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Abstract

We study the link between the volatility of exchange rates and interest rate differ-
entials (IRD), motivated by the importance of currency carry trade activities in
exchange rate dynamics. We examine this link by means of an extended stochas-
tic volatility model, for which we detail an efficient estimation strategy based on
Gaussian mixture sampling and a linearization of the volatility process. We apply
this approach to six currency pairs over the period from January 1999 to Decem-
ber 2017. Our results suggest that changes in IRD affect volatility differently for
low and high-interest-rate currencies. The volatility reacts strongly and positively
to increases in the low interest rate, an effect consistent with the unwinding of
carry trade positions. In contrast, the response to a raise in the high interest rate
is negative and substantially smaller. In general, we find that the informational
content of the interest rate differentials regarding the volatility of exchange rate
is greater during and after the global financial crisis, compared to the pre-crisis
period.
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1 Introduction

The empirical failure of the uncovered interest rate parity condition (UIP) has become
an active area of research during the past decades (see Rossi, 2013, for a review). UIP
hypothesizes that any profit obtained from a difference in interest rates in two economies
should be offset by an adverse movement in the exchange rate of their currencies. In
turn, it implies that interest rate differentials (IRD) should serve as useful predictors of
the future variations in spot foreign exchange rates. However, this result is only rarely
supported by the data (Meese and Rogoff, 1983). A classic example of this failure can
be found in the positive excess profit obtained from currency carry trading strategies1

whereby this situation is ruled out by UIP (Burnside et al., 2011). Hence, the empirical
evidence suggests that exchange rates and interest rates are connected differently than
supposed by UIP.
To reconcile economic theory with empirical evidence, the literature follows two strands.
On the one hand, the lack of support for UIP is explained by instabilities in the depen-
dence between interest rates and exchange rates. For instance, Fama (1984) and, more
recently, Li et al. (2011) and Christiansen et al. (2011) highlight the role of time-varying
risk premia. Ismailov and Rossi (2018) examine the impact of uncertainty that might
blur the relationship between exchange rates and IRD. Accominotti et al. (2019) empha-
size the effect of the currency regime on the profitability of a carry trade strategy. On
the other hand, several authors investigate the possibility that economic fundamentals
and exchange rates exhibit high-order dependencies instead of a restricted dependence
on the mean. For example, Chung and Hong (2007) study the link between IRD and
high-order conditional moments of variations in foreign exchange rates (FX). They then
demonstrate the usefulness of IRD as a predictor of the sign of changes in exchange
rate. Brunnermeier et al. (2009) highlight the link between IRD and the skewness of
exchange rate returns, suggesting that carry trade strategies are profitable because of
the existence of a crash risk premium. Chernov et al. (2018) disentangle true currency
crashes from normal volatility episodes, relying on a stochastic volatility (SV) model
with a jump probability depending on interest rates.
Our study contributes to this second strand of the literature by examining the link

1Carry trades describe investment strategies that comprise borrowing in low-interest-rate currencies
and investing in high-interest-rate currencies to realize a profit from the IRD
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between IRD and FX volatility2. Our motivations are rooted in the role played by the
financial channel, in particular carry trading activities, in the determination of exchange
rates in imperfect financial markets. As highlighted by Froot and Ramadorai (2005),
capital flows, financial conditions, and financiers’ positions play an important role in the
variations of currency returns. Gabaix and Maggiori (2015) formalize this mechanism in
a theoretical model in which capital flows, influenced by relative levels of interest rates,
affect both the level and the volatility of exchange rates via alterations in the balance
sheets of financiers. A similar approach is used by de Rato (2007), Brunnermeier et al.
(2009), and Farhi and Gabaix (2016) to describe exchange rate dynamics: if the IRD
changes, speculators start unwinding their carry trade positions, leading to movements
in capital flows. These capital flows, in turn, result in sudden exchange rate movements
that materialize in an increase of the conditional volatility of these variations. Thus,
considering that the estimated daily volume of FX transactions amounts to US $5.1
trillion 3, we should expect the relevance of the currency trading channel for short-term
(i.e. daily) exchange rate movements and, by extension, of a link between IRD and FX
volatility.
Our first contribution is therefore to investigate the following questions: are the daily
FX volatility dynamics driven by IRD, as postulated by Gabaix and Maggiori (2015)?
And if so, is the link observed empirically consistent with the theoretical effects implied
by the carry trade hypothesis? To the best of our knowledge, the empirical study of this
connection has been neglected in the literature, despite its importance in deciding upon
effective monetary policy (Ames et al., 2017), or more generally in providing insights ex-
ploitable by market participants to adapt their hedging and investment strategies. Some
exceptions are Omrane and Hafner (2015) and Omrane and Savaser (2017); however they
focus on the link between FX volatility and news announcements, not IRD. The paper
the closest in spirit with ours is that of Ichiue and Koyama (2011), which studies the
intertwining between IRD, FX volatility, and the failure of UIP. They discover a signifi-
cant link between IRD and FX volatility at a monthly horizon using a regime-switching
linear regression approach. Our study goes one step further by studying the IRD-FX
volatility connection at a higher frequency (i.e., daily) and in the context of an het-
eroscedastic time series model, whereas Ichiue and Koyama (2011) assume a constant
(regime-specific) volatility. In doing so, we account for the confounding effects stemming
from the persistence of high volatility episodes.

2By FX volatility, we refer to the volatility of variations in exchange rates.
3Bank of International Settlement, 2016
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Our second contribution is methodological, and comprises detailing an extended stochas-
tic volatility model (referred to as SVX model) to study the IRD-FX volatility relation-
ship. Although the assumption of SV models for exchange rate returns is common
(Bates, 1996; Chernov et al., 2018; Mahieu and Schotman, 1998) and was found su-
perior to GARCH models for macro-financial variables (Chan and Grant, 2016; Clark
and Ravazzolo, 2015), the specification of the volatility process is mainly restricted to
random walks or autoregressive processes. As a consequence, we cannot use SV mod-
els to investigate the effect of IRD changes on the volatility process, in the idea of a
GARCH-X model (Han and Kristensen, 2014). This is particularly damageable since,
contrary to GARCH-X models, SV models account for the potential confounding effect
of contemporaneous volatility shocks. In addition, SV models can be exploited in the
broader framework of dynamic stochastic general equilibrium (DSGE) models to assess
monetary policy interventions (Justiniano and Primiceri, 2008), or easily embedded in
traditional continuous-time asset pricing models to solve asset allocation problems (Kim
et al., 1998). Thus, to overcome this shortcoming, we introduce a further specification,
in which the volatility term is extended to account for covariate effects, and which al-
lows us to test for high-order dependencies between economic quantities. For estimation
purposes, we detail a Gaussian mixture sampling approach relying on the linearization
of the SV process and its reformulation into a linear state-space form with Gaussian
error terms. The advantage of the latter is the straightforward way of incorporating
the fixed regression coefficients into the state vector while simultaneously relying on a
classical Bayesian estimation strategy. Consequently, we can also easily quantify estima-
tion uncertainty and assess the significance of our findings. Since the properties of this
approach are unknown in the context of a SV model, we conduct a realistic simulation
study to stress the adequacy of the estimation procedure.
We use the proposed model to study the daily returns of six currencies vis-a-vis the US
Dollar and find that changes in IRD have a significant impact on FX volatility for the
majority of the considered currencies. To account for regime-specific effects of IRD, we
discriminate between movements in IRD that imply a widening or a tightening of the
differential. Our results reveal that the signs and the magnitudes of the impacts differ
according to the IRD being negative or positive (with respect to one of the two curren-
cies). If the interest rate in the economy of the funding currency (i.e. the currency with
the lower interest rate) increases, FX volatility is found to increase significantly. For cur-
rency traders, the decrease in absolute IRD implies that the low-interest-rate currency
becomes less attractive as a means for funding trades. Carry trade positions start to be

4

Electronic copy available at: https://ssrn.com/abstract=3984900



unwound, which impacts on FX volatility via alterations in capital flows. In contrast, if
the interest rate in the low-interest-rate economy further decreases, FX volatility reacts
negatively. Overall, the impact of the IRD becomes substantially stronger during and
after the global financial crisis than in the pre-crisis period. This is particularly the
case for the currencies whose interest rates differ most strongly from the US rate. The
empirical results hold when we additionally control for the influence of past returns and
the asymmetry of positive and negative shocks. For these two variables, we find signifi-
cant evidence of an effect with the expected signs. Lagged returns impact negatively on
volatility while negative shocks have a significant and positive influence.
With these results, we confirm empirically the link between IRD and FX volatility pos-
tulated by the theoretical framework of Gabaix and Maggiori (2015). They also deliver
new insights for active investors (e.g. hedge funds) who trade at a high frequency on
FX markets: when witnessing a decrease in absolute IRD, market participants should
expect an increase (ceteris paribus) of short-term volatility, which can lead to the revi-
sion of hedging positions or volatility timing strategies. Finally, our results are useful
to monetary authorities wishing to assess policy decisions targeting short-term interest
rates: by narrowing the IRD between economies, short-term volatility of the correspond-
ing currency pairs is more likely to increase, potentially leading to destabilizing market
movements that must be accounted for.
In Section 2, we introduce our SVXmodel, outline its formulation into a state-space form,
and detail the sampling steps for estimation. In Section 3, we conduct a simulation study
to investigate the reliability of the proposed estimation approach. Section 4 contains
the description of the data set. We report and discuss the empirical results in Section
5. We conclude in Section 6.

2 Empirical Model

In the following, we introduce the SVX model, its reformulation into a linear state-
space model, and the estimation procedure. Subsequently, we discuss the role of IRD
as determinants of FX volatility. Let Et denote the daily nominal exchange rate. The
mean adjusted exchange rate returns in percentage terms rt = 100× log (Et/Et−1) evolve
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according to

rt = σt ξt, ξt
iid∼ N(0, 1), (1)

σ2
t = exp{ht + xt−1β}, (2)

ht = µh + φ (ht−1 − µh) + νt, νt
iid∼ N(0, ω2), (3)

with N(0, 1) denoting the standardized Gaussian distribution. Without loss of gener-
ality, we assume that the daily exchange rate data are characterized by an absence of
dynamics in the mean. The error terms ξt and νt are assumed to be independent. The
volatility of the returns is denoted σt, and its logarithmized version is assumed to change
over time according to a stochastic process being the sum of two components. The first
one, ht, describes the logarithmized volatility, which follows a stationary autoregressive
process with |φ| < 1 and unconditional mean µh. The second term, xt−1β, captures the
impact of covariates on FX volatility. The specification in (2) takes into account the
conclusion reached by, e.g., Ahmed and Valente (2015) that exchange rate volatility can
be decomposed into distinct parts capturing either the persistence in the volatility or
the effects of changes in macroeconomic conditions. Our focus centers on the impact of
the (lagged) Libor rate for the US and the Libor rate for the country under considera-
tion4. Moreover, as common in the empirical literature on asset returns, we additionally
include past returns into the set of covariates. A detailed discussion on the considered
explanatory variables follows in Subsection 2.2.

2.1 Formulation as a linear state-space model and estimation
procedure

Our objective is now to obtain a reformulation of model (1) such that the Kalman
filter and sampler can be used validly for estimation purposes. Indeed, our ability
to use the Kalman filter is particularly important because this technique deals easily
with the presence of covariates in addition to the time-series dynamics. A fundamental
requirement of the Kalman filter is that the estimated model can be formulated as a
linear state-space model with normally distributed error terms. However, in its current
form, equations (1) and (2) are related in a non-linear fashion. Therefore, we need to

4Notice that, from January 2022 on, Libor will be discontinued by the Financial Conduct Authority
and replaced by risk-free rate benchmarks such as the Secured Overnight Financing Rate (SOFR) or
the European short term rate (ESFR) in cross-currency derivative contracts. These rates should be
favored in future work.
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linearize the stochastic volatility process to be able to estimate ht and βββ with standard
Gaussian mixture algorithms based on the Kalman filter.
To do so, we apply the procedure of Omori et al. (2007) and Kim et al. (1998) to our
model. We start by squaring and taking the logarithm of (1):

log
[(√

exp{ht + xt−1β}ξt
)2
]

= ht + xt−1β + log ξ2
t . (4)

Defining κt = log ξ2
t , we approximate the non-linear stochastic volatility component by

the following offset mixture model:

gt = ht + xt−1β + κt, (5)

with gt = log (r2
t + c) and c = 0.001. The inclusion of a small positive constant in the

definition of gt enforces strict positivity and avoids numerical instabilities when r2
t is too

close to 0, as suggested in Omori et al. (2007) and Kim et al. (1998).
From the normality assumption in (1), it follows that κt has a log-χ2

1 distribution. As
argued by Omori et al. (2007), it is of interest to approximate this distribution by a
mixture of K = 10 Gaussian distributions for sampling efficiency at the estimation
stage. The resulting density is therefore defined by:

f (κt) =
K∑
k=1

qkfN
(
κt|mk, v

2
k

)
for t = 1, . . . , T, (6)

with fN denoting a Gaussian density. The weights qk, for k = 1, . . . , K, indicate the
mixture probabilities. The means and variances of the K normal densities are given by
the constants mk and v2

k, respectively. The corresponding values for qk, mk and v2
k are

taken from Omori et al. (2007), and were shown to ensure a good approximation of the
log-χ2

1 distribution5. The respective mixture component k for k = 1, . . . , K is determined
with the help of a stochastic indicator st for each observation. We sample the indicator st
independently from a uniform distribution for each κt, such that κt|(st = k) ∼ N(mk, v

2
k),

where k indicates the respective elements of the ten-component mixture distribution.
Thus, equation (5) can be rewritten as

gt −mtk = ht + xt−1β + κ̃t, (7)

5Notice that, contrary to Omori et al. (2007), Kim et al. (1998) explicitly define mk as m∗
k−1.2704.

The term −1.2704 is equal to the expectation of a log-χ2
1 distribution and ensures that (6) has the same

expectation as a log-χ2
1 distribution.
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where κ̃t ∼ N (0, v2
tk). Using this reformulation of (1), we now have the capacity to

estimate the corresponding regression coefficients with classical sampling procedures
simply by including additional explanatory variables into the state vector of the Kalman
filter. These results directly follow from the discussion in Durbin and Koopman (2012)
on generalized state-space models. To the best of our knowledge, this approach has not
yet been used to investigate the link between volatility and covariates.
Equation (7) represents the linear measurement equation with normally distributed er-
rors for the Kalman filter. Throughout our analysis, we assume that β = βt = βt−1 at
each time, i.e., that our additional explanatory variables (lagged IRD and past returns)
have a time-invariant relationship with FX volatility. However, for technical reasons at
the estimation stage, we cannot formally enforce a strict equality, but only that βt ≈ βt−1

for each t. Therefore, to maintain consistency with the general notation in state-space
models, we add in the following representation a time index t to the regression coefficient
β but set the variance of βt to a very small value6, such that the above approximation
holds. Let the vector of unobserved states be denoted by αt = (ht βt)

′. Combining
equation (7) and (3), the respective state-space form for filtering αt is obtained as:

yt = Ztαt + κ̃t κ̃t ∼ N(0, Ht) (8)
αt = d+ Ttαt−1 +Rtνt νt ∼ N(0, Qt), (9)

where the matrices are defined according to:

yt = gt −mtk, Zt =
[
1 xt−1

]
, αt =

ht
βt

 , Ht = v2
tk, (10)

d =
µh

0

 , Tt =
φ 0′

0 IN

 , Rt =
1 0′

0 IN

 , Qt =
ω2 0′

0 Q∗

 . (11)

The specification of Tt and Qt ensures that βt ≈ βt−1 = β. In particular, the entries
in the N ×N diagonal matrix Q∗, denoting the variances of the regression coefficients,
are set to Q∗ = 10−10 IN , i.e. very close to 0, such that the effects of the covariates are
virtually constant over time. Finally, let α, y, and X denote the vector and matrix of
time series observations αt, yt, and xt−1, respectively. The joint posterior distribution
is obtained by sequentially sampling from the conditional posterior distributions of the
parameters with the following steps:

1. Sample the unobserved states α from p (α|y, X, µh, φ, ω2) by means of Kalman
6We cannot set the variance of βt exactly equal to zero.
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filtering and smoothing.

2. Sample ω2 from p (ω2|h, φ, µh).

3. Sample φ from p (φ|h, ω2, µh) by means of an independent chain Metropolis-Hastings
(MH) step.

4. Sample µh from p (µh|h, φ, ω2).

For the first iteration, step 1 starts with a sequence for the SV process exp{h0
t+xt−1β

0
t}ξt

and t = 1, . . . , T . Furthermore, the regression coefficients β are all set to 0 to initialize
the estimation. Subsequently, the sampler repeats steps 1 to 4 for 35,000 iterations
where the first 10,000 are discarded as a burn-in sample. Final estimates and uncertainty
quantification are obtained from these posterior draws.
We give a detailed version of the sampling steps, including the choices of the prior
distributions, in Appendix B. Since this approach of including regression effects is non-
standard in the context of SV models, we also conduct a simulation study in Section 3
to study the finite-sample properties of our estimation method.

2.2 Link between interest rates, carry trades, and FX volatility

Our econometric set-up relies on the hypothesis that speculative trading strategies build
a transmission channel for the impact of interest rate changes on FX volatility. In this
subsection, we discuss this idea more in detail. In addition, we define the other variables
included in our vector xt−1 of covariates.
A starting point is given by Ichiue and Koyama (2011), who explore the relationship
between exchange rate returns, volatility, and IRD by means of regime-switching models.
In particular, they extend the traditional UIP regression, such that the slope coefficient
depends on the prevailing state of FX volatility. In contrast, we focus on the following
direct mechanism: any variation in the interest rate in one economy leads to a change
in the IRD between home and foreign economies. As a consequence, positions in carry
trading strategies might be revised, leading to movements in the demand and supply of
assets in different currencies. Ames et al. (2017), for instance, reveal that carry trading
causes speculative in- and outflows of capital. Based on the assumption of imperfect
financial markets, Gabaix and Maggiori (2015) demonstrate how such large-scale capital
flows set exchange rates via alterations on financiers’ balance sheets. The latter lead
them to price currency risk differently, thus impacting on both the level and the volatility
of exchange rates.

9

Electronic copy available at: https://ssrn.com/abstract=3984900



Recent contributions on carry trade activities categorize currencies into low-interest-rate,
so-called “funding”, currencies and high-interest-rate, otherwise known as “investment”
currencies (Ames et al., 2017). We compute the IRD as the difference between the
short-term interest rate iH in the home country and the respective US interest rate iUS.
We argue that the consequences of a change in the interest rate in the home country
for FX volatility differ according to iH being the interest rate for the funding or the
investment currency. An increase in the high-interest-rate currency does not change
its role as an investment currency. Hence, the change in the IRD does not lead to a
large unwinding of carry trade positions. In contrast, if the monetary authorities in
the economy with the low interest rate start increasing interest rates, the IRD narrows
and the currency becomes less attractive as a funding currency for the carry trades.
Consequently, traders might start reversing their trading positions, which impacts on
the volatility of the currency. Therefore, we assume that the sign and the magnitude
of an effect of IRD depends on the prevalent “regime”, i.e. if the home currency is the
funding or the investment currency. Consequently, we explicitly take into account the
sign of the IRD by separating the effect into positive and negative IRD by means of the
two variables

IRD+
t−1 =

 IRDt−1 if iHt−1 − iUSt−1 > 0

0 if iHt−1 − iUSt−1 ≤ 0.
(12)

and

IRD−t−1 =

 IRDt−1 if iHt−1 − iUSt−1 < 0

0 if iHt−1 − iUSt−1 ≥ 0.
(13)

Hence, for positive IRD+
t−1, the home currency is the investment currency. On the

contrary, IRD−t−1 captures the case when the home currency is the funding currency.
We include both variables in our set of covariates xt−1.
From this model, we are able to deduce the signs to be expected for the effects of IRD+

t−1

and IRD−t−1 on FX volatility, according to the financial channel described above. For
IRD+

t−1, we would expect negative variations to be linked with the unwinding of carry
trade positions, leading to an increase in volatility. On the contrary, for IRD−t−1, positive
variations are expected to be linked with the unwinding of the positions and an increase
in volatility. Thus, we would expect opposite signs of the effects, namely a negative
effect for IRD+

t−1 and a positive effect for IRD−t−1 reflecting the statement that smaller
absolute IRD are associated with a higher FX volatility. Table 1 summarizes the signs
of the different expected effects.
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Funding ? Channel iHt−1 ↗ iHt−1 ↘ iUS
t−1 ↗ iUS

t−1 ↘

IRD+
t−1 Unwind CT ? No Yes Yes No

σ2
t - + + -

IRD−
t−1 Unwind CT ? Yes No No Yes

σ2
t + - - +

Table 1: Summary of the expected effects of a change in the home and the US rates on
the unwinding of carry trades (CT) and FX volatility, given that the home currency is
either the investment currency (IRD+

t−1) or the funding currency (IRD−t−1).

In Section 5, we discuss the estimated changes in σ2
t associated with variations in IRD+

t−1

and IRD−t−1, and interpret them in light of the carry trade hypothesis. However, channels
other than carry trades could be responsible for the IRD - FX volatility connection. For
example, Valchen (2020) considers the role played by fluctuations in bond convenience
yield differentials as a compensation for a decrease in liquidity. Burnside et al. (2009)
propose an explanation based on market microstructure with adverse selection of the
market makers. Bacchetta and Van Wincoop (2010) highlight the role played by order
flows and investors’ heterogeneity. Precisely identifying the proper channel is a complex
question beyond the scope of this paper.
Nevertheless, to motivate further our econometric set-up, we investigate whether our
assumptions on the link between IRD and carry trade activity (CTA) are also justified
from an empirical standpoint. Few empirical results exist beyond the cross-sectional
analysis performed by Brunnermeier et al. (2009). Two exceptions are Anzuini and
Fornari (2012) and Hutchison and Sushko (2013). Anzuini and Fornari (2012) find
significant changes in CTA following an interest rate shock, confirming the results of
Brunnermeier et al. (2009), while Hutchison and Sushko (2013) link CTA to risk reversal,
noting the strong contemporaneous correlation of this measure with variations in interest
rates. Although limited, empirical evidence is therefore in favor of a link between IRD
and CTA.
To bring additional evidence to this question, we conduct a currency-by-currency re-
gression analysis of the link between IRD and CTA for the six currencies studied in
Section 5. As a proxy for CTA, we use the same quantity as Brunnermeier et al. (2009),
Hutchison and Sushko (2013) and Anzuini and Fornari (2012), namely the net (long mi-
nus short) future position of non-commercial traders in the home currency (with respect
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to the U.S. Dollar), expressed as a fraction of total open interests of non-commercial
traders. Weekly7 data between 1999 and 2017 are obtained from the Commodity and
Future Trading Commission (CFTC) website. Positive values are indicative of the home
currency being the investment currency. As noted by Brunnermeier et al. (2009), this
measure is not perfect, since over-the-counter trades are neglected; but the CFTC data
are the best (if not the only) publicly available. To each CTA value, our associated
predictor variable is the IRD (i.e., the difference in three-month Libor rates of the home
currency and the U.S. Dollar, see Section 4 for more details) observed one week earlier.
For each currency, we have between 964 and 991 data points. Our regression equation
for each currency is the following:

CTAt = α
(CTA)
0 + β(CTA)IRDt−1 + ε

(CTA)
t , (14)

with CTAt being the carry trade activity at time t, α(CTA)
0 and β(CTA) the regression

parameters, and ε
(CTA)
t the error term. On Figure 1, we display the estimated regres-

sion functions obtained with OLS. For all currencies, we observe a positive relationship
between IRD and CTA. It suggests that, when the home currency is the investment
currency, CTA decreases when IRD moves closer to 0 (i.e. traders unwind their long
positions in the home currency). Similarly, for the home currency being the funding cur-
rency, traders unwind their short positions in the home currency when IRD moves closer
to 0. An additional kernel local linear regression estimate of the relationship (dashed
red on the same figure) does not reveal important nonlinearities (two exceptions are
for Euro, and for large IRD values of the Canadian Dollar). Using Newey-West robust
standard errors of the estimated regression coefficients, we find the slope coefficients to
be significantly different from 0 for all currencies except the Euro (detailed results, as
well as a cointegration analysis, can be found in Table 13 in Appendix A). Repeating
this analysis when splitting our samples into positive and negative IRD values or con-
trolling for endogeneity with the instrument-free method of Park and Gupta (2012), our
conclusions are qualitatively alike although less clear for the Euro and the Canadian
Dollar.
To summarize these results, we reveal additional evidence of a link between IRD and
CTA. In addition, we find signs of the estimated effects that are consistent with the carry
trade channel outlined in Table 1: when absolute IRD narrows down, an unwinding
of carry trades (i.e., a decrease in the absolute value of our CTA measure) is more

7Daily data are not publicly reported. We consider nevertheless that differences between weekly and
daily processes are sufficiently small such that our results here can be extrapolated to daily dynamics.
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likely to occur. This suggests that, if the IRD-FX volatility link outlined in Table 1 is
empirically confirmed, the carry trade mechanism described above is a coherent channel.
One alternative hypothesis, though, is that lagged IRD, CTA, and FX volatility are
all exposed to similar macroeconomic shocks. In this respect, a potential alternative
channel is suggested from the empirical findings of Hutchison and Sushko (2013) and
the theoretical model of Bacchetta and Van Wincoop (2010): macro-news related to
trade balance raises the perceived risk of a sharp appreciation of the currency under
consideration, pushing some market participants to hedge their trades. Such trades are
confused in the short run with signals about future value of the fundamentals, leading
to a rise in volatility. Since our focus is on the link between IRD and FX volatility, we
leave the clear identification of the channel to further research.
Finally, notice that to control for the potential influence of other factors, we broaden the
set of covariates xt−1 for the volatility term. Similar to common ARCH specifications
for asset returns, we include the lagged return rt−1 as a third covariate. Moreover,
for GARCH models, the empirical literature finds that shocks of equal magnitude but
opposite signs often have different impacts on volatility. Therefore, to account for a
potential asymmetry, we take an approach similar to that for threshold GARCH models:
as a fourth explanatory variable, we incorporate the term St−1 rt−1 into xt−1 where St−1

denotes an indicator function, which takes the value 1 when rt−1 < 0 and 0 otherwise.

3 Simulation study

In this section, we conduct a simulation study to assess the reliability of the proposed
estimation procedure, and by extension, of the results of our empirical analysis. The
data-generating processes (DGP) are given by the empirical model detailed in Section 2.
We consider two distinct DGP. In DGP1, we generate a return series rt whose volatility
only depends on a persistent part ht without any influence of covariates. For DGP2,
we consider the impact of three explanatory variables that resemble the macroeconomic
covariates from our empirical study. For both DGPs we estimate a standard AR(1)
specification and the SVX specification for the volatility term. Of particular interest
in the simulation study are the two following aspects: i) the proper identification of
zero and non-zero effects for β in the SVX model and ii) the comparison of parameter
estimates and model fit for the SVX and the AR(1) specifications. We report posterior
estimates for the parameters, as well as a summary on root mean square errors (RMSE)
and coverage ratios for the regression parameters. Moreover, we provide details on the
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computation of the test statistics used for model selection in Section 5.3.

3.1 Simulation set-up

The true parameter values for the DGPs are given in Table 2. For DGP1, we generate
the return series excluding covariate effects. The parameters µh, φh, and ω2 are set to
−0.1, 0.90, and 0.04, respectively. These values are in line with the estimates obtained
in our empirical analysis of six currencies. For DGP2, we leave these values unchanged
but we additionally assume the impact of three covariates with the following regression
effects: β1 = 0.7, β2 = −0.3, and β3 = 0. Similarly to the other parameters, these
values are chosen close to those obtained in the empirical study. In addition, we sim-
ulate explanatory variables reflecting the characteristics of the IRD and lagged-return
time series. We draw x1 from a Gaussian distribution but set it to 0 for a number
of successive time periods, as has been observed for several IRD time series after the
crisis. The variable x2 contains the one-period lagged return time series. Finally, the
third covariate is specified as a Gaussian random variable whose impact is assumed to
be 0. For estimation, we choose the same parameters of the prior distributions as in the
empirical study (see Table 15 in Appendix B). Overall, the choices of these DGPs are
intended to match the features of the financial time series used throughout this paper.

Table 2: True parameter values for DGP1 and DGP2

Parameter µh φ ω2 β1 β2 β3

DGP 1 −0.1 0.90 0.04 - - -
DGP 2 −0.1 0.90 0.04 0.7 −0.3 0

3.2 Simulation results

In the following, we sum up the results of the simulation study. First, we focus on the
proper estimation of the regression coefficients β. Second, we report the estimates and
model diagnostics for the SVX model for three sample sizes T ∈ {1000, 2500, 5000}.
Last, we compare the results from estimating both an AR(1) and a SVX model for
DGP1 and DGP2 for 200 samples, respectively.
The histograms in Figure 2 display the estimates of the posterior mean for every regres-
sion coefficient β1, β2, and β3 in 200 samples. The distributions of the estimates are
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unimodal with most probability mass at the true parameter value, suggesting a good
estimation. For β3 = 0, posterior mean estimates vary slightly more.
As a next indicator, we consider the coverage ratios of the true parameter value and
the highest posterior density interval (HPDI) of the respective estimates. The entries in
Table 3 denote the proportion of samples for which the true parameter is covered by the
90% HPDI in 200 samples. Note that for DGP1, the true values for β are equal to zero
while for DGP2, it holds that β = (0.7 − 0.3 0)′. For instance, the first entry of 0.945
implies that out of 200 estimated samples from DGP1, in 189 cases the true parameter
value of β1 = 0 is within the bounds of the estimated HPDI. Analogously, for DGP2,
the entry of 0.960 indicates that the true parameter value of β1 = 0.7 is included in the
HPDI in 192 samples. For the regression coefficients, coverage rates are high, suggesting
very good coverage of the true parameters in the HPDI. Overall, we conjecture that zero
regression effects are correctly identified with high probability.

Table 3: Coverage rates for parameters

Parameter β1 β2 β3 µ φ ω2

DGP1 0.945 0.925 0.925 1 1 0
DGP2 0.960 0.935 0.925 1 1 0

Proportions of samples for which the true pa-
rameter lies within the 90% HPDI across the
200 samples.

After examining the characteristics in repeated samples, we focus next on estimates for
different sample sizes for DGP2. Table 4 contains estimates of the posterior distributions
for the sample sizes T ∈ {1000, 2500, 5000}. For each parameter, we report the estimate
of the posterior mean, the posterior standard deviation, and the respective 5% and 95%
quantiles of the posterior distribution (HPDI). Moreover, we indicate the RMSE for
increasing sample size. In general, the posterior mean estimates are close to the true
value, with the HPDI narrowing with increasing sample size T . Similarly, we can observe
decreasing posterior standard deviations and RMSEs for all parameters with increasing
sample sizes. In particular, for the regression coefficients, RMSEs are small for a sample
size of T = 1000 and shrink to zero for T = 5000.
In Figure 3, we display the trajectories for the estimated volatility exp{ht} for T =
{1000, 2500, 5000}. Additionally, we include the 90% HPDI around the posterior mean
to grasp the variation in the posterior estimates. The estimated series captures the true
process well and 90% of the values in the posterior distribution lie in a very narrow band
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around the true process.
We conclude by examining the consequences of estimating the respective inappropriate
model for DGP1 and DGP2. To this end, we simulate data according to DGP1 and
estimate it first with the correct model (AR(1)). Subsequently, we estimate it with the
“misspecified” SVX model that incorporates irrelevant covariates. We proceed similarly
for DGP2, whereby this time the SVX model with covariates is the correct one, and
the AR(1) model is misspecified. In Table 5, we report RMSE for the estimates of h
(RMSEh). Moreover, we provide the Ljung-Box statistics Q(`) and Q2(`) for a lag
length of ` ≈ log(T ) = 7 for the standardized (squared) residuals as model diagnostics.
Neglecting regression effects yields a higher RMSE for the log-volatility h. On the
contrary, estimating the SVX model including irrelevant covariates does not affect the
quality of the estimation results, since effects are properly diagnosed as being 0.

Table 5: RMSE for h and Ljung-Box statistics

True DGP Model RMSEh Rejection Q(7) Rejection Q2(7)

DGP 1 AR(1) 0.0120 0.005 0.110
SVX 0.0120 0.055 0.265

DGP 2 AR(1) 0.0147 0.065 0.705
SVX 0.0120 0.060 0.280

Average RMSE for the time series of ht, in 200 samples. The 4th
and 5th columns contain the average rate of rejecting the null hy-
pothesis of no autocorrelation in the standardized (resp. squared)
residuals with α = 0.05.

For the Ljung-Box statistic Q(7), the average rate of rejecting the null hypothesis is
close to the theoretical significance level of 0.05. For the squared residuals however, the
empirical average rejection rate of the null hypothesis is substantially higher. The test
might be oversized for the SVX models, i.e., the probability of rejecting the null falsely is
higher than the theoretical level. To obtain more appropriate critical values for testing
in the empirical study, we compute the empirical quantiles of the Ljung-Box Statistics in
the Monte Carlo simulations. In particular, we obtain as 0.95-quantiles of the empirical
distributions of simulated Q2(7) statistics the values 20.8807 and 19.3094 for the AR(1)
and SVX models, respectively.
In Figure 4, we report the RMSEs in 200 samples for each parameter for the two DGP
estimated in both model specifications. The first row captures the RMSEs for an es-
timation of the AR(1) specification. Neglecting the impact of the regressors leads to
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higher RMSEs for µ, φh and ω2 as shown in boxplot (b). The RMSEs in boxplots (c)
and (d) are very similar. Hence, misleadingly estimating a SVX model for DGP1 does
not lead to greater RMSEs.
The boxplots in Figure 5 display the estimates of the posterior means for all parameters
in the 200 samples and a sample size of T = 1000. Overall, the posterior mean estimates
do not vary substantially across the samples and are close to the true parameter values.
In boxplot (b), we observe more variation in the posterior estimates for the AR(1) model.
In contrast, a misspecified SVX model yields estimated regression coefficients close to
zero, i.e., the true value (boxplot (d)). Hence, irrelevant covariates are detected to have
zero impact on the return volatility. For DGP2, estimates are close to the true parameter
values (boxplot (c)).

4 Data

We analyze daily FX data against the US Dollar (USD) for six currencies, namely the
Australian (AUD) and Canadian Dollar (CAD), the Swiss Franc (CHF), the Euro (EUR),
the Japanese Yen (JPY), and the British Pound (GBP), respectively. The exchange rates
are expressed as the value of one unit of the national currency in USD. In this study, we
confine the analysis to industrialized economies with floating exchange rates. Moreover,
the independence of monetary authorities in these economies has the advantage of not
facing major endogeneity problems in the course of estimation. All data are available on
the website of the Federal Reserve of St. Louis. The sample period starts on January
4th, 1999 and ends on December 29th, 2017. After deleting time periods for which the
spot exchange rates are missing, the sample includes 4,773 observations. To compute
interest rate differentials, we use daily three-month Libor rates for CHF, EUR, GBP
and JPY. For the analysis on CAD and AUD, respectively, we employ the three-month
Euro Libor rates for the two countries, provided by the Financial Times and collected
through Datastream.
Figure 6 contains the trajectories of the three-month Libor for the complete sample
period for the CHF, EUR, GBP, USD, and JPY. Except for the JPY, interest rates
vary substantially until the beginning of 2009. In the middle of 2009, they drop to
zero for all currencies and move substantially less afterwards. These observations allow
us to presume the existence of structural changes consecutive to the financial crisis.
To account for this effect, we conduct analyses on two subperiods. In line with the
NBER recession statistics, we define the pre-crisis period to run from 01/04/1999 to
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06/30/2009 and the post-crisis period from 07/01/2009 to 12/29/2017. Table 6 contains
descriptive statistics for all exchange rate returns, displaying substantial skewness and
excess kurtosis for all returns.

Table 6: Descriptive statistics for exchange rate returns

AUD CAD GBP EUR CHF JPY

Mean 0.0047 -0.0040 0.0043 -0.0003 -0.0071 0.0001
Standard deviation 0.7984 0.5692 0.5961 0.6259 0.7014 0.6591
Skewness -0.7896 -0.0904 0.7633 -0.1098 -1.0997 -0.2815
Kurtosis 15.1902 8.3064 14.7346 5.1875 35.0091 6.7895

Empirical mean, standard deviation, skewness, and kurtosis obtained from the
daily exchange rate returns in percentage terms ((rt) for the complete sample
period ranging from January 4, 1999 to December 29, 2017.

5 Empirical results

In this section, we interpret the estimation results for model (1) for the six currency
pairs and the two subsamples.
We start with a summary of important diagnostics for the Markov Chain Monte Carlo
(MCMC) sampling. Subsequently, we interpret the economic results and display the
estimated trajectories for the unobserved volatility processes. Finally, we compare our
SVX specification with a simpler alternative, and conduct several robustness checks.

5.1 MCMC diagnostics

After thinning the MCMC iterations, we compute posterior estimates based on 5, 000
MCMC draws. We check for convergence of the Markov chains of the parameters by
means of the Geweke convergence diagnostics (Geweke, 1992). In Table 7, we report the
absolute value of the convergence diagnostic (CD) for each parameter in the two sub-
samples. The distribution of the test statistics under the null is asymptotically standard
normal. Convergence of the chain is achieved if CD is less than 1.96 in absolute value
for all parameters. We conclude that the posterior estimates rely on parameter draws
that stem from the stationary Markov distribution. For the time-varying parameter ht,
we report the overall maximum convergence diagnostic, that is, the maximum out of the
CD for each point in time. For a limited number of points in time, the critical value is
exceeded, which we consider to be only a minor problem. Furthermore, the efficiency
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Table 7: Geweke convergence diagnostics CD

Parameter IRD+
t−1 IRD−t−1 rt−1 St−1rt−1 ht µh φ ω2

Subsample 01/04/1999− 06/30/2009

Currency

AUD 0.28 0.27 0.28 0.43 2.98 1.10 0.80 0.93
CAD 1.40 1.42 0.10 0.03 2.05 0.10 0.37 0.28
GBP 0.41 0.93 0.41 0.21 2.56 1.08 0.95 0.35
EUR 0.43 0.27 0.47 0.33 1.13 0.72 0.35 0.71
CHF − 0.94 1.10 0.72 2.37 0.57 1.20 1.47
JPY − 1.32 0.05 0.14 2.11 0.24 1.28 1.70

Subsample 07/01/2009− 12/29/2017

Currency

AUD 0.53 − 0.99 0.67 2.86 0.53 1.13 1.26
CAD 0.74 0.47 0.47 0.71 2.58 0.70 0.48 0.63
GBP 0.73 0.42 0.59 0.72 2.06 1.00 0.08 0.05
EUR 0.24 0.66 0.05 0.08 1.52 0.10 0.38 0.36
CHF − 0.12 0.08 0.56 2.55 1.37 1.01 0.55
JPY − 0.82 0.22 0.68 1.98 0.01 0.44 0.49

Table entries denote the absolute values of the Geweke (1992) convergence
diagnostic CD for each parameter of the model. IRD+

t−1, IRD
−
t−1, rt−1 and

St−1rt−1 refer to the regression parameters associated with positive IRD,
negative IRD, lagged return, and lagged negative shocks, respectively. For
the time-varying state ht, CD denotes the maximum absolute value of CD
for each point in time. The hyphens indicate that the parameter was not
estimated for the corresponding currency due to a lack of observations.
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Table 8: Acceptance rates of φ̂ in MH-step

Acceptance rate AUD CAD GBP EUR CHF JPY

Subsample 1 0.9590 0.9592 0.9591 0.9588 0.9668 0.9580
Subsample 2 0.9520 0.9634 0.9522 0.9608 0.9604 0.9572

Table entries denote the acceptance rates of φ, computed as the num-
ber of accepted φ̂ from the proposal density divided by the number
of Gibbs iterations after the burn-in. Subsample 1 covers the period
01/04/1999− 06/30/2009, whereas Subsample 2 refers to the period
07/01/2009− 12/29/2017.

of the sampler is of interest. The acceptance rate of the MH-step provides information
on how often a new draw φ̂ from the proposal distribution is accepted. Low rates of
acceptance imply that many candidate draws are rejected, and the chain remains stuck
at a particular point for repeated iterations. Table 8 contains the acceptance rates. The
high numbers indicate that the proposal draw φ̂ is not accepted only in a small number
of iterations. An additional measure of algorithm reliability is given by the numerical
standard errors of the posterior estimates. The numerical standard errors for the regres-
sion coefficients are low and range between 0.002 - 0.02, which suggests a reasonably
good approximation of the posterior mean.

5.2 Impact of interest rate differentials on FX volatility

In the following section, we discuss the results of our empirical analysis. In Table 9, we
provide a summary of these results by presenting the estimated regression coefficients
associated with the variables supposed to affect FX volatility8.
First, we focus on the results for IRD+

t−1, which captures the effect of variations in IRD
if iHt−1 − iUSt−1 > 0. We find that an increase in IRD+

t−1 implies a widening in the interest
rate differentials originating from either a rise in iHt−1 or a decrease in iUSt−1. However,
the crucial aspect is that the domestic currency remains the investment currency and
the US Dollar remains the funding currency. Although the increase in the differential
might attract additional traders, there is no incentive to unwind trading positions. In-
deed, we find that if the interest rate differential widens, volatility tends to decrease.
However, this effect is not significant. The 90% HPDI, indicated in the brackets below

8In the course of the analysis, we also examined specifications incorporating only past returns
and the indicator of negative shocks. The coefficient estimates are similar across all the specifications
considered. Moreover, the results for the model parameters µh, φ, and ω2 are not affected. These
estimated volatility parameters are available upon demand.
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the posterior means, contain the value zero for all currencies. For the post-crisis period,
in contrast, a widening in IRD+

t−1 impacts more strongly on the volatility of currencies.
For the CAD and GBP, the effect becomes significant and its magnitude increases sub-
stantially in comparison to the pre-crisis period.
The variable IRD−t−1 contains the IRD for iHt−1 − iUSt−1 < 0. In this regime, the home
currency is the funding currency, and the US Dollar is the investment currency. Since
IRD−t−1 is negative, an increase in IRD−t−1 implies a narrowing of the rate differential.
This might be caused by either an increase in iH or a decrease in iUS. For carry traders,
an increase in iH implies that the funding currency becomes less attractive for borrowing
because of the higher interest rates. Vice versa, a decrease in iUS reduces the profit that
can be made from lending in the US Dollar. As a consequence, speculative carry traders
may start alternating trading positions, which leads to sudden shifts in the demand and
supply for the foreign currency. Hence, we expect that an increase in IRD−t−1 leads to
a rise in exchange rate volatility. In the pre-crisis period, we find a significant positive
effect for the CAD, the EUR, and the CHF. The magnitude of the effect increases in
the post-crisis period for all currencies. Again, it is the volatilities of the CAD and the
GBP that are particularly strongly influenced by changes in the currencies’ Libor rates.
The magnitude of the effect, however, also becomes larger for the EUR and the CHF.
This finding is in line with the results of Omrane and Savaser (2017), who demonstrate
that the reaction of currency volatility to news related to interest rates is larger during
crisis times, and brings empirical confirmation of the theoretical framework proposed
by Gabaix and Maggiori (2015). In addition, it shows that the IRD-FX volatility con-
nection detected by Ichiue and Koyama (2011) at a monthly frequency holds also at
the daily frequency. This result has thus several implications for active market par-
ticipants (like hedge funds) trading frequently in sophisticated products, and market
makers concerned by volatility hedging: information can be extracted from short-term
IRD to better anticipate changes in volatility. These anticipations can be exploited to
revise hedging position or volatility-timing investment strategies (Fleming et al., 2001).

Furthermore, rows 3 and 4 in Table 9 contain the results for the two additional covariates.
The regression coefficients for the lagged return rt−1 and for the asymmetric effect of
negative shocks St−1rt−1 are consistent and significant across currencies and time periods.
A lagged appreciation of the home currency tends to decrease the volatility, which is line
with results from GARCH specifications for exchange rate returns. In contrast, negative
shocks (i.e. a depreciation of the home currency) raise FX volatility substantially.
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Finally, we compare the smoothed volatility estimates for exp{ht} from the AR(1) pro-
cess and the extended volatility specification. In Figure 7, we display the posterior mean
and the 5% and 95% percentiles of exp{ht} from the AR(1) specification and the ex-
tended model. The posterior mean of the latter is covered within the HPDI of the AR(1)
specification for the majority of observations. However, the posterior mean estimates
deviate during times of economic turmoil and high volatility. For the CHF, estimates
differ around the time of the drastic drop in Swiss Libor rates in 2015. For the EUR and
the JPY, the differences are more clear cut at the end of the second sample, when the
IRD with iUS began to rise again. For the GBP, deviations are more pronounced during
and in the aftermath of the global financial crisis. In summary, Figure 7 illustrates that
the autoregressive component ht tends to be underestimated in the simple specification,
especially during periods of high FX volatility.
Overall, these results are in line with the expected effects implied by the carry trade hy-
pothesis, and summarized in Table 1: a decrease in IRD+

t−1 or an increase in IRD−t−1 are
associated with an increase in FX volatility, following an unwinding of the corresponding
carry trade positions.

5.3 Model comparison and goodness-of-fit

The lack of a closed form for the likelihood function in SV models complicates the com-
putation of likelihood-based model criteria to compare alternative specifications. The
high number of time-varying parameters in the SV model also leads to the likelihood
function being a high dimensional integral, which has to be approximated by means of
simulation. For instance, alternative estimation methods for SV models such as efficient
importance sampling (Liesenfeld and Richard, 2006) simulate an approximated likeli-
hood function in the course of estimation. Our proposed extension of the SV model, in
contrast, is analyzed by means of Gaussian mixture sampling which does not incorporate
the evaluation of a likelihood function. Thus, to assess the fit of the model, we adopt a
different point of view, as suggested in Bauwens et al. (2012). We compare the different
volatility specifications with respect to the features they are supposed to be capturing.
In particular, we concentrate on the ability to encompass the heteroscedasticity in the
exchange rate data.
As a first means of evaluating the model, we compare the Ljung-Box-statistics Q2(7) to
test the null of no autocorrelation in the squared standardized residuals from each model.
Following Tsay (2005), we set the lag length to compute the test statistics to ` ≈ log(T ).
The preferred model is the one that enables the greater “whitening” of the residuals.
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In Tables 10 and 11, we report residual diagnostics for subsamples 1 and 2 separately.
We limit the comparison of results to estimates from a simple AR(1) specification for
the volatility term and the specification including the covariate effects. Results differ
across currencies and for the pre- and post-crisis subsamples. Although we reject the
null hypothesis of no autocorrelation, including the covariates decreases the degree of
autocorrelation in the squared residuals in the pre-crisis period. In particular for the
AUD, the GBP, and the JPY, the Ljung-Box statistics are in favor of taking the IRD
into account. Additionally, we report statistics for skewness and excess kurtosis. In the
pre-crisis sample, the inclusion of IRD leads to a decrease in skewness for the CAD and
the JPY. Moreover, after the crisis, the skewness of the residuals decreases nearly for
all exchange rate returns. The close relationship of IRD and the skewness of exchange
rates via currency carry trades has been emphasized, among others, by Brunnermeier
et al. (2009).

Table 10: Residual diagnostics for subsample 1

FX volatility AUD CAD GBP EUR CHF JPY

Model AR(1) without regression effects (SV)

Q2(7) 55.801 23.261 31.778 46.519 31.343 18.376
p-value .000 .002 .000 .000 .000 .010

skewness -0.1414 -0.0400 0.0625 -0.0317 -0.096 -0.138
kurtosis 2.5835 2.546 2.608 2.7038 2.7974 2.870

Model Including regression effects (SVX)

Q2(7) 29.301 23.984 30.709 18.527 24.294 49.073
p-value .000 .000 .000 .010 .000 .000

skewness -0.1299 -0.0436 0.0560 -0.0273 -0.1236 -0.046
kurtosis 2.562 2.670 2.561 2.635 2.697 3.231

Residual diagnostics for the SV model with an AR(1) specification
(upper panel) and the SVX specification (lower panel), obtained over
the period 01/04/1999 − 06/30/2009. Table entries denote the test
statistics and the corresponding p-values for the Ljung-Box test on the
squared standardized residuals (Q2(7)).

As an additional means to compare the in-sample fit, we compute the RMSE between
the estimated variance term σ̂2

t and the true variance σ2
t of the exchange rate returns.

Thereby, we approximate the true variance by means of the most simple measure of
realized volatility, the demeaned squared returns r2

t . The results in Table 12 demonstrate
that the model with regression effects yields lower RMSEs than the AR(1) specification
across all currencies and subperiods. Moreover, we conduct a Diebold-Mariano test for
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Table 11: Residual diagnostics for subsample 2

FX volatility AUD CAD GBP EUR CHF JPY

Model AR(1) without regression effects (SV)

Q2(7) 27.913 19.027 20.432 17.218 13.651 11.532
p-value .000 .008 .005 .016 .058 .117

skewness -0.0475 -0.0006 0.0928 0.0292 -0.0670 0.026
kurtosis 2.4939 2.7805 2.8461 2.845 3.027 3.018

Model Including regression effects (SVX)

Q2(7) 8.807 20.013 13.529 29.739 17.457 7.069
p-value .267 .006 .06 .000 .015 .422

skewness -0.032 -0.053 0.070 -0.010 -0.045 0.019
kurtosis 2.553 2.744 2.607 2.677 2.843 3.039

Residual diagnostics for the SV model with an AR(1) specification
(upper panel) and the SVX specification (lower panel), obtained over
the period 07/01/2009 − 12/29/2017. Table entries denote the test
statistics and the corresponding p-values for the Ljung-Box test on
the squared standardized residuals (Q2(7)).

equality of forecast accuracy, comparing the errors from the AR(1) and the extended
specification for the volatility term. The errors are computed based on the filtered
estimates of volatility from the Kalman filter. Hence, they may be interpreted in a similar
fashion to pseudo-out-of-sample forecasts for volatility with an expanding estimation
window. For the majority of currencies, we reject the null hypothesis of equality in
forecast accuracy. Finally, we also conduct the conditional predictive ability test of
Giacomini and White (2006) to compare the two forecasting methods. We similarly
reject the null hypothesis of equal predictive ability in favor of our extended volatility
specification for most currencies (Table 12).

5.4 Robustness checks

To assess the robustness of our results with respect to minor changes in the specification
of the model, we re-estimate its parameters, adding various control variables likely to
influence currency volatility. First, we include the GVIX-7 currency volatility index
of JP Morgan in our set of predictors, to control for market-wide volatility effects.
Then, we use (lagged) local stock market returns, computed from national stock indices.
For each currency, we use a national reference index, namely the ASX, STOXX600,
SSMI, FTSE100, GSPTSE, and NIKKEI225 indices. Finally, we control for a potential
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Table 12: RMSE, Diebold-Mariano and Giacomini-White test statistics

AUD CAD GBP EUR CHF JPY

Subsample 01/04/1999− 06/30/2009

RMSE AR (1) 2.3087 1.0602 1.0139 0.8432 0.9140 1.0280
SVX 2.2960 0.8612 0.9239 0.7537 0.8586 0.9736

DM 0.08 6.29∗∗∗ 4.32∗∗∗ 9.16∗∗∗ 5.38∗∗∗ 7.33∗∗∗

GW 0.99 52.24∗∗∗ 30.78∗∗∗ 121.86∗∗∗ 32.98∗∗∗ 40.20∗∗∗

Subsample 07/01/2009− 12/29/2017

RMSE AR(1) 0.8952 0.6866 1.3995 0.6923 3.6753 0.8531
SVX 0.8492 0.5019 1.3306 0.5883 3.6129 0.8015

DM 4.11∗∗∗ 17.97∗∗∗ 1.59∗ 22.15∗∗∗ 0.99 8.70∗∗∗

GW 27.85∗∗∗ 277.71∗∗∗ 3.18 223.73∗∗∗ 2.57 108.72∗∗∗

Table entries denote the RMSE, computed as RMSEj = 1
T

∑T
t=1
(
σ2

t − σ̂2
t,j

)2, where
j ∈ {AR(1), SVX} (AR(1) refers here to a SV model with a simple AR(1) specification).
DM denotes the test statistic of equal forecast accuracy of Diebold and Mariano (1995),
while GW denotes the test statistics for the predictive ability test of Giacomini and White
(2006). ∗ ∗ ∗ (resp. ∗) indicates tests significant at the 1% (resp. 10%) test level. Upper
panel: pre- and in-crisis period. Lower panel: post-crisis period.

day-of-the-week effect, since we would expect volatility to be higher on days of low
trading volumes characterized by a low liquidity (typically Mondays and Fridays, see,
e.g., Chordia et al., 2001). We thus include a dummy variable taking the value of 1 if
the trading day is Tuesday, Wednesday, or Thursday, and 0 otherwise.
The results of these extended regressions are displayed in Tables 16 to 21 in Appendix
C. We first include the additional control variables one at a time. For these regressions,
the signs, magnitude, and significant characters of IRD effects are almost unchanged
for all currencies. A similar comment applies to the parameters associated with rt−1

and St−1rt−1. One notable exception is the specification including the GVIX for the
EUR, where IRD+

t−1 sees a significant increase in its regression coefficient for the post-
crisis period. However, GVIX and IRD+

t−1 are strongly and positively serially correlated
(with a serial correlation around 60%) and the coefficient associated with the GVIX
is significantly negative. It suggests that, in periods of positive IRD, EUR volatility
decreases if global currency market volatility is large, a result to connect with the weaker
evidence of a significant IRD-CTA connection for the EUR in Section 2.2.
In most cases though, the effects of the GVIX and of stock market returns are not found
to be different from 0 (with the aforementioned exception). On the contrary, a day-of-
the-week effect is found to be significant and negative in all currencies except the AUD.
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It implies a higher volatility on days characterized by Chordia et al. (2001) as exhibiting
low liquidity (i.e., Mondays and Fridays). Nevertheless, our estimates of the IRD effects
are not affected in these specifications.
Then, we include the three control variables simultaneously. The sizes of the credible
intervals tend to increase, but estimated signs and magnitudes of the effects stay globally
unchanged, confirming the robustness of our findings.

6 Conclusions

We study the link between the volatility of exchange rate returns and past interest rate
differentials. To do so, we first detail an econometric approach based on an extended
stochastic volatility model, in which explanatory variables can easily enter the volatility
equation. We demonstrate how the corresponding regression coefficients can be straight-
forwardly incorporated into the state vector of a classical Kalman filter, and estimated
with a Gaussian mixture sampling approach. In a simulation study, we show that re-
gression coefficients and model parameters are properly estimated with this strategy.
Empirically, we detect that changes in the IRD between economies is associated with
variations in FX volatility of most currencies of developed countries. Consistent with
previous findings, we also find FX volatility to be highly persistent over time.
Currency carry trading activities are proposed as the respective transmission channel.
Indeed, these investment strategies exploit the difference in interest rates to borrow in the
low-interest-rate currency and invest in the high-interest-rate currency. Thus, a change
in the IRD might cause the sudden unwinding of trading positions and, thereby, impact
on FX volatility. We find that the influence of IRD becomes stronger in the aftermath
of the global financial crisis. Controlling for the sign of the differential, we reveal that
the effect of an interest rate hike differs for low and high-interest-rate currencies. For
monetary authorities in the low-interest-rate economy, our results imply that ceteris
paribus (c.p) raising the domestic interest rate is accompanied by an increase in FX
volatility. The same effect would be documented by a c.p. decrease in the high interest
rate. These results empirically confirm the theoretical framework of Gabaix and Maggiori
(2015). These findings also have a number of implications for market participants: if, say,
a hedge fund anticipates a decrease in absolute IRD, it must also anticipate an increase
in (short-term) FX volatility that can have important implications for directional bets.
Notice that we assume IRD to be related to FX volatility via movements of carry trading
positions. Considering a more direct measure of the currency trading volumes might
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therefore yield a more precise analysis of the relationship between currency trading
and FX volatility. However, these order-flow data are not easily publicly available at
a daily frequency. Finally, this work provides tools to investigate the determinants of
currency volatility dynamics in emerging market economies, in which particularly high
interest rates have attracted large amounts of capital inflow over the last decade. Sudden
unwinding of carry trade positions and, subsequently, rising FX volatility might have
severe consequences for the macro-financial stability of these economies. Additional
evidence of this link will be necessary to develop and establish adequate regulatory
policies.
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A Appendix: Carry trade channel

In Table 1, we provide the result of the IRD - CTA regressions discussed in Subsection
2.2. Standard OLS estimates exhibit the expected signs, except for the EUR in the
full sample and when IRDt−1 ≤ 0 (only the latter being significant). Results obtained
with the instrument-free method of Park and Gupta (2012) controlling for endogeneity
are more complicated to analyze. For the full sample, the CHF, GBP, and JPY have
estimates that are significant and of the expected signs, whereas the AUD and EUR do
not. However, decomposing between periods in which IRDt−1 is either null or negative,
and positive, we see a clearer picture: estimates are all of the expected sign, except
for the EUR when IRDt−1 ≤ 0. The CAD, CHF, GBP, and JPY exhibit positive
and significant coefficients in at least one of the considered specifications, whereas the
AUD has always positive but not significant estimates. The EUR displays contradictory
results, in line with the full sample results.
Finally, to assess whether our results may be spurious due to the non-stationarity of IRD
and CTA (which seem to behave as integrated or near-integrated processes), we use the
cointegration test of Johansen (1991). As specification for the vector error correction
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(VEC) model of the test, we use a lag of order 1 and a deterministic trend. For all
currencies, we find evidence of IRD and CTA to be cointegrated of order 1 at least,
validating the results of our OLS analysis (Table 14).
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Full sample

Currency α̂
(CT A)
0 Std. t-stat. β̂(CT A) Std. t-stat. β̂

(CT A)
IF LB UB T

AUD 0.067 0.074 0.909 0.111 0.023 4.797∗∗∗ -0.144∗∗ -0.229 -0.012 964
CAD 0.094 0.041 2.308∗∗ 0.162 0.050 3.224∗∗∗ -0.132 -0.344 0.084 961
CHF 0.079 0.051 1.537 0.146 0.026 5.635∗∗∗ 0.165∗∗ 0.106 0.215 989
EUR 0.088 0.038 2.327∗∗ 0.030 0.028 1.066 -0.285∗∗ -0.379 -0.112 991
GBP -0.169 0.042 -4.058∗∗∗ 0.128 0.032 4.038∗∗∗ 0.218∗∗ 0.144 0.286 991
JPY -0.002 0.055 -0.039 0.063 0.019 3.381∗∗∗ 0.109∗∗ 0.067 0.140 991

IRDt−1 ≤ 0

Currency α̂
(CT A)
0 Std. t-stat. β̂(CT A) Std. t-stat. β̂

(CT A)
IF LB UB T

AUD 0.501 0.168 2.988∗∗∗ 1.250 0.343 3.642∗∗∗ 1.117 -0.573 2.927 94
CAD 0.127 0.042 3.020∗∗∗ 0.115 0.061 1.876∗ 0.115 -0.194 0.434 392
CHF 0.082 0.023 3.558∗∗∗ 0.147 0.012 12.152∗∗∗ 0.151∗∗ 0.087 0.207 962
EUR -0.177 0.031 -5.723∗∗∗ -0.156 0.023 -6.776∗∗∗ -0.423∗∗ -0.539 -0.260 546
GBP -0.102 0.058 -1.752∗ 0.170 0.086 1.973∗∗ 0.569 -0.232 0.984 228
JPY -0.019 0.023 -0.837 0.058 0.008 7.271∗∗∗ 0.153∗∗ 0.111 0.188 963

IRDt−1 > 0

Currency α̂
(CT A)
0 Std. t-stat. β̂(CT A) Std. t-stat. β̂

(CT A)
IF LB UB T

AUD 0.123 0.031 3.987∗∗∗ 0.093 0.009 9.895∗∗∗ 0.002 -0.108 0.118 870
CAD -0.150 0.038 -3.993∗∗∗ 0.437 0.037 11.700∗∗∗ 1.312∗∗∗ 0.954 1.567 599
CHF - - - - - - - - - 27
EUR -0.027 0.039 -0.687 0.216 0.039 5.615∗∗∗ 0.171 -0.063 0.550 445
GBP -0.208 0.022 -9.465∗∗∗ 0.149 0.016 9.416∗∗∗ 0.194∗∗ 0.127 0.263 763
JPY - - - - - - - - - 28

Table 13: Estimated regression coefficients, standard error, and t-statistics for equation
(14). For the full-sample regression, we report Newey-West HAC estimators of the
standard errors. For the subsamples, we use White’s robust standard errors. β̂

(CTA)
IF

denotes the estimates obtained with the instrument-free method of Park and Gupta
(2012) controlling for endogeneity. LB and UB denote bounds of the 95% percentile-
bootstrap confidence intervals for β(CTA)

IF . *, ** and *** denote t-statistics and regression
coefficients found significantly different from 0 at the 10%, 5% and 1% confidence level,
respectively. Middle and lower panels report the results obtained with subsamples based
on the sign of IRDt−1. For the EUR and JPY, since T < 30 for IRDt−1 > 0, we did
not report the results.
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Cointegration test

Currency r(0) stat. crit. val. p-val. r(1) stat. crit. val. p-val.

AUD 30.90∗∗∗ 15.49 0.001 3.13∗ 3.84 0.077
CAD 34.47∗∗∗ 15.49 0.001 5.30∗∗ 3.84 0.022
CHF 68.78∗∗∗ 15.49 0.001 2.89∗ 3.84 0.089
EUR 22.78∗∗∗ 15.49 0.004 3.09∗ 3.84 0.078
GBP 34.27∗∗∗ 15.49 0.001 1.53 3.84 0.243
JPY 26.69∗∗∗ 15.49 0.001 1.75 3.84 0.186

Table 14: Cointegration test of Johansen (1991) assuming a lag of order 1 and a de-
terministic linear trend in the underlying VEC model. r(·) denotes the cointegration
rank under the tested null hypothesis (0 or 1). We report the test statistics, the critical
value at the 5% test level, and the p-value. *, ** and *** denote a rejection of the null
hypothesis at levels 10%, 5% and 1%, respectively.
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B Appendix: Detailed sampling steps and prior as-
sumptions

In the following, we describe the sampling steps in a more detailed outline including the
parameters of the posterior densities. We summarize the information on the respective
prior distribution in Table 15.

• We start by sampling the latent states in α by means of the Kalman filter and
smoother according to the state-space model in (8). The corresponding matrices
in equation (10) are subsequently updated to the most recent parameter estimates
for every sweep of the sampler.

• The variance parameter ω2 is drawn from the inverse gamma distribution
IG (ν0 + T/2, S0 + λ) with λ =

(
(h1)2(1− φ2) +∑T

t=2(ht − φht−1)2
)
/2.

• Next, the AR coefficient φ is sampled by means of an independent chain Metropolis-
Hastings step with proposal density N

(
φ̂, Dφ

)
1 (|φ| < 1) with 1 being the indi-

cator function. The parameters for the proposal density are given by

Dφ =
(
V −1
φ + X′φXφ/ω

2
)−1

and φ̂ = Dφ

(
V −1
φ φ0 + X′φzφ/ω2

)
, (15)

where Xφ = (h1, . . . , hT−1)′ and zφ = (h2, . . . , hT )′. Moreover, φ0 and V −1
φ denote

the prior parameters for the proposal density.

• Lastly, µh is sampled from N (µ̂h, Dµh
), where

Dµh
=
(
V −1
µh

+ X′µh
Σ−1
h Xµh

)−1
and µ̂h = Dµh

(
V −1
µh0

+ X′µh
Σ−1
h zµh

)
, (16)

where Xµh
= (1, 1− φ, . . . , 1− φ)′, zµh

= (h1, h2 − φh1, . . . , hT − φhT−1)′, and
Σh = diag (ω2/ (1− φ2) , ω2, . . . , ω2).

The hyperparameters for the prior distribution are given in Table 15. Since a priori
we are ignorant of the distribution of the regression coefficients, we initiate the Kalman
filter with a diffuse prior for β. In contrast, since ht follows a stationary AR(1) process,
we draw h1 from a normal distribution with the unconditional mean 0 and variance
ω2/(1− φ2).
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Table 15: Parameters for prior distributions

Parameter Distribution Hyperparameters
µh N µ0 = 1 Vµ = 10
φ N φ0 = 0.90 Vφ = 0.01
ω2 IG ν0 = 5 Sh = 0.04 ∗ 4

C Appendix: Robustness checks

In this section, we display the results of the robustness checks discussed in Section 5.4.
Tables 16 to 21 give the estimated parameters and HPDI at level 90% for each of the
specifications, on a currency-by-currency basis.
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Table 16: Posterior distribution of regression coefficients with addi-
tional control variables for AUD.

AUD

Subsample 01/04/1999− 06/30/2009

I II III IV

IRD+
t−1 Mean -0.10 -0.04 -0.03 -0.10

HPDI [−0.26 0.04] [−0.21 0.11] [−0.19 0.11] [−0.24 0.05]

IRD−
t−1 Mean 0.67 0.17 0.13 0.75

HPDI [−1.07 1.81] [−1.39 1.25] [−1.39 1.21] [−0.83 1.82]

rt−1 Mean -0.43 -0.43 -0.44 -0.43
HPDI [−0.59 − 0.27] [−0.60 − 0.29] [−0.61 − 0.28] [−0.65 − 0.26]

St−1 rt−1 Mean 0.66 0.68 0.68 0.68
HPDI [0.39 0.95] [0.42 0.98] [0.40 0.98] [0.37 1.06]

GVIXt−1 Mean 0.04 - - 0.04
HPDI [−0.01 0.11] [−0.01 0.11]

rASX
t−1 Mean - -0.20 - -0.24

HPDI [−3.41 3.16] [−3.78 328]

WDt Mean - - -0.06 -0.09
HPDI [−0.17 0.06] [−0.24 0.05]

Subsample 07/01/2009− 12/29/2017

I II III IV

IRD+
t−1 Mean -0.07 -0.03 -0.054 -0.07

HPDI [−0.31 0.13] [−0.17 0.12] [−0.21 0.11] [−0.30 0.12]

IRD−
t−1 Mean - - - -

HPDI

rt−1 Mean -0.59 -0.58 -0.57 -0.57
HPDI [−0.85 − 0.36] [−0.83 − 0.36] [−0.83 − 0.34] [−0.84 − 0.33]

St−1 rt−1 Mean 0.91 0.89 0.87 0.88
HPDI [0.52 1.38] [0.49 1.34] [0.49 1.34] [0.48 1.37]

GVIXt−1 Mean 0.01 - - 0.01
HPDI [−0.06 0.11] [−0.06 0.11]

rASX
t−1 Mean - -2.34 - -2.42

HPDI [−8.39 4.19] [−8.87 4.01]

WDt Mean - - 0.18 0.19
HPDI [0.03 0.34] [0.04 0.33]

Posterior mean estimates for our baseline SVX specification, augmented with three control
variables for AUD: lagged GVIX-7 levels (GVIXt−1), lagged national stock index return
(rASX

t−1 ), and an indicator variable for the week-of-the-day effect (WDt) taking value 0 if the
return was recorded on a Monday or Friday, 0 otherwise. In brackets, we report the 90%
HPDI obtained from the 5th and 95th percentiles of the posterior distribution. Bold face
entries denote estimates for which the 90% HPDI does not include 0. Hyphens indicate that
the corresponding variable is excluded from the regression.
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Table 17: Posterior distribution of regression coefficients with addi-
tional control variables for CAD.

CAD

Subsample 01/04/1999− 06/30/2009

I II III IV

IRD+
t−1 Mean -0.31 -0.43 -0.41 -0.30

HPDI [−0.71 0.19] [−0.83 0.08] [−0.80 0.06] [−0.71 0.16]

IRD−
t−1 Mean 0.50 0.68 0.65 0.50

HPDI [−0.11 1.00] [0.047 1.15] [0.02 1.11] [−0.08 0.99]

rt−1 Mean -0.51 -0.53 -0.54 -0.50
HPDI [−0.76 − 0.29] [−0.78 − 0.31] [−0.81 − 0.30] [−0.79 − 0.28]

St−1 rt−1 Mean 0.75 0.79 0.80 0.74
HPDI [0.34 1.25] [0.38 1.26] [0.37 1.31] [0.31 1.30]

GVIXt−1 Mean -0.03 - - -0.03
HPDI [−0.09 0.04] [−0.08 0.03]

rTSX
t−1 Mean - -1.43 - -1.55

HPDI [−6.10 3.03] [−5.71 2.39]

WDt Mean - - -0.19 -0.17
HPDI [−0.32 − 0.06] [−0.29 − 0.04]

Subsample 07/01/2009− 12/29/2017

I II III IV

IRD+
t−1 Mean -1.14 -1.21 -1.08 -1.13

HPDI [−1.57 − 0.49] [−1.59 − 0.61] [−1.47 − 0.43] [−1.53 − 0.49]

IRD−
t−1 Mean 2.30 2.45 2.25 2.31

HPDI [0.79 3.54] [0.92 3.64] [0.75 3.43] [0.80 3.49]

rt−1 Mean -0.63 -0.65 -0.65 -0.65
HPDI [−0.90 − 0.40] [−0.90 − 0.42] [−0.90 − 0.43] [−0.92 − 0.40]

St−1 rt−1 Mean 0.97 1.01 0.99 0.98
HPDI [0.56 1.46] [0.60 1.47] [0.58 1.42] [0.56 1.49]

GVIXt−1 Mean -0.00 - - 0.01
HPDI [−0.05 0.07] [−0.03 0.08]

rTSX
t−1 Mean - 2.57 - 3.30

HPDI [−4.77 9.82] [−3.71 10.16]

WDt Mean - - -0.31 -0.32
HPDI [−0.43 − 0.17] [−0.46 − 0.19]

Posterior mean estimates for our baseline SVX specification, augmented with three control
variables for CAD: lagged GVIX-7 levels (GVIXt−1), lagged national stock index return
(rTSX

t−1 ), and an indicator variable for the week-of-the-day effect (WDt) taking value 0 if the
return was recorded on a Monday or Friday, 0 otherwise. In brackets, we report the 90%
HPDI obtained from the 5th and 95th percentiles of the posterior distribution. Bold face
entries denote estimates for which the 90% HPDI does not include 0. Hyphens indicate that
the corresponding variable is excluded from the regression.
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Table 18: Posterior distribution of regression coefficients with addi-
tional control variables for GBP.

GBP

Subsample 01/04/1999− 06/30/2009

I II III IV

IRD+
t−1 Mean -0.072 -0.16 -0.14 -0.08

HPDI [−0.28 0.16] [−0.35 0.07] [−0.34 0.09] [−0.28 0.14]

IRD−
t−1 Mean 0.11 0.44 0.42 0.14

HPDI [−1.28 1.24] [−1.05 1.54] [−1.07 1.52] [−1.13 1.20]

rt−1 Mean -0.43 -0.45 -0.46 -0.43
HPDI [−0.68 − 0.21] [−0.68 − 0.23] [−0.71 − 0.22] [−0.67 − 0.21]

St−1 rt−1 Mean 0.73 0.76 0.78 0.72
HPDI [0.36 1.17] [0.37 1.16] [0.37 1.20] [0.35 1.12]

GVIXt−1 Mean -0.04 - - -0.03
HPDI [−0.09 0.02] [−0.09 0.03]

rFTSE
t−1 Mean - -3.87 - -3.72

HPDI [−7.93 0.33] [−7.68 0.32]

WDt Mean - - -0.02 0.00
HPDI [−0.17 0.12] [−0.13 0.12]

Subsample 07/01/2009− 12/29/2017

I II III IV

IRD+
t−1 Mean -2.23 -2.03 -1.74 -2.24

HPDI [−3.62 − 0.74] [−3.08 − 0.59] [−2.75 − 0.36] [−3.57 − 0.83]

IRD−
t−1 Mean 1.10 1.06 0.93 1.08

HPDI [0.24 2.02] [0.22 1.87] [0.14 1.79] [0.31 1.91]

rt−1 Mean -0.56 -0.55 -0.55 -0.57
HPDI [−0.86 − 0.30] [−0.87 − 0.28] [−0.84 − 0.29] [−0.87 − 0.30]

St−1 rt−1 Mean 0.80 0.79 0.74 0.79
HPDI [0.41 1.25] [0.39 1.30] [0.37 1.19] [0.39 1.27]

GVIXt−1 Mean 0.02 - - 0.03
HPDI [−0.04 0.09] [−0.03 0.09]

rFTSE
t−1 Mean - -4.16 - -4.10

HPDI [−10.03 2.11] [−10.20 1.84]

WDt Mean - - -0.33 -0.35
HPDI [−0.46 − 0.19] [−0.49 − 0.22]

Posterior mean estimates for our baseline SVX specification, augmented with three control
variables for GBP: lagged GVIX-7 levels (GVIXt−1), lagged national stock index return
(rFTSE

t−1 ), and an indicator variable for the week-of-the-day effect (WDt) taking value 0 if
the return has been recorded on a Monday or Friday, 0 otherwise. In brackets, we report the
90% HPDI obtained from the 5th and 95th percentiles of the posterior distribution. Bold
face entries denote estimates for which the 90% HPDI does not include 0. Hyphens indicate
that the corresponding variable is excluded from the regression.
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Table 19: Posterior distribution of regression coefficients with addi-
tional control variables for EUR.

EUR

Subsample 01/04/1999− 06/30/2009

I II III IV

IRD+
t−1 Mean -0.27 -0.17 -0.13 -0.27

HPDI [−0.56 0.09] [−0.44 0.17] [−0.41 0.18] [−0.55 0.08]

IRD−
t−1 Mean 0.40 0.34 0.32 0.40

HPDI [0.11 0.62] [0.09 0.53] [0.08 0.51] [0.13 0.60]

rt−1 Mean -0.67 -0.64 -0.65 -0.68
HPDI [−0.97 − 0.48] [−0.84 − 0.46] [0.87 − 0.45] [−0.96 − 0.48]

St−1 rt−1 Mean 1.24 1.19 1.19 1.25
HPDI [0.89 1.76] [0.86 1.57] [0.86 1.57] [0.89 1.76]

GVIXt−1 Mean 0.01 - - 0.02
HPDI [−0.05 0.06] [−0.05 0.06]

rSTOXX
t−1 Mean - -3.17 - -3.35

HPDI [−7.01 0.60] [−7.30 0.47]

WDt Mean - - -0.18 -0.21
HPDI [−0.31 − 0.07] [−0.35 − 0.08]

Subsample 07/01/2009− 12/29/2017

I II III IV

IRD+
t−1 Mean 0.82 0.17 0.38 0.83

HPDI [0.09 1.59] [−0.50 0.98] [−0.25 1.08] [0.13 1.61]

IRD−
t−1 Mean 0.33 0.55 0.43 0.28

HPDI [−0.11 0.70] [0.08 0.97] [0.01 0.83] [−0.13 0.66]

rt−1 Mean -0.56 -0.61 -0.55 -0.51
HPDI [−0.94 − 0.30] [−0.89 − 0.36] [−0.83 − 0.30] [−0.85 − 0.25]

St−1 rt−1 Mean 1.06 1.16 1.07 1.00
HPDI [0.61 1.76] [0.73 1.64] [0.64 1.55] [0.55 1.58]

GVIXt−1 Mean -0.08 - - -0.06
HPDI [−0.14 − 0.02] [−0.13 − 0.01]

rSTOXX
t−1 Mean - -3.86 - -3.41

HPDI [−9.52 2.21] [−8.62 2.40]

WDt Mean - - -0.54 -0.49
HPDI [−0.72 − 0.37] [−0.62 − 0.36]

Posterior mean estimates for the baseline SVX specification, with three control variables, for
EUR: lagged GVIX-7 levels (GVIXt−1), lagged national stock index return (rSTOXX

t−1 ), and
an indicator variable for the week-of-the-day effect (WDt) taking value 0 if the return has
been recorded on a Monday or Friday, 0 otherwise. In brackets, we report the 90% HPDI
obtained from the 5th and 95th percentiles of the posterior distribution. Bold face entries
denote estimates for which the 90% HPDI does not include 0. Hyphens indicate that the
corresponding variable is excluded from the regression.
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Table 20: Posterior distribution of regression coefficients with addi-
tional control variables for CHF.

CHF

Subsample 01/04/1999− 06/30/2009

I II III IV

IRD+
t−1 Mean - - - -

HPDI

IRD−
t−1 Mean 0.22 0.20 0.19 0.22

HPDI [0.11 0.30] [0.08 0.28] [0.07 0.26] [0.12 0.29]

rt−1 Mean -0.47 -0.45 -0.45 -0.47
HPDI [−0.66 − 0.30] [−0.63 − 0.30] [−0.62 − 0.29] [−0.67 − 0.30]

St−1 rt−1 Mean 0.96 0.93 0.90 0.95
HPDI [0.66 1.30] [0.65 1.25] [0.63 1.22] [0.64 1.31]

GVIXt−1 Mean 0.01 - - 0.02
HPDI [−0.02 0.04] [−0.01 0.04]

rSSMI
t−1 Mean - 1.50 - 1.41

HPDI [−2.76 5.78] [−2.87 5.75]

WDt Mean - - -0.17 -0.20
HPDI [−0.28 − 0.06] [−0.33 − 0.09]

Subsample 07/01/2009− 12/29/2017

I II III IV

IRD+
t−1 Mean - - - -

HPDI

IRD−
t−1 Mean 0.47 0.55 0.49 0.43

HPDI [0.19 0.79] [0.25 0.86] [0.20 0.81] [0.15 0.70]

rt−1 Mean -0.07 -0.06 -0.08 -0.05
HPDI [−0.19 0.05] [−0.19 0.07] [−0.21 0.05] [−0.17 0.07]

St−1 rt−1 Mean 0.45 0.47 0.48 0.43
HPDI [0.19 0.71] [0.20 0.75] [0.21 0.77] [0.17 0.70]

GVIXt−1 Mean -0.04 - - -0.02
HPDI [−0.08 0.01] [−0.07 0.02]

rSSMI
t−1 Mean - -4.27 - -3.75

HPDI [−11.02 2.30] [−10.35 2.80]

WDt Mean - - -0.45 -0.42
HPDI [−0.58 − 0.31] [−0.55 − 0.29]

Posterior mean estimates for the baseline SVX specification, with three control variables,
for CHF: lagged GVIX-7 levels (GVIXt−1), lagged national stock index return (rSSMI

t−1 ), and
an indicator variable for the week-of-the-day effect (WDt) taking value 0 if the return has
been recorded on a Monday or Friday, 0 otherwise. In brackets, we report the 90% HPDI
obtained from the 5th and 95th percentiles of the posterior distribution. Bold face entries
denote estimates for which the 90% HPDI does not include 0. Hyphens indicate that the
corresponding variable is excluded from the regression.
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Table 21: Posterior distribution of regression coefficients with addi-
tional control variables for JPY.

JPY

Subsample 01/04/1999− 06/30/2009

I II III IV

IRD+
t−1 Mean - - - -

HPDI

IRD−
t−1 Mean 0.14 0.12 0.11 0.13

HPDI [0.05 0.21] [0.00 0.19] [−0.01 0.18] [0.05 0.21]

rt−1 Mean -0.25 -0.24 -0.24 -0.25
HPDI [−0.42 − 0.08] [−0.42 − 0.07] [−0.42 − 0.08] [−0.43 − 0.08]

St−1 rt−1 Mean 0.69 0.68 0.67 0.68
HPDI [0.40 1.01] [0.37 1.00] [0.38 1.01] [0.37 1.01]

GVIXt−1 Mean 0.02 - - 0.02
HPDI [−0.02 0.07] [−0.02 0.07]

rNIKKEI
t−1 Mean - -0.32 - -0.53

HPDI [−3.66 3.12] [−3.85 2.96]

WDt Mean - - -0.04 -0.05
HPDI [−0.16 0.07] [−0.17 0.08]

Subsample 07/01/2009− 12/29/2017

I II III IV

IRD+
t−1 Mean - - - -

HPDI

IRD−
t−1 Mean 0.33 0.51 0.38 0.28

HPDI [−0.13 0.85] [0.00 1.01] [−0.08 0.88] [−0.15 0.76]

rt−1 Mean -0.25 -0.33 -0.32 -0.26
HPDI [−0.48 − 0.03] [−0.57 − 0.09] [−0.59 − 0.09] [−0.49 − 0.05]

St−1 rt−1 Mean 0.49 0.64 0.64 0.51
HPDI [0.11 0.89] [0.24 1.07] [0.23 1.09] [0.15 0.89]

GVIXt−1 Mean -0.05 - - -0.04
HPDI [−0.10 − 0.00] [−0.08 0.01]

rNIKKEI
t−1 Mean - 1.24 - 0.79

HPDI [−3.51 5.99] [−3.61 5.07]

WDt Mean - - -0.41 -0.34
HPDI [−0.57 − 0.24] [−0.47 − 0.21]

Posterior mean estimates for the baseline SVX specification, with three control variables, for
JPY: lagged GVIX-7 levels (GVIXt−1), lagged national stock index return (rNIKKEI

t−1 ), and
an indicator variable for the week-of-the-day effect (WDt) taking value 0 if the return has
been recorded on a Monday or Friday, 0 otherwise. In brackets, we report the 90% HPDI
obtained from the 5th and 95th percentiles of the posterior distribution. Bold face entries
denote estimates for which the 90% HPDI does not include 0. Hyphens indicate that the
corresponding variable is excluded from the regression.
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Figure 1: Link between weekly IRD and CTA, for the Australian and Canadian Dollar,
the Swiss Franc, the Euro, the British Pound and the Japanese Yen. Solid red: linear
regression function obtained with OLS. Dashed red: smoothed local linear kernel (LLK)
estimate. To avoid boundary effects, we only display the LLK estimate for values of the
predictor between the empirical quantiles at levels 2.5% and 97.5%.
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Figure 2: Posterior mean estimates of the regression effects (β) across 200 samples. The true
parameter value is indicated by the vertical black line.
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Figure 3: Estimated volatility process with the posterior mean displayed in blue and the
90% HPDI as gray shadowed area for t = 1, . . . , T . The true volatility process exp{ht}
is indicated by the cyan line.
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Figure 4: RMSEs for all parameters over 200 simulated samples. The first row contains
the RMSEs for the SV model with an AR(1) specification. The graphs in the second
row display the RMSEs for the SVX model.
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Figure 5: Posterior mean estimates for parameters in 200 samples. The first row contains
the results from estimating an AR(1) model for the volatility while the second row
displays estimates from the SVX model.
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Figure 6: Daily 3-month Libor rates from January, 4th 1999 to December, 29th 2017.
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Figure 7: Smoothed estimates of volatility for the two subsamples. The black line and
the gray shadowed area indicate the posterior mean and the 90 % credible interval for
the volatility exp{ht} in the AR(1) model. The cyan line indicates the posterior mean
of volatility exp{ht} in the extended model. The left column of the figure displays
estimates for the subperiod 01/04/1999 − 06/30/2009, the right column the results for
07/01/2009− 12/29/2017.
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