Validation of a virtual audience in VR environments

ETIENNE E. ^a

LECLERCQ A.-L.^{bcd}

REMACLE A. b

SCHYNS M.^a

^aQuantOM, HEC Liège, University of Liège ^b Département de Logopédie, Université de Liège ^c Unité de Recherche Enfances ^d Clinique Psychologique et Logopédique de l'Université de Liège

LIÈGE université
Psychologie, Logopédie
& Sciences de l'Éducation

Introduction

How to improve public speaking performances ?

Definitions

Valence: corresponds to how positively or negatively the attendee (avatar in our context) feels toward the speaker (with VR headset) or the presentation **Arousal:** audience member's level of alertness

Virtual environment for training 3-step process

ACCREDITE

CCREDITED

ACCRED

Outline

- I. Aims
- II. Experiment
 - i. Environment
 - ii. Avatars used
 - iii. Headsets used
 - iv. Attitudes
- III. Results
 - i. Valence and arousal in terms of the attitudes
 - ii. Drawn models VS Photorealisitc models
 - iii. Low-end headset VS High-end headset
- IV. Conclusions

Aims

Creation of a library of animated avatars

Creation of a library of animated avatars

- To understand how some attitudes of a virtual audience are perceived in <u>Virtual Reality</u> (valence – arousal)
- To study the impact of graphism used
- To study the impact of headset used

Experiment

Emotional valence and the level of arousal in VR

Avatars used

Sketched models

Photorealistic models

Photorealistic models : based on actual pictures

ÈGE

Headsets used

Low-end headset

- Basic quality
- Affordable
- Portability (smartphone and headset)
- No knowledge needed

High-end headset

- High quality
- Expensive (headset, computer)
- Heavy material
- Technical knowledge needed

Attitudes: Identify typical groups of attitudes

Postures and hands:

- P1: Backward posture Arms crossed
- P2: Backward posture –Arms stand (elbows on the table with hands crossed)
- P3: Backward posture Arms behind the head
- P4: Upright posture Hand on hand (hands on the table, one on top of the other)
- P5: Upright posture Hands together (hands crossed on the table)
- P6: Upright posture Hands separated in front
- P7: Forward posture Hands together
- P8: Forward posture Arms stand (elbows on the table with hands crossed)
- P9: Froward posture Arms crossed

Facial expressions:

- F1: None
- F2: Smiling
- F3: Frowning
- F4: Eyebrows raised

Head movements:

H1: None

H2: Nod

H3: Shake

H4: Questioning (head tilted at 45 degrees)

144 possible combinations

40 attitudes	Seq. 1	Seq. 2	Seq. 3	Seq. 4	Seq. 5	Seq. 6	Seq. 7	Seq. 8	Seq. 9	Seq. 10
	P1F3H4	P3F4H2	P7F2H2	P7F2H4	P7F3H3	P7F4H3	P7F4H4	P9F1H2	P9F2H3	P9F3H3
	Seq. 11	Seq. 12	Seq. 13	Seq. 14	Seq. 15	Seq. 16	Seq. 17	Seq. 18	Seq. 19	Seq. 20
	P2F2H3	P2F4H2	P3F3H3	P3F4H3	P4F4H1	P4F4H3	P5F3H1	P7F3H1	P8F4H1	P9F1H3
	Seq. 21	Seq. 22	Seq. 23	Seq. 24	Seq. 25	Seq. 26	Seq. 27	Seq. 28	Seq. 29	Seq. 30
	P2F1H2	P2F4H4	P3F1H2	P3F3H2	P3F4H4	P4F1H2	P5F1H4	P6F3H4	P7F1H1	P7F1H2
	Seq. 31	Seq. 32	Seq. 33	Seq. 34	Seq. 35	Seq. 36	Seq. 37	Seq. 38	Seq. 39	Seq. 40
	P1F3H1	P2F4H3	P3F2H3	P3F4H1	P4F1H3	P4F2H2	P6F3H3	P7F1H4	P7F4H3	P8F3H4

Experiment

- 125 participants
- 40 sequences of attitudes were tested
- 7-point Likert scale
- Gatineau Presence Questionnaire

Vidéo 1	Faible	1	2	3	4	5	6	7	Elevé
Valence		0	0	0	0	0	0	0	
Confiance		0	0	0	0	0	0	0	
Eveil		0	0	0	0	0	0	0	
Confiance		0	0	0	0	0	0	0	

Results

Valence and arousal in terms of the attitudes

Results for the sequences

- Analysis of the level of arousal and valence at a gesture level
- Analysis of the level of arousal and valence for the combinations

Valence per sequence

Arousal per sequence

Sequences

Valence:

- Most positive valence : Sequence 36 = P4F2H2= upright posture, hands on top of each other, neutral facial expression, and nodding the head
- Most negative valence : Sequence 14 = P3F4H3 = backward posture, hands behind the head, frowning eyes, and shaking the head

Arousal:

- Highest level of arousal : Sequence 11 = P2F2H3 = backward posture, elbows on the table, smiling face, shaking the head
- Lowest level of arousal : Sequence 30 = P7F1H2 = forward posture, hands together, neutral face, nodding the head

Library of animated avatars correspoding to some level of valence and arousal

	Negative valence	Neutral valence	Positive valence	
Low level of arousal	Ø	Seq. 27: P5F1H4	Ø	
		Seq. 29: P7F1H1		
		Seq. 30: P7F1H2		
Neutral arousal	Seq. 07: P7H4H4	Seq. 15: P4F4H1	Seq. 02: P3F4H2	
	Seq. 19: P8F4H1	Seq. 22: P2F4H4	Seq. 26: P4F1H2	
		Seq. 25: P3F4H4		
		Seq. 34: P3F4H1		
High level of arousal	Seq. 01: P1F3H4	Seq. 23: P3F1H2	Seq. 03: P7F2H2	
	Seq. 05: P7F3H3	Seq. 24: P3F3H2	Seq. 04: P7F2H4	
/	Seq. 06: P7F4H3	Seq. 38: P7F1H4	Seq. 08: P9F1H2	
	Seq. 09: P9F2H3		Seq. 12: P2F4H2	
	Seq. 10: P9F3H3		Seq. 21: P2F1H2	
	Seq. 11: P2F2H3		Seq. 36: P4F2H2	
	Seq. 13: P3F3H3			
	Seq. 14: P3F4H3			
	Seq. 16: P4F4H3			
	Seq. 17: P5F3H1			
	Seq. 18: P7F3H1			
	Seq. 20: P9F1H3			
	Seq. 28: P6F3H4			
	Seq. 31: P1F3H1			
	Seq. 32: P2F4H3			
	Seq. 33: P2F2H3	/		
\backslash	Seq. 35: P4F1H3			HFC
· · · · · · · · · · · · · · · · · · ·	Seq. 37: P6F3H3			Management Sch
	Seq. 39: P7F4H3			
	Seq. 40: P8F3H4			

Table 7: Sequences per level of valence and arousal

Liège Université

Drawn VS Photorealisitc models

Sketched models VS Photorealistic models

- Similar results for both models in terms of the emotional valence and the level of arousal
- Confidence level improved with photo-realistic avatars for both the emotional valence and the level of arousal

anagement School - Liège Université

Low-end VS High-end headsets

Low-end VS High-end

- Similar results for valence
- Higher level of arousal with high-end headset
- Similar results for confidence level
- Quality of immersion improved with high-end headset :

Presence

Realism

Spatial Awareness

Conclusions

Conclusions & Future work

- Creation of a library of animated avatars associated with some levels of arousal and valence to be used in a VR training environment.
- Photorealistic avatars improved the confidence level
- High-end headset improved the quality of immersion but low-end headset can be used for this purpose (similar results)

Next steps:

- Detection of emotions
- Autonomous audience
- Training environment

Thank you

Annexe

Table 6: P-values and interpretations of the test where the null hypothesis is $p_- = p_+$ for the valence and arousal per sequence

				Arousal						
Sequence	Interpretation	Prope	ortions	P-value	Interpretation	Interpretation	Prop	ortion	P-value	Interpretation
	non-verbal	p_{-}	p_+			non-verbal	p_{-}	p_+		
	behaviour					behaviour				
1: P1F3H4		70%	8%	< 0.0001	-	+++	20%	48%	0.066	/
2: P3F4H2	+	16%	52%	0.0162	+	+++	34%	48%	0.3961	/
3: P7F2H2	//+	10%	82%	< 0.0001	+	+ + +	10%	80%	< 0.0001	+
4: P7F2H4	//-	6%	56%	0.0007	+	+++	24%	54%	< 0.0001	+
5: P7F3H3	/	78%	2%	< 0.0001	-	+++	22%	60%	0.0109	+
6: P7F4H3	/	78%	12%	< 0.0001	-	+++	14%	72%	0.0001	+
7: P7F4H4	/	46%	8%	0.0109	-	+++	40%	50%	0.5716	/
8: P9F1H2	-/+	8%	60%	0.0004	+	+++	16%	68%	0.0004	+
9: P9F2H3	-/-	56%	24%	0.0339	-	+++	12%	72%	< 0.0001	+
10: P9F3H3		88%	8%	< 0.0001	-	+++	6%	78%	< 0.0001	+
11: P2F2H3	-/-	68%	18%	0.0007	-	+++	2%	82%	< 0.0001	+
12: P2F4H2	+	8%	78%	< 0.0001	+	+ + +	12%	72%	< 0.0001	+
13: P3F3H3		90%	8%	< 0.0001	-	+++	6%	76%	< 0.0001	+
14: P3F4H3		90%	6%	< 0.0001	-	+++	16%	62%	0.0019	+
15: P4F4H1	/	32%	18%	0.3961	/	+++	34%	48%	0.3961	/
16: P4F4H3	/	84%	10%	< 0.0001	-	+++	18%	70%	0.0004	+
17: P5F3H1		60%	14%	0.0019	-	/++	24%	50%	0.0897	/
18: P7F3H1	/	72%	8%	< 0.0001	-	+ + +	20%	68%	0.0011	+
19: P8F4H1		44%	8%	0.0162	-	/++	48%	36%	0.4795	/
20: P9F1H3	-/-	88%	4%	< 0.0001	-	+ + +	20%	68%	0.0011	+
21: P2F1H2	-/+	8%	75%	< 0.0001	+	+++	12%	73%	< 0.0001	+
22: P2F4H4		32%	28%	0.8174	/	+++	32%	53%	0.1036	/
23: P3F1H2	-/+	30%	51%	0.106	/	+++	20%	55%	0.0039	+
24: P3F3H2	+	42%	41%	1	/	+++	21%	55%	0.0056	+
25: P3F4H4		38%	27%	0.3556	/	+++	40%	43%	0.9081	/
26: P4F1H2	// +	11%	69%	< 0.0001	+	+++	37%	44%	0.6442	/
27: P5F1H4	-/-	28%	31%	0.9081	/	/++	55%	32%	0.0647	-
28: P6F3H4		44%	24%	0.106	-	+++	20%	64%	0.0002	+
29: P7F1H1	//-	35%	25%	0.4884	/	+++	53%	31%	0.0647	-
30: P7F1H2	1 //+	29%	48%	0.1333	/	+++	57%	32%	0.0377	-
31: P1F3H1		51%	16%	0.0039	-	+++	20%	56%	0.0027	+
32: P2F4H3		82%	7%	< 0.0001	-	+++	8%	73%	< 0.0001	+
33: P3F2H3	-/-	78%	11%	< 0.0001	-	+++	20%	65%	0.0001	+
34: P3F4H1		41%	27%	0.2482	/	+++	37%	35%	0.9081	/
35: P4F1H3	//-	76%	11%	< 0.0001	-	+++	9%	72%	< 0.0001	+
36: P4F2H2	//+	7%	84%	< 0.0001	+	+++	11%	77%	< 0.0001	+
37: P6F3H3		87%	9%	< 0.0001	-	+++	5%	83%	< 0.0001	+
38: P7F1H4	//-	33%	39%	0.729	/	+ + +	21%	63%	0.0005	+
39:P7F4H3	/	83%	8%	< 0.0001	-	+++	25%	56%	0.0111	+
40: P8F3H4		48%	25%	0.0647	/	/++	21%	64%	0.0003	+

EFMD

EPAS

ACCREDITED

