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• These lecture notes restate, in matrix form and with more details, the content
of Section 6.4a of Wooldridge (2016).

1. Predictions

• Let the 1×k (row) vectorX0 = (1, x02, ..., x0k) denotes the (fixed, nonstochastic)
value of explanatory variables for which we want to make predictions. Two
different predictions (or forecasts) must be distinguished :

—A prediction of the expected value of y given X0 : E(y0|X0) = X0β

—A prediction of the value of y given X0 : y0 = X0β + u0

1.1. Prediction of the expected value of y given X0

• An obvious estimator/predictor of E(y0|X0) = X0β is obtained by replacing β

by its OLS estimator β̂ :
ŷ0 = X0β̂

• Under the Gauss-Markov assumptions, we have :

E(ŷ0|X) = E(X0β̂|X) = X0E(β̂|X) = X0β

which means that ŷ0 is a unbiased estimator/predictor of E(y0|X0) = X0β, and :

V ar(ŷ0|X) = V ar(X0β̂|X) = X0V (β̂|X)X ′
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• Because E(y0|X0) = X0β is nothing but a (nonstochastic) single linear combi-
nation of β, from the results on confidence intervals outlined in the supplemen-
tal lecture notes I (hereafter SLN-I), a (1 − α) × 100% confidence interval for
E(y0|X0) = X0β is simply given by :

�
ŷ0 − tn−k;1−α

2
s.ê.(ŷ0) ; ŷ0 + tn−k;1−α

2
s.ê.(ŷ0)

�

where s.ê.(ŷ0) = s.ê.(X0β̂) =
�
V âr(X0β̂) =

�
X0V̂ (β̂)X ′

0 =
�
ŝ2X0(X ′X)−1X ′

0.

This confidence interval is exact in finite sample if normality holds, and is
asymptotically valid — i.e., approximately valid for n sufficiently large — without
the normality assumption.

• Remark : It is in practice possible to directly obtain ŷ0 and s.ê.(ŷ0) by running
a regression where the explanatory variables are appropriately centered. For
details, see Wooldridge (2016), Section 6.4a.

1.2. Prediction of the value of y given X0

• Because u0 can not be predicted and has zero mean, the best predictor of y0 =
X0β + u0 is still :

ŷ0 = X0β̂

• Let ê0 = y0 − ŷ0 = X0(β − β̂) + u0 denotes the prediction error in using ŷ0 to
predict y0. Under the Gauss-Markov assumptions, we have :

E(ê0|X) = E
�
(X0(β − β̂) + u0)|X

�

= X0β −X0E(β̂|X) + E(u0|X)
= X0β −X0β + 0 = 0

which means that the prediction error has zero mean (although E(ŷ0|X) �= y0),
and :

V ar(ê0|X) = V ar
�
(X0(β − β̂) + u0)|X

�

= V ar(X0(β − β̂)|X) + 2Cov(X0(β − β̂), u0|X)
+V ar(u0|X)

where1 :

V ar(X0(β − β̂)|X) = V ar(−X0β̂|X) = X0V (β̂|X)X ′
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1Note that from Section 3.1.1 in SLN-I, we have : β̂ − β = (X′X)
−1
X′u.
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Cov(X0(β − β̂), u0|X) = E(−X0 (X ′X)
−1
X ′uu0|X)

= −X0 (X ′X)
−1
X ′E (uu0|X)

= −X0 (X ′X)
−1
X ′ · 0 = 0

V ar(u0|X) = σ2

so that :

V ar(ê0|X) = V ar(ŷ0|X) + V ar(u0|X)
= X0V (β̂|X)X ′
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• If in addition normality is assumed, because ê0 is a linear function of β̂ and u0
which are both normal, then ê0 is also normally distributed2 :

ê0|X ∼ N (0, V ar(ê0|X))

so that, conditional on X, we have :

ẑ =
ê0

s.e.(ê0|X)
∼ N(0, 1) (1)

where s.e.(ê0|X) =
�
V ar(ê0|X) =

�
σ2X0 (X ′X)−1X ′

0 + σ
2.

• Following the same reasoning as in SLN-I, under the same assumptions, con-

ditional on X, we have that v̂ = (n−k)ŝ2

σ2
∼ χ2(n − k) and that ẑ and v̂ are

independent, so that from the definition of the Student distribution, still condi-
tional on X, we have :

t̂ =
ẑ

�
v̂
n−k

=

ê0√
σ2X0(X′X)−1X′

0
+σ2�

ŝ2

σ2

=
ê0�

ŝ2X0 (X ′X)−1X ′

0 + ŝ
2

∼ t(n− k)

i.e. :

t̂ =
ê0

s.ê.(ê0)
=
y0 − ŷ0
s.ê.(ê0)

∼ t(n− k) (2)

where s.ê.(ê0) =
�
V âr(ê0) =

�
ŝ2X0 (X ′X)−1X ′

0 + ŝ
2 =

�
X0V̂ (β̂)X ′

0 + ŝ
2.

In words, if the unknown variance σ2 appearing in the standard error s.e.(ê0|X)
of statistic (1) is replaced by its unbiased estimator ŝ2, so that the standard
error s.e.(ê0|X) is replaced by its estimator s.ê.(ê0), then the distribution of (1)
switches from normal to Student.

• The distributional result (2) holds conditional on X. But as the conditional
distribution of t̂ = ê0

s.ê.(ê0)
actually does not depend on X, it also holds uncondi-

2 If normality does not hold, β̂ is still approximately normally distributed, but is is not the case
of u0, so that the distribution of ê0 is no longer normally distributed, even approximately.
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tionally, and we can write :

IP

�
−tn−k;1−α

2
≤ y0 − ŷ0
s.ê.(ê0)

≤ tn−k;1−α

2

�
= 1− α

so that we have :

IP
	
ŷ0 − tn−k;1−α

2
s.ê.(ê0) ≤ y0 ≤ ŷ0 + tn−k;1−α

2
s.ê.(β̂j)



= 1− α

and a (1− α)× 100% confidence interval for y0 = X0β + u0 is given by :

�
ŷ0 − tn−k;1−α

2
s.ê.(ê0) ; ŷ0 + tn−k;1−α

2
s.ê.(ê0)

�

This confidence interval is exact in finite sample. It requires normality : it does
not hold — even approximately — without the normality assumption.

• Remark : For easy computation, note that s.ê.(ê0) =
�
s.ê.(ŷ0)2 + ŝ2 and remind

that, as outlined above, ŷ0 and s.ê.(ŷ0) may directly be obtained by running
a regression where the explanatory variables are appropriately centered. For
details, see Wooldridge (2016), Section 6.4a.
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