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• These lecture notes restate the main results of Sections 9-2, 9-4 and 9-5 of
Wooldridge (2016).

1. Proxy variables

•Omitting a relevant explanatory variable in a regression usually cause OLS to
no longer provide an unbiased and consistent estimator of the parameters of
interest, i.e., the partial effect of each variable, the other variables (including
the omitted one) being held constant. This is the omitted variable bias. One
way to solve, or at least to mitigate, this omitted variable bias is to resort to a
so-called proxy variable for the omitted variable.

• The main features of the proxy variable solution to the omitted variable bias
may be outlined by looking at a simple case. Suppose we are interested in the
parameters β2 and β3 — i.e., the partial effect of x2 and x3, x

∗

4
being held constant

— in the population model :

y = β
1
+ β

2
x2 + β3x3 + β4x

∗

4
+ u, with E(u|x2, x3, x

∗

4
) = 0 (1)

⇔ E(y|x2, x3, x
∗

4
) = β

1
+ β

2
x2 + β3x3 + β2x

∗

4

where x∗
4
is actually unobserved. As a concrete example, let y stand for the wage

of an individual, x2 for his level of education, x3 for his working experience and
x∗
4
for his unobserved ability.

• The proxy variable solution to the omitted variable problem basically means
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replacing the unobserved variable x∗
4
in (1) by another variable, say x4, which

acts as a substitute for x∗
4
. In our example, this could for example be some IQ

test score. To properly work, this proxy variable x4 must be such that :

(a) E(y|x2, x3, x
∗

4
, x4) = E(y|x2, x3, x

∗

4
) = β1 + β2x2 + β3x3 + β4x

∗

4

⇔ E(u|x2, x3, x
∗

4
, x4) = 0

(b) E(x∗
4
|x2, x3, x4) = E(x

∗

4
|x4) = δ1 + δ4x4

⇔ x∗
4
= δ1 + δ4x4 + r, where E(r|x2, x3, x4) = 0

Condition (a) requires that the proxy variable x4 is redundant in the population
model (1). Condition (b) supposes that once controlling for the proxy variable
x4, the unobserved variable x∗

4
is no longer related to the other variables x2 and

x3 of the population model1. This latter condition is the key condition to solve
the omitted variable bias. Plugging x∗

4
= δ1+δ4x4+r into the population model

(1), we have :

y = β1 + β2x2 + β3x3 + β4(δ1 + δ4x4 + r) + u

⇔ y = β∗
1
+ β2x2 + β3x3 + β

∗

4
x4 + v (2)

where β∗
1
= β1 + β4δ1, β

∗

4
= β4δ4 and v = u + β4r. Under conditions (a) and

(b), the error v in (2) such that2 :

E(v|x2, x3, x4) = E[(u+ β
4
r)|x2, x3, x4]

= E(u|x2, x3, x4) + β4E(r|x2, x3, x4)

= 0 + β4 · 0 = 0

so that, under usual assumptions, OLS estimation of the auxiliary model (2)
provides unbiaised and consistent estimators of the parameters of interest β

2

and β
3
of the population model (1).

Condition (a) is the easiest to satisfy. Fulfilling condition (b) is less straightfor-
ward. If it is not satisfied, simply replacing the unobserved variable x∗

4
by the

proxy variable x4 in the population model (1) will no longer provide consistent
estimators of β

2
and β

3
. As a matter of fact, if the proxy variable x4 satisfies

condition (a), but is such that when controlling for it, the unobserved variable
x∗
4
is still related to the other variables x2 and x3, i.e., the proxy variable x4 is

for example such that :

E(x∗
4
|x2, x3, x4) = δ1 + δ2x2 + δ2x3 + δ4x4

⇔ x∗
4
= δ1 + δ2x2 + δ3x3 + δ4x4 + r, where E(r|x2, x3, x4) = 0 (3)

then plugging x∗
4
= δ1 + δ2x2 + δ3x3 + δ4x4 + r into the population model (1)

now yields :
y = β∗

1
+ β∗

2
x2 + β

∗

3
x3 + β

∗

4
x4 + v (4)

1Note that if x2 and x3 were actually already unrelated to x∗4, x
∗

4 could simply be omitted without
creating any problem of bias.

2Note that, by the law of iterated expectations, E(u|x2, x3, x
∗

4, x4) = 0 implies that E(u|x2, x3, x4) = 0.
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where, as in (2), we still have β∗
1
= β1 + β4δ1, β

∗

4
= β4δ4 and v = u + β4r, but

now :
β∗
2
= β

2
+ β

4
δ2 and β∗

3
= β

3
+ β

4
δ3

Because condition (a) holds, we still have E(v|x2, x3, x4) = 0, so that under
usual assumptions, OLS estimation of the auxiliary model (4) will no longer
provides unbiaised and consistent estimators of β

2
and β

3
, but instead of the

parameters β∗
2
= β

2
+ β

4
δ2 and β∗

3
= β

3
+ β

4
δ3. Of course, the less condition

(b) is violated — i.e., the less δ2 and δ3 are different from zero in (3) —, the less
bias there will be.

• Remarks :

— In applied works, it is very common to see explanatory variables to be re-
ferred to as proxy variables for some unobserved variables without actually
worrying about any of the formal validity conditions outlined above, and
the parameters of these variables to be interpreted as any other variables.
This informal use of proxy variables — as a pragmatic way to control for
unobserved variables which are often only nebulously defined — is perfectly
legitimate, provided that the purpose of the analysis is properly framed.
See Wooldridge (2016), Section 9-2b for a discussion.

—Using a lagged dependent variable as a proxy variable to conveniently
control for unobserved explanatory variables is another legitimate form of
informal use of proxy variables. See Wooldridge (2016), Section 9-2a for a
discussion.

2. Measurement Errors

•Observed variables may be subject to measurement errors. In some cases, such
measurement errors are innocuous. In other cases, they may cause OLS to no
longer provide unbiaised and consistent estimators of the parameters of interest.

2.1. Measurement error in the dependent variable

• Suppose that we are interested in the population model :

y∗ = β1 + β2x2 + ...+ βkxk + u, with E(u|x2, ..., xk) = 0 (5)

⇔ E(y∗|x2, ..., xk) = β1 + β2x2 + ...+ βkxk

where the dependent variable y∗ is actually not observed. Instead, we suppose
that we observe y, which is assumed to be equal to y∗ plus some measurement
error e :

y = y∗ + e ⇔ e = y − y∗

and that the model actually estimated is :

y = β1 + β2x2 + ...+ βkxk + v, where v = u+ e (6)
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•OLS estimation of model (6) will yield unbiased and consistent estimators of the
parameters of the population model (5) if the following condition holds :

E(y|y∗, x2, ..., xk) = E(y|y
∗) = y∗

⇔ E(e|y∗, x2, ..., xk) = 0 (7)

This condition basically requires that the observed variable y is an unbiaised
measurement of the unobserved true dependent variable y∗ and does not depend
on any of the explanatory variables (x2, ..., xk), or expressed in another way, that
the measurement error e has zero mean and depends neither on the unobserved
true dependent variable y∗ nor on any of the explanatory variables (x2, ..., xk).
When condition (7) holds, we have3 :

E(v|x2, ..., xk) = E[(u+ e)|x2, ..., xk]

= E(u|x2, ..., xk) + E(e|x2, ..., xk)

= 0 + 0 = 0

so that, under usual assumptions, OLS estimation of the model (6) indeed pro-
vides unbiaised and consistent estimators of the parameters of the population
model (5).

• Remarks :

—A common situation of measurement errors in an observed variable is when
the variable is a self-reported variable. In such a case, the possibility that
condition (7) is violated is real. See Wooldridge (2016), Section 9-4a for
some examples.

—When condition (7) holds, OLS provides unbiaised and consistent estima-
tors of the parameters, but their standard errors will usually be larger than
without measurement error due to the larger variance of v in (6), which
now includes the additionnal measurement error e.

2.2. Measurement error in an explanatory variable

•Measurement errors in the dependent variable are innocuous provided that they
are in some way random, unrelated to both the unobserved true dependent
variable and the explanatory variables. This is generally not the case for mea-
surement errors in an explanatory variable.

• For the sake of the argument, suppose that we are interested in the simple
population model :

y = β1 + β2x
∗ + u, with E(u|x∗) = 0 (8)

⇔ E(y|x∗) = β1 + β2x
∗

3Note that, by the law of iterated expectations, E(e|y∗, x2, ..., xk) = 0 implies that E(e|x2, ..., xk) =
E(e) = 0.
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where the explanatory variable x∗ is actually not observed. Instead, we suppose
that we observe x, which is assumed to be equal to x∗ plus some measurement
error e :

x = x∗ + e ⇔ e = x− x∗ ⇔ x∗ = x− e

and that the model actually estimated is :

y = β
1
+ β

2
x+ v, where v = u− β

2
e (9)

Quite uncontroversially, it is maintained that x is redundant in the population
model (8), i.e., that we have :

E(y|x∗, x) = E(y|x∗) = β1 + β2x
∗ ⇔ E(u|x∗, x) = 0 (10)

• Contrary to the case of measurement errors in the dependent variable, assuming
— similarly to (7)4 — that the observed variable x is an unbiaised measurement of
the unobserved true explanatory variable x∗, or expressed in another way, that
the measurement error e has zero mean and does not depend on the unobserved
true explanatory variable x∗ :

E(x|x∗) = x∗ ⇔ E(e|x∗) = 0 (11)

does no longer ensure that OLS estimation of model (9) will yield unbiased and
consistent estimators of the parameters of the population model (8). As a matter
of fact, for unbiaised and consistent estimation, in the estimated model (9), we
should have5 :

E(v|x) = E[(u− β
2
e)|x] = E(u|x)− β

2
E(e|x) = 0

The redundancy condition (10) ensures that E(u|x) = 0. But the so-called
classical errors-in-variables (CEV) assumption (11) implies that we have :

E(x∗e) = Cov(x∗, e) = 0

so that we have :

E(xe) = Cov(x, e) = E[(x∗ + e)e] = 0 + E(e2) = σ2e �= 0

which in turn implies6 that E(e|x) �= 0, and thus that E(v|x) �= 0. Following
Wooldridge (2016), it may actually be shown that, under the classical errors-in-
variables (CEV) assumption (11), the probability limit7 of the OLS estimator

β̂
2
of β

2
in the estimated model (9) is given by :

β̂2
p
−→ β2

�
σ2x∗

σ2x∗ + σ
2
e

�
(12)

where σ2x∗ and σ2e denote the variance of respectively x∗ and e. According to

4 If they were no explanatory variable, this condition would simply be : E(y|y∗) = y∗ ⇔ E(e|y∗) = 0.
5A weaker condition is actually needed for consistent estimation, but it does not matter for the sake of

our argument.
6 This is because E(e|x) = 0 implies E(xe) = 0.
7 i.e., the value to which the OLS estimator converges in probability.
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(12), the presence of measurement errors (i.e., σ2e > 0) yields the OLS estimator

β̂2 to be asymptotically biased towards zero8. This is the so-called attenuation
bias in OLS due to CEV. The larger the measurement errors relative to the
variance of the true explanatory variable x∗, the larger the attenuation bias.

• Remarks :

—The classical errors-in-variables (CEV) assumption (11) supposes that the
measurement error e has zero mean and is unrelated to the unobserved
true explanatory variable x∗. If it is instead assumed that e has likewise
zero mean but is unrelated to the observed explanatory variable x (rather
than to the unobserved true explanatory variable x∗) :

E(x∗|x) = x ⇔ E(e|x) = 0 (13)

then the measurement errors in the explanatory variable are no longer a
problem. As a matter of fact, under the redundancy condition (10) and
the alternative measurement errors assumption (13), we have E(v|x) =
E(u|x)−β2E(e|x) = 0, so that OLS estimation of model (9) now will yield
unbiased and consistent estimators of the parameters of the population
model (8). The alternative measurement errors assumption (13) is however
less natural than the classical errors-in-variables (CEV) assumption (11).

—Considering a population model with additional explanatory variables, for
example :

y = β
1
+ β

2
x∗
2
+ β

3
x3 + β4x4 + u, with E(u|x∗

2
, x3, x4) = 0 (14)

⇔ E(y|x∗
2
, x3, x4) = β1 + β2x

∗

2
+ β

3
x3 + β4x4

where the explanatory variable x∗
2
is actually not observed, but we instead

observe x2 = x
∗

2
+ e, so that the model actually estimated is :

y = β
1
+ β

2
x2 + β3x3 + β4x4 + v, where v = u− β

2
e (15)

yields essentially the same conclusion than outlined above. Maintaining
that x2 is redundant in (14)9, under the classical errors-in-variables (CEV)
assumption that the observed variable x2 is an unbiaised measurement of
the unobserved true explanatory variable x∗

2
and does not depend on the

other explanatory variables (x3, x4), or expressed in another way, that the
measurement error e has zero mean and depends neither on the unob-
served true explanatory variable x∗

2
nor on the other explanatory variables

(x3, x4) :

E(x2|x
∗

2
, x3, x4) = x

∗

2
⇔ E(e|x∗

2
, x3, x4) = 0 (16)

the OLS estimator β̂2 of β2 in the estimated model (15) will likewise be

8 Expressed in other words, the absolute value of the OLS estimator β̂
2
is asymptotically downward

biased.
9 i.e., that we have E(y|x∗2, x3, x4, x2) = E(y|x

∗

2, x3, x4) = β1+β2x
∗

2+β3x3+β4x4 ⇔ E(u|x∗2, x3, x4, x2) =
0.
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asymptotically biased towards zero (i.e., subject to an attenuation bias),
with the OLS estimators of the other parameters usually also asymptoti-
cally biased, but not necessarily towards zero. On the other hand, under
the alternative measurement errors assumption :

E(x∗
2
|x2, x3, x4) = x2 ⇔ E(e|x2, x3, x4) = 0 (17)

the measurement errors in the explanatory variable x∗
2
are likewise no

longer a problem. See Wooldridge (2016), Section 9-4b for more details.

3. Missing data and nonrandom samples

• So far, it has been maintained that the available data are realizations of a random
sample from some population. In practice, this random sampling assumption
may be violated due to missing observations or sample selection. In some cases,
such a violation is innocuous. In other cases, it may cause OLS to no longer
provide unbiaised and consistent estimators of the parameters of interest.

• As usual, suppose that we are interested in the population model :

y = β
1
+ β

2
x2 + ...+ βkxk + u, with E(u|x2, ..., xk) = 0 (18)

⇔ E(y|x2, ..., xk) = β1 + β2x2 + ...+ βkxk

or more compactly :

y = xβ + u, with E(u|x) = 0 (19)

⇔ E(y|x) = xβ

where x stands for a 1×k vector of explanatory variables, and β is a k×1 vector
of parameters.

• Let (xi, yi) denote a random draw from the population and si a binary variable
indicating whether the i-th draw (xi, yi) is fully observed (si = 1), or not fully
observed (si = 0). The i-th draw (xi, yi) may be not fully observed due to miss-
ing observations (on some dependent and/or explanatory variables) or sample
selection. We are interested in OLS estimation of the population model (19)
using only the complete observations, i.e., using only the observations for which
si = 1.

•OLS estimation using only the complete observations (i.e., observations with
si = 1) will yield an unbiased and consistent estimator of β if the following
condition holds :

E(y|x, s) = E(y|x) = xβ (20)

⇔ E(u|x, s) = E(u|x) = 0

When condition (20) holds, the missing data or selection mechanism is said
ignorable. In essence, condition (20) guarantees that the conditional mean of y
given x in the subpopulation for which the selection indicator s is equal to 1,
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i.e., E(y|x, s = 1), is the same than the conditional mean of y given x in the
entire population, i.e., E(y|x) = xβ. In other words, condition (20) guarantees
that the same model holds for the subpopulation with s = 1 and the original
full population, so that, under usual assumptions, OLS estimation of model (19)
using only the complete observations (with si = 1) indeed similarily provides
unbiaised and consistent estimators of the parameters of (19).

• The missing data or selection mechanism is ignorable, i.e. condition (20) holds,
when :

—The data are missing completely at random. This corresponds to a case
where the selection indicator s is statistically independent of x et y :
s ⊥ (x, y). In this case, the sub-sample with complete observations is
actually still a random sample of the entire population.

—The data are selected based on the explanatory variables. This corresponds
to a case where the selection indicator s is a (non random) function of x :
s = h(x)10. For example, only observations with one of the explanatory
variable xj with a value superior to some threshold a (i.e., s = 1 if xj >
a, 0 otherwise) are selected. In this case, the sub-sample with complete
observations is no longer a random sample of the entire population11.

Other examples of such so-called exogenous sample selection includes stratified
sampling based on the explanatory variables and cases where the selection in-
dicator s is a function of x and some other (unobserved) factors, provided that
these other factors are independent of the error term u in the population model
(19). See Wooldridge (2016), Section 9-5b for more details.

• The missing data or selection mechanism is not ignorable, i.e. condition (20)
does not hold, when :

—The data are selected based on the dependent variable. For example, only
observations with the dependent variable y with a value superior to some
threshold b (i.e., s = 1 if y > b, 0 otherwise) are selected. In this case,
the sub-sample with complete observations is again no longer a random
sample of the entire population.

Other examples of such so-called endogenous sample selection includes stratified
sampling based on the dependent variable and cases where the selection indicator
s is a function of (unobserved) factors that are not independent of the error term
u, and thus not independent of the dependent variable y, in the population model
(19). Again, see Wooldridge (2016), Section 9-5b for more details.

• Remarks :

—Condition (20) ensures that OLS estimation using only the complete obser-
vations (i.e., observations with si = 1) will yield an unbiased and consistent
estimator of β. For the usual OLS inference procedures (tests and confi-
dence intervals) to be valid, we additionally need the homoskedasticity

10 so that E(y|x, s) = E(y|x, h(x) = E(y|x).
11 but still a random sample of the subpopulation with s = 1.
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assumption :

V ar(y|x, s) = V ar(y|x) = σ2 ⇔ V ar(u|x, s) = V ar(u|x) = σ2

— For a more formal treatment of missing data and nonrandom samples,
based on weaker assumptions, see Wooldridge (2016), Section 17-5.
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