Regression analysis with cross-sectional data: Confidence intervals for predictions

Bernard Lejeune

Supplemental lecture notes II

Advanced Econometrics HEC-University of Liège Academic year 2021-2022

• These lecture notes restate, in matrix form and with more details, the content of Section 6.4a of Wooldridge (2016).

1. Predictions

- Let the $1 \times k$ (row) vector $X_0 = (1, x_{02}, ..., x_{0k})$ denotes the (fixed, nonstochastic) value of explanatory variables for which we want to make predictions. Two different predictions (or forecasts) must be distinguished:
 - A prediction of the expected value of y given $X_0: E(y_0|X_0) = X_0\beta$
 - A prediction of the value of y given X_0 : $y_0 = X_0\beta + u_0$

1.1. Prediction of the expected value of y given X_0

• An obvious estimator/predictor of $E(y_0|X_0) = X_0\beta$ is obtained by replacing β by its OLS estimator $\hat{\beta}$:

$$\hat{y}_0 = X_0\beta$$

• Under the Gauss-Markov assumptions, we have:

$$E(\hat{y}_0|X) = E(X_0\hat{\beta}|X) = X_0E(\hat{\beta}|X) = X_0\beta$$

which means that \hat{y}_0 is a unbiased estimator/predictor of $E(y_0|X_0) = X_0\beta$, and:

$$Var(\hat{y}_0|X) = Var(X_0\hat{\beta}|X) = X_0V(\hat{\beta}|X)X_0' = \sigma^2 X_0 (X'X)^{-1} X_0'$$

• Because $E(y_0|X_0) = X_0\beta$ is nothing but a (nonstochastic) single linear combination of β , from the results on confidence intervals outlined in the supplemental lecture notes I (hereafter SLN-I), a $(1 - \alpha) \times 100\%$ confidence interval for $E(y_0|X_0) = X_0\beta$ is simply given by:

$$\left[\hat{y}_0 - t_{n-k;1-\frac{\alpha}{2}}s.\hat{e}.(\hat{y}_0);\,\hat{y}_0 + t_{n-k;1-\frac{\alpha}{2}}s.\hat{e}.(\hat{y}_0)\right]$$

where $s.\hat{e}.(\hat{y}_0) = s.\hat{e}.(X_0\hat{\beta}) = \sqrt{V\hat{a}r(X_0\hat{\beta})} = \sqrt{X_0\hat{V}(\hat{\beta})X_0'} = \sqrt{\hat{s}^2 X_0(X'X)^{-1}X_0'}.$

This confidence interval is exact in finite sample if normality holds, and is asymptotically valid – i.e., approximately valid for n sufficiently large – without the normality assumption.

• Remark: It is in practice possible to directly obtain \hat{y}_0 and $s.\hat{e}.(\hat{y}_0)$ by running a regression where the explanatory variables are appropriately centered. For details, see Wooldridge (2016), Section 6.4a.

1.2. Prediction of the value of y given X_0

• Because u_0 can not be predicted and has zero mean, the best predictor of $y_0 = X_0\beta + u_0$ is still:

$$\hat{y}_0 = X_0\beta$$

• Let $\hat{e}_0 = y_0 - \hat{y}_0 = X_0(\beta - \hat{\beta}) + u_0$ denotes the prediction error in using \hat{y}_0 to predict y_0 . Under the Gauss-Markov assumptions, we have:

$$E(\hat{e}_{0}|X) = E\left[(X_{0}(\beta - \hat{\beta}) + u_{0})|X\right]$$

= $X_{0}\beta - X_{0}E(\hat{\beta}|X) + E(u_{0}|X)$
= $X_{0}\beta - X_{0}\beta + 0 = 0$

which means that the prediction error has zero mean (although $E(\hat{y}_0|X) \neq y_0$), and:

$$Var(\hat{e}_0|X) = Var\left[(X_0(\beta - \hat{\beta}) + u_0)|X\right]$$

=
$$Var(X_0(\beta - \hat{\beta})|X) + 2Cov(X_0(\beta - \hat{\beta}), u_0|X)$$

+
$$Var(u_0|X)$$

where¹:

$$Var(X_0(\beta - \hat{\beta})|X) = Var(-X_0\hat{\beta}|X) = X_0V(\hat{\beta}|X)X'_0$$
$$= \sigma^2 X_0 (X'X)^{-1} X'_0$$

¹ Note that from Section 3.1.1 in SLN-I, we have: $\hat{\beta} - \beta = (X'X)^{-1} X' u$.

$$Cov(X_0(\beta - \hat{\beta}), u_0 | X) = E(-X_0 (X'X)^{-1} X' u u_0 | X)$$

= $-X_0 (X'X)^{-1} X' E (u u_0 | X)$
= $-X_0 (X'X)^{-1} X' \cdot 0 = 0$
 $Var(u_0 | X) = \sigma^2$

so that:

$$Var(\hat{e}_{0}|X) = Var(\hat{y}_{0}|X) + Var(u_{0}|X)$$

= $X_{0}V(\hat{\beta}|X)X'_{0} + \sigma^{2}$
= $\sigma^{2}X_{0}(X'X)^{-1}X'_{0} + \sigma^{2}$

• If in addition normality is assumed, because \hat{e}_0 is a linear function of $\hat{\beta}$ and u_0 which are both normal, then \hat{e}_0 is also normally distributed²:

$$\hat{e}_0|X \sim N(0, Var(\hat{e}_0|X))$$

so that, conditional on X, we have:

$$\hat{z} = \frac{\hat{e}_0}{s.e.(\hat{e}_0|X)} \sim N(0,1)$$
(1)

where $s.e.(\hat{e}_0|X) = \sqrt{Var(\hat{e}_0|X)} = \sqrt{\sigma^2 X_0 (X'X)^{-1} X'_0 + \sigma^2}.$

• Following the same reasoning as in SLN-I, under the same assumptions, conditional on X, we have that $\hat{v} = \frac{(n-k)\hat{s}^2}{\sigma^2} \sim \chi^2(n-k)$ and that \hat{z} and \hat{v} are independent, so that from the definition of the Student distribution, still conditional on X, we have:

$$\hat{t} = \frac{\hat{z}}{\sqrt{\frac{\hat{v}}{n-k}}} = \frac{\frac{e_0}{\sqrt{\sigma^2 X_0(X'X)^{-1} X_0' + \sigma^2}}}{\sqrt{\frac{\hat{s}^2}{\sigma^2}}} = \frac{\hat{e}_0}{\sqrt{\hat{s}^2 X_0 \left(X'X\right)^{-1} X_0' + \hat{s}^2}} \sim t(n-k)$$

i.e. :

$$\hat{t} = \frac{\hat{e}_0}{s.\hat{e}.(\hat{e}_0)} = \frac{y_0 - \hat{y}_0}{s.\hat{e}.(\hat{e}_0)} \sim t(n-k)$$
(2)

where
$$s.\hat{e}.(\hat{e}_0) = \sqrt{V\hat{a}r(\hat{e}_0)} = \sqrt{\hat{s}^2 X_0 (X'X)^{-1} X'_0 + \hat{s}^2} = \sqrt{X_0 \hat{V}(\hat{\beta}) X'_0 + \hat{s}^2}.$$

In words, if the unknown variance σ^2 appearing in the standard error $s.e.(\hat{e}_0|X)$ of statistic (1) is replaced by its unbiased estimator \hat{s}^2 , so that the standard error $s.e.(\hat{e}_0|X)$ is replaced by its estimator $s.\hat{e}.(\hat{e}_0)$, then the distribution of (1) switches from normal to Student.

• The distributional result (2) holds conditional on X. But as the conditional distribution of $\hat{t} = \frac{\hat{e}_0}{s.\hat{e}.(\hat{e}_0)}$ actually does not depend on X, it also holds uncondi-

² If normality does not hold, $\hat{\beta}$ is still approximately normally distributed, but is is not the case of u_0 , so that the distribution of \hat{e}_0 is no longer normally distributed, even approximately.

tionally, and we can write:

$$I\!P\left(-t_{n-k;1-\frac{\alpha}{2}} \le \frac{y_0 - \hat{y}_0}{s.\hat{e}.(\hat{e}_0)} \le t_{n-k;1-\frac{\alpha}{2}}\right) = 1 - \alpha$$

so that we have:

$$I\!P\left(\hat{y}_0 - t_{n-k;1-\frac{\alpha}{2}}s.\hat{e}.(\hat{e}_0) \le y_0 \le \hat{y}_0 + t_{n-k;1-\frac{\alpha}{2}}s.\hat{e}.(\hat{\beta}_j)\right) = 1 - \alpha$$

and a $(1 - \alpha) \times 100\%$ confidence interval for $y_0 = X_0\beta + u_0$ is given by:

$$\left[\hat{y}_{0} - t_{n-k;1-\frac{\alpha}{2}}s.\hat{e}.(\hat{e}_{0});\,\hat{y}_{0} + t_{n-k;1-\frac{\alpha}{2}}s.\hat{e}.(\hat{e}_{0})\right]$$

This confidence interval is exact in finite sample. It requires normality: it does not hold – even approximately – without the normality assumption.

• Remark: For easy computation, note that $s.\hat{e}.(\hat{e}_0) = \sqrt{s.\hat{e}.(\hat{y}_0)^2 + \hat{s}^2}$ and remind that, as outlined above, \hat{y}_0 and $s.\hat{e}.(\hat{y}_0)$ may directly be obtained by running a regression where the explanatory variables are appropriately centered. For details, see Wooldridge (2016), Section 6.4a.

Reference

Wooldridge J.M. (2016), Introductory Econometrics: A Modern Approach, 6th Edition, Cengage Learning.