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• These lecture notes provide a synthesis of the basics of the linear regression
model for cross-sectional data in matrix form. They recap the results obtained
in Lejeune (2011), but here explicitly allowing for X to be random (rather than
assuming X nonstochastic). They cover the main results of Chapter 1-5 of
Wooldridge (2016).

1. Model specification

• The easiest way of apprehending the multiple linear regression model is to see
it as a generic statistical model for evaluating :

— how the mean value taken by some variable y varies as a function of some
other variables (x2, ..., xk) in a given population,
— based on a random sample of observations from the population.

• The mean value taken by some variable y as a function of some other vari-
ables (x2, ..., xk) is supposed to be the empirical counterpart of the theoretical
relationship of interest.

• In terms of probability theory, the mean value taken by some variable y as a
function of some other variables (x2, ..., xk) in a population is represented by the
conditional expectation, also called the conditional mean :

E(y|x2, ..., xk) = g(x2, ..., xk)

where (x2, ..., xk) and y are random values obtained for an individual drawn at
random from the population.
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• Basically, the multiple linear regression model assumes that the conditional mean
E(y|x2, ..., xk) is linear (in parameters), i.e. that g(x2, ..., xk) = β1+β2x2+ ...+
βkxk.

• The classical linear regression model relies on further assumptions, such as con-
stant conditional variance or conditional normality, but these further assump-
tions are not as essential as the conditional mean assumption, and may be
relaxed if needed.

• The most important feature of the multiple linear regression model is that it
allows to evaluate the causal effect — i.e., the effect, the other factors being held
constant — of some explanatory variable of interest x on another variable y based
on non-experimental data.

1.1. Model assumptions for cross-sectional data

• Following Wooldridge (2016), Chapter 3-4, the seminal statistical assumptions
underlying the multiple regression model for cross-sectional data may be ex-
pressed as follows :

—MLR.1 Linearity in parameters

The population model, describing the relationship between the dependent
variable y and the explanatory variables (x2, ..., xk) for a generic draw from
the population, can be written as :

y = β1 + β2x2 + ...+ βkxk + u

where (β1, ..., βk) are unknown parameters and u is an error term.

—MLR.2 Random sampling

The available data are realizations of a random sample of size n,
{(xi2, ..., xik, yi) : i = 1, ..., n}, following the population model in assump-
tion MLR.1

—MLR.3 No perfect collinearity

In the sample (and thus in the population), none of the explanatory vari-
ables (x2, ..., xk) is constant, and there is no exact linear relationship among
them.

—MLR.4 Zero conditional mean

The expected value of u given any values of (x2, ..., xk) is equal to zero,
which is equivalent to say that the expected value of y given any values of
(x2, ..., xk) is equal to β1 + β2x2 + ...+ βkxk :

E(u|x2, ..., xk) = 0 ⇔ E(y|x2, ..., xk) = β1 + β2x2 + ...+ βkxk

—MLR.5 Homoskedasticity

The variance of u given any values of (x2, ..., xk) is constant, which is
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equivalent to say that the variance of y given any values of (x2, ..., xk) is
constant :

V ar(u|x2, ..., xk) = σ2 ⇔ V ar(y|x2, ..., xk) = σ2

where σ2 is a unknown parameter.

—MLR.6 Normality

The distribution of u is the same given any values of (x2, ..., xk) — i.e., u
is independent of (x2, ..., xk) — and is normal with zero mean and variance
σ2, which is equivalent to say that the distribution of y given any value
of (x2, ..., xk) is normal with mean equal to β1 + β2x2 + ... + βkxk and
variance σ2 :

u|x2, ..., xk ∼ N(0, σ2) ⇔ y|x2, ..., xk ∼ N(β1 + β2x2 + ...+ βkxk, σ2)

• The above set of assumptions deserves some comments :

—The linearity assumption MLR.1 requires the population model to be linear
in parameters, not in variables. In practice, the original variables may be
transformed, yielding a model which is nonlinear in variables, but still
linear in parameters. The most widely used transformation is the natural
logarithm, noted log(.).

—The random sampling assumption MLR.2 implies that the individual ob-
servations (xi2, ..., xik, yi) are both identically and independently distrib-
uted across i.

—To be able to estimate the partial effect each of variable x2, ..., xk, we need
each of these variables to vary, and to vary at least to some extent inde-
pendently of the other variables. This is what is required by assumption
MLR.3.

—The zero conditional mean assumption MLR.4 basically says that the sys-
tematic part of the population model in MLR.1 is the conditional mean of y
given (x2, ..., xk). In other words, assumptions MLR.1 and MLR4 indicate
that we are interested in estimating the conditional mean E(y|x2, ..., xk),
and that this conditional mean is assumed linear in parameters.

— By the law of iterated expectations1, the zero conditional mean assumption
MLR.4 implies that the unconditional mean of u is zero (i.e., E(u) = 0),
and that u is uncorrelated (have zero covariance) with each explanatory
variable (i.e., E(xju) = 0, j = 2, ..., k)).

—The homoskedasticity and normality assumptions MLR.5 and MLR.6 are
auxiliary assumptions. They are less essential, and may be relaxed if
needed (although at the price of additional complications).

1On the law of iterated expectations, and more generally on the properties of conditional expectation,
see Wooldridge (2016), Appendix B4-f. A brief summary of these properties, and further of those of
conditional variance, is provided in an appendix at the end of the present lecture notes.
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1.2. Model and assumptions in matrix form

• The multiple linear regression model is more easily handled, and its properties
studied, in matrix form2.

• For any observation i drawn from the population, we can write :

yi = β1 + β2xi2 + ...+ βkxik + ui

⇔ yi = Xiβ + ui

where Xi = (1, xi2, ..., xik) is a 1 × k (row) vector of explanatory variables (in-
cluding a constant) and β = (β1, β2, ..., βk) is k × 1 (column) vector. Further,
stacking all observations of a random sample of size n, we can write :






y1
y2
...
yn




 =






1 x12 · · · x1k
1 x22 · · · x2k
...

...
...

1 xn2 · · · xnk











β1
β2
...
βk




+






u1
u2
...
un






⇔ Y = Xβ + u

where Y and u are n× 1 vectors, and X is a n × k matrix, whose the i-th row
is equal to Xi.

• Following Wooldridge (2016), Appendix E-2, assumptions MLR.1 —MLR.6 can
be rewritten in matrix form as follows3 :

— E.1 Linearity in parameters : Y = Xβ + u

— E.2 No perfect collinearity : rank(X) = k

— E.3 Zero conditional mean : E(u|X) = 0 ⇔ E(Y |X) = Xβ

— E.4 Homoskedasticity & no correlation : V (u|X) = σ2I ⇔ V (Y |X) = σ2I

— E.5 Normality : u|X ∼ N(0, σ2I)⇔ Y |X ∼ N(Xβ, σ2I)

• Assumptions E.1 —E.5 are usually referred to as the ‘classical linear model as-
sumptions’. These assumptions are actually weaker than the seminal assump-
tions MLR.1 —MLR.6. They hold whenever MLR.1 —MLR.6 hold :

—Assumption E.1 must be read : yi = Xiβ+ui, i = 1, ..., n. It is exactly the
same as assumption MLR.1.

—Assumption E.2 means that X is full rank, so that there is no exact exact
linear relationship among its columns. It is exactly the same as assumption
MLR.3.

2 For a summary of matrix algebra, including moments and distributions of random vectors, see
Wooldridge (2106), Appendix D.

3A brief summary of the properties of conditional mean and conditional variance of random vectors may
be found in the appendix at the end of the present lecture notes.
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—Assumption E.3 must be read : E(ui|X) = 0 ⇔ E(yi|X) = Xiβ, i =
1, ..., n. It holds under assumptions MLR.2 and MLR.4. The random sam-
pling assumption MLR.2 implies independence of the observations across i,
so that E(ui|X) = E(ui|Xi) ⇔ E(yi|X) = E(yi|Xi). On the other hand,
the zero conditional mean MLR.4 states that E(ui|Xi) = 0⇔ E(yi|Xi) =
Xiβ.

—Assumption E.4 must be read : V ar(ui|X) = σ2 = V ar(yi|X), i = 1, ..., n,
and Cov(ui, uj|X) = 0 = Cov(yi, yj|X), for all i 	= j. It holds under as-
sumptions MLR.2 and MLR.5. The no correlation (zero covariance) part
of E.4 directly follows from the independence of the observations across i
implied by the random sampling assumption MLR.2. The variance part
of E.4 follows from the random sampling assumption MLR.2, which im-
plies that V ar(ui|X) = V ar(ui|Xi)⇔ V ar(yi|X) = V ar(yi|Xi), and from
the homoskedasticity assumption MLR.5, which states that V ar(ui|Xi) =
σ2 = V ar(yi|Xi).

—Assumption E.5 states that the joint distribution of u givenX is (multivari-
ate) normal with zero mean and variance-covariance matrix σ2I, which is
equivalent to say that joint distribution of Y given X is (multivariate) nor-
mal with mean Xβ and variance-covariance matrix σ2I . It directly follows
from the independence of the observations across i implied by the random
sampling assumption MLR.2 and the normality assumption MLR.6.

2. Model estimation

2.1. The ordinary least squares estimator

• The ordinary least squares (OLS) estimator of the unknown vector of parameters
β of the classical linear regression model is defined as :

β̂ = Argminβ
n�

i=1

(yi −Xiβ)2

= Argminβ(Y −Xβ)′(Y −Xβ)

• The first order condition of the above minimization problem is4 :

n�

i=1

X ′
i(yi −Xiβ̂) =

n�

i=1

X ′
iûi = 0

⇔ X ′(Y −Xβ̂) = X ′û = 0 (1)

and the OLS estimator is given by :

4 For a detailed derivation, see Wooldridge (2016) p. 720-722, Hayashi (2010) p. 15-18, or Lejeune (2011)
p. 27-29 and p. 103-104.
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β̂ =

�
n�

i=1

X ′
iXi

	−1 n�

i=1

X ′
iyi

= (X ′X)
−1
X

′

Y

• Some remarks :

—The no perfect collinearity assumption (in matrix form, assumption E.2 :

rank(X) = k) ensures that X ′X is full rank and thus invertible, so that β̂
is well defined.

—The first order condition (1) implies that the OLS residuals sum to zero
(when as usual an intercept is included in the model) and that the sample
covariance between each of the explanatory variables and the OLS residuals
is zero.

— For the simple linear regression model y = β1+β2x+u, the OLS estimators
of β1 and β2 are given by5 :

β̂1 = ȳ − β̂2x̄ and β̂2 =
Covspl(xi, yi)

V arspl(xi)
(2)

where Covspl(xi, yi) denotes the sample covariance between x and y, and
V arspl(xi) is the sample variance of x6.

2.2. Goodness-of-fit

•Once the model is estimated, each observation may be decomposed into two
parts, a fitted (explained) value and a residual :

yi = Xiβ̂ + ûi = ŷi + ûi

• Provided that the model contains an intercept (so that ȳ = ŷ), it may be shown
that7 :

n


i=1

(yi − ȳ)2

� � �
SST

=
n


i=1

(ŷi − ŷ)2

� � �
SSE

+
n


i=1

û2i

� � �
SSR

,

where SST denotes the total sum of squares, SSE the explained sum of squares,
and SSR the residual sum of squares of the regression.

• A goodness-of-fit measure of the regression is given by the so-called R-squared

5 See Wooldridge (2016) p. 26 or Lejeune (2011) p. 15-16.
6 Covspl(xi, yi) =

1
n

�n

i=1(xi − x̄)(yi − ȳ) and V arspl(xi) =
1
n

�n

i=1(xi − x̄)2.
7 See Wooldridge (2016) p. 33-36 and p. 70-71, Hayashi (2000) p. 20-21, or Lejeune (2011) p. 82-84 and

p. 117.



7

of the regression, also called the coefficient of determination of the regression :

R2 =
SSE

SST
= 1− SSR

SST

R2 measures the proportion of the sample variation in yi that is explained by the
regression. By definition, R2 is a number between zero and one : 0 ≤ R2 ≤ 1.

• It can be shown that the R-squared is also equal to the squared sample correla-
tion coefficient ρspl(yi, ŷi) between the actual yi and the fitted values ŷi :

R2 =
�
ρspl(yi, ŷi)

�2
=

�
Covspl(yi,ŷi)√

V arspl(yi)
√
V arspl(ŷi)

	2

3. Sampling properties of the OLS estimator

3.1. Finite sample properties of OLS

• Finite sample properties refer to sampling distribution properties which are valid
for any finite sample size n. For both convenience and generality, we study these
properties under the weakest set of assumptions E.1 —E.5.

3.1.1. Unbiasedness of β̂

• Under assumptions E.1 and E.2, we have :

β̂ = (X ′X)
−1
X ′Y = (X ′X)

−1
X ′(Xβ + u)

= (X ′X)
−1
X ′Xβ + (X ′X)

−1
X ′u

= β + (X ′X)
−1
X ′u (3)

so that, under the zero conditional mean assumption E.3 E(u|X) = 0, we have :

E(β̂|X) = E
�
(β + (X ′X)

−1
X ′u)|X

�

= β + (X ′X)
−1
X ′E(u|X)

= β (4)

•We have just established the following property8 :

Property 1 Unbiasedness of β̂

Under assumptions E.1 —E.3, the OLS estimator β̂ is an unbiased estimator
of β :

E(β̂|X) = β

8 This property is the same as Theorem E.1 in Wooldridge (2016), Appendix E-2.
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• Note that :

— as E(β̂|X) does not depend on X, by the law of iterated expectations, we
also have :

E(β̂) = E
�
E(β̂|X)

�
= E(β) = β

i.e., the unbiasedness also holds unconditionally.

— as assumptions MLR.1 —MLR.4 imply assumptions E.1 —E.3, Property 1
also holds under the seminal assumptions MLR.1 —MLR.4.

3.1.2. Omitted variable bias

• Property 1 ensures that whenever the population model is correctly specified
for the conditional mean of y given (x2, ..., xk), then OLS provides an unbiased
estimator of the unknown parameters (β1, β2, ..., βk) of E(y|x2, ..., xk) = β1 +
β2x2+ ...+βkxk, i.e., an unbiased estimator of the partial effect of each variable,
the other variables being held constant.

• If any of ‘the other variables being held constant’ is not included in the estimated
regression, then OLS will usually no longer provide an unbiased estimator of
the partial effects of interest, i.e., the partial effect of each variable, the other
variables (including the omitted ones) being held constant. This is the omitted
variable bias.

• The main features of the omitted variable bias may be outlined by looking at
a simple case. Suppose we are interested in the parameter β2 — i.e., the partial
effect of x2, x3 being held constant — in the population model :

y = β1 + β2x2 + β3x3 + u, with E(u|x2, x3) = 0 (5)

⇔ E(y|x2, x3) = β1 + β2x2 + β3x3
Under assumption E.1 —E.3, Property 1 ensures that a regression9 of yi on xi2, xi3
yields an unbiased estimator of β2. Suppose that we run instead a (simple)
regression of yi on xi2, xi3 being omitted. The OLS estimator associated with
that regression with a omitted variable can be written :

β̂
∗

12 =

�
β̂
∗

1

β̂
∗

2

�

= (X ′
12X12)

−1
X ′
12Y , where Y =






...
yi
...




 and X12 =






...
...

1 xi2
...

...






Let the population model (5) be written as :

Y = Xβ + u = X12β12 +X3β3 + u , where β12 =

�
β1
β2

�
and X3 =






...
xi3
...






9Unless explicitely stated, a constant is always included in the regression.
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Under assumption E.1 —E.2, we have :

β̂
∗

12 = (X ′
12X12)

−1
X ′
12Y

= (X ′
12X12)

−1
X ′
12(X12β12 +X3β3 + u)

= β12 + (X
′
12X12)

−1
X ′
12X3β3 + (X

′
12X12)

−1
X ′
12u ,

so that, under the zero conditional mean assumption E.3 E(u|X) = 0, we have :

E(β̂
∗

12|X) = E
�
(β12 + (X

′
12X12)

−1
X ′
12X3β3 + (X

′
12X12)

−1
X ′
12u)|X

�

= β12 + (X
′
12X12)

−1
X ′
12X3β3 + (X

′
12X12)

−1
X ′
12E(u|X)

= β12 + (X
′
12X12)

−1
X ′
12X3β3

which can be written as :

E(β̂
∗

12|X) = β12 + β3δ̂

⇔
�
E(β̂

∗

1|X)
E(β̂

∗

2|X)

�

=

�
β1
β2

�
+ β3

�
δ̂1
δ̂2

�

where δ̂ = (X ′
12X12)

−1X ′
12X3 is the OLS estimator of the (simple) regression

of the omitted variable xi3 on xi2, δ̂1 being the estimated intercept and δ̂2 the
estimated slope.

From (2) in Section 2.1, we have δ̂2 =
Covspl(xi2,xi3)

V arspl(xi2)
, so that E(β̂

∗

2|X) can finally

be written :

E(β̂
∗

2|X) = β2 + β3
Covspl(xi2, xi3)

V arspl(xi2)

In other words, the estimator β̂
∗

2 from the regression omitting xi3 will be an
biased estimator of β2 — i.e. of the partial effect of x2, x3 being held constant,
in the population model (5) — unless one of the following conditions is fulfilled :

— β3 = 0 in the population model (5). In this case, E(y|x2, x3) = β1 + β2x2,
i.e., E(yi|xi2, xi3) is a linear function of xi2, and does not depend on xi3.
We have just omitted an irrelevant variable.

—The omitted variable x3 is uncorrelated with x2 (i.e., Covspl(xi2, xi3) = 0).

If none of these conditions is fulfilled, then the estimator β̂
∗

2 from the regres-

sion omitting xi3 will be biased, and the direction of the bias Bias(β̂
∗

2|X) =
E(β̂

∗

2|X) − β2 = β3
Covspl(xi2,xi3)

V arspl(xi2)
will depend on the sign of β3 and the sign of

Covspl(xi2, xi3)
10.

It is worth noting that if β̂
∗

2 is biased (e.g., because Covspl(xi2, xi3) 	= 0), it is
biased as an estimator of β2, which is the partial effect of x2 on y, x3 being held
constant, in the population model (5). But as an estimator of the effect of x2 on
y, regardless of x3 (x3 not being held constant), it may actually be an unbiased

10 For a discussion, see Wooldridge (2016) p. 78-81.
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estimator. As a matter of fact, if the population model (5) hold, we have :

E(y|x2) = E [(β1 + β2x2 + β3x3 + u)|x2]
= β1 + β2x2 + β3E (x3|x2) + E(u|x2)

By the law of iterated expectations, E(u|x2, x3) = 0 implies E(u|x2) = 0, so
that we have11 :

E(y|x2) = β1 + β2x2 + β3E (x3|x2)

If the conditional mean of x3 given x2 is linear — i.e., if E (x3|x2) = δ1 + δ2x2 —,
we further have :

E(y|x2) = β1 + β2x2 +β3(δ1 + δ2x2)

= (β1 + β3δ1) + (β2 + β3δ2)x2

= β∗1 + β
∗
2x2 (6)

If the above population model (6) holds — and it will if E (x3|x2) = δ1 + δ2x2
—, then, from Property 1, the OLS estimator β̂

∗

2 from the (simple) regression
of yi on xi2 is actually an unbiased estimator of β∗2 = β2 + β3δ2. Simply, the
parameter β∗2, which gives the effect of x2 on y, regardless of x3 (x3 not being
held constant), is not what we were looking for (unless β3 = 0 and/or δ2 = 0)

12.
This highlights the fact that when discussing whether an estimator is or is not
biased (or likewise consistent), one must carefully states biased (or consistent)
for which quantity, and under which assumptions.

• The above analysis of omitted variables bias may be extended to the case where
one or more explanatory variables are omitted from a regression with any number
k of explanatory variables. In this general case, it may likewise be shown that

the OLS estimator β̂
∗

(.) from the regression where one or more variables have
been omitted will be a biased estimator of the parameters of interest of the
original population model — i.e., the partial effects of each included variable, the
other variables (including the omitted ones) being held constant — unless one of
the following conditions is fulfilled :

— In the original population model, the parameter of each omitted variable
is equal to zero (i.e., we have just omitted irrelevant variables).

— Each omitted variable is uncorrelated with each of the other variables of
the original population model.

If none of these conditions is fulfilled, then the estimator β̂
∗

(.) from the regression
where one or more variables have been omitted will be biased, but deriving the
direction of the bias is now more difficult.

11Note that the same result may likewise directly be obtained from the law of iterated expecta-
tions : E(y|x2) = E [E(y|x2, x3)|x2] = E [(β1 + β2x2 + β3x3)|x2] = β1 + β2x2 + β3E (x3|x2).

12 Incidentaly, note that if δ2 = 0, then E(x3|x2) = E(x3) = δ1, which implies that Cov(x2, x3) = 0.
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3.1.3. Variance-covariance matrix of β̂

• Under assumptions E.1 —E.3, from (3) and (4), we have :

β̂ = β + (X ′X)
−1
X ′u and E(β̂|X) = β

so that :

V (β̂|X) = E
�
(β̂ −E(β̂|X))(β̂ −E(β̂|X))′|X

�

= E
�
(β̂ − β)(β̂ − β)′|X

�

= E
�
(X ′X)

−1
X ′uu′X (X ′X)

−1 |X
�

= (X ′X)
−1
X ′E(uu′|X)X (X ′X)

−1

Using the homoskedasticity and no correlation assumption E.4 V (u|X) =
E(uu′|X) = σ2I, we thus have :

V (β̂|X) = (X ′X)
−1
X ′E(uu′|X)X (X ′X)

−1

= σ2 (X ′X)
−1
X ′X (X ′X)

−1

= σ2 (X ′X)
−1

•We have just established the following property13 :

Property 2 Variance-covariance matrix of β̂

Under assumptions E.1 —E.4, the variance-covariance matrix of the OLS estima-
tor β̂ is given by :

V (β̂|X) = σ2 (X ′X)
−1

Note that as assumptions MLR.1 —MLR.5 imply assumptions E.1 —E.4, Prop-
erty 2 also holds under the seminal assumptions MLR.1 —MLR.5.

• For the special case of the population model y = β1 + β2x2 + β3x3 + u, it may
be shown that we have :

V ar(β̂2|X) =
σ2

SST2
�
1− ρspl(xi2, xi3)2

� , V ar(β̂3|X) =
σ2

SST3
�
1− ρspl(xi2, xi3)2

�

and

Cov(β̂2, β̂3|X) =
−ρspl(xi2, xi3)σ2√

SST2
√
SST3

�
1− ρspl(xi2, xi3)2

�

where SST2 =
n�

i=1

(xi2 − x̄2)2 and SST3 =
n�

i=1

(xi3 − x̄3)2.

The above expressions allow to identify the components of the variance-covariance
matrix of β̂ :

13 This property is the same as Theorem E.2 in Wooldridge (2016), Appendix E-2.
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—The error variance σ2 :

if σ2 ր , then V ar(β̂2|X), V ar(β̂3|X) and |Cov(β̂2, β̂3|X)| ր

—The variation of the explanatory variables around their mean :

if SST2 ր and SST3 ր , then V ar(β̂2|X), V ar(β̂3|X)
and |Cov(β̂2, β̂3|X)| ց

—The sample size n :

if nր , SST2 and SST3 ր , then V ar(β̂2|X), V ar(β̂3|X)
and |Cov(β̂2, β̂3|X)| ց

—The correlation between the explanatory variables :

if |ρspl(xi2, xi3)| ր , then V ar(β̂2|X), V ar(β̂3|X) and |Cov(β̂2, β̂3|X)| ր

3.1.4. Gauss-Markov theorem

• The Gauss-Markov theorem basically ensures that the OLS estimator β̂ is, in
some sense, the best estimator we can find for estimating the unknown parame-
ter β of a linear regression model satisfying assumptions E.1 —E.4. It may be
expressed as follows14 :

Property 3 Gauss-Markov theorem

Under assumptions E.1 —E.4, the OLS estimator β̂ is the estimator which has
the smallest (in a matrix sense) variance-covariance matrix among all linear
unbiased estimators of β. It is the best linear unbiased estimator (BLUE) of β.

Any linear estimator β̂
∗
of β can be written as :

β̂
∗
= AY

where A is a k×n matrix which can consist of constants or functions of X. The
OLS estimator is simply obtained by setting A = (X ′X)−1X ′. For the linear

estimator β̂
∗
, we have :

E(β̂
∗|X) = E [AY |X]) = E [A(Xβ + u)|X]

= AXβ +AE(u|X)
= AXβ

so that β̂
∗
is an unbiased estimator of β if, and only if, AX = I. For the OLS

estimator, we indeed have AX = (X ′X)−1X ′X = I.

The Gauss-Markov theorem ensures that for any linear estimator β̂
∗
with A such

14 This property is the same as Theorem E.3 in Wooldridge (2016), Appendix E-2. For a detailed
proof, see Wooldridge (2016) p. 725-726, Hayashi (2000) p. 29-30, or Lejeune (2011) p. 36-39 and p. 106
(under the assumption of X nonstochastic).
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that AX = I (so that it is also unbiased), we have the matrix inequality:

V (β̂
∗|X) ≥ V (β̂|X) (7)

which means that V (β̂
∗|X) − V (β̂|X) = D, where D a positive semi-definite

matrix15. The matrix inequality (7) implies that, for any k × 1 vector a of
constants, we have16 :

V ar(a′β̂
∗|X) ≥ V ar(a′β̂)

and in particular :

V ar(β̂
∗

j |X) ≥ V ar(β̂j|X), for all j = 1, ..., k

In other words, for estimating any parameter βj, or any linear combination a′β

of the vector of parameters β, it is best to use the OLS estimator β̂ rather than

any other linear unbiased estimator β̂
∗
.

• Note that :

— as assumptions MLR.1 —MLR.5 imply assumptions E.1 —E.4, the Gauss-
Markov theorem also holds under the seminal assumptions MLR.1 —MLR.5.

— for obvious reason, assumptions E.1 —E.4 are often referred to as the ‘Gauss-
Markov assumptions’.

3.1.5. Distribution of β̂ under normality

• Relying on assumptions E.1 —E.4, we obtained the first two (conditional) mo-

ments of the OLS estimator β̂. If we add the normality assumption E.5, then
the distribution of β̂ is fully determined.

• For given X, the OLS estimator β̂ = (X ′X)−1X
′

Y is a linear function of Y .
Any linear function of random variables which are jointly normally distributed
is itself normally distributed. This carries over conditional distributions. So, if
the distribution of Y conditional on X is normal, then the distribution of β̂ is
also normal conditional on X 17 :

Property 4 Distribution of β̂ under normality

Under assumptions E.1 —E.5, the distribution of the OLS estimator β̂ is given
by :

β̂|X ∼ N
�
β, σ2(X ′X)−1

�
(8)

Note that as assumptions MLR.1 —MLR.6 imply assumptions E.1 —E.5, Prop-
erty 4 also holds under the seminal assumptions MLR.1 —MLR.6.

15A k × k symmetric matrix D is positive semi-definite if, for any k × 1 vector a, we have a′Da ≥ 0.
16 Let V (β̂

∗

|X) − V (β̂|X) = D. We have : V ar(a′β̂
∗

|X) = a′V (β̂
∗

|X)a = a′
�
V (β̂|X) +D

�
a ≥

a′V (β̂|X)a = V ar(a′β̂|X), because a′Da ≥ 0.
17 This property is the same as Theorem E.5 in Wooldridge (2016), Appendix E-3.
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• The distributional result (8) is the basis for deriving exact in finite sample in-
ference procedures (confidence interval, hypothesis testing).

• For inference, we will need an estimator of the variance-covariance matrix V (β̂|X)
= σ2 (X ′X)−1 of the OLS estimator β̂. This requires an estimator for σ2 =
E(u2). An unbiased estimator of σ2 is given by :

ŝ2 =
1

n− k

n


i=1

û2i =
û′û

n− k , where û = Y −Xβ̂

This is formalized in the following property18 :

Property 5 Unbiasedness of ŝ2

Under assumptions E.1 —E.4, ŝ2 is an unbiased estimator of σ2 :

E(ŝ2|X) = σ2

Note that :

— as E(ŝ2|X) does not depend on X, by the law of iterated expectations, we
also have :

E(ŝ2) = E
�
E(ŝ2|X)

�
= E(σ2) = σ2

i.e., the unbiasedness also holds unconditionally.

— only the Gauss-Markov assumptions E.1 —E.4 are needed for ŝ2 to be an
unbiased estimator of σ2.

— as assumptions MLR.1 —MLR.5 imply assumptions E.1 —E.4, Property 5
also holds under the seminal assumptions MLR.1 —MLR.5.

•With ŝ2 as an estimator of σ2, a natural estimator of V (β̂|X) = σ2 (X ′X)−1 is
given by :

V̂ (β̂) = ŝ2 (X ′X)
−1

(9)

As ŝ2 is an unbiased estimator of σ2, V̂ (β̂) is also an unbiased estimator V (β̂|X) :

E[V̂ (β̂)|X] = E[ŝ2 (X ′X)
−1 |X] = E(ŝ2|X) (X ′X)

−1

= σ2 (X ′X)
−1
= V (β̂|X)

The diagonal elements V âr(β̂j) of the k × k matrix estimator V̂ (β̂) being the

estimators of the variance V ar(β̂j|X) of the estimator β̂j of the different pa-
rameters βj (j = 1, ..., k), natural estimators of the standard error (also called

18 This property is the same as Theorem E.4 in Wooldridge (2016), Appendix E-2. For a detailed
proof, see Wooldridge (2016) p. 726, Hayashi (2000) p. 30-31, or Lejeune (2011) p. 42-43 and p. 107 (under
the assumption of X nonstochastic). Be aware : in Wooldridge (2016), ŝ2 is noted σ̂2, and the degrees
of freedom appearing in the expression of σ̂2 is n − (k + 1) rather than (n − k) because he considers
a model with k explanatory variables + an intercept, while here the intercept is included in the set
of the explanatory variables.
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standard deviation) s.e.(β̂j|X) =
�
V ar(β̂j|X) of the estimator β̂j of the differ-

ent parameters βj are given by19 :

s.ê.(β̂j) =
�
V âr(β̂j), j = 1, ..., k

3.2. Asymptotic properties of OLS

• Asymptotic properties refer to sampling distribution properties which are valid
when the sample size n goes to infinity20. For studying the asymptotic properties
of OLS, we switch back to the seminal set of assumptions MLR.1 —MLR.6, which
assume random sampling.

• Before proceeding, it is worth summarizing what we already know of the finite
sample properties of the OLS estimator β̂ under the seminal set of assumptions
MLR.1 —MLR.6 :

—Under assumptions MLR.1 —MLR.4 (linearity in parameters, random sam-
pling, no perfect colinearity and zero conditional mean), from Property 1,

β̂ is an unbiased estimator of β.

— If assumption MLR.5 (homoskedasticity) is added to assumptions MLR.1 —
MLR.4, from Property 2 and 3, the (conditional) variance-covariance ma-

trix of β̂ is given by V (β̂|X) = σ2 (X ′X)−1 and β̂ is the best linear unbiased
estimator (BLUE) of β. Also, from Property 5, ŝ2 is an unbiased estimator
of σ2.

— If assumptionMLR.6 (normality) is added to assumptions MLR.1 —MLR.5,

the (conditional) distribution of β̂ is normal and given by β̂|X ∼
N (β, σ2(X ′X)−1).

• Hereafter, we show that :

— under assumptions MLR.1 —MLR.4, β̂ is a consistent estimator of β.

— if assumption MLR.5 is added to assumptions MLR.1 —MLR.4, β̂ is
asymptotically normally distributed, and that regardless of whether or
not assumption MLR.6 holds.

3.2.1. Consistency of β̂

• An estimator θ̂ converges in probability to some constant θ, which is noted

19 Be aware : in Wooldridge (2016), s.e.(β̂j |X) is noted sd(β̂j), and s.ê.(β̂j) is noted se(β̂j).
20 For a general discussion of asymptotic properties of estimators, including the concepts of consistency,

asymptotic normality, law of large numbers and central limit theorem, see Wooldridge (2016), Appendix C-
3.
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θ̂
p−→ θ or plim(θ̂) = θ, if for any (arbitrarily small) ε > 0 :

lim
n→∞

IP
�
|θ̂ − θ| < ε

�
= 1

In words, an estimator θ̂ converges in probability to θ if the probability that
it yields a value as close as we wish from θ goes to 1 as n → ∞. In terms of
distribution, it means that the sampling distribution of θ̂ becomes more and

more concentrated about θ as n→∞. If θ̂ is a vector, θ̂
p−→ θ requires element-

by-element convergence. When θ̂
p−→ θ, θ̂ is said to be a consistent estimator of

θ.

•We have the following property21 :

Property 6 Consistency of β̂

Under assumptions MLR.1 —MLR.4, the OLS estimator β̂ is a consistent esti-
mator of β :

β̂
p−→ β

A sketch of the proof is as follows. Under assumptions MLR.1 —MLR.3, which
imply assumptions E.1 and E.2, from (3), we have :

β̂ = β + (X ′X)
−1
X ′u

= β +

�
n�

i=1

X ′
iXi

	−1� n�

i=1

X ′
iui

	

= β +

�
1

n

n�

i=1

X ′
iXi

	−1�
1

n

n�

i=1

X ′
iui

	
(10)

Because under random sampling the observations (Xi, yi) are identically and
independently distributed (i.i.d.) across i, both X ′

iXi and X
′
iui are likewise i.i.d.

across i, so that 1
n

�n

i=1X
′
iXi and

1
n

�n

i=1X
′
iui are both sample average to which

the law of large numbers (LLN) can be applied.
If {Zi: i = 1, ..., n} are i.i.d. random variables with E(Zi) = m, then by the
LLN we have22 :

Z̄n =
1

n

n�

i=1

Zi
p−→ m

Under the zero conditional mean assumption MLR.4 E (ui|Xi) = 0, by the law
of iterated expectations, we have :

E (X ′
iui) = E [E (X

′
iui|Xi)] = E [X ′

iE (ui|Xi)] = E [X ′
i · 0] = 0 (11)

21 This property is the same as Theorem 5.1 in Wooldridge (2016), Chapter 5. It is a special case
of Theorem 11.1 in Wooldridge (2016), Chapter 11. For a sketch of the proof similar to the one developed
below, see Wooldridge (2016) p. 728-729. For a more complete and rigorous treatment, see Wooldridge
(2010).

22 This holds for Zi being a scalar, a vector or a matrix.
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Noting E(X ′
iXi) = A, from the LLN, we thus have :

1

n

n�

i=1

X ′
iXi

p−→ A and
1

n

n�

i=1

X ′
iui

p−→ 0

so that, from (10), we finally have :

β̂
p−→ β +A−1 · 0 = β

• Equation (11) in the above proof suggests that β̂ would be consistent for β under
a weaker assumption than the zero conditional mean assumption MLR.4. It is
actually sufficient to have E (X ′

iui) = 0, i.e., the assumption MLR.4’ :

MLR.4’ Zero mean and zero correlation

The expected value of u is zero and u is uncorrelated with each explanatory
variable (x2, ..., xk) :

E(u) = 0 and Cov(xj , u) = 0, for j = 2, ..., k

Property 6’ Consistency of β̂ (bis)

Under assumptions MLR.1 —MLR.3 and assumption MLR.4’, the OLS estimator
β̂ is a consistent estimator of β :

β̂
p−→ β

Note however that under assumption MLR.4’, the OLS estimator β̂ is no longer
unbiased for β. It is only consistent for β.

3.2.2. Asymptotic normality of β̂

• The consistency of β̂ means that its sampling distribution becomes more and
more concentrated about β as n → ∞. But as its sampling distribution is col-
lapsing around β, the shape of this sampling distribution also becomes closer
and closer to the normal distribution as n→∞23. And that happens regardless
of the population distribution of y given (x2, ..., xk), i.e., without assuming nor-

mality. Technically, while the sampling distribution of β̂ becomes degenerate at
β as n→∞, the sampling distribution of its scaled version

√
n(β̂−β) converges

to a normal distribution.

•We have the following property24 :

Property 7 Asymptotic normality of β̂

Under assumptions MLR.1 —MLR.5, the OLS estimator β̂ is asymptotically nor-

23 For an illuminating graphical illustration (for the simple case of the estimation of a population mean),
see Goldberger (1990), p. 94-97.

24 This property is basically the same (but more general) as Theorem 5.2 in Wooldridge (2016), Chapter
5. It is a special case of Theorem 11.2 in Wooldridge (2016), Chapter 11. For a sketch of the proof similar
to the one developed below, see Wooldridge (2016) p. 729-730. For a more complete and rigorous treatment,
see Wooldridge (2010).
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mally distributed :

√
n(β̂ − β) d−→ N(0, σ2A−1), where A = E(X ′

iXi) (12)

The notation
d−→ means convergence in distribution.

A sketch of the proof is as follows. Under assumptions MLR.1 —MLR.3, which
imply assumptions E.1 and E.2, from (10), we have :

β̂ = β +

�
1

n

n�

i=1

X ′
iXi

	−1�
1

n

n�

i=1

X ′
iui

	

⇔
√
n(β̂ − β) =

�
1

n

n�

i=1

X ′
iXi

	−1�
n−

1
2

n�

i=1

X ′
iui

	
(13)

As already outlined, under random sampling, both X ′
iXi and X

′
iui are i.i.d.

across i. From the law of large numbers (LLN), we have 1
n

�n

i=1X
′
iXi

p−→
E(X ′

iXi) = A, and we can write :

√
n(β̂ − β) as= A−1

�
n−

1
2

n�

i=1

X ′
iui

	
(14)

where
as
=means ‘asymptotically equivalent’, so that

√
n(β̂−β) has asymptotically

the same distribution as A−1
�
n−

1
2

�n

i=1X
′
iui
�
.

Now, if {Zi: i = 1, ..., n} are i.i.d. (k × 1) random vectors with E(Zi) = m and
V (Zi) = Σ, then by the central limit theorem (CLT) we have :

√
n(Z̄n −m) = n−

1
2

n�

i=1

(Zi −m) d−→ N(0,Σ)

As already outlined, under the zero conditional mean assumption MLR.4
E (ui|Xi) = 0, from (11), we have E (X ′

iui) = 0. From the CLT, we thus
have :

n−
1
2

n�

i=1

X ′
iui

d−→ N(0, B), where B = V (X ′
iui)

so that25 :

A−1
�
n−

1
2

n�

i=1

X ′
iui

	
d−→ N(0, A−1BA−1)

On the other hand, under the homoskedasticity assumptionMLR.5 V ar (ui|Xi) =
E (u2i |Xi) = σ2, by the law of iterated expectations, we have :

B = V (X ′
iui) = E(u

2
iX

′
iXi) = E

�
E
�
u2iX

′
iXi|Xi

��

= E
�
E
�
u2i |Xi

�
X ′
iXi
�
= E

�
σ2X ′

iXi
�
= σ2E (X ′

iXi) = σ
2A

25 because a linear function of jointly normally distributed random variables is itself normally distributed,
and A−1 is a symmetric matrix.
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so that A−1BA−1 = σ2A−1. From (14), we thus finally have :

√
n(β̂ − β) d−→ N(0, σ2A−1)

• The limiting distributional result (12) provides an approximate finite sample

distribution for the OLS estimator β̂, which can be used — when n is sufficiently
large — for performing inference (confidence interval, hypothesis testing) without
having to rely on the normality assumption MLR.6. From (12), in terms of
approximation, we have :

√
n(β̂ − β) ≈ N(0, σ2A−1)

so that :
β̂ ≈ N(β, σ2A−1/n) (15)

i.e., for n sufficiently large26, β̂ can be treated as approximately normal with
mean β and variance-covariance matrix σ2A−1/n. The variance-covariance ma-

trix σ2A−1/n is usually called the ‘asymptotic variance of β̂’ and noted Avar(β̂).

Note that Avar(β̂)→ 0 as n→∞. Note further that if we replace A = E(X ′
iXi)

by its consistent estimator 1
n

�n

i=1X
′
iXi = X

′X/n, then Avar(β̂) becomes :

Avar(β̂) =
σ2A−1

n
≈ σ

2 (X ′X/n)−1

n
= σ2 (X ′X)

−1

This is the same as the exact in finite sample variance-covariance matrix V (β̂|X)
= σ2 (X ′X)−1 obtained in Property 2.

• The approximate distributional result (15) is the basis for showing that the exact
in finite sample inference procedures (confidence interval, hypothesis testing) de-
rived under assumptions E.1 —E.5, which are thus likewise exact in finite sample
under the seminal assumptions MLR.1 —MLR.6, remain asymptotically valid —
i.e., approximately valid for n sufficiently large — under assumptions MLR.1 —
MLR.5, i.e., without having to rely on the normality assumption MLR.6.

• For inference based on the limiting distributional result (12), or equivalently
on the approximate distributional result (15), we will need an estimator of

Avar(β̂) = σ2A−1/n. This requires consistent estimators of σ2 and A. We
already outlined that X ′X/n is a consistent estimator of A (this follows from
the LLN). A consistent estimator of σ2 is simply given by its unbiased estimator
ŝ2 = 1

n−k

�n

i=1 û
2
i =

û′û
n−k

. This is formalized in the following property27 :

Property 8 Consistency of ŝ2

Under MLR.1 —MLR.5, ŝ2 is a consistent estimator of σ2 :

ŝ2
p−→ σ2

26 The larger n, the better the approximation. An absolute minimum is n > 30.
27 This property is outlined in Theorem 5.2 in the Wooldridge (2016), Chapter 5. For a detailed proof

(under weaker assumptions than MLR.1 —MLR.5), see Hayashi (2000) p. 115-116.
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Here is the intuition of this property: from the LLN, 1
n

�n

i=1 u
2
i

p−→ E(u2i ) = σ
2.

As ûi converges to ui (because β̂
p−→ β), we also have 1

n

�n

i=1 û
2
i

p−→ σ2. The
final result follows from the fact that ŝ2 = ( n

n−k
) 1
n

�n

i=1 û
2
i , and that n

n−k
→ 1 as

n→∞.

•With ŝ2 and X ′X/n as consistent estimators of σ2 and A, an estimator of

Avar(β̂) = σ2A−1/n is given by :

V̂ (β̂) = ŝ2 (X ′X)
−1

This is the same as the unbiased estimator of V (β̂|X) = σ2 (X ′X)−1 outlined

in (9). As in the case of the estimation of V (β̂|X) = σ2 (X ′X)−1, the di-

agonal elements V âr(β̂j) of the k × k matrix estimator V̂ (β̂) being the es-

timators of the variance Avar(β̂j) of the estimator β̂j of the different para-
meters βj (j = 1, ..., k), natural estimators of the asymptotic standard error

As.e.(β̂j) =
�
Avar(β̂j) of the estimator β̂j of the different parameters βj are

likewise given by :

s.ê.(β̂j) =
�
V âr(β̂j), j = 1, ..., k

4. Inference

4.1. Exact confidence interval and hypothesis testing about a

single parameter

•We first consider exact in finite sample inference about a single parameter28, i.e.,
inference about a single parameter when the Gauss-Markov assumptions E.1 —
E.4 as well as the normality assumption E.5 hold, which is the case if the seminal
assumptions MLR.1 —MLR.5 as well as the normality assumption MLR.6 hold.

• From Property 4, under assumptions E.1 —E.5, and thus also under the seminal
assumptions MLR.1 —MLR.6, we have :

β̂|X ∼ N
�
β, σ2(X ′X)−1

�

which implies that, for each parameter βj (j = 1, ..., k), we have :

β̂j|X ∼ N(βj , V ar(β̂j|X))

so that, conditional on X, we have :

ẑ =
β̂j − βj
s.e.(β̂j|X)

∼ N(0, 1) (16)

28 For a general discussion about the basic concepts underlying confidence intervals and hypothesis
testing, see Wooldridge (2016), Appendix C-5 and C-6.
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where s.e.(β̂j|X) =
�
V ar(β̂j|X) =

�
σ2qjj, with

29 qjj = [(X
′X)−1]jj.

In particular, if βj = β
o
j , still conditional on X, we have :

ẑo =
β̂j − βoj
s.e.(β̂j|X)

∼ N(0, 1) (17)

while if βj = β
∗
j 	= βoj , we have :

ẑo =
β̂j − βoj
s.e.(β̂j|X)

∼ N
�
β∗j − βoj
s.e.(β̂j|X)

, 1

�

(18)

• It may be shown that, under the same assumptions, conditional on X, we have

that v̂ = (n−k)ŝ2

σ2
∼ χ2(n−k) and that ẑ and v̂ are independent30‚31, so that from

the definition of the Student distribution32, still conditional on X, we have :

t̂ =
ẑ

�
v̂
n−k

=

β̂j−βj√
σ2qjj�
ŝ2

σ2

=
β̂j − βj�
ŝ2qjj

∼ t(n− k)

i.e. :

t̂ =
β̂j − βj
s.ê.(β̂j)

∼ t(n− k) (19)

where s.ê.(β̂j) =
�
V âr(β̂j) =

�
ŝ2qjj.

In particular, if βj = β
o
j , still conditional on X, we have :

t̂o =
β̂j − βoj
s.ê.(β̂j)

∼ t(n− k) (20)

while if βj = β
∗
j 	= βoj , it may be checked33 that we have :

t̂o =
β̂j − βoj
s.ê.(β̂j)

∼ t(δ∗, n− k) , (21)

29 i.e., qjj denotes the (j, j) element of (X ′X)−1.
30 For a proof that, conditional on X, v̂ ∼ χ2(n−k), see Wooldridge (2016) p. 727, Hayashi (2000) p. 36-

37, or Lejeune (2011) p. 48-49 and p. 108 (under the assumption of X nonstochastic). Recall that in
Wooldridge (2016), ŝ2 is noted σ̂2, and the degrees of freedom appearing in the equations is n−(k+1) rather
than (n − k) because he considers a model with k explanatory variables + an intercept, while here the
intercept is included in the set of the explanatory variables.

31 The independence of ẑ and v̂ (conditional on X) follows from the independence of β̂ and ŝ2 (conditional
on X). For a proof of the latter, see again Wooldridge (2016) p. 727 or Hayashi (2000) p. 36-37.

32 If z ∼ N(0, 1), v ∼ χ2(m), and z and v are independent, then t = z�
v
m

∼ t(m), where t(m) denotes the

Student distribution with m degrees of freedom. See Wooldridge (2016), Appendix B-5e. This carries
over conditional distributions.

33 It follows from the facts that, conditional on X, v̂ ∼ χ2(n − k) and ẑo and v̂ are independent,
and from the definition of the non-central Student distribution given below.
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where t(δ∗, n − k) denotes the non-central Student distribution34 with (n − k)
degrees of freedom and non-centrality parameter δ∗ =

β∗j−β
o
j

s.e.(β̂j |X)
.

In words, if the unknown variance σ2 appearing in the standard error s.e.(β̂j|X)
of statistics (16), (17) and (18) is replaced by its unbiased estimator ŝ2, so

that the standard error s.e.(β̂j|X) is replaced by its estimator s.ê.(β̂j), then the
distribution of (16), (17) and (18) switches from normal to Student. Note that
it only makes a real difference when the sample size n is small, because for m
large, t(m) ≈ N(0, 1) and t(δ,m) ≈ N(δ, 1).

• The distributional result (19) is the basis for deriving a confidence interval for
βj. On the other hand, the distributional results (20) and (21) are the basis for
hypothesis testing about βj.

4.1.1. Confidence interval for βj

• The distributional result (19) holds conditional on X. But as the conditional

distribution of t̂ =
β̂j−βj

s.ê.(β̂j)
actually does not depend on X, it also holds uncondi-

tionally35, and we can write :

IP

�

−tn−k;1−α
2
≤ β̂j − βj
s.ê.(β̂j)

≤ tn−k;1−α
2

�

= 1− α (22)

where tn−k;1−α
2
is the quantile of order 1− α

2
of the t(n−k) Student distribution,

i.e., the value such that IP(t ≤ tn−k;1−α
2
) = 1 − α

2
, where t ∼ t(n − k). From

(22), we have :

IP
�
β̂j − tn−k;1−α

2
s.ê.(β̂j) ≤ βj ≤ β̂j + tn−k;1−α

2
s.ê.(β̂j)

�
= 1− α

so that a (1− α)× 100% confidence interval for βj is given by :

�
β̂j − tn−k;1−α

2
s.ê.(β̂j) ; β̂j + tn−k;1−α

2
s.ê.(β̂j)

�
(23)

4.1.2. t-tests about βj

• The distributional result (20) states that if the value of βj in the population is

equal to βoj , then the statistic t̂o =
β̂j−β

o
j

s.ê.(β̂j)
will yield values distributed around

zero according to its t(n − k) Student distribution. Note that this distribution
result does not hold only conditional on X : as the conditional distribution of

t̂o =
β̂j−β

o
j

s.ê.(β̂j)
actually does not depend on X, it also holds unconditionally. On

the other hand, the distributional result (21) states that if the value of βj in

34 If z ∼ N(δ, 1), v ∼ χ2(m), and z and v are independent, then t = z�
v
m

∼ t(δ,m). This carries

over conditional distributions.
35 This should not be confused with the fact that the value of t̂ itself depends on X.
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the population is equal to β∗j 	= βoj , then the same statistic t̂o =
β̂j−β

o
j

s.ê.(β̂j)
will yield

values distributed with a central tendency away from zero — either positive if
β∗j > β

o
j or negative if β

∗
j < β

o
j — according to its t(δ

∗, n−k) Student distribution.
This behavior makes t̂o a natural test statistic for testing hypotheses such as H0 :
βj = β

o
j against H1 : βj 	= βoj (two-sided test) or H0 : βj ≤ βoj (resp.βj ≥ βoj)

against H1 : βj > β
o
j (resp.βj < β

o
j) (one-sided tests).

• A two-sided test at (significance) level α of H0 : βj = β
o
j against H1 : βj 	= βoj is

given by the decision rule :





- Reject H0 if |t̂o| =
#####
β̂j − βoj
s.ê.(β̂j)

#####
> tn−k;1−α

2

- Do not reject H0 otherwise

where the critical value tn−k;1−α
2
is the quantile of order 1 − α

2
of the t(n − k)

Student distribution. The p-value of this test36, for a value t̂∗o of the test statistic
obtained in a particular sample, is given by :

pt̂∗o = IP(|t| > |t̂
∗
o|) , where t ∼ t(n− k)

This two-sided test can equivalently be performed using the decision rule37 :





- Reject H0 if β
o
j does not fall in the (1− α)× 100%

confidence interval (23) for βj
- Do not reject H0 otherwise

• A right-sided test at (significance) level α of H0 : βj ≤ βoj against H1 : βj > βoj
is given by the decision rule :






- Reject H0 if t̂o =
β̂j − βoj
s.ê.(β̂j)

> tn−k;1−α

- Do not reject H0 otherwise

where the critical value tn−k;1−α is the quantile of order 1 − α of the t(n − k)
Student distribution. The p-value of this test, for a value t̂∗o of the test statistic
obtained in a particular sample, is given by :

pt̂∗o = IP(t > t̂
∗
o) , where t ∼ t(n− k)

• Symmetrically, a left-sided test at (significance) level α of H0 : βj ≥ βoj against

36As a reminder, the p-value of a test is the smallest (significance) level α for which we can reject
the null hypothesis H0 of the test based on the value t̂∗o of the test statistic obtained in a particular sample.

37 The two-sided t-test at level α does not reject H0 if |t̂o| =

����
β̂j−β

o
j

s.ê.(β̂j)

���� ≤ tn−k;1−α
2
, i.e., if −tn−k;1−α

2
≤

β̂j−β
o
j

s.ê.(β̂j)
≤ tn−k;1−α

2
, or equivalently if β̂j−tn−k;1−α

2
s.ê.(β̂j) ≤ βoj ≤ β̂j+tn−k;1−α

2
s.ê.(β̂j). The endpoints of

this latter interval are the endpoints of the (1− α)× 100% confidence interval for βj .
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H1 : βj < β
o
j is given by the decision rule :






- Reject H0 if t̂o =
β̂j − βoj
s.ê.(β̂j)

< tn−k;α(= −tn−k;1−α)

- Do not reject H0 otherwise

where the critical value tn−k;α (= −tn−k;1−α) is the quantile of order α of the
t(n− k) Student distribution. The p-value of this test, for a value t̂∗o of the test
statistic obtained in a particular sample, is given by :

pt̂∗o = IP(t < t̂
∗
o) , where t ∼ t(n− k)

4.2. Exact confidence interval and hypothesis testing about a

single linear combination of parameters

• Exact in finite sample confidence interval and hypothesis tests about a single
linear combination R0β of the vector of parameters β, where R0 is a (row) 1×k
vector of constants, can be derived in the same way as exact in finite sample
confidence interval and hypothesis tests about a single parameter.

• From Property 4, under assumptions E.1 —E.5, and thus also under the seminal
assumptions MLR.1 —MLR.6, we have :

β̂|X ∼ N
�
β, σ2(X ′X)−1

�

which implies that, for any single linear combination R0β of β, we have :

R0β̂|X ∼ N(R0β, σ2R0(X ′X)−1R′0)

so that, conditional on X, we have :

ẑ =
R0β̂ −R0β
s.e.(R0β̂|X)

∼ N(0, 1) (24)

where s.e.(R0β̂|X) =
�
V ar(R0β̂|X) =

�
σ2R0(X ′X)−1R′0 =

�
R0V (β̂|X)R′0.

In particular, if R0β = r0, still conditional on X, we have :

ẑo =
R0β̂ − r0
s.e.(R0β̂|X)

∼ N(0, 1) (25)

while if R0β 	= r0, we have :

ẑo =
R0β̂ − r0
s.e.(R0β̂|X)

∼ N
�
R0β − r0
s.e.(R0β̂|X)

, 1

�

(26)

• As in the single parameter case, under the same assumptions, conditional on X,
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we have that v̂ = (n−k)ŝ2

σ2
∼ χ2(n − k) and that ẑ and v̂ are independent38, so

that from the definition of the Student distribution, still conditional on X, we
have :

t̂ =
ẑ

�
v̂
n−k

=

R0β̂−R0β√
σ2R0(X′X)−1R′0�

ŝ2

σ2

=
R0β̂ −R0β�
ŝ2R0(X ′X)−1R′0

∼ t(n− k)

i.e. :

t̂ =
R0β̂ −R0β
s.ê.(R0β̂)

∼ t(n− k) (27)

where s.ê.(R0β̂) =
�
V âr(R0β̂) =

�
ŝ2R0(X ′X)−1R′0 =

�
R0V̂ (β̂)R′0.

In particular, if R0β = r0, still conditional on X, we have :

t̂o =
R0β̂ − r0
s.ê.(R0β̂)

∼ t(n− k) (28)

while if R0β 	= r0, it may be checked39 that we have :

t̂o =
R0β̂ − r0
s.ê.(R0β̂)

∼ t(δ∗, n− k) , where δ∗ =
R0β − r0
s.e.(R0β̂|X)

(29)

In words, if the unknown variance σ2 appearing in the standard error s.e.(R0β̂|X)
of statistics (24), (25) and (26) is replaced by its unbiased estimator ŝ2, so that

the standard error s.e.(R0β̂|X) is replaced by its estimator s.ê.(R0β̂), then the
distribution of (24), (25) and (26) switches from normal to Student. But it only
makes a real difference when the sample size n is small, because for m large,
t(m) ≈ N(0, 1) and t(δ,m) ≈ N(δ, 1).

• The distributional results (27), (28) and (29) are basically the same as the dis-
tributional results (19) (20) and (21) derived in the single parameter case : the

single parameter β̂j is simply replaced by the linear combination R0β̂, and like-

wise βj by R0β, β
o
j by r0 and s.ê.(β̂j) by s.ê.(R0β̂). Similarly, the distributional

result (27) is the basis for deriving a confidence interval for R0β, and the distri-
butional results (28) and (29) are the basis for hypothesis testing about R0β.

4.2.1. Confidence interval for R0β

• As in the single parameter case, the distributional result (27) holds conditional

38As in the single parameter case, the independence of ẑ and v̂ (conditional on X) follows from the
independence of β̂ and ŝ2 (conditional on X).

39 It follows from the facts that, conditional on X, v̂ ∼ χ2(n − k) and ẑo and v̂ are independent,
and from the definition of the non-central Student distribution previously given.
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on X, but also unconditionally, and we can write :

IP

�

−tn−k;1−α
2
≤ R0β̂ −R0β
s.ê.(R0β̂)

≤ tn−k;1−α
2

�

= 1− α

or equivalently :

IP
�
R0β̂ − tn−k;1−α

2
s.ê.(R0β̂) ≤ R0β ≤ R0β̂ + tn−k;1−α

2
s.ê.(R0β̂)

�
= 1− α

so that a (1− α)× 100% confidence interval for R0β is given by :
�
R0β̂ − tn−k;1−α

2
s.ê.(R0β̂) ; R0β̂ + tn−k;1−α

2
s.ê.(R0β̂)

�
(30)

• Remark : by smartly reparametrizing the original model, it is in practice possible
to calculate the above confidence interval for a linear combination R0β as a
confidence interval for a single parameter. See Wooldridge (2016) Section 4-4
for details.

4.2.2. t-tests about R0β

• Again as in the single parameter case, the distributional result (28) states that
if the value of β in the population is such that R0β = r0, then the statistic

t̂o =
R0β̂−r0
s.ê.(R0β̂)

will yield values distributed around zero according to its t(n − k)
Student distribution. Note likewise that this distribution result does not hold
only conditional on X : it also holds unconditionally. On the other hand, the
distributional result (29) states that if the value of β in the population is such

that R0β 	= r0, then the same statistic t̂o =
R0β̂−r0
s.ê.(R0β̂)

will yield values distributed

with a central tendency away from zero — either positive if R0β > r0 or negative
if R0β < r0 — according to its t(δ∗, n− k) Student distribution.
This behavior likewise makes t̂o a natural test statistic for testing hypotheses
such as H0 : R0β = r0 against H1 : R0β 	= r0 (two-sided test) or H0 : R0β ≤ r0
(resp.R0β ≥ r0) against H1 : R0β > r0 (resp.R0β < r0) (one-sided tests).

• A two-sided test at (significance) level α of H0 : R0β = r0 against H1 : R0β 	= r0
is given by the decision rule :






- Reject H0 if |t̂o| =
#####
R0β̂ − r0
s.ê.(R0β̂)

#####
> tn−k;1−α

2

- Do not reject H0 otherwise

The p-value of this test, for a value t̂∗o of the test statistic obtained in a particular
sample, is given by :

pt̂∗o = IP(|t| > |t̂
∗
o|) , where t ∼ t(n− k)
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This two-sided test can also equivalently be performed using the decision rule40 :





- Reject H0 if r0 does not fall in the (1− α)× 100%
confidence interval (30) for R0β

- Do not reject H0 otherwise

• A right-sided test at (significance) level α of H0 : R0β ≤ r0 against H1 : R0β > r0
is given by the decision rule :






- Reject H0 if t̂o =
R0β̂ − r0
s.ê.(R0β̂)

> tn−k;1−α

- Do not reject H0 otherwise

The p-value of this test, for a value t̂∗o of the test statistic obtained in a particular
sample, is given by :

pt̂∗o = IP(t > t̂
∗
o) , where t ∼ t(n− k)

• Symmetrically, a left-sided test at (significance) level α of H0 : R0β ≥ r0 against
H1 : R0β < r0 is given by the decision rule :






- Reject H0 if t̂o =
R0β̂ − r0
s.ê.(R0β̂)

< tn−k;α(= −tn−k;1−α)

- Do not reject H0 otherwise

The p-value of this test, for a value t̂∗o of the test statistic obtained in a particular
sample, is given by :

pt̂∗o = IP(t < t̂
∗
o) , where t ∼ t(n− k)

• Remark : As for the confidence interval for R0β, by smartly reparametrizing the
original model, it is in practice possible to perform the above two-sided and one-
sided t-tests about a linear combination R0β as two-sided and one-sided t-tests
about a single parameter. Again, see Wooldridge (2016) Section 4-4 for details.

4.3. Confidence interval and hypothesis testing without the

normality assumption

• Hereafter, we show that the exact in finite sample confidence intervals and hy-
pothesis tests for a single parameter and a single linear combination of para-
meters derived under assumptions E.1 —E.5, which are thus likewise exact in
finite sample under the seminal assumptions MLR.1 —MLR.6, remain asymptot-

40 The two-sided t-test at level α does not reject H0 if |t̂o| =
��� R0β̂−r0
s.ê.(R0β̂)

��� ≤ tn−k;1−α
2
, i.e., if −tn−k;1−α

2
≤

R0β̂−r0

s.ê.(R0β̂)
≤ tn−k;1−α

2
, or equivalently if R0β̂ − tn−k;1−α

2
s.ê.(R0β̂) ≤ r0 ≤ R0β̂ + tn−k;1−α

2
s.ê.(R0β̂).

The endpoints of this latter interval are the endpoints of the (1− α)× 100% confidence interval for R0β.
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ically valid — i.e., approximately valid for n sufficiently large — under assump-
tions MLR.1 —MLR.5, i.e., without having to rely on the normality assumption
MLR.6.

• Because confidence interval and hypothesis tests for a single parameter are just
special cases of confidence interval and hypothesis tests for a single linear com-
bination of parameters41, we focus on the latter.

• From Property 7, under assumptions MLR.1 —MLR.5, we have the limiting dis-
tributional result :

√
n(β̂ − β) d−→ N(0, σ2A−1), where A = E(X ′

iXi)

or, in terms of approximation for n sufficiently large :

β̂ ≈ N(β, σ2A−1/n)

so that, for any single linear combination R0β of β, we have :

R0β̂ ≈ N(R0β, σ2R0(A−1/n)R′0)

and

ẑas =
R0β̂ −R0β
As.e.(R0β̂)

≈ N(0, 1) (31)

where As.e.(R0β̂) =

�
Avar(R0β̂) =

�
σ2R0(A−1/n)R′0 =

�
R0Avar(β̂)R′0.

In particular, if R0β = r0, we have :

ẑ
aso =

R0β̂ − r0
As.e.(R0β̂)

≈ N(0, 1) (32)

while if R0β 	= r0, we have :

ẑ
aso =

R0β̂ − r0
As.e.(R0β̂)

≈ N
�
R0β − r0
As.e.(R0β̂)

, 1

�

(33)

• It may be shown that, from an asymptotic point of view, we can replace the
unknown parameters σ2 and A appearing in the asymptotic standard error
As.e.(R0β̂) of statistics (31), (32) and (33) by their consistent estimator ŝ2 and

X ′X/n — which means that As.e.(R0β̂) is replaced by its estimator s.ê.(R0β̂) —
without affecting their approximate distribution42, so that we also have :

t̂ =
R0β̂ −R0β
s.ê.(R0β̂)

≈ N(0, 1) (34)

41A confidence interval or hypothesis t-test for any βj is obtained by defining R0 as a 1×k vector of zeros
with a one in the j-th position.

42 Properly showing this requires advanced asymptotic theory as developped in Wooldridge (2010),
Chapter 3. See also Hayashi (2010), Chapter 2.
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where s.ê.(R0β̂) =

�
V âr(R0β̂) =

�
ŝ2R0(X ′X)−1R′0 =

�
R0V̂ (β̂)R′0.

In particular, if R0β = r0, we have :

t̂o =
R0β̂ − r0
s.ê.(R0β̂)

≈ N(0, 1) (35)

while if R0β 	= r0, we have :

t̂o =
R0β̂ − r0
s.ê.(R0β̂)

≈ N
�
R0β − r0
As.e.(R0β̂)

, 1

�

(36)

• The distributional results (34), (35) and (36) are the same as the distributional
results (27), (28) and (29) on which rely the exact in finite sample confidence
interval and hypothesis tests about R0β, except that they only hold asymptoti-
cally — i.e., approximately for n sufficiently large —, and that they feature normal
rather than Student distributions. Accordingly, deriving approximately valid,
for n sufficiently large, confidence interval and hypothesis tests about R0β on
the basis of the distributional results (34), (35) and (36) will yield the same
confidence interval and hypothesis tests as the exact in finite sample ones, ex-
cept that they will feature quantiles of the standard normal N(0, 1) rather than
quantiles of the t(n− k) Student distribution.

• As n→ ∞, the quantiles of the t(n− k) Student distribution become the same
as the quantiles of the standard normal N(0, 1)43. As a result, the exact in
finite sample confidence interval and hypothesis tests about a single linear com-
bination R0β of parameters derived under assumptions E.1 —E.5, which are thus
likewise exact in finite sample under the seminal assumptions MLR.1 —MLR.6,
remain asymptotically valid — i.e., approximately valid for n sufficiently large —
under assumptions MLR.1 —MLR.5, i.e., without having to rely on the normal-
ity assumption MLR.6. As confidence interval and hypothesis tests for a single
parameter are just special cases of confidence interval and hypothesis tests for
a single linear combination of parameters, the same hold for the exact in finite
sample confidence interval and hypothesis tests about a single of parameter βj.

4.4. Testing multiple linear restrictions

• It is usual that we want to test not just one but multiple hypotheses about para-
meters, or further multiple hypotheses about linear combination of parameters.
Such tests are special cases of the general test :

H0 : R0β = r0 against H1 : R0β 	= r0
where R0 is now a q × k matrix of constants (q ≤ k) and r0 is a q × 1 of
constants. The number q of rows of R0 is the number of (linear) restrictions

43 Formally, this comes from the fact that if t ∼ t(m), then as m → ∞, t
d
−→ N(0, 1). Informally,

for m large, t(m) ≈ N(0, 1).
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which are jointly tested.

4.4.1. Exact hypothesis testing : the F -test

•We first consider an exact in finite sample test, i.e., a test which is valid when
the Gauss-Markov assumptions E.1 —E.4 as well as the normality assumption
E.5 hold, which is the case if the seminal assumptions MLR.1 —MLR.5 as well
as the normality assumption MLR.6 hold.

• From Property 4, under assumptions E.1 —E.5, and thus also under the seminal
assumptions MLR.1 —MLR.6, we have :

β̂|X ∼ N
�
β, σ2(X ′X)−1

�

which implies that, for any multiple linear combination R0β− r0 of β, we have :

(R0β̂ − r0)|X ∼ N(R0β − r0, R0V (β̂|X)R′0)

where V (β̂|X) = σ2 (X ′X)−1. If the value of β is such that R0β = r0, i.e.,
if H0 is true, by standard property of the multivariate normal distribution44,
conditional on X, we have :

χ̂20 = (R0β̂ − r0)′
�
R0V (β̂|X)R′0

�−1
(R0β̂ − r0)

=
1

σ2
(R0β̂ − r0)′

�
R0(X

′X)−1R′0
�−1

(R0β̂ − r0) ∼ χ2(q) (37)

where χ2(q) denotes the chi-squared distribution45 with q degrees of freedom. On
the other hand, if the value of β is such that R0β 	= r0, i.e., if H0 is false, again
by standard property of the multivariate normal distribution46, conditional on
X, we have :

χ̂20 = (R0β̂ − r0)′
�
R0V (β̂|X)R′0

�−1
(R0β̂ − r0)

=
1

σ2
(R0β̂ − r0)′

�
R0(X

′X)−1R′0
�−1

(R0β̂ − r0) ∼ χ2(δ∗, q) (38)

where χ2(δ∗, q) denotes the non-central chi-squared distribution with q degrees of

freedom, and non-centrality parameter equal to δ∗ = (R0β−r0)′
�
R0V (β̂|X)R′0

�−1

(R0β − r0).

• As previously, under the same assumptions, conditional on X, we have that

v̂ = (n−k)ŝ2

σ2
∼ χ2(n − k) and that χ̂20 and v̂ are independent47, so that if the

value of β is such that R0β = r0, i.e., if H0 is true, from the definition of the

44 Let X be a q × 1 random vector. If X ∼ N(0,Σ), then X′Σ−1X ∼ χ2(q). This carries over
conditional distributions.

45 See Wooldridge (2016), Appendix B-5d.
46 Let again X be a q×1 random vector. If X ∼ N(m,Σ), then X ′Σ−1X ∼ χ2(δ, q), where δ = m′Σ−1m.

This carries over conditional distributions.
47As previously, the independence of χ̂20 and v̂ (conditional on X) follows from the independence of β̂ and

ŝ2 (conditional on X).
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Fisher48 distribution, still conditional on X, we have :

F̂0 =

χ̂20
q

v̂
n−k

=

1
qσ2
(R0β̂ − r0)′ [R0(X ′X)−1R′0]

−1
(R0β̂ − r0)

ŝ2

σ2

=
1

qŝ2
(R0β̂ − r0)′

�
R0(X

′X)−1R′0
�−1

(R0β̂ − r0)

=
1

q
(R0β̂ − r0)′

�
R0V̂ (β̂)R

′
0

�−1
(R0β̂ − r0) ∼ F (q, n− k) (39)

where F (q, n − k) denotes the Fisher distribution with q and n − k degrees of

freedom49 and V̂ (β̂) = ŝ2(X ′X)−1. On the other hand, if the value of β is such
that R0β 	= r0, i.e., if H0 is false, from the definition of the non-central Fisher50

distribution, still conditional on X, we similarly have :

F̂0 =
1

qŝ2
(R0β̂ − r0)′

�
R0(X

′X)−1R′0
�−1

(R0β̂ − r0)

=
1

q
(R0β̂ − r0)′

�
R0V̂ (β̂)R

′
0

�−1
(R0β̂ − r0) ∼ F (δ∗, q, n− k) (40)

where F (δ∗, q, n − k) denotes the non-central Fisher distribution with q and
n − k degrees of freedom, and non-centrality parameter equal to δ∗ = (R0β −
r0)

′
�
R0V (β̂|X)R′0

�−1
(R0β − r0).

In words, if the unknown variance σ2 appearing in the variance-covariance
V (β̂|X) of statistics (37) and (38) is replaced by its unbiased estimator ŝ2,

so that the variance-covariance V (β̂|X) is replaced by its estimator V̂ (β̂), then
the distribution of (37) and (38), after division by q, switches from chi-squared
to Fisher.

• The distributional results (39) and (40) imply that the statistic F̂0 (which can
not be negative) will yield systematically higher values when the value of β is
such that R0β 	= r0, i.e., when H0 is false, than when the value of β is such
that R0β = r0, i.e., when H0 is true

51. Also note that the distributional result
(39) does not hold only conditional on X : as the conditional distribution of

F̂0 actually does not depend on X, it also holds unconditionally. This behavior
makes F̂0 a natural test statistic for testing H0 : R0β = r0 against H1 : R0β 	= r0.

• A test at (significance) level α of H0 : R0β = r0 against H1 : R0β 	= r0 is given

48 If v1 ∼ χ2(m1), v2 ∼ χ2(m2), and v1 and v2 are independent, thenF =
v1
m1
v2
m2

∼ F (m1,m2). See

Wooldridge (2016), Appendix B-5f. This carries over conditional distributions.
49 See Wooldridge (2016), Appendix B-5f.

50 If v1 ∼ χ2(δ,m1), v2 ∼ χ2(m2), and v1 and v2 are independent, thenF =
v1
m1
v2
m2

∼ F (δ,m1, m2).

This carries over conditional distributions.
51 For a graphical evidence, see Lejeune (2011), p. 130.
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by the decision rule :
$

- Reject H0 if F̂0 > Fq,n−k;1−α

- Do not reject H0 otherwise
(41)

where the critical value Fq,n−k;1−α is the quantile of order 1−α of the F (q, n−k)
Fisher distribution, i.e., the value such that IP(F ≤ Fq,n−k;1−α) = 1 − α, where
F ∼ F (q, n − k). The p-value of this test, for a value F̂ ∗0 of the test statistic
obtained in a particular sample, is given by :

pF̂∗0
= IP(F > F̂ ∗0 ) , where F ∼ F (q, n− k)

• Remarks :

—The above F -test contains as special cases — and is fully equivalent to —
the two-sided t-tests about a single parameter and about a single linear
combination of parameters.

— It may be shown that the F̂0 test statistic can also be written as52 :

F̂0 =
(SSRr − SSRur)/q

SSRur/(n− k)

where SSRur is the residual sum of squares53 of the unrestricted model, i.e.,
the SSR of the model estimated without any restriction imposed, and SSRr
is the residual sum of squares of the restricted model, i.e., the SSR of the
model estimated by restricted least-squares with the restriction R0β = r0
imposed. For examples of how SSRr may easily be computed in some
important cases (in particular when considering exclusion restrictions), see
Wooldridge (2016), Section 4-5.

4.4.2. Hypothesis testing without the normality assumption

• Hereafter, we show that the exact in finite sample F -test of H0 : R0β = r0
against H1 : R0β 	= r0 derived under assumptions E.1 —E.5, which is thus like-
wise exact in finite sample under the seminal assumptions MLR.1 —MLR.6, re-
main asymptotically valid — i.e., approximately valid for n sufficiently large —
under assumptions MLR.1 —MLR.5, i.e., without having to rely on the normality
assumption MLR.6.

• From Property 7, under assumptions MLR.1 —MLR.5, we have the limiting dis-
tributional result :

√
n(β̂ − β) d−→ N(0, σ2A−1), where A = E(X ′

iXi)

52 For a hint of the proof, see Hayashi (2000) p. 42-43 and p. 74-75. Wooldridge (2016) exclusively
uses this simpler form of the F -test (see Section 4-5). Note that the F -test can further be expressed in terms
of R-squared. Be aware : in Wooldridge (2016), the degrees of freedom appearing in the denominator of F is
n−(k+1) rather than (n−k) because he considers a model with k explanatory variables + an intercept, while
here the intercept is included in the set of the explanatory variables.

53 also called the sum of squared residuals.
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or, in terms of approximation for n sufficiently large :

β̂ ≈ N(β, σ2A−1/n)

which implies that, for any multiple linear combination R0β− r0 of β, we have :

R0β̂ − r0 ≈ N(R0β − r0, R0Avar(β̂)R′0)

where Avar(β̂) = σ2A−1/n. If the value of β is such that R0β = r0, i.e., if H0 is
true, by standard property of the multivariate normal distribution54, we have :

χ̂2
as0 = (R0β̂ − r0)′

�
R0Avar(β̂)R

′
0

�−1
(R0β̂ − r0)

=
1

σ2
(R0β̂ − r0)′

�
R0(A

−1/n)R′0
�−1

(R0β̂ − r0) ≈ χ2(q) (42)

On the other hand, if the value of β is such that R0β 	= r0, i.e., if H0 is false,
again by standard property of the multivariate normal distribution55, we have :

χ̂2
as0 = (R0β̂ − r0)′

�
R0Avar(β̂)R

′
0

�−1
(R0β̂ − r0)

=
1

σ2
(R0β̂ − r0)′

�
R−10 (A

−1/n)R′0
�−1

(R0β̂ − r0) ≈ χ2(δ∗, q) (43)

where δ∗ = (R0β − r0)′
�
R0Avar(β̂)R

′
0

�−1
(R0β − r0).

• It may be shown that, from an asymptotic point of view, we can replace the
unknown parameters σ2 and A appearing in the asymptotic variance Avar(β̂)
of statistics (42) and (43) by their consistent estimator ŝ2 and X ′X/n — which

means that Avar(β̂) is replaced by its estimator V̂ (β̂) — without affecting their
approximate distribution56, so that if the value of β is such that R0β = r0, i.e.,
if H0 is true, we also have :

Ŵ0 =
1

ŝ2
(R0β̂ − r0)′

�
R0(X

′X)−1R′0
�−1

(R0β̂ − r0)

= (R0β̂ − r0)′
�
R0V̂ (β̂)R

′
0

�−1
(R0β̂ − r0) ≈ χ2(q) (44)

where V̂ (β̂) = ŝ2(X ′X)−1, while if the value of β is such that R0β 	= r0, i.e., if
H0 is false, we similarly have :

Ŵ0 =
1

ŝ2
(R0β̂ − r0)′

�
R0(X

′X)−1R′0
�−1

(R0β̂ − r0)

= (R0β̂ − r0)′
�
R0V̂ (β̂)R

′
0

�−1
(R0β̂ − r0) ≈ χ2(δ∗, q) (45)

where δ∗ = (R0β − r0)′
�
R0Avar(β̂)R

′
0

�−1
(R0β − r0).

54As a reminder, if X ∼ N(0,Σ), then X ′Σ−1X ∼ χ2(q).
55As a reminder, if X ∼ N(m,Σ), then X′Σ−1X ∼ χ2(δ, q), where δ = m′Σ−1m.
56As previously outlined, properly showing this requires advanced asymptotic theory as developped

in Wooldridge (2010), Chapter 3. See also Hayashi (2010), Chapter 2.
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• The distributional results (44) and (45) imply that the statistic Ŵ0 (which can
not be negative) will yield systematically higher values when the value of β is
such that R0β 	= r0, i.e., when H0 is false, than when the value of β is such that
R0β = r0, i.e., when H0 is true. This behavior makes Ŵ0 a natural test statistic
for testing H0 : R0β = r0 against H1 : R0β 	= r0.

• A test at (significance) level α of H0 : R0β = r0 against H1 : R0β 	= r0 is given
by the decision rule :

$
- Reject H0 if Ŵ0 > χ

2
q;1−α

- Do not reject H0 otherwise
(46)

where the critical value χ2q;1−α is the quantile of order 1 − α of the χ2(q) chi-
squared distribution, i.e., the value such that IP(v ≤ χ2q;1−α) = 1 − α, where
v ∼ χ2(q). The p-value of this test, for a value Ŵ ∗

0 of the test statistic obtained
in a particular sample, is given by :

pŴ ∗

0
= IP(v > Ŵ ∗

0 ) , where v ∼ χ2(q)

This test is known as a Wald test57.

• As n → ∞, the decision rule (41) of the exact in finite sample F -test of H0 :
R0β = r0 against H1 : R0β 	= r0 obtained previously becomes the same as the
decision rule (46) of this Wald test : the two tests are asymptotically equivalent.

As a matter of fact, on the one hand, the F̂0 test statistic is nothing but the
Wald test statistic Ŵ0 divided by q :

F̂0 =
Ŵ0

q

On the other hand, as n→∞, we have58 :

Fq,n−k;1−α ≃
χ2q;1−α
q

⇔ qFq,n−k;1−α ≃ χ2q;1−α

where Fq,n−k;1−α and χ2q;1−α are the quantiles of order 1− α of respectively the
F (q, n − k) and the χ2(q) distribution. As a result, the exact in finite sample
F -test of H0 : R0β = r0 against H1 : R0β 	= r0 derived under assumptions E.1 —
E.5, which is thus likewise exact in finite sample under the seminal assumptions
MLR.1 —MLR.6, remain asymptotically valid — i.e., approximately valid for n
sufficiently large — under assumptions MLR.1 —MLR.5, i.e., without having to
rely on the normality assumption MLR.6.

57 See Wooldridge (2016), Appendix E-4.
58 Formally, this comes from the fact that if F ∼ F (m1,m2), then as m2 → ∞, m1F

d
−→ χ2(m1).

Informally, for m2 large, m1F (m1,m2) ≈ χ2(m1), or equivalently F (m1,m2) ≈
χ2(m1)
m1

.
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Appendix : properties of conditional expectation

and conditional variance

• This appendix contains a brief summary of the properties of conditional expec-
tation, and further conditional variance.

• The conditional expectation, also called the conditional mean, of y given x is by
definition given, for y a discrete random variable, by :

E(y|x) =



y

yf(y|x)

and for y a continuous random variable, by :

E(y|x) =
% ∞

−∞

yf(y|x)dy

where f(y|x) denotes the conditional density of y given x. Further, the condi-
tional variance of y given x is defined as :

V ar(y|x) = E
�
(y −E(y|x))2|x

�
= E(y2|x)− [E(y|x)]2

• The main properties of conditional mean and conditional variance are the fol-
lowing59 :

— P.1 For any function c(x), we have :

E (c(x)|x) = c(x)

and further :
V ar (c(x)|x) = 0

— P.2 For any function a(x) and b(x), we have :

E (a(x) + b(x)y|x) = a(x) + b(x)E(y|x)

and further :

V ar (a(x) + b(x)y|x) = b(x)2V ar(y|x)

— P.3 If x and y are independent, then :

E(y|x) = E(y)

and also :
V ar(y|x) = V ar(y)

— P.4 we have :
E(y) = E [E(y|x)]

59 For more details, see Wooldridge (2016), Appendix B4-f and B4-g.
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and more generally :

E(y|x) = E [E(y|x, z)|x]

This is the law of iterated expectations.

— P.5 If E(y|x) = E(y), then :

Cov(x, y) = 0

• For Y a n× 1 random vector :

Y =




y1
...
yn





and X a random vector or matrix, the conditional mean and the conditional
variance of Y given X are by definition equal to :

E(Y |X) = E






y1
y2
...
yn

########
X




 =






E(y1|X)
E(y2|X)

...
E(yn|X)






and

V (Y |X) = E [(Y − E(Y |X))(Y −E(Y |X))′|X]
= E(Y Y ′|X)− E(Y |X)E(Y |X)′

=






V ar(y1|X) Cov(y1, y2|X) · · · Cov(y1, yn|X)
Cov(y2, y1|X) V ar(y2|X) · · · Cov(y2, yn|X)

...
...

. . .
...

Cov(yn, y1|X) Cov(yn, y2|X) · · · V ar(yn|X)






and the following similar properties hold60 :

— P.1’ For any k × 1 vector function C(X), we have :

E (C(X))|X) = C(X)

and further :
V (C(X))|X) = 0

— P.2’ For any k×1 vector function A(X) and k×n matrix function B(X),
we have :

E (A(X) +B(X)Y |X) = A(X) +B(X)E(Y |X)

60Note that in the expression of E(Y |X) and its properties, Y may also be a matrix. In the expression
of V (Y |X) and its properties, Y may however only be a (column) vector. Note further that, by definition, in
detailed form, Cov(y1, y2|X) = E [(y1 − E(y1|X))(y2 − E(y2|X))|X] = E(y1y2|X)− E(y1|X)E(y2|X).
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and further :

V (A(X) +B(X)Y |X) = B(X)V (Y |X)B(X)′

— P.3’ If X and Y are independent, then :

E(Y |X) = E(Y )

and also :
V (Y |X) = V (Y )

— P.4’ we have :
E(Y ) = E [E(Y |X)]

and more generally :

E(Y |X) = E [E(Y |X,Z)|X]

where Z is any random vector or matrix.

— P.5’ If E(Y |X) = E(Y ), then :

Cov(xjk, yi) = 0, for all i, j and k
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