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• These lecture notes restate, in matrix form and with more details, the main
results of Sections 8-1, 8-2 and 8-4 of Wooldridge (2016).

1. Consequences of heteroskedasticity for OLS

• From Property 1 and Property 6 in the supplemental lecture notes I (hereafter

SLN-I)1, we know that the OLS estimator β̂ is unbiased under assumptions E.1 —
E.3, as well as also consistent under the seminal assumptions MLR.1 —MLR.4.,
i.e., without having to assume homoskedasticity.

• If the presence of heteroskedasticity does not cause the OLS estimator to be
biased or inconsistent, it has other consequences :

(1) As the homoskedasticity assumption is part of the Gauss-Markov assump-

tions, the OLS estimator β̂ is no longer the best linear unbiased estimator
(BLUE) of β.

(2) The usual — exact in finite sample under normality and asymptotically valid
without normality — inference procedures are no longer valid, basically be-
cause the usual formulas for the exact and asymptotic variance-covariance
of the OLS estimator β̂ are no longer correct. As a matter of fact, from
Section 3.1.3 in SLN-I, under assumptions E.1 —E.3, we have :

β̂ = β + (X ′X)
−1
X ′u and E(β̂|X) = β

1Regression analysis with cross-sectional data : specification, estimation and inference.
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so that :

V (β̂|X) = E
�
(β̂ −E(β̂|X))(β̂ −E(β̂|X))′|X

�

= E
�
(β̂ − β)(β̂ − β)′|X

�

= E
�
(X ′X)

−1
X ′uu′X (X ′X)

−1 |X
�

= (X ′X)
−1
X ′E(uu′|X)X (X ′X)

−1

= (X ′X)
−1
XΣX (X ′X)

−1
(1)

where, maintaining the no correlation part of assumption E.4, Σ =
E(uu′|X) = V (u|X) = V (Y |X) is a n× n diagonal matrix :

Σ =




σ2
1
· · · 0

...
. . .

...
0 · · · σ2n



 (2)

with diagonal elements σ2i equal to the conditional variances
2 V ar(ui|X) =

V ar(yi|X), i = 1, ..., n. The same is true (the usual formula is no longer

correct) for the asymptotic variance Avar(β̂) of β̂ (see below).

• The fact that the OLS estimator is no longer BLUE may be addressed by de-
riving a more efficient estimator — called the weighted least squares estimator —
which explicitly takes into account the presence of heteroskedasticity. This how-
ever requires that the form of heteroskedasticity is known, or can be estimated.
On the other hand, it is possible to address the fact that the usual inference
procedures are no longer valid by deriving inference procedures which are valid
in the presence of heteroskedasticity of unknown form, i.e., which are robust to
arbitrary form of heteroskedasticity.

2. Heteroskedasticity robust inference after OLS

estimation

• Heteroskedasticity robust inference procedures are only asymptotically valid, i.e.
approximately valid for n sufficiently large. They basically rely on the following
property, which outlines the asymptotic properties of the OLS estimator β̂ under
the minimal set of assumptions MLR.1 —MLR.4 (linearity in parameters, random
sampling, no perfect colinearity and zero conditional mean), i.e., without both
the homoskedasticity and the normality assumptions MLR.5 and MLR.6. :

Property 9 Asymptotic properties of β̂ without homoskedasticity and normality

Under assumptions MLR.1 —MLR.4, the OLS estimator β̂ is a consistent esti-
mator of β :

β̂
p−→ β

2Under homoskedasticity, σ2i = σ2(a constant) for all i = 1, ..., n, so that Σ = σ2I, and V (β̂|X)
can be simplified to yield the usual formula V (β̂|X) = σ2 (X′X)

−1
.
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and is asymptotically normally distributed as :

√
n(β̂ − β) d−→ N(0, A−1BA−1) (3)

where :
A = E(X ′

iXi) and B = E(u2iX
′
iXi)

The fact that β̂ is consistent for β was already outlined by Property 6 in SLN-I.
A sketch of the proof of the limiting distribution result (3) is actually the same
as the sketch of the proof of Property 7 in SLN-I. Hereafter is a concise version
of it. Under assumptions MLR.1 —MLR.3, we have :

√
n(β̂ − β) =

�
1

n

n�

i=1

X ′
iXi

	−1�
n−

1

2

n�

i=1

X ′
iui

	

Under random sampling, both X ′
iXi and X

′
iui are i.i.d. across i. From the law

of large numbers3 (LLN), we have 1

n

�n

i=1X
′
iXi

p−→ E(X ′
iXi) = A, and we can

write :
√
n(β̂ − β) as= A−1

�
n−

1
2

n�

i=1

X ′
iui

	

so that
√
n(β̂ − β) has asymptotically the same distribution as

A−1


n−

1

2

�n

i=1X
′
iui
�
. Under the zero conditional mean assumption MLR.4,

we have E (X ′
iui) = 0. From the central limit theorem4 (CLT), we thus have :

n−
1
2

n�

i=1

X ′
iui

d−→ N(0, B), where B = V (X ′
iui) = E(u

2

iX
′
iXi)

so that :

A−1
�
n−

1
2

n�

i=1

X ′
iui

	
d−→ N(0, A−1BA−1)

and thus we finally have5 :

√
n(β̂ − β) d−→ N(0, A−1BA−1)

• As the limiting distributional result of Property 7 under assumptions MLR.1 —
MLR.5 in SLN-I, the limiting distributional result (3) provides an approximate

finite sample distribution for the OLS estimator β̂, which can be used — when n is
sufficiently large — for performing inference (confidence interval, hypothesis test-
ing) without having to rely on neither the homoskedasticity assumption MLR.5
nor the normality assumption MLR.6. From (3), in terms of approximation, we
have : √

n(β̂ − β) ≈ N(0, A−1BA−1)
3 If {Zi: i = 1, ..., n} are i.i.d. random variables with E(Zi) = m, then by the LLN we have : Z̄n =

1

n

�n

i=1
Zi

p−→ m.
4 if {Zi: i = 1, ..., n} are i.i.d. (k × 1) random vectors with E(Zi) = m and V (Zi) = Σ, then by

the CLT we have :
√
n(Z̄n −m) = n−

1

2

�n

i=1
(Zi −m)

d−→ N(0,Σ).
5As a reminder, under the homoskedasticity assumption MLR.5, B = V (X′

iui) = E(u2iX
′
iXi) = σ2A, so

that A−1BA−1 = σ2A−1.
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so that :
β̂ ≈ N(β,A−1BA−1/n) (4)

i.e., for n sufficiently large, β̂ can be treated as approximately normal with
mean β and asymptotic variance-covariance matrix Avar(β̂) = A−1BA−1/n.

Note that Avar(β̂) → 0 as n → ∞. Note further that if we replace A =
E(X ′

iXi) by its consistent estimator 1

n

�n

i=1X
′
iXi = X

′X/n, remark that6 B =
E(u2iX

′
iXi) = E (σ

2

iX
′
iXi) where σ

2

i = E(u
2

i |Xi) = V ar(ui|Xi), and likewise re-
place E (σ2iX

′
iXi) by its consistent estimator7 1

n

�n

i=1 σ
2

iX
′
iXi = X

′ΣX/n, where

Σ is as defined in (2), then Avar(β̂) becomes :

Avar(β̂) =
A−1BA−1

n

≈ (X ′X/n)−1X ′ΣX/n (X ′X/n)−1

n
= (X ′X)

−1
XΣX (X ′X)

−1

This is the same as the exact in finite sample variance-covariance matrix V (β̂|X)
obtained in (1) above.

• For inference based on the limiting distributional result (3), or equivalently on

the approximate distributional result (4), we need an estimator of Avar(β̂) =
A−1BA−1/n. This requires consistent estimators of A and B. We already know
that X ′X/n is a consistent estimator of A (this directly follows from the LLN).
A consistent estimator of B = E(u2iX

′
iXi) is simply given by 1

n

�n

i=1 û
2

iX
′
iXi,

where obviously ûi = yi −Xiβ̂. This is formalized in the following property8 :

Property 10 Consistent estimator of B

Under MLR.1 —MLR.4, 1
n

�n

i=1 û
2

iX
′
iXi is a consistent estimator of B :

1

n

�n

i=1 û
2

iX
′
iXi

p−→ B

Here is the intuitionof this property : from the LLN, 1

n

�n

i=1 u
2

iX
′
iXi

p−→
E(u2iX

′
iXi) = B. As ûi converges to ui (because β̂

p−→ β), we also have
1

n

�n

i=1 û
2

iX
′
iXi

p−→ B.

•With X ′X/n and 1

n

�n

i=1 û
2

iX
′
iXi as consistent estimators of A and B, an esti-

mator of Avar(β̂) = A−1BA−1/n is given by :

V̂HC(β̂) = (X
′X)

−1
�

n�

i=1

û2iX
′
iXi

	
(X ′X)

−1
(5)

6 By the law of iterated expectation, we have : B = E(u2iX
′
iXi) = E

�
E(u2iX

′
iXi|Xi)

�
=

E
�
E(u2i |Xi)X

′
iXi

�
= E

�
σ2iX

′
iXi

�
.

7 This is not an operational estimator because the σ2i ’s are unknown. An operational estimator is
given below in Proterty 10.

8A variant of this estimator, with a degrees of freedom adjustment, is outlined in Wooldridge (2016),
Appendix E-4. For a detailed proof (under weaker assumptions than MLR.1 —MLR.4), see Hayashi
(2000) p. 123-124. You may also see Wooldridge (2010), Chapter 4. Whether or not a degrees of freedom ad-
justment is used does not matter asymptotically.
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where the subscript ‘HC’ stands for ‘Heteroskedasticity Consistent’. As usual,
the diagonal elements V ârHC(β̂j) of the k × k matrix estimator V̂HC(β̂) be-

ing the estimators of the variance Avar(β̂j) of the estimator β̂j of the differ-
ent parameters βj (j = 1, ..., k), natural estimators of the asymptotic stan-

dard error As.e.(β̂j) =
�
Avar(β̂j) of the estimator β̂j of the different pa-

rameters βj, as well as a natural estimator of the asymptotic standard error

As.e.(R0β̂) =
�
Avar(R0β̂) =

�
R0Avar(β̂)R′0 of the estimator R0β̂ of a single

linear combination R0β of β, are likewise given by :

s.ê.HC(β̂j) =
�
V ârHC(β̂j), j = 1, ..., k (6)

and :

s.ê.HC(R0β̂) =

�
R0V̂HC(β̂)R′0 (7)

where R0 is a 1× k (row) vector of constants.

• The limiting distributional result (3), or equivalently the approximate distrib-
utional result (4), and the heteroskedasticity consistent (or heteroskedasticity

robust) estimators V̂HC(β̂), s.ê.HC(β̂j) and s.ê.HC(R0β̂) given above in respec-
tively (5), (6) and (7), provide all which is needed for performing robust inference
after OLS estimation. Following exactly the same reasoning as in Section 4.3
and Section 4.4.2 of SLN-I9, it may readily be checked that if in all the usual ex-
act in finite sample inference procedures — confidence interval for βj or a single
linear combination R0β, two-sided and one-sided t-tests of βj or a single lin-
ear combination R0β, F -test (or Wald test) of multiple linear restrictions — we

replace the usual estimators V̂ (β̂), s.ê.(β̂j) and s.ê.(R0β̂) by their heteroskedas-

ticity consistent (or heteroskedasticity robust) versions V̂HC(β̂), s.ê.HC(β̂j) and

s.ê.HC(R0β̂), then we obtain inference procedures that are asymptotically valid
— i.e., approximately valid for n sufficiently large — under only assumptions
MLR.1 —MLR.4, i.e., without having to rely on neither the homoskedasticity
assumption MLR.5 nor the normality assumption MLR.6.

• Remarks :

—All modern econometric software optionally provide heteroskedasticity ro-
bust standard errors and allow to perform heteroskedasticity robust tests.
In applied works, it is not uncommon that only the heteroskedasticity ro-
bust standard errors and tests are considered and reported.

—The usual sum of squared residuals form of the F -test statistic, which is
exact under assumptions MLR.1 —MLR.6 (and assumptions E.1 —E.5) and
asymptotically valid under assumptions MLR.1 —MLR.5, i.e. without the
normality assumption MLR.6, is no longer valid without the homoskedas-

9As a reminder, starting from the similar limiting distributional result of Property 7 and using the
standard estimators V̂ (β̂), s.ê.(β̂j) and s.ê.(R0β̂), Section 4.3 and Section 4.4.2 in SLN-I show that the usual
exact in finite sample inference procedures remain asymptotically valid — i.e., approximately valid for
n sufficiently large — without the normality assumption.
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ticity assumption MLR.5, and there exist no such form of the F -test sta-
tistic which is heteroskedasticity robust.

—The presence of heteroskedasticity may easily be checked by running an
auxiliary regression of the form :

û2i = δ1 + δ2xi2 + δ3xi3 + ...+ δkxik + vi, i = 1, ..., n (8)

An usual F -test of H0 : δ2 = ... = δk = 0 provides an asymptotically
valid test of the null hypothesis of homoskedasticity. An asymptotically
equivalent test may be performed using the LM statistic10 :

LM = n ·R2û2

where R2
û2

is the R-squared from the auxiliary regression (8). This test
is known as the Breush-Pagan test for heteroskedasticity. A variant of
the above tests adds the squares and cross-products of the explanatory
variables in (8). Another variant considers instead the fitted values ŷi,
ŷ2i , ... as explanatory variables in (8). See Wooldridge (2016) Section 8-3
for details.

3. Weighted least squares estimation

3.1. The generalized least squares estimator

• The weighted least squares (WLS) estimator is a special case of a more general
estimator, called the generalized least squares (GLS) estimator. We first derive
the GLS estimator.

• Consider a regression model satisfying the usual matrix assumptions E.1 —E.3
— i.e., linearity in parameters, no perfect colinearity and zero conditional mean
— but where the homoskedasticity and no correlation assumption E.4 is relaxed
and replaced by the fully non restrictive assumption :

E.4bis Arbitrary heteroskedasticity & correlation :

V (u|X) = σ2Ω ⇔ V (Y |X) = σ2Ω

where Ω is an arbitrary symmetric positive definite n × n matrix11 whose ele-
ments may depend on X, so that we may have both non constant (conditional)
variances and non zero (conditional) covariances across i, possibly depending of
the value the explanatory variables.

• As assumptions E.1 —E.3 are maintained, we know from Property 1 in SLN-I

10 The decision rule of this LM test is : reject H0 if LM > χ2k−1;1−α and do not reject otherwise, where

χ2k−1;1−α is the quantile of order 1−α of the χ2(k−1) distribution. The p-value of the test, for a value LM∗

of the test statistic obtained in a particular sample, is given by : pLM = IP(v > LM∗), where v ∼ χ2(k−1).
11A variance-covariance matrix is always a symmetric and positive definite (or at least positive semidefi-

nite) matrix.
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that the OLS estimator β̂ is still an unbiased estimator of β, but because of the
violation of assumptions E.4, it is no longer the best linear unbiased estimator
(BLUE) of β. We are looking for a better — i.e., more efficient, with a smaller
variance-covariance matrix — estimator.

• Let Ω 1

2 denote a symmetric positive definite n×n matrix12 such that Ω
1

2Ω
1

2 = Ω.
Intuitively, Ω

1
2 may be viewed as the square root (in a matrix sense) of Ω. Let

further Ω−
1
2 denote the inverse of Ω

1
2 . We have :

Y = Xβ + u

so that, premultiplying both sides by Ω−
1

2 , we have :

Ω−
1
2Y = Ω−

1
2Xβ +Ω−

1
2u

⇔ Y ∗ = X∗β + u∗ (9)

where Y ∗ = Ω−
1
2Y and X∗ = Ω−

1
2X are just transformations of the original

variables Y and X.

• Under assumptions E.1 —E.3 and assumption E.4bis, the transformed model (9)
is linear in parameters and has no perfect colinearity13, and we have :

E(u∗|X) = E(Ω− 1
2u|X) = Ω− 1

2E(u|X) = Ω− 1
2 · 0 = 0

and :

V (u∗|X) = V (Ω−
1
2u|X) = Ω− 1

2V (u|X)Ω− 1
2
′ = Ω−

1
2 (σ2Ω)Ω−

1
2

= σ2Ω−
1
2Ω

1
2Ω

1
2Ω−

1
2 = σ2I

so that, as X∗ is a function of X, by the law of iterated expectations14, we also
have :

E(u∗|X∗) = E [E(u∗|X)|X∗] = E [0|X∗] = 0
and :

V (u∗|X∗) = E(u∗u∗′|X∗) = E [E(u∗u∗′|X)|X∗]

= E [V (u∗|X)|X∗] = E


σ2I|X∗� = σ2I

In words, the transformed model (9) actually satisfies the usual Gauss-Markov
assumptions E.1 —E.4, so that, from the Gauss-Markov theorem (Property 3 in
SLN-I), the OLS estimator applied to transformed model (9) is the best linear
estimator of β under assumptions E.1 —E.3 and assumption E.4bis in the original
model. The OLS estimator of the transformed model (9) is called the generalized
least squares (GLS) estimator of β. It can be written as15 :

β̂GLS = (X
∗′X∗)

−1
X∗′Y ∗ =

�
X ′Ω−1X

�−1
X

′

Ω−1Y

12 Because Ω is symmetric positive definite, it may be shown that Ω
1

2 always exists and is unique.
13 If X is full rank (i.e., rank(X) = k), because Ω−

1

2 is non-singular, then X∗ is also full rank.
14 In its most general form, the law of iterated expectations states that, if x is a function of w, then

E(y|x) = E [E(y|w)|x]. See Wooldridge (2010) p. 19 for details.
15Note that by definition : β̂GLS = Argminβ(Y

∗−X∗β)′(Y ∗−X∗β) = Argminβ(Y −Xβ)′Ω−1(Y −Xβ).
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and its variance-covariance matrix can accordingly be written as :

V (β̂|X) = σ2 (X∗′X∗)
−1
= σ2

�
X ′Ω−1X

�−1

•We have just established the following property16 :

Property 11 The generalized least squares of β

Under assumptions E.1 —E.3 and assumption E.4bis, the best linear unbiased
estimator (BLUE) of β is the GLS estimator :

β̂GLS =
�
X ′Ω−1X

�−1
X

′

Ω−1Y

and its the variance-covariance matrix is given by V (β̂|X) = σ2 (X ′Ω−1X)
−1
.

3.2. Weighted least squares estimation when the heteroskedas-

ticity is known up to a multiplicative constant

• The generalized least squares theory developed above may readily be used to
address our question of finding a more efficient estimator than the OLS estima-
tor which explicitly takes into account the presence of heteroskedasticity, i.e.,
which yield a more efficient estimator than the OLS estimator when the seminal
homoskedasticity assumption MLR.5 is violated.

• To replace the seminal homoskedasticity assumption MLR.5, we consider the
following assumption, which assumes that the conditional variance is known up
to a multiplicative constant :

MLR.5’ Heteroskedasticity known up to a multiplicative constant

The variance of u given any values of (x2, ..., xk), and equivalently the variance
of y given any values of (x2, ..., xk), are given by :

V ar(u|x2, ..., xk) = σ2h(x2, ..., xk) ⇔ V ar(y|x2, ..., xk) = σ2h(x2, ..., xk)

where σ2 is an unknown parameter and h(x2, ..., xk) is known and strictly positive
for any value of (x2, ..., xk).

In matrix form, Assumption MLR.5’ can be rewritten as follows :

E.4’ Heteroskedasticity & no correlation : V (u|X) = σ2Ω⇔ V (Y |X) = σ2Ω

where Ω is here a diagonal n × n matrix with diagonal elements equal to hi =
h(xi2, ..., xik), i = 1, ..., n :

Ω =




h1 · · · 0
...

. . .
...

0 · · · hn





16 For more details, see Hayashi (2000) p. 54-57.
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so that :

Ω−1 =






1

h1
· · · 0

...
. . .

...
0 · · · 1

hn




 and Ω−

1
2 =






1√
h1

· · · 0
...

. . .
...

0 · · · 1√
hn






• From Property 11, under assumptions E.1 —E.3 and assumption E.4’, the best
linear unbiased estimator (BLUE) of β is given by the special case of the GLS
estimator, called the weighted least squares (WLS) estimator17 :

β̂WLS =
�
X ′Ω−1X

�−1
X

′

Ω−1Y

=

�
n�

i=1

1

hi
X ′
iXi

	−1 n�

i=1

1

hi
X ′
iyi (10)

which by definition is the OLS estimator of the transformed model :

Y ∗ = X∗β + u∗, where Y ∗ = Ω−
1
2Y and X∗ = Ω−

1
2X

i.e., in detailed form :

y∗i = β1x
∗
i1 + β2x

∗
i2 + ...+ βkx

∗
ik + u

∗
i , i = 1, ..., n (11)

where the transformed variables are18 :

y∗i =
yi√
hi
, x∗i1 =

1√
hi
, x∗i2 =

xi2√
hi
, ..., x∗ik =

xik√
hi
, i = 1, ..., n (12)

• As the weighted least squares estimator (10) is nothing but the OLS estimator
of the linear regression (11) with the variables transformed as indicated in (12),
it has all the usual finite sample and asymptotic properties associated with
standard OLS estimation. More specifically :

—Under the full set of seminal assumptions MLR.1 —MLR.4, assumption
MLR.5’ and an appropriately restated normality assumption19 MLR.6’,
which implies the full set of assumptions E.1 —E.3, assumption E.4’ and
an appropriately restated normality assumption20 E.5’, the transformed
model (11) satisfies the full set of usual assumptions21 MLR.1 —MLR.6

and E.1 —E.5, so that the WLS estimator β̂WLS is both the best linear
unbiased estimator and a consistent estimator for β, and all the usual
inference procedures22 computed after OLS estimation of the transformed

17Note that by definition : β̂WLS = Argminβ(Y −Xβ)′Ω−1(Y −Xβ) = Argminβ
�n

i=1
1

hi
(yi −Xiβ)

2,
hence the name ‘weighted least squares’.

18Note that the variable corresponding to the intercept (i.e., x∗i1) is no longer equal to 1, but equal
to 1/

√
hi.

19MLR.6’ Normality
The distribution of u given any values of (x2, ..., xk), and equivalently the distribution of y given any
value of (x2, ..., xk), are normal and given by : u|x2,..., xk ∼ N(0, σ2h(x2,..., xk)) ⇔ y|x2,..., xk ∼ N(β1+
β2x2+...+βkxk, σ

2h(x2,..., xk)).
20 E.5’ Normality : u|X ∼ N(0, σ2Ω)⇔ Y |X ∼ N(Xβ, σ2Ω).
21Normality follows from the fact that u∗ (resp. Y ∗) is a linear function of u (resp. Y ).
22 i.e., confidence intervals for βj or a single linear combination R0β, two-sided and one-sided t-tests of βj
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model (11) are valid and exact in finite sample.

—Under the seminal assumptions MLR.1 —MLR.4 and assumption MLR.5’,
which implies assumptions E.1 —E.3 and assumption E.4’, i.e., without
having to rely on any normality assumption, the transformed model (11)
satisfies the usual seminal assumptions MLR.1 —MLR.5 and assumptions
E.1 —E.4, so that the WLS estimator β̂WLS is still both the best linear
unbiased estimator and a consistent estimator for β, and likewise all usual
inference procedures computed after OLS estimation of the transformed
model (11) are still valid, but only asymptotically, i.e., are still approxi-
mately valid for n sufficiently large.

— Finally, and importantly, under the seminal assumptions MLR.1 —MLR.4,
which implies assumptions E.1 —E.3, i.e., without assuming neither that
the heteroskedasticity known up to a multiplicative constant assumption
is correct nor that any normality assumption holds, the transformed model
(11) still satisfies the seminal assumptions MLR.1 —MLR.4 and assump-

tions E.1 —E.3, so that the WLS estimator β̂WLS is still unbiased — but
no longer BLUE — and consistent for β, and asymptotically valid — i.e.,
approximately valid for n sufficiently large — inference procedures are pro-
vided by the heteroskedasticity robust inference procedures outlined above
in Section 2 computed after OLS estimation of the transformed model (11).

• Remarks :

—Multiplying the weights wi = 1/hi — which are inversely proportional to

the (conditional) variance of yi — used by the WLS estimator β̂WLS by

any positive constant has no effect on both the value of β̂WLS and the
outcome of the (usual or heteroskedasticity robust) inference procedures
computed after OLS estimation of the transformed model (11). This means
in particular that hi may always be replaced by h∗i = ahi, where a is any
positive constant, without affecting neither the value of the WLS estimator
β̂WLS nor the outcome of the (usual or heteroskedasticity robust) inference
procedures.

—All modern econometric software provide built-in routines for performing
WLS estimation and inference, so that in practice it is not required to
transform the variables and run an OLS regression using the transformed
variables to perform WLS estimation and inference.

— In practice, there are few situations where the heteroskedasticity is known
up to a multiplicative constant. This typically happens when, instead of
using individual-level data, we only have averages of data, or per capita
data, across some group or geographical region (see Wooldridge (2016)
p. 258 for details).

or a single linear combination R0β, F -test of multiple linear restrictions.
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3.3. Weighted least squares estimation when the heteroskedas-

ticity function must be estimated

•When, as it is usually the case, the heteroskedasticity function is not known,
it may be estimated from the data. This requires to specify a model for the
conditional variance V ar(u|x2, ..., xk) = V ar(y|x2, ..., xk).

• A popular and fairly flexible model for the conditional variance is given by the
so-called multiplicative heteroskedasticity model :

MLR.5” Multiplicative heteroskedasticity

The variance of u given any values of (x2, ..., xk), and equivalently the variance
of y given any values of (x2, ..., xk), are given by :

V ar(u|x2, ..., xk) = exp(δ1 + δ2x2 + ...+ δkxk)

⇔ V ar(y|x2, ..., xk) = exp(δ1 + δ2x2 + ...+ δkxk)

where (δ1, ..., δk) are unknown parameters.

• Assumption MLR.5” is just a special case of assumption MLR.5’ where :

σ2 = exp(δ1) and h(x2, ..., xk) = exp(δ2x2 + ...+ δkxk)

If the parameters (δ2, ..., δk) were known, we could just apply WLS, as outlined
in the previous section. When, as it is usually the case, (δ2, ..., δk) are not known,
they may be consistently estimated from the data under mild conditions.

Let for conciseness x = (x2, ..., xk) denote the vector of explanatory variables
(x2, ..., xk) and σ

2

u|x = V ar(u|x) the conditional variance V ar(u|x) = E(u2|x).
Under assumption MLR.5”, we can write :

u2 = exp(δ1 + δ2x2 + ...+ δkxk) · v

where by construction v = u2

σ2
u|x

and E(v|x) = 1

σ2
u|x
E(u2|x) = σ2

u|x

σ2
u|x
= 1. Taking

the log, we can further write :

log(u2) = δ1 + δ2x2 + ...+ δkxk + r

where r = log(v). If v is independent23 of x, then r = log(v) is also independent
of x, and E(r|x) is constant (i.e., does not depend of x), say E(r|x) = µr.
Letting e = r − µr denote the centered value of r, we can finally write :

log(u2) = α1 + δ2x2 + ...+ δkxk + e (13)

where by construction α1 = δ1 + µr and E(e|x2, ..., xk) = 0.

23 It is for example the case under normality, i.e., if u|x ∼ N(0, σ2u|x), so that u
σu|x

∼ N(0, 1). It

will likewise be the case whenever the standardized error u
σu|x

is distributed according to a distribution

which does not depend on x, so that v = ( u
σu|x

)2 is also distributed according to a distribution which

does not depend on x (and is thus independent of x).



12

Model (13) satisfies the usual Gauss-Markov assumptions24, so that a regression
(including an intercept) of log(u2i ) on xi2, ..., xik would provide unbiased and
consistent estimators of (α1, δ2, ..., δk). It may be shown that if the unknown

errors ui are replaced by their consistent estimates ûi = yi−Xiβ̂ obtained from
the OLS estimation of β, then the regression (including an intercept) of :

log(û2i ) on xi2, ..., xik (14)

likewise provides consistent (but no longer unbiased) estimators (α̂1, δ̂2, ..., δ̂k)
of (α1, δ2, ..., δk).

• Based on the above estimators of the multiplicative heteroskedasticity parame-
ters, from (10), a feasible weighted least squares estimator — more usually called
feasible generalized least squares (FGLS) estimator — of β is given by :

β̂FGLS =

�
n�

i=1

1

ĥi
X ′
iXi

	−1 n�

i=1

1

ĥi
X ′
iyi

which by definition is the OLS estimator of the transformed model :

y̌∗i = β1x̌
∗
i1 + β2x̌

∗
i2 + ...+ βkx̌

∗
ik + u

∗
i , i = 1, ..., n (15)

where :

y̌∗i =
yi√
ĥi
, x̌∗i1 =

1√
ĥi
, x̌∗i2 =

xi2√
ĥi
, ..., x̌∗ik =

xik√
ĥi
, i = 1, ..., n

and, because ĥi may be multiplied by any positive constant without affecting
neither the value of the estimator nor the outcome of the (usual or heteroskedas-

ticity robust) inference procedures, ĥi may simply be taken as :

ĥi = exp(ĝi), where ĝi = α̂1 + δ̂2x2 + ...+ δ̂kxk

i.e., as the exponential of the fitted values ĝi of the OLS regression (14).

• It may be shown that the replacement of hi by its estimator ĥi (up to a mul-
tiplicative constant), which turns the WLS estimator into a feasible estimator,
does not change its asymptotic properties25. More specifically :

—Under the seminal assumptions MLR.1 —MLR.4 and assumption MLR.5”,
the FGLS estimator β̂FGLS is consistent for β and asymptotically more
efficient than the OLS estimator26, and all usual inference procedures com-
puted after OLS estimation of the transformed model (15) are still asymp-
totically valid, i.e., approximately valid for n sufficiently large.

— Likewise, under only the seminal assumptions MLR.1 —MLR.4, i.e., with-
out assuming that the multiplicative heteroskedasticity assumptionMLR.5”
is correct, both the FGLS estimator β̂FGLS is still consistent for β and the

24 If r is independent of x, not only E(r|x), but also V ar(r|x) is constant (i.e., does not depend of
x), so that not only E(e|x) = 0, but also V ar(e|x) is constant.

25 For a discussion, see Hayashi (2000), p. 133-137.
26 This is just the asymptotic analog of the BLUE property of the WLS estimator.
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heteroskedasticity robust inference procedures outlined above in Section
2 computed after OLS estimation of the transformed model (15) are still
asymptotically valid, i.e., approximately valid for n sufficiently large.

• Remarks :

—Due to the estimation of the heteroskedasticity function, the FGLS esti-
mator β̂FGLS has no longer exact in finite sample properties : it is not
unbiased, and the usual inference procedures computed after OLS estima-
tion of the transformed model (15) are not exact even if an appropriately
stated normality assumption is assumed to hold.

—The computation of the FGLS estimator β̂FGLS entails three steps : (1)
preliminary estimation of the model by OLS to obtain the residuals ûi =
yi − Xiβ̂, (2) estimation of the conditional variance parameters by OLS
through the regression (14) to obtain the estimated variances (up to a

multiplicative constant) ĥi, (3) re-estimation of the model by the FGLS

estimator β̂FGLS, either through the OLS estimation of the transformed
model (15) or using the built-in routines for performing WLS provided by
modern econometric software. Note that if there is a very large difference
between the estimated value of β in step (1) and step (3), we should be
suspicious : this may indicate a functional misspecification of the condi-
tional mean — i.e., E(y|x2, ..., xk) — of the model (see Wooldridge (2016)
p. 262 for details).

— If the assumed form of heteroskedasticity is not correct, although still con-
sistent27, the FGLS estimator is no longer necessarily more efficient than
the OLS estimator. This is the same as when hi is supposed to be known :
if hi is actually not correct, although still unbiased and consistent, theWLS
estimator is no longer BLUE, and thus not necessarily better than the OLS
estimator. In practice however, in cases of strong heteroskedasticity, even
if the specification of the heteroskedasticity is roughly approximate, apply-
ing FGLS/WLS along with heteroskedasticity robust inference procedures
will often yield a more precise estimate of β than ignoring heteroskedastic-
ity altogether and using OLS likewise along with heteroskedasticity robust
inference procedures (see Wooldridge (2016) p. 263-264 for details).
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