Supplemental Material: Spontaneous interlayer compression in commensurately stacked van der Waals heterostructures

Nicholas A. Pike, $^{1,\,*}$ Antoine Dewandre, $^{1,\,\dagger}$ François Chaltin, 2 Laura

Garcia,³ Salvatore Pillitteri,³ Thomas Ratz,⁴ and Matthieu J. Verstraete^{1,5}

¹nanomat/Q-MAT/CESAM and European Theoretical Spectroscopy Facility, Université de Liège, B-4000 Liège, Belgium

²Department of Chemical Engineering, Université de Liège (B6a), B-4000 Liège, Belgium.

³Department of Physics, Université de Liège (B5), B-4000 Liège, Belgium. ⁴Solid State Physics, Interfaces and Nanostructures/Q-MAT/CESAM, Université de Liège, B-4000 Liège, Belgium

⁵Catalan Institute of Nanoscience and Nanotechnology (ICN2),

Campus UAB, Bellaterra, 08193 Barcelona, Spain.

(Dated: April 8, 2021)

- Nicholas.pike@ulg.ac.be; Co-first author
- Co-first author
- B. Amin, T. P. Kaloni, G. Schreckenbach, and M. S. Fre-1 und, Applied Physics Letters 108, 036105 (2016).
- N. A. Pike, A. Dewandre, B. Van Troeye, X. Gonze, and M. J. Verstraete, Physical Review Materials 2 (2018), 10.1103/PhysRevMaterials.2.063608.
- J. Wilson and A. Yoffe, Advances in Physics 18, 193 (1969).
- ⁴ J. BENARD and Y. JEANNIN, "Investigations of nonstoichiometric sulfides," in Nonstoichiometric Compounds (American Chemical Society, 1963) Chap. 17, pp. 191–203.
- ⁵ R. F. W. Bader., Acc. Chem. Res. 18, 9 (1985).
 ⁶ N. A. Pike, B. VanTroeye, A. Dewandre, G. Petretto, X. Gonze, G. M. Rignanese, and M. J. Verstraete, Phys. Rev. B 95, 201106R (2017).

bulk	a(Å)	c(Å)	d(Å)	Symmetry	heterostructure	a(Å)	c(Å)	d(Å)	Symmetry
MoS_2	3.162	12.301	2.97	[2.96]	$P6_3/mmc$	WS_2/MoS_2	3.147	12.329	3.019	$P\overline{6}m2$
MoSe ₂	3.287	13.003	3.13	[3.22]	$P6_3/mmc$	$WS_2/MoSe_2$	3.205	11.942	2.72	$P\overline{6}m2$
WS_2	3.155	12.398	3.05		$P6_3/mmc$	$MoSe_2/WSe_2$	3.117	12.958	2.705	$P\overline{6}m2$
WSe ₂	3.270	12.957	3.10		$P6_3/mmc$		3.34^{1}			
TiS ₂	3.478	5.749	2.60	(2.84)	$P\overline{3}m1$	WS_2/WSe_2	3.202	11.994	2.724	$P\overline{6}m2$
TiSe ₂	3.639	6.180	3.15		$P\overline{3}m1$	$TiS_2/TiSe_2$	3.437	11.006	2.511	$P\overline{3}m1$
ZrS_2	3.687	5.812	2.60		$P\overline{3}m1$	${ m TiS_2/ZrS_2}$	3.202	12.000	2.800	$P\overline{3}m1$
ZrSe ₂	3.793	6.160	3.02		$P\overline{3}m1$	${ m TiSe_2/ZrSe_2}$	3.660	12.047	2.875	$P\overline{3}m1$

TABLE I. Comparison of the structural parameters (in-plane and out-of-plane lattice parameters and vdW gap) for both the parent structures (left) and heterostructures (right). Calculated lattice parameters for the bulk compounds come from Ref. 2 literature values of the vdW gap, in square brackets, from Ref. 3 and in parentheses from Ref. 4.

heterostructure	$E_g(eV)$	bulk-constrained	$E_g(eV)$
WS. MoS.	1.04	MoS_2	1.006
W 52/ W1052	1.04	WS_2	0.722
WS. MoSo	0 799	$MoSe_2$	0.338
W 52/1000e2	0.122	WS_2	0.813
MoSo /WSo	0.870	$MoSe_2$	0.473
100002/100002	0.079	WSe_2	0.614
WC /WCo	0.818	WS_2	0.851
vv_{02}/vv_{02}		WSe_2	0.477
Tig. /Tigo.		TiS_2	0.025
1152/11502	—	$TiSe_2$	
T;S. /7.S.	0.954	TiS_2	0.222
1152/2152	0.204	ZrS_2	0.889
TiCo /7rCo		$TiSe_2$	
115e ₂ /215e ₂	—	$ZrSe_2$	0.032

TABLE II. Calculated electronic band gap energies for each of our heterostructures and their bulk-constrained counterparts. Here, we report data for the bulk compounds constrained to the c lattice parameters of the corresponding heterostructure. – indicates that the calculated structure is metallic.

FIG. 1. (Color Online) Calculated Kohn-Sham band structures for the hexagonal heterostructures investigated here. Left to right, top row: WS_2/MoS_2 and WS_2/MoS_2 . Left to right, bottom row: $MoSe_2/WSe_2$ and WS_2/WSe_2 . The horizontal teal line corresponds to the Fermi level.

FIG. 2. (Color Online) Calculated Kohn-Sham band structures for the trigonal heterostructures investigated here. Left to right, top row: $TiS_2/TiSe_2$ and TiS_2/ZrS_2 . Bottom row: $TiSe_2/ZrSe_2$. The horizontal teal line corresponds to the Fermi level. $TiS_2/TiSe_2$ is fully metallic, TiS_2/ZrS_2 is semi-conducting, and $TiSe_2/ZrSe_2$ is semi-metallic.

	atom	$q_{B,h}$ (e)	$q_{B,b}$ (e)
	Mo	1.161	1.155
	S	-0.579	-0.577
WG Mog	Lay	0.003	0
WS_2/MOS_2	W	1.397	1.400
	S	-0.695	-0.700
	Lay	0.007	0
	Mo	0.874	0.910
	Se	-0.422	-0.455
WC /M.C.	Lay	0.030	0
$WS_2/MOSe_2$	W	1.409	1.400
	S	-0.717	-0.700
	Lay	-0.025	0
	Mo	0.896	0.910
	Se	-0.448	-0.455
M.C. /WC.	Lay	0.000	0
$1005e_2/WSe_2$	W	1.082	1.081
	Se	-0.537	-0.540
	Lay	0.008	0
	W	1.407	1.400
	S	-0.717	-0.700
WC /WC-	Lay	-0.027	0
wS_2/wSe_2	Ŵ	1.049	1.081
	Se	-0.507	-0.540
	Lay	0.035	0
	Ti	1.762	1.764
	S	-0.897	-0.882
T:C /T:C.	Lay	-0.032	0
$115_2/115e_2$	Ti	1.590	1.599
	Se	-0.780	-0.799
	Lay	0.03	0
	Ti	1.780	1.764
	S	-0.889	-0.882
T;C /7.C	Lay	0.002	0
1132/2132	Zr	1.972	2.010
	S	-0.989	-1.006
	Lay	-0.006	0
	Ti	1.625	1.599
	Se	-0.807	-0.799
TiSon /7"Sc	Lay	0.011	0
1 13e2/ ZrSe2	Zr	1.787	1.846
	Se	-0.897	-0.921
	Lay	-0.007	0

TABLE III. Calculated Bader charge (q_b) for the heterostructures and bulk compounds using the Atom-in-molecule approach⁵. The first column of charges corresponds to $q_{B,h}$ of the heterostructure and the second column corresponds to $q_{B,b}$ of the bulk structure. The calculated Bader charge is identical for both chalcogen atoms in each structure. Departures from charge neutrality of order 0.01 are due to numerical errors in the Bader algorithm. The "Lay" line is the total layer charge to show charge transfers. Bader charges for the bulk structures come from Ref. 6 except ZrS₂ and ZrSe₂ which are calculated in this work.