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Preprint submitted to Computer Methods in Applied Mechanics and Engineering. (C) 2021; Licensed
under the Creative Commons (CC-BY-NC-ND); formal publication on: 10.1016/j.cma.2021.114476

Abstract

Artificial Neural Networks (NNWs) are appealing functions to substitute high dimen-

sional and non-linear history-dependent problems in computational mechanics since they

offer the possibility to drastically reduce the computational time. This feature has recently

been exploited in the context of multi-scale simulations, in which the NNWs serve as surro-

gate model of micro-scale finite element resolutions. Nevertheless, in the literature, mainly

the macro-stress-macro-strain response of the meso-scale boundary value problem was con-

sidered and the micro-structure information could not be recovered in a so-called localization

step. In this work, we develop Recurrent Neural Networks (RNNs) as surrogates of the RVE

response while being able to recover the evolution of the local micro-structure state variables

for complex loading scenarios. The main difficulty is the high dimensionality of the RNNs

output which consists in the internal state variable distribution in the micro-structure. We

thus propose and compare several surrogate models based on a dimensionality reduction:

i) direct RNN modeling with implicit NNW dimensionality reduction, ii) RNN with PCA

dimensionality reduction, and iii) RNN with PCA dimensionality reduction and dimension-

ality break down, i.e. the use of several RNNs instead of a single one. Besides, we optimize

the sequential training strategy of the latter surrogate for GPU usage in order to speed
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up the process. Finally, through RNN modeling of the principal components coefficients,

the connection between the physical state variables and the hidden variables of the RNN is

revealed, and exploited in order to select the hyper-parameters of the RNN-based surrogate

models in their design stage.

Keywords: Recurrent neural networks, Multi-scale, Dimensionality Reduction,

Localization step, History-dependence, High dimensionality

1. Introduction
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Figure 1: (a) An artificial neuron; (b) An artificial Neural Network with the weights wikj and biases wi0j
defining the weights matrix W of the feed-forward neural network.

With the rapid development of data science in the recent years, Artificial Neural Net-

works (NNWs) have increasingly attracted attention in the field of computational mechan-

ics, especially in the cases of complex material behavior and/or when intensive computation

is required like in multi-scale analyses. A NNW is actually a network of artificial neu-

rons, which perform a weighted sum operation on the d input values (w0 +
∑d

k=1wkxk)

in order to produce an output value through an activation function of the weighted sum
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f(w0 +
∑d

k=1 wkxk), see Fig. 1(a). The most commonly used architecture is the feed-

forward neural network in which the information moves only along the forward direction,

from the input nodes and to the output nodes via N − 1 hidden layers, see Fig. 1(b).

The weights wikj, with i = 1, . . . , N ; k = 1, . . . , ni−1 and j = 1, . . . , ni, where ni−1 and

ni are respectively the numbers of entries and outputs of layer i, and biases wi0j , with

i = 1, . . . , N and j = 1, . . . , ni, see the notations in Fig. 1(b), are obtained through the

so-called training of the NNW. The weights wikj and biases wi0j define the weights matrix

W of the feed-forward neural network.

NNWs can be regarded as a general non-linear mapping with high computational effi-

ciency. In computational mechanics, computationally expensive physical based modeling can

be substituted by efficient NNWs to accelerate the numerical analyses, such as non-linear

history-dependent evolution laws like visco-plasticity [1], cyclic plasticity [2], constitutive

laws of interface [3, 4] or constitutive laws of non-linear material behaviors [5–8]. In [9],

NNWs were adopted to substitute complex material homogenization constitutive laws to

accelerate the massive micro-mechanics modelings involved in Bayesian inference. In [10]

NNWs served as a surrogate for an elasto-plastic material model for parameters identifica-

tion. NNW was also adopted as a surrogate of the damaged-elastic response of meso-scale

volumes of bones in [11].
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Figure 2: Recurrent Neural Network, with hidden variables passing trough the input series; Wx, Wy and
Wh are the weights matrix related to the linear operations on the input vector x, output vector y and
hidden variables h, respectively. In the recurrent neural network, the operations at step t use the hidden
variables evaluated at step t− 1.

In a large variety of engineering and industrial fields, multi-scale methods [12, 13] were
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extensively developed as an alternative to the direct one-scale analyses of structures made of

heterogeneous materials. Among the existing different multi-scale methods, the multi-scale

analysis based on computational homogenization, which is usually called FE2 analysis [14–

17], is the most versatile method. However, the tremendous demand in numerical resources

in terms of time and memory limits the applicability of the FE2 multi-scale simulations to

reduced size problems. In order to improve the computational efficiency, feed-forward neural

networks have been used as surrogate models in FE2 analyses, either by approximating the

strain energy density surfaces as suggested in [18, 19], the stress-strain responses as achieved

in [20–22], or functions of both the current stress and the plastic dissipation density [7].

Although NNWs have been shown to be reliable surrogate models in elasticity and in non-

linear elasticity [18], when it comes to irreversible behaviors the loading history plays an

important role in RVE response involving more difficulties both in the NNW architecture

definition and in its training. Some state variables are needed to account for the loading

history at the meso-scale level, i.e. on the RVE, and serve as a part of the input, beside the

strain variables. In [21], state variables were defined for the decision of loading/unloading

and a feed-forward network was used to extract meso-scale resolution for multi-scale failure

analyses, but only 1D loading conditions were considered at the macro-scale. In [22], meso-

scale plastic strains were used as state variables and were updated at each loading step

through an empirical model or in combination with another feed-forward neural network.

Free energy and dissipation rate were represented by feed-forward NNWs in [23] in order to

obtain a thermo-dynamically consistent surrogate of an elasto-plastic law, but the method

was not applied in the context of multi-scale analysis. We refer to the recent review by [24]

for a critical comparison in the context of composite materials. Besides, the computational

efficiency of the NNWs paves the way to stochastic multi-scale resolutions as they can be used

to build stochastic surrogate models which account for uncertainties in the micro-structure.

Three-dimensional deep convolution neural networks (3D-CNN) have been trained in [25]
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using a database consisting of spherical inclusion micro-structure images and of the predicted

homogenized elasticity tensors obtained by computational homogenization. In the context

of non-linear electrical conduction, a hybrid neural-network-interpolation was developed in

[26] by interpolating database obtained at given volume fractions, allowing uncertainties

related to non-homogeneous distributions of volume fractions to be accounted for at the

higher scale.

Instead of using feed-forward networks to reproduce state variables at each numerical

time step, a special kind of NNWs, i.e. Recurrent Neural Networks (RNNs), can be con-

sidered. The idea behind RNNs is to make use of sequential information: RNNs are called

recurrent because they perform the same task on every step input of a sequence, with

the output being dependent on the previous evaluations. A typical illustration of RNNs

is presented in Fig. 2, in which x and y are respectively the input and output variables

and h are called hidden variables. The hidden variables are comparable to the state vari-

ables in history-dependent constitutive laws, and capture information about what has been

calculated so far. When using RNNs to substitute computational homogenization, the dif-

ficulty inherent to the definition of history-dependent state variables at the meso-scale can

be avoided, and the historical variables can be extracted automatically during the RNNs

training with sequential data. In [27], Long Short Term Memory networks (LSTMs) were

used to study cyclic loading of elasto-visco-plastic micro-structures. In [28], RNNs were used

to predict the inside and boundary history-dependent responses of sub-structures. RNNs

with Gated Recurrent Unit (GRU) were used as surrogate models for the history-dependent

response of RVEs in [29, 30]. In the context of FE2 multi-scale simulations, LSTM was used

to substitute finite element resolution of the meso-scale Boundary Value Problem (BVP) in

[31] for infinitesimal strain problem. In [32], a GRU-based RNN has been used as an accu-

rate surrogate of the meso-scale BVP during FE2 multi-scale simulations in a finite strain

setting. The training of these RNNs requires a synthetic database which covers enough pos-
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sible loading history paths. The generation of this database thus requires to introduce some

stochasticity in the loading paths, either under the form of Gaussian process as suggested

in [29], cubic-spline interpolations as conducted in [30], or more generally under the form of

a random walk process as developed in [32].

In [31, 32], only the homogenized strain and stress were collected from direct finite

element resolutions on RVEs in order to conduct the RNN training, while the micro-scale

physical information arising at the level of the RVEs was discarded. In this context the

RNN could only serve as a surrogate of the stress-strain response of the RVE and the micro-

structure information could not be recovered in a so-called localization step. However, this

information, which was kept in the state variables during the direct finite element analyses

of the RVEs, is of interest when conducting multi-scale analyses since it brings insight on the

micro-structure loading condition. For example it can be used for posterior estimation of the

structure integrity in the following cases: i) Predicting the damage initiation at the design

stage with the aim of preventing/delaying it, in which case fast methods can be favored to

a complex detailed analysis; This is of particular interest for engineered micro-structures

such as lattices; ii) Obtaining a first estimation of the life of composite materials; indeed, in

the case of polymeric materials, the initiation stage takes most the fatigue life as discussed

in [33, 34], and approximations of the life can be obtained using fatigue failure criteria

based on stress tensor invariants [35]; although such models can handle neither complex

loading conditions nor progressive failure, see the discussion in [34], they can be used for

a first estimation, while a progressive failure analysis would require the enrichment of the

micro-scale model.

In this work, it is intended to develop a RNN as surrogate of the RVE response while

being able to recover the evolution of the local micro-structure state variables along with

the macro stress-strain history.

The application of NNWs in computational mechanics seems simple at a first look since
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Figure 3: Over-fitting of NNWs.

NNWs serve as versatile non-linear mapping black boxes without any physical interpreta-

tions. Theoretically speaking, a NNW should be able to approximate any multi-dimensional

non-linear function accurately under the conditions that its structure is properly designed

and that it has been adequately trained, which implies to have enough data. However,

because of the shortage of physical interpretation, the design of a NNW structure is not

always straightforward for given mechanical problems. The structure of a NNW includes

the depth (layers of neurons), width (number of neurons on each layer), and number of

hidden variables for the RNNs in particular. In general, for a simple mechanical problem,

in terms of non-linearity and number of state variables, a simple NNW structure should

be adopted to limit the number of learnable parameters and avoid the issue of over-fitting.

Fig. 3 illustrates the problem of using a NNW with high flexibility to fit a simple linear

function. This kind of over-fitting can be alleviated by using a high weight decay param-

eter. However, in order to substitute a complex high dimensional non-linear mapping, a

NNW needs to be enough flexible, which means that the NNW needs to be deep and/or

wide enough with an increasing number of learnable parameters. It is convenient to start

a structure design from an existing NNW structure which was proved to be accurate for a

physical model of similar complexity. If the reference NNW structure is not available, for

simple and low dimensional problems, a trial and error approach, which involves progres-

sively increasing the depth and width of the NNW, is feasible, since the training of a simple
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NNW, in terms of depth and width, can be fast. However, this trial and error approach is

not always applicable for NNWs with an enormous number of learnable parameters, which

is often the case for high dimensional and non-linear problems. It is even more difficult for

history-dependent problems which will involve RNNs of high dimensional hidden variables

and sequential training data. In order to train a NNW with a huge number of learnable

parameters, not only a huge amount of training data is required, but the requirement of

computer memory is also high. Because of limited computational resources in practice, this

will lead to a heavy and slow training process. This will be the case when considering the

evolution of the state variables in computational homogenization, which is a typical high

dimensional and non-linear history-dependent problem. Dimensionality reduction is always

an option when dealing with high dimensional problems. In fact, it is possible, as it will be

shown, to use NNWs for non-linear dimensionality reduction since the dimensionality of the

hidden variables of a RNN could be much lower than the one of the final output. Nevertheless

this will remain computationally expensive to apply a trial and error approach to determine

the required number of hidden variables in a RNN because of the high dimensionality of the

final output.

Principal components analysis (PCA) [36], as a classical technique for dimensionality

reduction, is usually called Proper Orthogonal Decomposition (POD) in the applications

of computational mechanics [37]. PCA provides the best linear dimensionality reduction to

high-dimensional observations. However, PCA is less efficient for data dimensionality reduc-

tion than some non-linear dimensionality reduction algorithms, such as kernel PCA, locally

linear embedding, Laplacian eigen-maps and iso-maps. Nevertheless, the reconstruction of

data from reduced dimensionality into its original dimensionality can be carried out easily

by PCA, which it is not always the case for non-linear dimensionality reduction. PCA has

been used in some NNWs based surrogate models [38–40].

In the present work, because the aim is to develop a surrogate of a RVE response, not only
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of the macro stress-strain history but also of the evolution of the local micro-structure state

variables, the number of output variables is high. Besides, since the synthetic database

consists of the state variables evolution of the micro-structure subjected to random walk

processes [32], the resulting patterns of state variables are various and the equired PCA

reduced dimensionality of the state variables is still quite high. In order to overcome the

limitation of computational resource and accelerate the trial and error approach of the RNNs

structure design, the outputs with PCA reduced dimensionality are further broken down into

a few groups, and the evolution of each output group is substituted by an independent RNN.

In this work, the mapping of RVE macro-strain to the state variables, i.e. the localization

step of the multi-scale analysis, is successively obtained by three RNNs based surrogate

models.

• Surrogate I: Direct RNN modeling without dimensionality reduction on the output;

• Surrogate II: RNN modeling with PCA dimensionality reduction on the output;

• Surrogate III: RNN modeling with PCA dimensionality reduction and break down on

the output.

The dimensionality break down consists in splitting the observation output into groups of

smaller dimensionality before submitting them to different independent neural networks for

training. As a result, the neural networks have a smaller output dimensionality, which eases

their training and improves their efficiency. However, it is not possible to divide the original

output data without reducing the accuracy of the independent different neural networks since

the output data are correlated to some extent. By applying a PCA process beforehand, the

correlations among the output data is removed and then dimensionality break down can be

carried out in a more accurate way.

In this study, the considered micro-structure is a continuous fiber reinforced elasto-plastic

matrix material, and the studied 2D RVE contains several randomly arranged fibers. The
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equivalent plastic strain distributions in the RVE are adopted as studied state variables for

the comparison of the three surrogate models. In general, linear dimensionality reduction

like PCA is shown to be less efficient than the non-linear one constructed using NNWs.

However, PCA remains useful to extract the amount of reduced information that ought to

be represented for the surrogate model to be accurate. The RNNs structure can then be

designed by considering this reduced information, which allows speeding up the trial and

error approach inherent to a NNW design, since this could be carried out on a problem of

lower dimensionality. In particular, the number of RNN hidden variables can be estimated

by training and evaluating a RNN with a unique output, which is obtained from PCA and

dimensionality break down. During the training process of the RNNs of high dimensional

hidden variables, the problem arising due to the limitation of computational resources is

also pointed out and a solution based on mini-batches is suggested.

The paper is organized as follows. Section 2 summarizes the homogenization-based multi-

scale framework with a particular attention paid to the role of the state variables at both

scales. The design of the three different surrogate models of the state variables distribution

with dimensionality reduction is presented in Section 3. The strategy used to generate the

synthetic database using random walk processes is then described in Section 4. Finally,

the different developed surrogate models are studied by reconstructing the distributions of

the equivalent plastic strain and of the equivalent von Mises stress1in the RVE for different

loading scenarios in Section 5. An efficient design methodology of the RNN structure is also

proposed from the drawn observations.

2. State variables in FE2

The notation FE2 refers to multi-scale simulations with finite-element analyses being

carried out concurrently at both the meso-scale and the macro-scale. In this context, the

1Rigorously speaking, the von Mises stress is not a state variable of the constitutive behavior at the
micro-structural level but it can be handled as such for the distribution reconstruction purpose.
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BVPs needed to be solved using the finite-element method at the two scales are connected by

a specially defined scale-transition according to the Hill-Mandel condition. In this section,

we restrict ourselves to the case of finite-strain mechanics and introduce the studied problem

through a brief summary of FE2. The notations used in this manuscript are summarized in

Appendix A.

2.1. The BVPs at the two scales and the scale-transition

2.1.1. Definition of the macro-scale BVP

Assuming no dynamical effects, the macro-scale linear momentum equation of the body

Ω stated in its reference configuration reads

PM(X) · ∇0 + bM = 0 ∀X ∈ Ω , (1)

where the subscript “M” refers to the values at the macro-scale, PM is the first Piola-

Kirchhoff stress tensor, ∇0 is the gradient operator with respect to the reference configura-

tion, and bM is the load per unit reference volume. The boundary conditions read

UM(X) = ūM ∀X ∈ ∂DΩ , and (2)

PM(X) · nM = t̄M ∀X ∈ ∂NΩ , (3)

where t̄M is the surface traction, per unit reference surface, on the Neumann boundary ∂NΩ,

nM is the outward unit normal in the reference configuration, and ūM is the constrained

displacement on the Dirichlet boundary ∂DΩ.

As a difference with the use of traditional constitutive laws in a single-scale problem, the

BVP is completed by casting the relation between the macro-scale stress tensor PM and the
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deformation gradient FM = UM ⊗∇0, through state variables ZM,

PM (X, t) = PM (FM (X, t) ;ZM (X, τ) , τ ∈ [0, t]) , (4)

into the resolution of a meso-scale BVP via a scale-transition. As it will be discussed in

Section 2.2, in the context of FE2 multi-scale simulation, the state variables ZM (X, τ) arise

from the definition and resolution of the meso-scale BVP defined at the macro-scale material

points X ∈ Ω.

2.1.2. Definition of the meso-scale BVP

The meso-scale BVP is usually defined on Representative Volume Elements (RVEs),

which are parallelepiped (rectangular in 2D) domain ω(X) in the reference configuration,

with planar boundary faces ∂ω, and defined at the macro-scale material points X ∈ Ω. It

is assumed that the classical continuum mechanics equations hold and that the time for a

stress wave to propagate in the meso-scale volume element remains negligible. Considering

the material points x ∈ ω, in the absence of dynamical effects, the equilibrium equations

read

Pm · ∇0 = 0 ∀x ∈ ω , (5)

Pm · nm = tm ∀x ∈ ∂ω , (6)

where the subscript “m” refers to the local value at the micro-scale, and tm is the surface

traction, per unit reference surface, on the boundary ∂ω of outward unit normal nm in the

reference configuration.

The micro-scale problem is completed by the local constitutive laws of the different
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material phases at a given time t and material point x, which are written as

Pm (x, t) = Pm (Fm (x, t) ;Zm (x, τ) , τ ∈ [0, t]) , (7)

where Fm(x) = Um ⊗∇0 is the micro-scale deformation gradient tensor evaluated in terms

of the micro-scale displacement Um, and Zm is a set of state variables tracking history-

dependent processes.

2.1.3. The scale-transition

The scale-transition connects the macro-scale deformation gradient FM and stress tensor

PM to the averages of the micro-scale deformation gradient tensor Fm(x) and of stress tensor

Pm(x) over the meso-scale volume element ω. In the context of homogenization theories

one thus has2

FM (X, t) =
1

V (ω)

∫
ω

Fm(x, t)dω , and (8)

PM (X, t) =
1

V (ω)

∫
ω

Pm(x, t)dω . (9)

The requirement of energy consistency between the different scales, which corresponds to

the Hill-Mandel condition, reads

PM : δFM =
1

V (ω)

∫
ω

Pm : δFmdω . (10)

The solution of the meso-scale BVP (5-6) needs to satisfy Eqs. (8) and (10). These

2As pointed out by Michel et al. [41], these relations require particular attention when voids are present
and intersect the volume boundary. If the domain ω = ωS ∪ ωV is the union of the solid domain ωS and of
the voids domain ωV , one has FM = 1

V (ω)

∫
ωS∪ωV

Fmdω. When applying the Gauss theorem on both ωV and

ωS , since their respective surface normals on solid/void interfaces are in opposite direction, and since the
surface normal on the intersection of voids with the boundary is in the same direction as the normal to the
surface ∂ω the expression simplifies in FM = 1

V (ω)

∮
∂ω
Um ⊗ nmd∂ω, and similarly for the stress averaging

equation.
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constraints are enforced by applying specially defined boundary conditions on the RVEs.

In this work, the Periodic Boundary Conditions (PBCs) are adopted and the detailed im-

plementation of the homogenization process with PBCs can be found in [42]. The way of

applying periodic boundary conditions on non periodic micro-structures can be found in

[43, 44].

2.2. The role of the state variables in a FE2 resolution

In general, the macro-scale constitutive equation (4) in a FE2 framework is a finite

element analysis which computes the meso-scale responses, i.e. the first Piola-Kirchhoff

stress tensor PM and the fourth order macro-scale material tensor CM = ∂PM

∂FM
of a given

RVE under prescribed FM. The resolution of the constrained micro-scale finite element

problem is called computational homogenization and follows the different steps:

• A finite element discretization of a chosen RVE represents the micro-structure of the

heterogeneous material.

• From the macro-scale deformation gradient tensor FM, the micro-scale finite element

problem is formulated in its weak form under certain boundary conditions satisfying

Eqs. (8) and (10) such as PBCs.

• This micro-scale finite element problem is solved by considering the micro-scale phases

constitutive models (7); iterations are needed for the non-linear cases.

• The extraction of the meso-scale response includes the homogenized first Piola-Kirchhoff

stress tensor PM = 1
V (ω)

∑
e

∫
ωe

Pmdω, and the fourth order macro-scale material ten-

sor CM required to perform the Newton-Raphson iterations of the macro-scale analysis.

The evaluation of CM directly results from the RVE finite element resolution following

a constraint elimination method [42].
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From the above process, it can be seen that the traditional state variables are not used

at the macro-scale. However, the deformation history of a macro-scale material point corre-

sponds to the one of a RVE, and is recorded by the set of state variables of the meso-scale

volume element. Comparing the constitutive laws at the macro-scale and at the micro-scale,

Eqs. (4) and (7), yields,

ZM (X, t) = {Zm (x, t) : x ∈ ω(X)} , (11)

where the notation {• : x ∈ ω(X)} refers to the set of local data defined at all material

points of the meso-scale volume element ω(X) associated to the macro-scale material point

X. In this context ZM (X, t) is not seen as a classical state variable of a constitutive model:

its definition results from the FE2 formalism.

It has been shown that RNNs can provide an accurate history-dependent non-linear

mapping from FM to PM in [32], in which case the hidden variables ht of the RNN play the

role of ZM (X, t) –the hidden variables ht are actually a reduced order version of the state

variables but without physical interpretation. In that case, the information kept in the state

variables during the training data generation is discarded by the surrogate model. However,

beside the macro-scale stress-strain history FM(t)-PM(t), the information provided by the

state variables distribution resulting from a direct finite element analysis of the RVE is of

interest when conducting multi-scale analyses since it brings insight on the micro-structure

loading condition and can be used to assess failure or fatigue. The history-dependent non-

linear mapping from FM(t) to ZM(t) should thus also be recovered by the surrogate model.

3. Data-driven surrogate modeling

In this section, Recurrent Neural Networks (RNNs) and some basic data operations

related to the Principal Component Analysis (PCA) are briefly recalled. The effectiveness of
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the PCA being limited by its global linearity, the use of NNWs for non-linear dimensionality

reduction is also discussed. Then a data-driven based surrogate model is proposed for

the history-dependent non-linear mapping from FM to ZM. We note that the data-driven

based surrogate model for the history-dependent non-linear mapping from FM to PM was

previously developed in [32]. Finally, the training strategy using GPU resources is briefly

explained.

3.1. The Recurrent Neural Networks (RNNs)
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Figure 4: Recurrent Neural Network with Gated Recurrent Unit.

RNNs have a ’memory’ defined through the hidden variables, ht, which allows them to

trace the input history. Long Short Term Memory networks (LSTMs) are ones of those kinds

of specially designed RNNs and are now widely used in a large variety of problems. As a

variation of the LSTM, the Gated Recurrent Unit (GRU) has been chosen as surrogate for

the direct finite element analysis on RVEs in [32]. The typical functional character of GRU

is illustrated by the block of GRU unit in Fig. 4. In the GRU unit, the previous hidden

variables information and the current input need to pass through the so-called reset and

update gates, which are respectively used to decide how much of the past information can

be forgotten and how much of the past information needs to be passed along for the future

use, see the detail provided in Appendix B. Two feed-forward NNWs are then respectively
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added in the paths of input and output of the GRU, see NNWI and NNWO in Fig. 4. These

NNWs make the model more flexible than a single GRU unit so that it can be adapted to

complex problems. The output vector x′t of the first feed-forward NNWI acts as input of the

GRU and the GRU output vector y′t, which also corresponds to the updated hidden variables

vector ht, constitutes the input of the second feed-forward NNWO. This architecture was

used to construct the surrogate model for the history-dependent non-linear mapping from

FM to PM in [32].

In order for the NNWs to become surrogate models, their learnable parameters have to

be identified by training them using a database. To this end, a loss function is defined to

measure the difference between the predicted output ŷ(x) and observation output y(x) of

the training database for the same input x. In this work we consider as a loss function the

Mean Square Error (MSE), which reads for an output of dimensionality n,

MSE =
1

n

n∑
i=1

(yi − ŷi)2 . (12)

A back-propagation algorithm is used to conduct the deep learning of the NNWs, and it

iteratively updates the learnable parameters, or weights, in order to minimize the loss func-

tion MSE. However, before performing the training of NNWs, all the input and observation

output features must be standardized. If not, the NNWs will not be well trained because the

input/output features may not have the same scale, and the input of activation functions

might be out of their active range. Normalization by feature is used in this work: for each

input and observation output feature, noted with χ, a simple linear operation is performed,

and reads

χ =
(χ− χµ)

χs

, (13)

with

χµ =
(χmin + χmax)

2
and χs =

(χmax − χmin)

2
, (14)
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where χmax and χmin are the maximum and minimum values of this feature among all the

available data, so that the normalized features χ are mapped to the range [−1, 1]; the

notation • holds for normalized values. Since all the used basic training operations of the

NNWs, such as computation and optimization of the loss function, update of weights of

NNWs, etc. are all provided by the PyTorch library [45], they are not detailed in this paper.

For the RNN designed in Fig. 4, the learnable parameters are divided in three parts which

include a GRU together with two feed-forward NNWs, NNWI and NNWO. The number of

learnable parameters depends on the adopted number of layers and the dimensionality of

each part. In general, for a feed-forward network, the learnable parameters include the

weights wikj and biases wi0j defining the weights matrix W, see notations in Fig. 1. In

that case, the number of learnable parameters between two neural layers of the feed-forward

neural networks NNWI and NNWO is

N i, i+1
NNW = (ni + 1)× ni+1 , (15)

where ni and ni+1 are the dimensionalities of the two sequential neural layers i and i + 1.

The number of learnable parameters in a GRU of one layer reads,

NGRU = 3nh × (nh + nI + 2) , (16)

where nh and nI are respectively the dimensionalities of hidden variables and input of the

GRU. Following Eqs. (15-16), for the RNN presented in Fig. 4, with low input and high

output dimensionalities, the total number of learnable parameters is dominated by the num-

ber of hidden variables, nh, of the GRU and by the number of outputs of the NNWO. The

architecture presented in Fig. 4 was used in [32] to construct the surrogate model for the

history-dependent non-linear mapping from FM to PM. Such an architecture can be used

herein in order to construct the surrogate model for the history-dependent non-linear map-
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ping from FM to ZM. However, because of the increase in the output dimensionality in that

case, and since the complexity of the state variables evolution implies the use of a higher

number of hidden variables nh, the number of learnable parameters increases drastically.

3.2. Principal Component Analysis (PCA)

Principal components analysis (PCA) [36] is a classical and one of the most popular

techniques for dimensionality reduction. It provides the best linear approximations to given

high-dimensional observations. Considering data a with a high-dimensionality d, the goal

of the PCA is to find a linear subspace of lower dimensionality p (p ≤ d), such that the

maximum variance is retained in this lower-dimensional space. In other words, PCA reduces

the dimensionality of the data, while minimizing the loss of information which comes from

the variation.

We define the data matrix A = [a1 − aµ a2 − aµ . . . an − aµ] ∈ Rd×n, in which the

mean vector aµ is introduced for A to be row-wise zero-mean, and the square matrix M =

AAT ∈ Rd×d. The d eigenvalues of M are denoted in a descending order as Λ1 ≥ Λ2 ≥ . . . ≥

Λd, and their corresponding eigenvectors, which are called the “Principal Components”, as

v1, v2, . . . , vd. A criterion is then defined to retain only some components of interest, such

as

1.0−
∑p

i=1 Λi∑d
k=1 Λk

≤ δ with p ≤ d , (17)

where δ, a small value close to zero, controls the accuracy of the dimensionality reduction

–e.g. if we set δ = 0 either we keep the original dimensionality p = d or M has at least one

zero eigen value and p < d. Finally we define

V =
[
v1 v2 . . . vp

]
d×p , (18)
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and the dimensionaly reduced data matrix B ∈ Rp×n

B = VTA . (19)

The data can be reconstructed from the following relation

Âd×n = VB . (20)

Finally the approximate data [â1 â2 . . . ân] are obtained by adding the mean aµ to the

columns of Âd×n.

The effectiveness of the PCA is limited by its global linearity. A series of non-linear

dimensionality reduction algorithms, which can be cast as general kernel PCA, have thus

been developed, such as kernel PCA, locally linear embedding, Laplacian eigen-maps and

iso-maps. Although these methods are efficient for data dimensionality reduction, because

of the non-linear dimensionality reduction methods, the reconstruction of data in its original

dimensionality is not a trivial task and can even sometimes be impossible. The use of NNWs

for non-linear dimensionality reduction is now discussed.

3.3. Dimensionality reduction by Feed-forward Neural Network (NNW)

Low dimensional representation of high dimensional state variables in a RVE can also be

constructed through NNWs. NNWs applied to dimensionality reduction define a function

F : a → b → â, see Fig. 5(a), in which a = [a1, a2, . . . , ad], where •̂ is used to indicate

the approximation. Because of the bottleneck shaped NNW, lower-dimensional data b =

[b1, b2, . . . , bp], (p < d), can be extracted at the central mth layer of the NNW.

Based on a given set of data A = {a1, a2, . . . , an}, supervised learning refers to training

the weights wikj, (i = 1, . . . , N ; k = 1, . . . , ni−1, j = 1, . . . , ni, n0 = nN = d and nm = p)

and biases wi0j , (i = 1, . . . , N and j = 1, . . . , ni, n0 = nN = d and nm = p), see the
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Figure 5: Different feed-forward NNW architectures: (a) An artificial Neural Network for dimensionality
reduction and data reconstruction; (b) Feed-forward NNWO as output of the Gated Recurrent Unit as
depicted in Fig. 4 used for data reconstruction (we note that the updated hidden state vector of a GRU is
the same as its output vector).

notations in Fig. 5(a), and making the NNW being able to map the input a to b and

then back to â, an approximation of a. After training, the first m layers of the NNW,

a → b, are used for dimensionality reduction and the remaining N −m layers, b → â, for

data reconstruction. This nonlinear dimensionality reduction is similar to the concept of

autoencoder [46]. In Section 3.4.2, the hidden variables of RNNs will be used as the lower

dimensional data and, therefore, only the data reconstruction part depicted in Fig. 5(b)

needs to be trained.

3.4. Design of several surrogate models for state variables

3.4.1. Input and output variables definition

Since the resolution of the meso-scale BVP respects the frame indifference, rigid rotation

modes can be eliminated by using the macro-scale Green-Lagrange strain tensor EM as

input, instead of using the deformation gradient FM. Hence, the mapping from FM to ZM

becomes a mapping from FM to EM first through

EM =
1

2

(
FM

T · FM − I
)
, (21)
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and then from EM to ZM. Therefore, we use the strain measure EM as the input of RNN

and the state variables of the meso-scale volume element ZM for output. Particularly for

2D RVE under plane strain condition, we have xt = {EMXX(t), EMY Y (t), EMXY (t)}, and

yt = ZM(t) = {Zm(x, t) : x ∈ ω(X)}, see notations in Fig. 4. We note that the output yt

corresponds to the spatial distribution of the RVE state variables.

3.4.2. Surrogate I: RNN for state variables without dimensionality reduction

It is possible to use the hidden variables of the RNN architecture depicted in Fig. 4

as a low order dimensional representation of the high dimensional state variables. Since

the hidden variables are generated automatically during the supervised training, there is

no need to carry out a separate order reduction process with NNW, see Section 3.3. A

feed-forward NNWO for output, see Fig. 4, with an input dimensionality “p” lower than the

output dimensionality “d” is adopted to perform the data reconstruction and is detailed in

Fig. 5(b).
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Figure 6: Data-driven surrogate model I without dimensionality reduction

The corresponding data-driven modeling process is presented in Fig. 6 with its training

and on-line phases.

• The training phase includes the training data generation and preparation and the RNN

training itself. The training data are collected from direct finite element simulations

22



conducted on the RVE, as detailed in the next Section 4. The input data, i.e. the

Green-Lagrange strain EM tensor, are normalized by feature, “N.1”, with Eq. (13).

For the observation output data, ZM, a normalization by feature, “N.2”, is also applied

before using them during the training. Finally, the RNN is trained with the normalized

Green-Lagrange strain EM as input and ZM as observation output.

• In the on-line phase, the NNW is used as a surrogate. The input Green-Lagrange strain

EM, is first normalized by feature, “N.1” (using bounds χmin and χmax determined

during the training stage), before being sent to the trained RNN. Then, the output of

the RNN, ẐM, goes through the inverse operations of normalization “N.2” to yield the

sought state variables, ẐM, where •̂ is used to indicate the approximations provided

by the surrogate model.

Because the feed-forward neural network NNWO has a high dimensionality in all the

layers, the number of learnable parameters that have to be trained increases dramatically,

see Eq. (15), and not only the requirement of computer memory, but also the amount

of training data needed to avoid over-fitting, become critical. These will lead to a heavy

training process even on a computer cluster. The high demand of computational resources

can be relieved by reducing the dimensionality of the output.

3.4.3. Surrogate II: RNN for state variables with dimensionality reduction

In this process, an extra PCA operation is applied on the state variables, see Fig. 7.

• For the training phase, a PCA is performed on the observation output data, ZM, in

order to obtain its low dimensional representation, ξM. The low dimensional data,

ξM, is then normalized by feature, “N.2”, yielding ξ
M

, before being used for training.

Then, the RNN is trained with the normalized Green-Lagrange strain EM as input

and ξ
M

as observation output.
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Figure 7: Data-driven surrogate model II with dimensionality reduction

• In the on-line phase, the trained RNN is used as a surrogate. The output of the RNN,

ξ̂
M

, goes through, in sequence, the inverse operations of normalization (“N.2”) and

PCA to yield the desired state variables, ẐM.

3.4.4. Surrogate III: RNN for state variables with dimensionality reduction and break down

Based on the PCA dimensionality reduction of the output, the RNN training task can be

further relieved by considering a dimensionality break down. The high dimensional output

is divided into Q groups, and one RNN is defined per group to reproduce only a part of

the total output. Accordingly, the data flow structure of RNNs presented in Fig. 8(a) is

adopted. The outputs y = ξ
M

to be split correspond to the PCA low dimensional data,

ξM, having been normalized by feature. Considering that the first p eigen-values have been

retained by the PCA, the dimensionality of ξ
M

is also p. This outputs vector is then split

into Q sub-vectors either evenly, as in Fig. 8(b), or unevenly. In this work we opt for an

event split following the order of the p retained eigen-values Λ1 ≥ Λ2 ≥ . . . ≥ Λp ≥ . . . ≥ Λd.

Considering that the normalized coefficients vector ξ
M

follows the same order, the Q reduced

dimensionality outputs yq, with q = 1, . . . , Q gather the components (q−1)k+1 to qk of the

original outputs vector, i.e. yq = [ξ(q−1)k+1

M
, . . . , ξqk

M
], where k = p/Q is the dimensionality
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Figure 8: Data-driven surrogate model III with dimensionality reduction and break down: (a) Training and
on-line data flows; (b) Data flow in the Q RNN models RNNq.

of the Q outputs vectors after dimensionality break down. In Fig. 8(b), each block of

“RNNq”, q = 1, 2, . . . , Q, has the structure presented in Fig. 4, and is independent of the

other RNNs. Therefore, they can be trained separately and the low dimensional output of

each RNN leads to a reduced number of learnable parameters in its respective feed-forward

network NNWO.

3.5. RNNs training with mini-batches using graphics processing unit (GPU)

The training data of RNNs are sequential data and as a result it is impossible to use the

whole synthetic database at once for training. Therefore, the training data are divided into
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a number of mini-batches, and the RNNs are trained with data shifting among these mini-

batches. The number of sequences in each mini-batch depends on the sequence length and

dimensionality, and on the accessible computer memory. For large scale RNNs, the training

can be accelerated using GPUs as they can process multiple computations simultaneously.

In that case, the mini-batch size is constrained by the memory of the GPU instead of the

CPU memory.

 Set the number N of mini-batches for training, and call the function below: 

i=1 

Step1: Load the training database; 

Step2: Create mini-batch i from the training database for RNNs training; 

Step3: Loop on RNNs training 

      for q  in  (1,2,..,Q). 

            Load model RNNq (using warm start); 

            Train RNNq with mini-batch i for n epochs; 

            Save model RNNq .  

If i=N stop; else i=i+1, go to Step2. 

Figure 9: Flow chart of RNNs training with mini-batches.

The training flow chart is given in Fig. 9.

• Practically, the data in each mini-batch are randomly picked from the training database,

and the number of mini-batches N is normally set with a high value such as a few

thousands.

• The training epoch for each mini-batch, n−epoch, is set with a value within 10 to

avoid over-fitting because of the small dataset.

• The training process presented in Section 3.1 is applicable for all the RNNs presented in

Section 3.4. If the dimensionality break down is used, the model RNNq (q = 1, . . . , Q)

is only loaded at index q of the loop, during its training stage, and saved afterward,
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because the parameters of each RNNq take a lot of memory. Since the creation of the

random mini-batches from a large database is more time consuming than loading and

saving each RNNq model, a given mini-batch is used to train all the RNNq models,

with the outputs being split accordingly to the RNNs.

We note

• It appeared that the creation of the random mini-batches is quite time consuming,

especially for high dimensional training data for which the synthetic database may

take tens of Gigabyte. In this case, it would be better to reload the database before

the shift of mini-batch instead of keeping it in memory continuously and the “go to

Step 2” in Fig. 9 would be replaced by “go to Step 1”.

• The applicable size of mini-batches can be increased in the case of dimensionality break

down, which means that the number of mini-batches, N , can be reduced. Because of

the reduction in the number of mini-baches and since the training using GPU with

small n−epoch is fast, the training time is not necessarily longer than the training of

the RNN using full dimensional output of PCA despite the fact that the dimensionality

break down results in more RNNs to be trained.

4. Synthetic database generation for training and testing of the RNNs

In [32] and in Section 3, we have designed RNNs which provide history-dependent non-

linear mappings, respectively, from EM(t) to SM(t) = F−1
M (t) ·PM(t), the macro-scale second

Piola-Kirchhoff stress tensor from which PM(t) can be directly deduced, and from EM(t)

to ZM(t), the state variables. Once trained these RNNs constitute surrogate models of a

meso-scale BVP in FE2 analyses, to replace costly micro-scale finite element simulations. In

this section, the generation of the synthetic dataset required for the training and testing of

the RNNs, which has already been detailed in [32] in the context of the non-linear mapping

27



EM(t) to SM(t), is reframed here in the context of the non-linear mapping EM(t) to ZM(t)

for completeness. The training and use in multi-scale simulations of the surrogate models

acting as non-linear mappings from EM(t) to SM(t) and from EM(t) to ZM(t) are then briefly

explained.

4.1. Data collection from micro-scale finite element simulations

The training and test data are generated by solving the meso-scale BVP on a RVE

controlled by the history of EM. Since EM cannot be used directly to define the boundary

condition on the RVE, the right stretch tensor UM is used instead of EM:

• Firstly, FM has a unique decomposition which reads,

FM = RM ·UM , (22)

where RM is the rotation tensor, which can be defined arbitrarily because of the frame

indifference of the meso-scale BVP. Therefore, RM = I for no rotation is used for

simplicity.

• Secondly, EM is obtained from

EM =
1

2

(
U2

M − I
)
. (23)

For a given UM, we can constrain the meso-scale BVP deformation according to FM

computed by Eq. (22) and we can obtain the input of the RNN, EM, through Eq. (23). The

state variables of the meso-scale volume element, ZM, are then collected from each resolved

meso-scale BVP by considering the state variables distribution {Zm(x, t) : x ∈ ω(X)} of

the RVE ω and serve as observation output of the RNN.

28



4.2. Random loading paths

The loading history-dependency of the RNNs arises from their architecture and their

training requires using sequential data. Considering the involved dimensionality of UM and

the variety of possible loading/unloading paths in a multi-scale simulation, using propor-

tional loading paths is not an optimal choice to cover all the possible changes of loading

directions. Therefore, random loading paths, which have been shown to be efficient in [32],

are adopted to generate a sequential synthetic database of UM(t).

A loading path is defined by a sequence of right stretch tensors, such as {UM 0, UM 1, . . . , UMN},

where UM 0 = I is the starting stage of the loading process. Random increments of loading,

∆UMn = UMn −UMn−1, are then generated and permit the loading path to be changed in

any possible direction at each increment. As a symmetric second-order tensor, each incre-

ment ∆UM has its spectral decomposition form expressed by its eigenvalues and eigenvectors

as,

∆UMn = ∆λ1n1 ⊗ n1 + ∆λ2n2 ⊗ n2 + ∆λ3n3 ⊗ n3 , (24)

where the eigenvectors n1, n2, and n3 control the direction of the loading path increment, and

the eigenvalues ∆λ1, ∆λ2, and ∆λ3 control the increment size. The increment of loading,

∆UMn, is obtained through randomly generated orthogonal vectors n1, n2, and n3, and

three eigenvalues which satisfy
√

∆λ2
1 + ∆λ2

2 + ∆λ2
3 ≤ ∆R, where ∆R is a defined upper

bound of the increment size. Practically, ∆λ2
1, ∆λ2

2 and ∆λ2
3 can be easily generated by a

random split of a random variable R ∈ (0,∆R2], or ∈ (∆R2
min, ∆R2] in order to avoid tiny

steps, see [32] for more details. Because of this way of generating the deformation increment,

a wide range of loading step sizes is considered when generating the random loading paths.

We note that during the RVE resolution, for a given ∆UMn, sub-steps may be needed to

guarantee the numerical convergence of the meso-scale BVP resolution.
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The random walk or path generation process is terminated when the eigenvalues of

UMN reach maxi{|λi|} > Rmax, where Rmax is a given critical value characterizing the

training range of the surrogates. In this work, we consider 2D loading cases with ∆R =

5×10−3 and Rmax = 0.1 when generating the loading paths. Beside thousands of simulations

following a random loading path, hundreds of proportional loading paths are also used to

increase the coverage of loading paths in the strain space when training the RNNs. The

proportional cyclic loading paths are created by considering a random loading direction and

several random reversal points.

For each random loading path, there is a succession of volume dilatations and compres-

sions –depending on the sign of the trace of EM– during the sequential loading, while for

each cyclic loading path, there is a reversal in the volume dilatation or compression during

the unloading/reverse loading stage. The amplitude of the dilatation or compression varies

for each generated path.

4.3. Pre-trimming and data padding/trimming
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Figure 10: Trimming of a sequence when observation data are out of range: (a) Original sequence with
observation data component l within the critical value ycrit up to index k; and (b) Trimmed sequence so
that observation data component l remains always within the critical value ycrit.

Since random loading paths are applied on the RVEs, this could yield some extreme
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values for the considered state variables, such as local equivalent plastic strain higher than

20 in the RVE. On the one hand, such extreme values are not physical, and on the other

hand, this occurs only for a few training sequences, whose state variables evolve in such an

extreme range that the data covering this extreme range are not enough to train a NNW

within this range. Therefore, a pre-trimming is applied on the sequential data, to remove

the subsequent steps in each sequence when an element of a considered state variables vector

reaches a critical value, ycrit, as illustrated in Fig. 10.
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Figure 11: Padding and trimming of a sequence in order to reach the targeted length: (a) Original sequence
of size n+ 1; (b) Padding at the beginning of the sequence by repeating the entry number 0 m1 times and
the last entry number n m2 times in order to reach a sequence of length n+ 1 +m1 +m2; and (c) Trimming
of the sequence by removing the last m entries to reach a length n+ 1−m.

RNNs are typically able to take in variable size inputs, but training data of the same

sequential length will usually be used to feed the RNNs in batches to speed up the training

process. However, the lengths of the training data sequences obtained by a random walk

process are different from each other, either because a random walk process is terminated

when a critical strain measure is reached as discussed in Section 4.2 or because a sequence is

pre-trimmed according to a critical value of state variable as discussed here above. In order
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to use batches to train the RNNs, it is needed to ensure that each sequence within the input

database is of equal size. Therefore, both zero padding at the beginning and repeatedly

adding the last element at their end are used for short sequences, while long sequences are

trimmed from their end, see Fig. 11.

4.4. Use of the surrogate models in multi-scale analyses

In [32] the authors have developed a surrogate model of the history-dependent non-

linear mapping from EM to SM by training a recurrent neural network whose architecture

is depicted in Fig. 4. This surrogate model is used on-line during multi-scale simulations

allowing accelerating the resolution process.

In Section 3, we have developed a similar recurrent neural network, possibly enhanced by

dimensionality reduction, to act as a surrogate model for the history-dependent non-linear

mapping from EM to ZM, the micro-scale state variables distribution.

Both surrogate models are trained off-line, and once trained can be used to conduct multi-

scale simulations. Their use is however different. On the one hand, the surrogate model of

the history-dependent non-linear mapping from EM(X, t) to SM(X, t) has to be used on-line

at each macro-scale material point X ∈ Ω during the multi-scale process since there exists

a strong non-linear coupling between the two scales, see the application example in [32]. On

the other hand, the history-dependent non-linear mapping from EM(X, t) to ZM(X, t) can

be used a posteriori from the recorded strain history EM(X, t) at one macro-scale material

point X ∈ Ω since this does not affect the homogenized material response. Also it is usually

not meaningful to recover micro-scale state variables distributions at all macro-scale material

points X ∈ Ω, but only in regions of interest such as stress concentration ones.

5. Application on a composite RVE

In this section, the finite element simulations performed on a composite RVE to pro-

vide the training and testing database of the history-dependent non-linear mapping from
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EM(X, t) to ZM(X, t) are first described. The considered state variables and their surro-

gate modeling are then specified. The dimensionality reduction method presented in Section

3.2 is then applied and the error measure that can be used to compare the different sur-

rogate models of the micro-scale state variables distribution is defined. The accuracy and

performance of the different surrogate models developed in Section 3.4 are then studied by

reconstructing the distributions of the equivalent plastic strain γ = {γ(x) : x ∈ Ω} and of

the equivalent von Mises stress τeq = {τeq(x) : x ∈ Ω} in the RVE Ω for different loading

scenarios1. Finally, an efficient design methodology of the RNN structure is proposed from

the drawn observations.

5.1. Micro-scale simulations

X

Y

Z

Figure 12: Finite element mesh of the micro-structure volume element of dimensions 0.02mm×0.02mm used
to build the database.

The 2D RVE made of a continuous fiber reinforced elasto-plastic matrix material shown

in Fig. 12 is adopted for the micro-scale simulations. The volume fraction of fiber is 39.9%.

We generate a total of 6954 loading paths to build the training database: the training

data includes 6457 random and 497 cyclic loading paths. We additionally generate a total

of 1551 loading paths to build the testing database: the testing data includes 1252 random

and 299 cyclic loading paths.
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5.1.1. Fiber

The fibers obey a hyperelastic law based on the elastic potential

ψfib(C) =
Kfib

2
ln2 J +

µfib

4
(lnC)dev : (lnC)dev , (25)

where J = detF is the Jacobian, C = FT ·F is the right Cauchy strain tensor, (•)dev denotes

the deviatoric part of a second-order tensor •, Kfib and µfib are the material constants. In

this section the subscript “m” referring to the micro-scale is omitted for conciseness. The

stress tensor is deduced as

P =
∂ψfib (F)

∂F
= KfibF

-TlnJ + F-T ·
[
µfib lnCdev

]
. (26)

5.1.2. Matrix

The matrix obeys a finite strain J2-elasto-plastic material model [47]. The elastic poten-

tial energy is defined by

ψmat(C
e) =

Kmat

2
ln2 J +

µmat

4
(lnCe)dev : (lnCe)dev , (27)

where Ce = FeT ·Fe, and Kmat and µmat are material constants. In this section the subscript

“m” referring to the micro-scale is omitted for conciseness. The deformation gradient F is

decomposed into a reversible elastic part Fe and an irreversible plastic part Fp such that

F = Fe · Fp. The first Piola–Kirchhoff stress tensor P thus reads

P =
∂ψmat (F;Fp)

∂F
= KmatF

-T ln J + Fe ·
[
µmatC

e−1 · (lnCe)dev
]
· Fp -T . (28)

The plastic part Fp of the deformation gradient is obtained through a J2-plastic flow ex-

pressed in terms of the Kirchhoff stress. The Kirchhoff stress κ = P · FT is first computed
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by Eq. (28) as

κ = Kmat ln JI + Fe ·
[
µmatC

e−1 · (lnCe)dev
]
· Fe T , (29)

and the equivalent von Mises stress is calculated through τeq =
√

3
2
κdev : κdev. The von

Mises stress criterion finally reads

f = τeq − τ 0
y −R(γ) ≤ 0 , (30)

where f is the yield surface, τ 0
y is the initial yield stress, γ is the equivalent plastic strain and

R(γ) = Y [1− exp(−kγ)] is the isotropic hardening stress, with Y and k being the material

constants. The evolution of Fp is determined by the normal plastic flow, as

Ḟp = γ̇N · Fp , (31)

where N is the plastic normal, see [47] for more details.

Finally, the material properties used in this work correspond to the ones used in [32, 48]

and are reported in Table 1.

Table 1: Material properties for fiber and matrix.

Fiber Matrix
Kfib [GPa] µfib [GPa] Kmat [GPa] µmat [GPa] σy[MPa] Y [MPa] k [-]

16.67 12.50 2.50 1.15 100 20 30

5.2. Considered state variables: Equivalent plastic strain and von Mises stress

The distributions of the equivalent plastic strains, γ, and of the von Mises stresses, τeq,

see Eq. (30), within the RVE are chosen to represent respectively a monotonic increasing

state variable and a non monotonic state variable1. This allows assessing the accuracy of the

surrogate models for these two different behaviors. Besides, as described in the introduction,
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the surrogate models can be used for posterior estimation of the structure integrity, in which

case the plastic strain is relevant when predicting the damage initiation, or to obtain an

estimation of the life of the composite material, in which case fatigue failure criteria based

on stress tensor invariants such as the von Mises stress can be used [35], hence motivating

the study of the latter. The dimensionality of each state variable corresponds to the number

of Gauss points of the RVE finite element discretization. Second-order triangular elements

with three Gauss points are used in the direct simulations. However, to be consistent with

their visualization in the post-process, the averaged equivalent plastic strains, γ, and von

Mises stresses, τeq, of each element in the RVE are retained, although the method can readily

be applied when considering the values at all the Gauss points. Besides, since the fibers are

purely elastic, the value of γ is irrelevant in this phase. Therefore, for the RVE presented in

Fig. 12, we eventually have as selected state variables ZM

• γ = [γ1, γ2, . . . , γdγ ] with dγ = 1607;

• τeq = [τeq1, τeq2, . . . , τeqdτ
] with dτ = 2237.

The training and test data are thus collected from the direct finite element simulations

on the RVE in a time sequential form, with

• input xt = {EM1, EM2, . . . , EMt}, and

• observation output yt the union of {γ1, γ2, . . . , γt} and
{
τeq1, τeq2, . . . , τeqt

}
.

5.3. PCA order reductions on γ and τeq

The linear order reduction process PCA described in Section 3.2 is applied on γ and τeq.

Since each loading path has about hundreds to thousands of steps and since we have more

than 6000 loading paths in the training database, there are nearly 1, 000, 000 samples of γ

and τeq available for the PCA process. To be practical, only 1% of the samples are randomly

picked to perform the PCA.
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Figure 13: Application of PCA on the composite RVE state variables: (a) Coefficients of eigen-values; and
(b) The residual fractional eigen-value, for the equivalent plastic strain γ and the von Mises stress τeq.

The coefficients of eigen-value for the principal components and the residual fractional

eigen-value, see Eq. (17), are plotted as function of the reduced dimensionality p in Fig.

13 for both the equivalent plastic strain and the von Mises stress. From Fig. 13(a) it

can be seen that the coefficients of eigen-value decrease fast for the first tens of principal

components and then the decrease becomes slower. This is due to the realistic pattern of

the micro-structure and the fact that it is subjected to various loading paths generated by

random walk processes. As a result, many possible deformation modes exist and cannot

be accurately represented by a couple of eigen-modes. Fig. 13(b) provides a relative error

measure of the reconstructed data from reduced dimensionality when conducting an inverse

PCA. If a rather low relative error is demanded, the reduced dimensionality p will have to

be high enough, especially for τeq.

5.4. Mean Square Error (MSE) and relative error measure

The error of NNWs is normally evaluated by the Mean Square Error (MSE) (12). Since

MSE is an absolute error defined on normalized data, its value depends on not only the

accuracy of the NNWs, but also on the applied normalization. Therefore, in our application,

it is more meaningful to use a relative error instead of the MSE when we compare the errors of
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different surrogate models, see Section 3.4, in particular because some surrogate models use

a PCA and others not. Indeed, when considering the surrogate model II, see Section 3.4.3,

a PCA is applied on the observations to train the RNN, see Fig. 7. Therefore, the outputs

of RNNs, ξ, correspond to normalized reduced dimensionality data of PCA, each of them

having a different weight on the data of original dimensionality during the reconstruction of

the state variables ZM. It would thus make no sense to compare the MSE of the RNN of the

surrogate model II with the MSE of the RNN of the surrogate model I described in Section

3.4.2 and illustrated in Fig. 6 which has as output directly the normalized state variables

ZM obtained through a normalization by feature on the state variables ZM.

However, it is not straightforward to convert MSE to a relative error as presented in

Fig. 13(b). Therefore, the normalized state variables, ZM, are chosen as the reference

or target output for error evaluation of the three proposed surrogate models developed in

Section 3.4. In the cases of the surrogate models II and III, the RNNs predictions are first

converted through inverse PCA to their original dimensionality (the dimensionality of the

state variables), and the MSE loss is thus computed between the surrogate predictions and

the normalized reference data (or observations). The MSE of the PCA is defined as the

error between the normalized original data and their reconstructions following the inverse

PCA. Therefore the relative error and MSE of PCA are associated through the reduced

dimensionality p, which can serve as an intuitive connection to quantify the error of the

surrogate model.

5.5. Surrogate model of the equivalent plastic strain distribution γ

The training dataset includes 6457 random and 497 cyclic loading paths. All the training

sequences are pre-trimmed with γcrit = 6.0, see Section 4.3. Then, a group of training

sequences of length 800 is obtained by either padding or trimming the original ones. A

second group of training sequences of length 1200 is obtained by either padding or trimming
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Table 2: Hyper-parameters of RNNs to reconstruct the equivalent plastic strain distri-
bution γ; The notation (n0, . . . , ni, . . . , nN ) holds for the number of input nodes n0, of
nodes ni in hidden layer i and of output nodes nN –with the output nodes of a neural
network holding as input nodes of the subsequent one and not being duplicated.

Model NNWI hidden variables dimensionality nh NNWO

(3, 70) 100 (800, 1607)
Surrogate I (3, 70) 200 (800, 1607)

(3, 70) 400 (800, 1607)
(3, 70) 100 (800, 180)

Surrogate II (3, 70) 200 (800, 180)
(3, 70) 400 (800, 180)
(3, 70) 100 (100, 10)∗∗

Surrogate III∗ (3, 70) 200 (100, 10)∗∗

(3, 70) 400 (100, 10)∗∗∗

∗ We have Q = 18 RNNq, each one having the structure reported in the columns;
∗∗ Q = 18, and only RNNq with q = 1, 2, . . . , 9, 10 are trained and the RNN step
is not applied for q = 11, 12, . . . , 18;
∗∗∗ Q = 18, and RNNq with q = 1, 2, . . . , 18 are trained.

the original sequences longer than 800. The training mini-batches, see Section 3.5, are drawn

from the groups of the two different lengths (some being thus repeated) randomly.

In order to compare the proposed surrogate models and to study the effects of models

hyper-parameters, such as the dimensionality of the hidden variables, a series of surrogate

models have been trained. Following Section 3.4, the processes without dimensionality

reduction, with PCA dimensionality reduction and with PCA dimensionality reduction and

dimensionality break down are denoted as “Surrogate I”, “Surrogate II” and “Surrogate

III”, respectively. The “Leaky ReLU” activation function f(χ) = max
(
0, χ

)
+

min(0, χ)
100

is

chosen in the feed-forward NNWs, with no activation function applied on the input layer of

NNWI and on the output layer of NNWO. The initial value of hidden variables, h0 = −1.0,

is used for the first input of a sequence. One GRU layer is used in all the RNNs, see the

details of the GRU layer in Appendix B.

The considered hyper-parameters of the series of RNNs for the three presented surro-

gate models are detailed in Table 2. We note that for the surrogate model III, described
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in Section 3.4.4 and illustrated in Fig. 8(b), not all the RNNq have to be trained. Indeed

when the number of hidden variables is limited, only the first few coefficients of the princi-

pal components can be accurately represented and training the remaining RNNs does not

improve the accuracy as it will be shown in the next Section 5.5.1. In that case the RNN is

not applied on the output of the groups q = 11, 12, . . . , 18 for a number of hidden variables

nh = 100 or nh = 200.

5.5.1. The effect of the hidden variables dimensionality and surrogate models comparison
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Figure 14: The MSEs of the equivalent plastic strain field, γ, obtained by the three surrogate models on
the training data. The MSE obtained with a PCA dimensionality reduction is also provided in Fig. 14 as a
reference.

The MSEs of the proposed Surrogates are evaluated with all the available training data,

and plotted in Fig.14. The MSE obtained with a PCA dimensionality reduction is also
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provided in Fig.14 as a reference.

For the Surrogates II and III, the maximum value of p = 180 is used during the PCA

dimensionality reduction. Since the RNNs of these surrogate models predict the coefficients

of the principal components, all the results of reduced dimensionality lower than 180 can

be extracted. For Surrogate III with nh = 100 and 200, only a part of RNNs are trained to

show the effect of the hidden variables number on the MSE. In general, Fig. 14 shows that

the MSE decreases with an increasing number of hidden variables for all the three surrogate

models.

For a constant number of hidden variables in the GRUs, Surrogate I gives a much lower

error than Surrogate II, see Figs. 14(a) and 14(b). This shows that the non-linear dimen-

sionality reduction arising with the Surrogate I during the training is superior to the linear

one of the PCA. As a result, in order to reach the same error, more hidden variables will be

required with Surrogate II than with Surrogate I. The poor results of Surrogate II can be ex-

plained by the use of PCA in combination with the GRU. PCA reduces the full dimensional

variables into the coefficients of the principal components, and each of the coefficients has a

different weight in the original variable. When RNNs are trained with these coefficients as

observation output, all the elements of the output share the same hidden variables and are

treated equally. As a result, although the coefficients of the few first principal components

are more important, their importance cannot be discriminated during the training of RNNs,

except if an extra treatment is applied to put an emphasize on some elements of the output,

which is the case with the dimensionality break down of Surrogate III. Indeed, Fig. 14(c)

shows that Surrogate III has the lowest MSE among the three models for the same number

of hidden variables. As explained, with Surrogates I and II, more outputs share the same

hidden variables than with Surrogate III. However, since each group of outputs of Surrogate

III has its own hidden variables, in total, more hidden variables are used with Surrogate III.

Since the RNNs of Surrogates II and III are used to predict the coefficients of principal
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components, the lower limit of Surrogates II and III MSE is the reference MSE from PCA;

this limit would be reached if the evolution of the principal components coefficients were

perfectly predicted. Although in Fig. 14(c), the synergistic effect of the errors from PCA

and RNNs leads for low p to a MSE slightly lower than that of PCA, the MSEs of Surrogate

III agree well with that of PCA at low value of p, and diverge from that of PCA when p is

beyond a value “pc”; this “pc” value increases along with the number of hidden variables.

On the one hand, we can say that more principal components coefficients can be better

predicted by the RNNs of Surrogate III because of the increase of hidden variables number.

On the other hand, when using Surrogate III, Fig. 14(c) shows that when the reduced

dimensionality p increases, in order to take benefit from the accuracy gain in the PCA, the

number of hidden variables should increase to capture the evolution of the coefficients of the

principal components. Therefore, we can conclude that the use of PCA in a surrogate model

does not reduce drastically the number of hidden variables in the RNNs required to reach

a given accuracy. Having said that, we note that for p > pc, MSE of Surrogate III keeps

decreasing with the increase of p although the error is larger than that of the PCA. This

means that, although the RNNs predictions are not accurate for the coefficients of principal

components higher than pc, the evolution trends of those coefficients are still predicted.

Besides, the PCA can reduce the scale of the output feed-forward networks, NNWO, which

can be important for problems with high dimensional output. According to the number of

learnable parameters in Eqs. (15) and (16), the PCA dimensionality reduction will become

less effective for complex physical processes, in which a large number of hidden variables are

needed.

Finally, in Fig. 14(d), the dashed lines corresponding to the MSEs of Surrogate I with

respectively 100, 200 and 400 hidden variables cross the PCA reference line at p ≈ pc.

Therefore it appears that the Surrogates I and III have a similar accuracy when using

the same number of hidden variables. So the evolution of the coefficients of the principal
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components that can be accurately represented with Surrogate III depends strongly on the

number of hidden variables.

Although there are a few RNNs needed to be trained for Surrogate III, their training

is still computational efficient when the training scheme in Fig. 9 is used as compared to

the training of Surrogate I when targeting a comparable MSE. With one GPU of 14 Gbit

memory, the training of Surrogate III with nh = 400 for each RNNq, see Table 2, takes

around 48 hours, while the training of Surrogate I with nh = 400 takes around 108 hours.

Besides, Surrogate III is also more flexible than the other two processes: its RNNs, the

independent RNNq, can have different structures, in terms of hidden variables number and

also number of outputs. Finally Surrogate II is not recommended, since for a comparable

accuracy, the required number of hidden variables will increase drastically.

5.5.2. Principal modes of PCA and physical information: the connection between the phys-

ical state and the RNN hidden variables

A further study on the principal components of output data reveals the connection

between the hidden variables and the physical information. The principal components,

vi, (i = 1, . . . , p), obtained from PCA can be visualized in a finite element discretization

and are called principal modes in their visualization forms. A few principal modes are

presented in Fig. 15, where the index ”i” of a mode corresponds to the principal component

”vi”.

In Fig. 15, the first few modes show quite regular patterns which can be clearly divided

into a few regions, while a pattern fragmentation can be seen in the higher modes, such as

modes 120 and 170. The regular patterns contain more homogenized physical information

than the fragmented patterns, which have much more detailed physical information. There-

fore, to trace the evolution of the coefficients of low modes, such as modes 1 and 5, less

hidden variables are required in the RNNs than for the higher modes. This can be explained

by the fact that if we want to replace these modes by some variables, such as using a simple
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Figure 15: The eigen-modes of the equivalent plastic strain field, γ, obtained from PCA.

dimensionality reduction method–clustering, it is expected that the higher modes need much

more variables than the lower modes.

5.5.3. Predictions of γ on the testing data

The accuracy of the trained surrogate models with 400 hidden variables is now assessed

with the testing data, which include 1252 random and 299 cyclic loading paths. The surro-

gate models MSEs on the testing data are presented in Table 3. As expected, the MSEs on

testing data are higher than on the training data. As observed during training, for a given

number of hidden variables, the least accurate model, in terms of MSE, is the Surrogate II

and the most accurate one is the Surrogate III.

A few randomly picked loading paths, which include five random and five cyclic paths,
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Table 3: MSE of the three surrogate models on testing
data; all the RNNs use nh = 400, and h0=-1.0.

Model NNWI NNWO MSE

Surrogate I (3, 70) (800, 1607) 0.00066
Surrogate II (3, 70) (800, 180) 0.00153
Surrogate III (3, 70) (100, 10)∗ 0.00047

∗ Q = 18, and RNNq with q = 1, 2, .., 18 are trained.
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Figure 16: Examples of loading paths of the testing data: (a) Random loading paths, and (b) Cyclic loading
paths.

see Figs. 16(a) and 16(b), are used to compare and verify the predictions of the proposed

models. The evolution of the maximum equivalent plastic strains in the RVE, at each

loading step, predicted by the surrogate models are plotted in Fig. 17 and compared to

the ones obtained with the direct finite element simulations. Good agreements can be seen

between the predictions of the surrogate models and the direct finite element results when

the maximum equivalent plastic strains are moderate, e.g. γmax < 3. Therefore, the high

MSEs of the surrogate models predictions on the testing data may be due to insufficient

training data with high value of γ.

The distributions of the equivalent plastic strains γ within the RVE are also compared

at different loading steps/configurations. Three loading steps/configurations are marked on

the random and cyclic testing paths in Fig. 18. Their corresponding equivalent plastic strain
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Figure 17: Evolution of the maximum equivalent plastic strain in the RVE at each loading step: (a), (c)
and (e) For random loading paths; and (b), (d) and (f) For cyclic loading paths.

fields γ within the RVE are presented in Figs. 19-21. The results of the direct finite element

simulations and the reconstructions obtained with the three surrogate models are illustrated.

Since the predictions of the surrogate models are not bounded and could even be negative

in some elements, some elements predicted negative values of the order of 0.0001-0.001 and
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Figure 19: Distributions of the equivalent plastic strain in the RVE at loading point “1”, see Fig. 18: (a)
From finite element simulations; and (b, c), (d, e) and (f, g) Respectively using Surrogates I, II and III.
Errors are in terms of absolute values.

these negative values were set to zero in Figs. 19-21. The three considered configurations

correspond to three totally different plastic strain distributions predicted by the direct finite
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(b)

  

Surrogate I, Error on  

    0.                   0.045                0.09 

 

(c)

  

Surrogate II,  

0.                     0.925                  1.85 

 

(d)

  

Surrogate II, Error on  

0.                     0.135                  0.27 

 

(e)

 

Surrogate III,  

0.                 0.95                   1.9 

 

(f)

 

Surrogate III, Error on  

  0.                0.03                   0.06 

 

(g)

Figure 20: Distributions of the equivalent plastic strain in the RVE at loading point “2”, see Fig. 18: (a)
From finite element simulations; and (b, c), (d, e) and (f, g) Respectively using Surrogates I, II and III.
Errors are in terms of absolute values.

element simulations, see Figs. 19(a)-21(a). These three different patterns of the equivalent

plastic strain fields γ are all well predicted by the three surrogate models. The error with

Surrogate III remains limited to around 5% of the maximum value. This is due to the fact

that the distribution patterns are dominated by the first few principal components of the

state variable field reduction, so that even the least accurate surrogate model can recover the

pattern. Because of the use of a dimensionality reduction for the Surrogate II and Surrogate

III, the larger errors can be found in locations which do not correspond to the maximum

plastic strain, see e.g. Figs. 19(e) and 19(g).
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Figure 21: Distributions of the equivalent plastic strain in RVE at loading point “3”, see Fig. 18: (a) From
finite element simulations; and (b, c), (d, e) and (f, g) Respectively using Surrogates I, II and III. Errors
are in terms of absolute values.

5.6. Surrogate model of the von Mises stress distribution τeq

From the analysis conducted in Section 5.5 it appears that there is no need to try

arbitrarily different numbers of hidden variables when training the RNNs of Surrogates I or

III. Indeed, according to the desired relative error, the required PCA reduced dimensionality

p can be determined from Fig. 13(b). Therefore, using a dimensionality break down, the

trial and error approach can be carried out on a RNN with only one output, ξ
τ p

, which is

the coefficient of principal component vτ p, yielding the required number of hidden variables

of the RNNs. As soon as the number of hidden variables is sufficient for this 1D RNN, it is

also sufficient for all the RNNs of the Surrogates I and III. We discard Surrogate II in this

application because of its poor efficiency.

In this application, τeq is considered and 0.01 is used as the desired relative error. Ac-
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cording to Fig. 13(b), this error corresponds to p ≈ 60. Therefore, the normalized coefficient

of the principal component vτ 60, ξ
τ 60

, is used as the unique output of a RNN when perform-

ing the trial and error approach of its design. This trial and error approach is summarized

as follows

• The constant NNWI: (3, 70) and NNWO: (30, 1) are used. The trial and error

approach starts from nh = 100;

• The RNN is trained for 5000 epochs after which we check whether the evolution of

ξ
τ 60

can be qualitatively captured by this RNN;

• If the trained RNN is not accurate enough, we increase nh by 100 and start a new

RNN training up to reaching the required MSE.
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Figure 22: Evolution of ξ
τ 60

reached for nh = 600 in the trial and error approach of the surrogate model
design. The training is stopped after 5000 epochs.

The same loading sequences as in the case of the equivalent plastic strain, see Section

5.5, are used for training and testing in this case. The trial and error approach yields that

nh = 600 is needed in order to capture the evolution trends of ξ
τ 60

, and two examples are

shown in Fig. 22. It needs to be noticed that the RNN predictions are not really accurate

with respect to the finite element results, because the training is stopped after 5000 epochs.

When considering surrogate models with PCA dimensionality reduction, since more than 60
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Table 4: Hyper-parameters of RNNs of Surrogates I and III to reconstruct
the von Mises stress distribution τeq; All RNNs use nh = 600, and h0=-1.0;
The notation (n0, . . . , ni, . . . , nN ) holds for the number of input nodes
n0, of nodes ni in hidden layer i and of output nodes nN –with the output
nodes of a neural network holding as input nodes of the subsequent one
and not being duplicated.

Model NNWI NNWO MSE on testing data

Surrogate I (3, 70) (1200, 2237) 0.00204
Surrogate III (3, 70) (200, 20)∗ 0.00174

∗ PCA with p = 180 and dimensionality break down with Q = 9
(RNNq with q = 1, 2, .., 9 are trained).

principal components will be used, the accuracy requirement of ξ
τ 60

could be relaxed during

the trial and error approach.

0 50 100 150
p

10−3

10−2

M
S

E

nh = 600 PCAτ

p = 60

Surrogate I

Surrogate III

Figure 23: The MSEs of the equivalent von Mises stress field, τeq, obtained by the surrogate models I and III
on training data. The MSE obtained with a PCA dimensionality reduction is also provided as a reference.

Surrogates I and III with nh = 600 are adopted to reconstruct the evolution of the

equivalent von Mises stress τeq in the RVE. Their structures are presented in Table 4. The

obtained MSEs on the training data are plotted in Fig. 23, together with the PCA MSE as

a reference. As expected, the MSEs obtained by surrogate models I and III with p = 180 are

below the MSE of PCA at p = 60. The MSEs of the surrogate models on the testing data

are reported in Table 4 and are lower than on the training data. Since the training data

of the von Mises stress has a much wider range than for the equivalent plastic strain, large
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and small values are part of the trained data, while they were exceptional in the equivalent

plastic strain distribution. Hence the difference in MSE of the equivalent plastic strain which

was smaller with the training data than with the testing data is no longer observed with the

von Mises stress distribution, which confirms the origin of this error pointed out in Section

5.5.3.
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Figure 24: Evolution of the maximum equivalent von Mises stress in the RVE at each loading step: (a) and
(c) For random loading paths; and (b) and (d) For cyclic loading paths.

Using the loading paths depicted in Figs. 16(a) and 16(b), the evolution of the maximum

equivalent von Mises stress in the RVE at each loading step predicted by the surrogate models

is compared to the direct finite element simulation results in Fig. 24. Although Surrogate III

required a training of 48 hours while Surrogate I required a training longer than 96 hours,

Surrogate III provides better predictions, as already observed for the equivalent plastic

strain evolution. The distributions of the equivalent von Mises stress τeq within the RVE
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Surrogate I, eq 

   31                     262                 492 
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Surrogate I, Error on eq 

    0                       72                 143 

 

(c)

  

Surrogate III, eq 

31                   289                  547 

 

(d)

  

Surrogate III, Error on eq 

0                    26.5                    53 

 

(e)

Figure 25: Distributions of the equivalent von Mises stress in the RVE at loading point “1”, see Fig. 18: (a)
From finite element simulations; and (b, c) and (d, e) Respectively using Surrogates I and III. Errors are in
terms of absolute values.

reconstructed by the Surrogates I and III are compared with the direct finite element results

in Figs. 25-27, for the loading steps/configurations marked in Fig. 18. It can be seen that

the different stress distribution patterns can be predicted with Surrogate III, the latter giving

more accurate predictions than Surrogate I. The larger errors can be found in locations of

stress concentration arising within one element, see e.g. Fig. 26(e).

6. Conclusions

In order to accelerate the time consuming numerical analysis process of finite element

simulations, we use Artificial Neural Networks to substitute to high dimensional and non-

linear history-dependent problems in computational mechanics. Recurrent Neural Networks,

in particular Gated Recurrent Units, are adopted to construct surrogate models in this
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(c)
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Figure 26: Distributions of the equivalent von Mises stress in the RVE at loading point “2”, see Fig. 18: (a)
From finite element simulations; and (b, c) and (d, e) Respectively using Surrogates I and III. Errors are in
terms of absolute values.

context. In a previous work, homogenized strain and stress were collected from direct finite

element resolutions on RVEs in order to conduct the surrogate training and to construct a

surrogate model of a meso-scale BVP in multi-scale simulations. Since only the macro-stress-

macro-strain response of the RVE were considered, the micro-structure information could not

be recovered in a so-called localization step. In this work, we develop RNNs as surrogates of

the RVE response while being able to recover the evolution of the local micro-structure state

variables. Considering the high dimensionality of the micro-structure state variables and

the limitation of computing resources, three surrogates models are proposed, i) direct RNN

modeling with implicit NNW dimensionality reduction, ii) RNN with PCA dimensionality

reduction, and iii) RNN with PCA dimensionality reduction and dimensionality break down.

The three surrogate models are compared through a case study on the equivalent plastic
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Figure 27: Distributions of the equivalent von Mises stress in the RVE at loading point “3”, see Fig. 18: (a)
From finite element simulations; and (b, c) and (d, e) Respectively using Surrogates I and III. Errors are in
terms of absolute values.

strain and von Mises stress distributions in a micro-structure for different loading scenarios.

On the one hand, it appears that the direct use of RNN with PCA dimensionality

reduction is not a wise choice for complex non-linear history-dependent problems, since

more hidden variables will be required to reach the same accuracy. Nevertheless, with the

aim of using GPU instead of CPU in order to speed-up the training process, since the use

of GPU is limited by its memory, using PCA dimensionality reduction is appealing when

followed by a dimensionality break down so that a RNN of large size can be substituted by a

few smaller RNNs. We then develop an ad hoc training process for GPU so that the training

time of this surrogate model is reduced compared to the surrogate models embedding a larger

RNN, while the accuracy remains comparable.

On the other hand, the architecture of the RNN involves several hyper-parameters to be
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defined, which can be time consuming for the user if a trial and error approach is conducted

on the full surrogate. Through RNN modeling of the principal components coefficients, the

connection between physical state variables and hidden variables of GRU is revealed, and

exploited to accelerate the design of the RNN-based surrogate models. Indeed, for a targeted

error, PCA dimensionality reduction and break down allow performing the trial and error

approach of the RNN design on a RNN with a single output: one principal component

coefficient. This accelerated trial and error approach is then applied to design a surrogate

model of the evolution of the local micro-structure state variables and is shown to yield

accurate predictions.

In this work, we have limited ourselves to 2D problems, with in-plane loading. Although

the methodology is general and can be used for 3D problems, because of the increase in

the input dimensionality, i.e. strain tensor size from 3 components to 6 components, it

is expected that a larger number of generated loading paths would be necessary to train

the surrogates, and that the neural network might require more layers or nodes in order to

remain accurate. The increase in time required to generate the loading paths, on the one

hand because of the use of 3D finite element meshes and on the other hand because of the

requirement to cover a larger strain space, can be handled by using a computer cluster since

this step is fully scalable. Another difficulty lies in the increase in the dimensionality of the

output variables, i.e. the history of the distributions of the state variables, for which the

dimensionality reduction methods studied in the paper will become even more meaningful.
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Appendix A. Notations

Appendix A.1. Tensors

• We use italic fonts a to denote 0-order tensors or scalars, bold italic fonts a to denote

first-order tensors, roman bold fonts A to denote second-order tensors, and blackboard

fonts C to denote fourth-order tensors.

• The inner product · and double inner product : between two tensors of order m and

n yield tensors of order, respectively, m + n − 2 (if m + n ≥ 2) and m + n − 4 (if

m + n ≥ 4). The dyadic product ⊗ between two tensors of order m and n yields a

tensors or order m+ n.

• The superscript “dev” refers to the deviatoric part of a second order tensor: •dev =

• − 1
3
tr(•), where the notation “tr” refers to the trace tr(•) = I : • with I the second-

order identity tensor.

• The subscripts “M” and “m” refer respectively to the macro- and micro-scales.

Appendix A.2. Vectors and matrices

• A vector in Rn is represented by bold italic fonts a and constructed following the

notation a = [a1, . . . , an].

• A matrix in Rm×n is represented by a bold roman fonts A and constructed following

the notation A = [a1 a2 . . . an]m×n with Aij the ith component of aj.
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Appendix A.3. Operations on tensors, vectors and matrices

• A set or sequence of tensors, vectors, or matrices • is represented by {• : condition}

or {•1, •2, . . .}.

• Normalized forms of tensors, vectors, or matrices • are represented by •.

• Approximations by surrogate or dimensionality reduction of tensors, vectors, or ma-

trices • are represented by •̂.

Appendix B. Detail on the GRU
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Figure B.28: Detailed GRU architecture with as trainable model parameters the weights matrices WnI×nh

x′U ,
WnI×nh

x′R , WnI×nh

x′ , Wnh×nh

hU , Wnh×nh

hR , Wnh×nh

h and bias vectors bnh

U , bnh

R,1 and bnh

R,2. The superscripts nI
and nh refer respectively to the sizes of the input vector x′ and of the hidden variables vector h, the output
vector y′ has the same dimensionality nh. The subscripts x′, h, R, U refer respectively to the input variables,
hidden variables, and constructed Reset vector and Update vector.

The structure of the GRU presented in Fig. 4 is detailed in Fig. B.28, in which the

operation symbols correspond to

• + : the element-wise sum operator on two vectors, x and y, of same size, i.e. r =

x+ y;

• 1− : The element-wise operator on vector x, i.e. r = 1− x;
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• × : The element-wise multiplication, or Hadamard product, on two vectors, x and y,

of same size, i.e. ri = xiyi.

• σ : The non-linear activation sigmoid function, i.e.

σ(x) =
1

1 + exp(−x)
, (B.1)

which returns values in the range 0 to 1;

• tanh : The non-linear activation hyperbolic tangent function.

Three paths compose the GRU presented in Fig. B.28: the reset gate (Blue path), the

update gate (Green path) and the combination of the outputs (Orange path), which are

respectively summarized by

• The reset gate has as inputs the previous hidden state ht−1 and the current input data

x′t, which corresponds to the output of the first feed-forward NNWI, see Fig. 4. A

Reset vector is obtained by applying a sigmoid function on the weighted sum vector

of these two input vectors so that the values fall in the range 0 and 1. The Reset

vector filters the less-important and more-important information for the subsequent

steps. After having been multiplied by a trainable weight, the previous hidden state

ht−1 undergoes an element-wise multiplication with the Reset vector in order to decide

which information is to be kept from the previous configuration together with the new

inputs. Eventually, the non-linear activation tanh function is applied on the weighted

sum of the current input x′t and of the last result, i.e. the element-wise multiplication

of the Reset vector and of the previous hidden state ht−1.

• The update gate has also as inputs the previous hidden state ht−1 and the current input

data x′t. The Update vector is obtained by similar operations as the Reset vector,

but using different weight matrices. The Update vector undergoes an element-wise
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multiplication with the unweighted previous hidden state ht−1 in order to determine

how much of the past information stored in the previous hidden state needs to be

retained for the subsequent steps.

• The outputs combination first applies an element-wise 1− -operation on the Update

vector, and the results undergoes an element-wise multiplication with the unweighted

output from the reset gate in order for the update gate to determine which portion of

the new information should be stored in the hidden state. Finally, this last unweighted

result is summed with an output of the update gate, i.e. the element-wise multipli-

cation of the Update vector with the unweighted previous hidden state ht−1, in order

to provide the updated hidden state vector ht and the GRU output vector y′t = ht,

which constitutes the input of the second feed-forward NNWO, see Fig. 4.

All the weight matrices W• and bias vectors b• used in Fig. B.28 are updated when the

entire network is trained through back-propagation.
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M. Lobos, T. Böhlke, T. Reiter, S. Oberpeilsteiner, D. Salaberger, D. Weichert, C. Broeckmann,

Effective properties, in: Handbook of Software Solutions for ICME, Wiley-VCH Verlag GmbH & Co.

61

http://www.sciencedirect.com/science/article/pii/S0045782503003505
http://www.sciencedirect.com/science/article/pii/S0045782503003505
https://doi.org/https://doi.org/10.1016/S0045-7825(03)00350-5
https://doi.org/https://doi.org/10.1016/S0045-7825(03)00350-5
http://www.sciencedirect.com/science/article/pii/S0045782503003505
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.905
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.905
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.905
https://doi.org/10.1002/nme.905
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.905
https://doi.org/https://doi.org/10.1016/j.ijplas.2020.102732
https://doi.org/https://doi.org/10.1016/j.ijplas.2020.102732
http://www.sciencedirect.com/science/article/pii/S0045782506001940
https://doi.org/https://doi.org/10.1016/j.cma.2006.06.006
https://doi.org/https://doi.org/10.1016/j.cma.2006.06.006
http://www.sciencedirect.com/science/article/pii/S0045782506001940
http://www.sciencedirect.com/science/article/pii/S004578251930578X
http://www.sciencedirect.com/science/article/pii/S004578251930578X
https://doi.org/https://doi.org/10.1016/j.cma.2019.112693
http://www.sciencedirect.com/science/article/pii/S004578251930578X
http://www.sciencedirect.com/science/article/pii/S0045794902001621
http://www.sciencedirect.com/science/article/pii/S0045794902001621
https://doi.org/https://doi.org/10.1016/S0045-7949(02)00162-1
http://www.sciencedirect.com/science/article/pii/S0045794902001621
http://dx.doi.org/10.1002/9783527693566.ch6


KGaA, 2016, pp. 433–485 (2016). doi:10.1002/9783527693566.ch6.

URL http://dx.doi.org/10.1002/9783527693566.ch6

[13] J. Yvonnet, Solid mechanics and its applications, in: Computational Homogenization of Heterogeneous

Materials with Finite Elements, Springer International Publishing, 2019 (2019).

[14] F. Feyel, Multiscale fe2 elastoviscoplastic analysis of composite structures, Computational Materials

Science 16 (1) (1999) 344 – 354 (1999). doi:http://dx.doi.org/10.1016/S0927-0256(99)00077-4.

URL http://www.sciencedirect.com/science/article/pii/S0927025699000774

[15] C. Miehe, J. Schotte, J. Schrder, Computational micro-macro transitions and overall moduli in the

analysis of polycrystals at large strains, Computational Materials Science 16 (1-4) (1999) 372–382,

cited By 88 (1999).

[16] K. Terada, M. Hori, T. Kyoya, N. Kikuchi, Simulation of the multi-scale convergence in computational

homogenization approaches, International Journal of Solids and Structures 37 (16) (2000) 2285 – 2311

(2000). doi:http://dx.doi.org/10.1016/S0020-7683(98)00341-2.

URL http://www.sciencedirect.com/science/article/pii/S0020768398003412

[17] V. Kouznetsova, W. Brekelmans, F. Baaijens, An approach to micro-macro modeling of heterogeneous

materials, Computational mechanics 27 (1) (2001) 37–48 (2001).

[18] B. A. Le, J. Yvonnet, Q. C. He, Computational homogenization of nonlinear elastic materials using

neural networks, International Journal for Numerical Methods in Engineering 104 (12) (2015) 1061–1084

(Dec. 2015). doi:10.1002/nme.4953.

[19] M. Bessa, R. Bostanabad, Z. Liu, A. Hu, D. W. Apley, C. Brinson, W. Chen, W. Liu, A framework for

data-driven analysis of materials under uncertainty: Countering the curse of dimensionality, Computer

Methods in Applied Mechanics and Engineering 320 (2017) 633 – 667 (2017). doi:https://doi.org/

10.1016/j.cma.2017.03.037.

URL http://www.sciencedirect.com/science/article/pii/S0045782516314803

[20] F. Fritzen, M. Fernndez, F. Larsson, On-the-fly adaptivity for nonlinear twoscale simulations using

artificial neural networks and reduced order modeling, Frontiers in Materials 6 (2019) 75 (2019). doi:

10.3389/fmats.2019.00075.

URL https://www.frontiersin.org/article/10.3389/fmats.2019.00075

[21] J. F. Unger, C. Könke, Coupling of scales in a multiscale simulation using neural networks, Computers

& Structures 86 (21) (2008) 1994 – 2003 (2008). doi:https://doi.org/10.1016/j.compstruc.2008.

05.004.

62

https://doi.org/10.1002/9783527693566.ch6
http://dx.doi.org/10.1002/9783527693566.ch6
http://www.sciencedirect.com/science/article/pii/S0927025699000774
https://doi.org/http://dx.doi.org/10.1016/S0927-0256(99)00077-4
http://www.sciencedirect.com/science/article/pii/S0927025699000774
http://www.sciencedirect.com/science/article/pii/S0020768398003412
http://www.sciencedirect.com/science/article/pii/S0020768398003412
https://doi.org/http://dx.doi.org/10.1016/S0020-7683(98)00341-2
http://www.sciencedirect.com/science/article/pii/S0020768398003412
https://doi.org/10.1002/nme.4953
http://www.sciencedirect.com/science/article/pii/S0045782516314803
http://www.sciencedirect.com/science/article/pii/S0045782516314803
https://doi.org/https://doi.org/10.1016/j.cma.2017.03.037
https://doi.org/https://doi.org/10.1016/j.cma.2017.03.037
http://www.sciencedirect.com/science/article/pii/S0045782516314803
https://www.frontiersin.org/article/10.3389/fmats.2019.00075
https://www.frontiersin.org/article/10.3389/fmats.2019.00075
https://doi.org/10.3389/fmats.2019.00075
https://doi.org/10.3389/fmats.2019.00075
https://www.frontiersin.org/article/10.3389/fmats.2019.00075
http://www.sciencedirect.com/science/article/pii/S0045794908001430
https://doi.org/https://doi.org/10.1016/j.compstruc.2008.05.004
https://doi.org/https://doi.org/10.1016/j.compstruc.2008.05.004


URL http://www.sciencedirect.com/science/article/pii/S0045794908001430

[22] C. Settgast, G. Htter, M. Kuna, M. Abendroth, A hybrid approach to simulate the homogenized

irreversible elasticplastic deformations and damage of foams by neural networks, International Journal

of Plasticity 126 (2020) 102624 (2020). doi:https://doi.org/10.1016/j.ijplas.2019.11.003.

URL http://www.sciencedirect.com/science/article/pii/S074964191930381X

[23] F. Masi, I. Stefanou, P. Vannucci, V. Maffi-Berthier, Thermodynamics-based artificial neural networks

for constitutive modeling, Journal of the Mechanics and Physics of Solids 147 (2021) 104277 (2021).

doi:https://doi.org/10.1016/j.jmps.2020.104277.

URL https://www.sciencedirect.com/science/article/pii/S0022509620304841

[24] I. Rocha, P. Kerfriden, F. P. van der Meer, Micromechanics-based surrogate models for the response

of composites: A critical comparison between a classical mesoscale constitutive model, hyper-reduction

and neural networks, European Journal of Mechanics - A/Solids 82 (2020) 103995 (2020). doi:10.

1016/j.euromechsol.2020.103995.

[25] C. Rao, Y. Liu, Three-dimensional convolutional neural network (3d-cnn) for heterogeneous material

homogenization, Computational Materials Science 184 (2020) 109850 (2020). doi:https://doi.org/

10.1016/j.commatsci.2020.109850.

URL https://www.sciencedirect.com/science/article/pii/S0927025620303414

[26] X. Lu, J. Yvonnet, L. Papadopoulos, I. Kalogeris, V. Papadopoulos, A stochastic fe2 data-driven

method for nonlinear multiscale modeling, Materials 14 (11) (2021). doi:10.3390/ma14112875.

URL https://www.mdpi.com/1996-1944/14/11/2875

[27] F. Ghavamian, A. Simone, Accelerating multiscale finite element simulations of history-dependent

materials using a recurrent neural network, Computer Methods in Applied Mechanics and Engineering

357 (2019) 112594 (2019). doi:https://doi.org/10.1016/j.cma.2019.112594.

URL http://www.sciencedirect.com/science/article/pii/S0045782519304700

[28] A. Koeppe, F. Bamer, B. Markert, An intelligent nonlinear meta element for elastoplastic continua:

deep learning using a new time-distributed residual u-net architecture, Computer Methods in Applied

Mechanics and Engineering 366 (2020) 113088 (2020). doi:https://doi.org/10.1016/j.cma.2020.

113088.

[29] M. Mozaffar, R. Bostanabad, W. Chen, K. Ehmann, J. Cao, M. A. Bessa, Deep learning pre-

dicts path-dependent plasticity, Proceedings of the National Academy of Sciences 116 (52) (2019)

26414–26420 (2019). arXiv:https://www.pnas.org/content/116/52/26414.full.pdf, doi:10.

63

http://www.sciencedirect.com/science/article/pii/S0045794908001430
http://www.sciencedirect.com/science/article/pii/S074964191930381X
http://www.sciencedirect.com/science/article/pii/S074964191930381X
https://doi.org/https://doi.org/10.1016/j.ijplas.2019.11.003
http://www.sciencedirect.com/science/article/pii/S074964191930381X
https://www.sciencedirect.com/science/article/pii/S0022509620304841
https://www.sciencedirect.com/science/article/pii/S0022509620304841
https://doi.org/https://doi.org/10.1016/j.jmps.2020.104277
https://www.sciencedirect.com/science/article/pii/S0022509620304841
https://doi.org/10.1016/j.euromechsol.2020.103995
https://doi.org/10.1016/j.euromechsol.2020.103995
https://www.sciencedirect.com/science/article/pii/S0927025620303414
https://www.sciencedirect.com/science/article/pii/S0927025620303414
https://doi.org/https://doi.org/10.1016/j.commatsci.2020.109850
https://doi.org/https://doi.org/10.1016/j.commatsci.2020.109850
https://www.sciencedirect.com/science/article/pii/S0927025620303414
https://www.mdpi.com/1996-1944/14/11/2875
https://www.mdpi.com/1996-1944/14/11/2875
https://doi.org/10.3390/ma14112875
https://www.mdpi.com/1996-1944/14/11/2875
http://www.sciencedirect.com/science/article/pii/S0045782519304700
http://www.sciencedirect.com/science/article/pii/S0045782519304700
https://doi.org/https://doi.org/10.1016/j.cma.2019.112594
http://www.sciencedirect.com/science/article/pii/S0045782519304700
https://doi.org/https://doi.org/10.1016/j.cma.2020.113088
https://doi.org/https://doi.org/10.1016/j.cma.2020.113088
http://arxiv.org/abs/https://www.pnas.org/content/116/52/26414.full.pdf
https://doi.org/10.1073/pnas.1911815116
https://doi.org/10.1073/pnas.1911815116


1073/pnas.1911815116.

[30] M. B. Gorji, M. Mozaffar, J. N. Heidenreich, J. Cao, D. Mohr, On the potential of recurrent neural

networks for modeling path dependent plasticity, Journal of the Mechanics and Physics of Solids 143

(2020) 103972 (2020). doi:https://doi.org/10.1016/j.jmps.2020.103972.

[31] H. J. Logarzo, G. Capuano, J. J. Rimoli, Smart constitutive laws: Inelastic homogenization through

machine learning, Computer Methods in Applied Mechanics and Engineering 373 (2021) 113482 (2021).

doi:https://doi.org/10.1016/j.cma.2020.113482.

[32] L. Wu, V. D. Nguyen, N. G. Kilingar, L. Noels, A recurrent neural network-accelerated multi-scale

model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional

loading paths, Computer Methods in Applied Mechanics and Engineering 369 (2020) 113234 (2020).

doi:https://doi.org/10.1016/j.cma.2020.113234.

URL https://www.sciencedirect.com/science/article/pii/S0045782520304199

[33] R. P. M. Janssen, D. de Kanter, L. E. Govaert, H. E. H. Meijer, Fatigue life predictions for glassy

polymers: A constitutive approach, Macromolecules 41 (7) (2008) 2520–2530 (2008). doi:10.1021/

ma071273i.

URL https://doi.org/10.1021/ma071273i

[34] A. Krairi, I. Doghri, G. Robert, Multiscale high cycle fatigue models for neat and short fiber reinforced

thermoplastic polymers, International Journal of Fatigue 92 (2016) 179–192 (2016). doi:https://doi.

org/10.1016/j.ijfatigue.2016.06.029.

URL https://www.sciencedirect.com/science/article/pii/S0142112316301736

[35] A. Berrehili, Y. Nadot, S. Castagnet, J. Grandidier, C. Dumas, Multiaxial fatigue criterion for

polypropylene – automotive applications, International Journal of Fatigue 32 (8) (2010) 1389–1392

(2010). doi:https://doi.org/10.1016/j.ijfatigue.2010.01.008.

URL https://www.sciencedirect.com/science/article/pii/S0142112310000216

[36] I. T. Jolliffe, Principal Component Analysis, Springer-Verlag, Berlin; New York, 1986 (1986).

[37] J. Yvonnet, Q.-C. He, The reduced model multiscale method (r3m) for the non-linear homogenization

of hyperelastic media at finite strains, Journal of Computational Physics 223 (1) (2007) 341 – 368

(2007). doi:https://doi.org/10.1016/j.jcp.2006.09.019.

URL http://www.sciencedirect.com/science/article/pii/S0021999106004402

[38] B.-T. Cao, S. Freitag, G. Meschke, A hybrid rnn-gpod surrogate model for real-time settlement pre-

dictions in mechanised tunnelling, Advanced Modeling and Simulation in Engineering Sciences 3 (1)

64

https://doi.org/10.1073/pnas.1911815116
https://doi.org/10.1073/pnas.1911815116
https://doi.org/https://doi.org/10.1016/j.jmps.2020.103972
https://doi.org/https://doi.org/10.1016/j.cma.2020.113482
https://www.sciencedirect.com/science/article/pii/S0045782520304199
https://www.sciencedirect.com/science/article/pii/S0045782520304199
https://www.sciencedirect.com/science/article/pii/S0045782520304199
https://doi.org/https://doi.org/10.1016/j.cma.2020.113234
https://www.sciencedirect.com/science/article/pii/S0045782520304199
https://doi.org/10.1021/ma071273i
https://doi.org/10.1021/ma071273i
https://doi.org/10.1021/ma071273i
https://doi.org/10.1021/ma071273i
https://doi.org/10.1021/ma071273i
https://www.sciencedirect.com/science/article/pii/S0142112316301736
https://www.sciencedirect.com/science/article/pii/S0142112316301736
https://doi.org/https://doi.org/10.1016/j.ijfatigue.2016.06.029
https://doi.org/https://doi.org/10.1016/j.ijfatigue.2016.06.029
https://www.sciencedirect.com/science/article/pii/S0142112316301736
https://www.sciencedirect.com/science/article/pii/S0142112310000216
https://www.sciencedirect.com/science/article/pii/S0142112310000216
https://doi.org/https://doi.org/10.1016/j.ijfatigue.2010.01.008
https://www.sciencedirect.com/science/article/pii/S0142112310000216
http://www.sciencedirect.com/science/article/pii/S0021999106004402
http://www.sciencedirect.com/science/article/pii/S0021999106004402
https://doi.org/https://doi.org/10.1016/j.jcp.2006.09.019
http://www.sciencedirect.com/science/article/pii/S0021999106004402
https://doi.org/10.1186/s40323-016-0057-9
https://doi.org/10.1186/s40323-016-0057-9


(2016) 5 (2016). doi:10.1186/s40323-016-0057-9.

URL https://doi.org/10.1186/s40323-016-0057-9

[39] F. Bamer, A. Koeppe, B. Markert, An efficient monte carlo simulation strategy based on model or-

der reduction and artificial neural networks, PAMM 17 (1) (2017) 287–288 (2017). arXiv:https:

//onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.201710113, doi:https://doi.org/10.1002/

pamm.201710113.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.201710113

[40] S. Vijayaraghavan, L. Wu, L. Noels, S. Bordas, S. Natarajan, L. Beex, Neural-network acceleration of

projection-based model-order-reduction for finite plasticity: Application to rves, Mechanics Research

Communications (Submitted).

[41] J. Michel, H. Moulinec, P. Suquet, Effective properties of composite materials with periodic microstruc-

ture: a computational approach, Computer Methods in Applied Mechanics and Engineering 172 (1)

(1999) 109–143 (1999). doi:https://doi.org/10.1016/S0045-7825(98)00227-8.

URL https://www.sciencedirect.com/science/article/pii/S0045782598002278

[42] V.-D. Nguyen, L. Wu, L. Noels, Unified treatment of microscopic boundary conditions and effi-

cient algorithms for estimating tangent operators of the homogenized behavior in the computa-

tional homogenization method, Computational Mechanics 59 (3) (2017) 483–505 (Mar 2017). doi:

10.1007/s00466-016-1358-z.

URL https://doi.org/10.1007/s00466-016-1358-z

[43] J. Wippler, S. Fünfschilling, F. Fritzen, T. B”ohlke, M. J. Hoffmann, Homogenization of the ther-

moelastic properties of silicon nitride, Acta Materialia 59 (15) (2011) 6029–6038 (2011). doi:https:

//doi.org/10.1016/j.actamat.2011.06.011.

URL https://www.sciencedirect.com/science/article/pii/S1359645411004162
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