 12-2.

27 The decision rule of this LM test is : reject H0 if LM > χ2p;1−α and do not reject otherwise, where

χ2p;1−α is the quantile of order 1−α of the χ2(p) distribution. The p-value of the test, for a value LM∗ of the

test statistic obtained in a particular sample, is given by : pLM = IP(v > LM∗), where v ∼ χ2(p).
28 T here refers to the actual number of observations in the auxiliary regression, i.e., the number of

original observations minus the number of lagged residuals.
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by using the heteroskedasticity robust F -test — as in the cross sectional
case — rather than the usual F -test to test H0 : δ1 = ... = δp = 0 in
the auxiliary regression (18). If this robust test does not reject the null
hypothesis of no serial correlation, then homoskedasticity may validly be
tested, as in the cross-sectional case, using the standard Breush-Pagan
test for heteroskedasticity29 outlined in SNL-III. If heteroskedasticity but
no serial correlation is finally found, then inference procedures only robust
to heteroskedasticity — as in the cross-sectional case — may be used instead
of heteroskedasticity and autocorrelation robust inference procedures30.
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