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quet and Jorge Íñiguez. I am grateful to you both for your helpful discussions, support,

and patience throughout my Ph.D. studies, thank you. I like to thank Philippe Ghosez

for his discussions and help with my thesis and for creating such a great group. I also

would like to give my gratitude to the members of the Phythema group, William, Sergei,

Marcus, Jordan, Fabio, Daniel, Louis, Hamideh, Danila, Sebastien, Yajun, Camilo,

Alexander, Wenyi. My special thanks go to He Xu for all his help during my Ph.D.,

especially with the TB2J code.

I spent 6 months in Luxembourg in Jorge’s group. I thank him again for supporting

me during this time and for all the help with administrative affairs. During this time,

I met very welcoming and nice people and I like to thank them for making staying

in Luxembourg much pleasant thank you, Hugo, Cosme, Monica, Mauro, Constance,

Sangita, Diana, and Mael.

I would like to acknowledge my collaborators from Delft University. We have had a very

good collaboration and I learned a lot. Thank you, Andrea, Jorrit, and Dima.

I also want to say special thanks to my financial support from FRS-FNRS FRIA. I also

acknowledge the CECI supercomputer facilities.

I would like to give my gratitude to my parents and my family, without the help and

emotional support of whom I would not be able to start and finish this journey.

Thank you all.

ii



Abstract In this thesis, we have studied the magnetic and multiferroic properties of

rare-earth orthoferrite perovskites. The main goal has been addressing the magnetic

properties of this family of materials and explaining some magnetic behaviors observed

in them (i.e., spin reorientation and magnetization reversal). We have started from a

Heisenberg model and developed an analytical model which includes exchange inter-

actions, Dzyaloshinskii–Moriya interactions, and SIA which is then fitted against the

first-principles calculations. Using our model and classical spin dynamics we can repro-

duce the unique magnetic behaviors which allow us to study the origin of these behaviors.

From these considerations, we have concluded that the Dzyaloshinskii–Moriya interac-

tions between the rare-earth atoms and the transition metal atoms play the main role

in creating the spin reorientation and magnetization reversal.

We have also used our model to study the magnetoelectric response in GdFeO3. Having

a large and nonlinear magnetoelectric response, GdFeO3 has gained a lot of attention re-

cently. Using our model, we can reproduce the large and nonlinear response of GdFeO3.

This model was then used to study the origin of this behavior. In this study, we have

shown that the non-linear nature of the magnetoelectric response in these materials

comes from the fact that antiferromagnetic order changes nonlinearly under an applied

magnetic field. Since the antiferromagnetic ordering of the rare-earth site creates the

electric polarization, its nonlinear changes with the applied magnetic field will create a

nonlinear magnetoelectric response.

Finally, we (a collaboration with Andrea Caviglia’s group) have studied the magnetic

phase transition in DyFeO3(a member of rare-earth orthoferrites) from a completely

antiferromagnetic state to a weakly ferromagnetic state induced by ultra-short laser

pulses. This phase transition is very fast (in the picosecond time scale) and could have

lots of technological interest, especially in the spintronics domain. In this study, we

have shown that the mechanism behind this phase transition is the so-called non-linear

phononics which is faster than other mechanisms like heat dissipation. In non-linear

phononics, using laser pulses, it is possible to excite infra-red active phonons with a

large amplitude which due to the coupling with low-frequency Raman modes, can create

a magnetic phase transition.
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Résumé Dans cette thèse de doctorat, nous avons étudié les propriétés magnétiques

et multiferröıques des pérovskites d’orthoferrite de terres rares. L’objectif principal a

été d’aborder les propriétés magnétiques de cette famille de matériaux et d’expliquer

certains comportements magnétiques qui y sont observés (c’est-à-dire la réorientation

de la direction des spins et l’inversion de l’aimantation en fonction de la température).

Nous sommes partis d’un modéle de Heisenberg et avons développé un modéle ana-

lytique qui inclut les interactions d’échange, les interactions Dzyaloshinskii-Moriya et

l’anisotropie magnétique qui sont ensuite ajustés sur des calculs ab-initio. En utilisant

notre modéle et la dynamique de spin classique, nous avons pu reproduire les com-

portements magnétiques uniques qui nous permettent d’étudier l’origine de ces com-

portements. à partir de ces considérations, nous avons conclu que les interactions

Dzyaloshinskii-Moriya entre l’atome de terre rare et l’atome de métal de transition

jouent le rôle principal dans la création de la réorientation du spin et de l’inversion

de l’aimantation.

Nous avons également utilisé notre modèle pour étudier la réponse magnétoélectrique

dans GdFeO3. Ayant une réponse magnétoélectrique importante et non linéaire, le

GdFeO3 a récemment attiré beaucoup d’attention. En utilisant notre modèle, nous

pouvons reproduire la réponse large et non linéaire de GdFeO3. Ce modèle a ensuite été

utilisé pour étudier l’origine de ce comportement. Dans cette étude, nous avons montré

que la nature non linéaire de la réponse magnétoélectrique dans ces matériaux vient

du fait que l’ordre antiferromagnétique change de manière non linéaire avec un champ

magnétique. Etant donné que l’ordre antiferromagnétique du site de terres rares créé la

polarisation électrique, ses changements non linéaires sous champ magnétique appliqué

créent une réponse magnétoélectrique non linéaire.

Enfin, nous (en collaboration avec le groupe d’Andrea Caviglia) avons étudié la transition

de phase magnétique dans DyFeO3 (un membre des orthoferrites de terres rares) d’un

état complètement antiferromagnétique à un état faiblement ferromagnétique induit par

des impulsions laser ultra-courtes. Cette transition de phase est très rapide (à l’échelle

de la picoseconde) et pourrait avoir un grand intérêt technologique, notamment dans le

domaine de la spintronique. Dans cette étude, nous avons montré que le mécanisme à

l’origine de cette transition de phase est ce qu’on appelle la phononique non linéaire, c’est

pourquoi elle est plus rapide que d’autres mécanismes comme la dissipation thermique.

En phononique non linéaire, en utilisant des impulsions laser il est possible d’exciter des

phonons actifs infrarouges avec une grande amplitude qui, en raison du couplage avec des

modes Raman basse fréquence, peuvent créer une transition de phase magnétique. Nous

avons montré que dans DyFeO3, la rectification des modes Raman en conséquence du

iv
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mode d’excitation infrarouge actif modifie les interactions magnétiques entre les terres

rares et le fer et crée une transition de phase magnétique.
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Chapter 1

Theoretical considerations

1.1 Magnetism

Magnetism was discovered in the ancient world when people noticed the attraction of

iron to Lodestone [1], since then, this phenomenon has been a mystery. In 1820, Ørsted

accidentally found an interaction between electricity and magnetism and discovered that

an electric current can create a magnetic field[2]. Following Ørsted’s discovery, several

other scientists discovered different relations between electricity and magnetism. By the

second half of the nineteenth century, Maxwell’s equations established a solid foundation

to explain most of the phenomena that we observe in nature by uniting all the knowledge

that mankind had regarding electricity and magnetism thus far[3].

Although mankind had a great understanding of electricity and magnetism, the origin of

magnetism in materials was still a mystery. The first attempt to explain the magnetism

in the material was based on the dipole moments that are resulted from circular electronic

current, and the dipole-dipole interaction between these moments. This model was not

successful in explaining the high-temperature magnetism observed in materials (since

these interactions are very weak to survive in observed magnetic ordering temperature).

A correct explanation of magnetism in materials had to wait until the twentieth century

and the formulation of quantum mechanics. Since magnetism has a quantum origin,

quantum mechanics is needed for it to be explained.

Magnetic interactions in the material have different origin and these become important

at various temperatures and result in different properties. These interactions can be

divided into different groups based on their magnitude. In Fig. 1.1 we are showing dif-

ferent magnetic interactions magnitudes. The exchange energy that creates the magnetic

moments in atoms (with a magnitude of ∼1 eV) shown on the right-hand side of the

1



Chapter 1 2

Fig. 1.1, is one order of magnitude larger than the interactions that order these moments

in materials (with a magnitude of ∼0.1 eV shown on the middle part of the Fig. 1.1).

The interactions that have a relativistic origin, like magnetocrystalline anisotropy, are

in the µeV range (These are at the left-hand side of the Fig. 1.1). Since the interactions

that create atomic moments are very large, we can consider the magnetic moments of

the atoms as constant in the temperature range that we are interested in. The mag-

netic behaviors and properties that we study are coming mainly from the rotation and

ordering of these atomic moments.

Figure 1.1: Magnitude of different magnetic interactions (the units are eV). On the
right hand side there is magnetic moment formation in atoms where the exchange
interaction magnitude is in ∼eV order. In the middle, there is the exchange interaction
between atoms with ∼0.1 eV order. At the left hand side, the interactions which have

spin orbit coupling as their origin are positioned with ∼ µeV order.

We need to mention that, although we are considering atomic magnetic moments con-

stant in this work, there are structures and atoms in which this is not the case. In these

structures, the crystal field splitting (Crystal field is a static electric field produced by a

surrounding charge of anion atoms) of the atomic levels are larger compared to exchange

interactions. For such compounds, the high spin ordering which is favored by exchange

interaction has higher energy due to the large energy difference created by the crystal

field of the structure. In these structures, the electrons transform from high spin to low

spin, which changes the total magnetic moment of the atoms [see Fig. 1.2].

In this section, we are going to give a brief overview of magnetism and its quantum

mechanical origin. To develop the models to describe the magnetic behaviors of the

materials, we will start from intra-atomic exchanges to explain the origin of the formation

of magnetic moments in atoms. Then we will continue to present exchange interaction

models in materials that can be used to describe Long-range order and different magnetic

properties of the materials resulting from atomic magnetic moments. In this section,

the main idea is to define different terminology and parameters that we need and the

simple derivation and origin of these parameters, since already there is a good number

of literature devoted to complete derivation of these parameters.
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Figure 1.2: Schematic presentation of high spin (left) to low spin (right) transition
for d5 orbitals. The red lines show the energy levels for down spins while the blue lines
show the energy levels for up spins. On the left, the atom is in the high spin state
with all the spins ordering in the same direction (Splitting of the energy levels due
to exchange interaction and crystal field are shown by Ex and CF respectively ). On
the right, the crystal field has split the levels more than exchange interaction between

electrons and has made a transition from high spin to low spin state.

1.1.1 Intra-atomic exchange and atomic magnetic moments

To study the origin of atomic magnetic moments, we are going to start by introducing

atomic energy levels and orbitals. The simplest model to describe atomic levels and

orbitals is the hydrogenic atom. In this model, we need to solve the Schrödinger equation

for a hydrogenic atom. The Schrödinger equation for hydrogenic atom can be developed

as Eq. 1.1 (we are considering the equation in atomic units):

− 1

2
∇2φn(r)− Z

r
φn(r) = Enφn(r) (1.1)

Where Z is an effective nuclear charge and ∇2 is the second derivative with respect to

space coordinates and φn(r) is a single particle wave function. Solving this equation

will give the spatial distribution of electronic wave functions (i.e., φn(r)) and their

corresponding energy levels (i.e., En).

Solving this equation will give the wavefunction of the following form:

φn(r,Θ, ϕ) = Rnl(r)Ylm(Θ, ϕ) (1.2)

where n, l,m are quantum numbers describing the wavefunctions. The Rnl(r) describes

the radial dependence of the wavefunctions and the Ylm(Θ, ϕ) gives the angular depen-

dence of the wavefunctions.

Eigenvalues of this equation are atomic shells with principal quantum number n with

energy:

En ∝ −
1

n2
(n = 1, 2, 3, ...) (1.3)
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and each energy level has a shell with n2 degeneracy. To label these degenerate levels,

l and m quantum numbers are used. Each shell has n sub shells (e.g., n=3 : s(l = 0),

p(l = 1), d(l = 2)) and each of these sub shells in turn has 2l + 1 states (m = −l,−l +

1, ..., l + 1, l). The values of m in these wave functions are proportional to the orbital

angular magnetic moment of the electron.

In Fig .1.3, we are presenting schematics of atomic wave functions with different l and

m. For l = 0 (s orbitals), there is only m = 0 for which the orbital angular momentum

is zero (red orbital in Fig. 1.3). For l = 1 (p orbitals), m can have m = −1, 0, 1 which

is presented by py, pz, px corresponding to orbitals with angular momentum of -1,0,1

(yellow orbitals in Fig. 1.3). The same principle applies to other shells such as d and

f orbitals as shown in Fig. 1.3. These orbitals and shells are the basis on which more

complex and multi-electron atoms can be described. Filling these orbitals with more

than one electron follows the Pauli exclusion principle. This principle is guaranteed if

the many-particle wavefunctions are written anti-symmetric with respect to the exchange

of particles (i.e, the sign of the wavefunctions will change if we exchange two particles).

Figure 1.3: Schematic presentation of atomic orbitals for s (red sphere), p (yellow
orbitals), d (blue orbitals) and f (green orbitals) (Figure adapted from [4]).

When there are more than one electron in an atom, the Schrödinger equation must

include the coulomb interaction between electrons too. So the Schrödinger equation for

a two electron atom is written as:

− 1

2
∇2ψ(r1, r2) + Vc(r1, r2)ψ(r1, r2)− Z

r
ψ(r1, r2) = Eψ(r1, r2) (1.4)
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where Vc is the Coulomb interaction between two electrons. Solving this equation is

a demanding and most of the time impossible task. The first step to solve this equa-

tion is to use approximation to many-particle wavefunction (i.e., ψ(r1, r2)). One com-

mon method is to consider ψ(r1, r2) as a product of single-particle wavefunctions (i.e.,

ψ(r1, r2) = φ1(r1)φ2(r2)). Since this product should agree with the Pauli exclusion

principle, these products should be symmetrized. Writing Slater determinant of the

single-particle wavefunctions solves this inconsistency and gives wavefunctions that are

consistent with the Pauli exclusion principle (to be discussed in sec 1.2).

According to the Pauli exclusion principle, no electrons can have the same quantum

numbers in an atom. This means that there can be two electrons in the same orbital only

with different spins. So, for a two-electron atom, When one electron fills an orbital, the

second electron can have two possible choices. How the electrons fill the orbitals [either

Fig. 1.4 (a) or Fig. 1.4 (b)] is determined by exchange interaction between electrons.

This interaction is coming from the fact that the wave function describing these states

should be antisymmetric (Pauli exclusion principle). The energy difference between two

cases (i.e., Fig. 1.4 (a) and Fig. 1.4 (b)) is called exchange interaction and it is defined

as:

Figure 1.4: Schematic representation of the electrons filling degenerate orbitals in an
atom. a) Parallel spins (↑↑) state. b) Antiparallel spins (↑↓)

Eex = (E↑↑ − E↑↓)/2 (1.5)

Because each electron has an intrinsic magnetic moment (i.e., spin), this shows that

either the magnetic moment from two electrons in an atom would be 2µB ( Eex < 0,

Fig. 1.4 (a)) or zero (Eex > 0, Fig. 1.4 (b)). To calculate the exchange interaction for

a two electron system, we need to solve Schrödinger equation for two particle system

(i.e., Eq.1.4) in two electronic configurations (i.e., ↑↑ and ↑↓ ). In this case the exchange

interaction in an atom (as defined in 1.5) with two electron can be written as:
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Jatex =

∫∫
φ∗1(r, σ)φ∗2(r′, σ′)Vcφ1(r′, σ′)φ2(r, σ)dV dV ′ (1.6)

Where Vc is the Coulomb repulsion between two electrons and φi(r, σ) is a single particle

state for an electron at position r with spin σ. This interaction is coming from considering

the electronic wavefunction as Slater determinants. This interaction is zero for electrons

with opposite spin direction while non zero for the electrons with spins in the same

direction. This interaction has an opposite sign compared to Coulomb interaction and

lowers the energy which forces the electrons to fill different orbitals with the same spin.

This interaction is at the origin of observed magnetic moments in atoms. So, when

electrons fill the orbitals, they will fill different degenerate levels (e.g., for l=2, ml =

−2,−1, 0, 1, 2) with the same spin direction, and then the magnetic moment will be the

sum of the spin magnetic moments and orbital magnetic moments of all the electrons.

The magnetism of the atoms is mainly coming from d (l = 2) or f (l = 3) orbitals. Each

electron occupying these levels will have an orbital angular magnetic moment m and a

spin magnetic moment s. Since these two have angular momentum characters, we can

use vector algebra to define a total magnetic moment for an atom coming from the sum

of orbital and spin magnetic moments. There are two approaches to calculate the total

magnetic moment of an atom that has more than one electron (i.e., Russel-Saunders

coupling and jj coupling). Depending on the magnitude of the spin-orbit interaction

(SOI), either of these two schemes can be used. SOI is an interaction with relativistic

origin and couples l and s magnetic moments through a term which is proportional to

l.s [see 1.2.5]. When SOI is not very strong, the first coupling scheme is used ( i.e., the

L-S or Russel-Saunders coupling scheme). In this scheme, the total orbital moments

and spin moments of an atom are calculated separately and summed to give the atomic

magnetic moment. The total orbital moment is L =
∑

i li for electrons filling this orbital

and the total spin moment is S =
∑

i si, from which the total atomic moment can be

calculated as J = L+ S.

For heavy atoms, where there is a strong SOI, the Second method is used to calculate

the moments of the atoms (i.e., jj scheme). The total moment of the atoms in this

model is J =
∑

i ji where ji is the total magnetic moment of each electron in the atom

with ji =
∑

i Li ±
1
2~ for each electron (± shows the direction of spin with respect to

orbital angular momentum).

Studying material has shown that for most of the structures we have J ≈ S. This

shows that the J of an atom does not have any L component. This phenomenon is

called angular momentum quenching. This is arising from the fact that the crystal field

will mix the wave functions to form standing waves. These standing waves are linear

combinations of different orbitals with different angular momentum. This mechanism
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forces wave functions of the form |+2 > +|−2 > to be formed for electrons where |±2 >

are wave functions with angular momentum ±2. This would make the expectation value

of angular momentum for this wave function zero since its angular momentum will be the

sum of the angular momentum of the two components of the wave function (i.e., |±2 >).

This quenching competes with the spin-orbit coupling which can cause unquenching of

the angular momentum.

When put in a magnetic field, the electrons will behave according to the Zeeman inter-

action. The Zeeman theory states that the energy of the electron in a magnetic field

is:

Ez = gµ0µrS.Hext (1.7)

where g is called the landé g factor, µ0 is the vacuum permeability and µr is the relative

permeability of the material. The g is a proportionality constant between the Zeeman

energy and the applied magnetic field (Hext) multiplied by magnetic moment (S) as:

g =
Ez

µ0µrSHext
(1.8)

The g is equal to 2 for pure spins and 1 for pure orbital moment. But when we consider

coupled spin and orbital moment (i.e J), the landé g factor for J should be projected

to L+ S. The landé g factor for atomic moment J = L+ S is equal to:

gJ =
3

2
+

1

2

S(S + 1)− L(L+ 1)

J(J + 1)
(1.9)

So that the energy of an atom with J moment in the magnetic field would be

Hz = gJµ0µrJHext (1.10)

In this part, we have presented the origin of ionic magnetic moment and how to calculate

the total magnetic moment of an atom, we will continue by presenting models that

describe the interactions of these moments in materials that create long-range orders in

materials.

1.1.2 Inter atomic exchange models

To develop a model to describe the exchange interaction between atomic moments in a

material, we will start by introducing appropriate Hamiltonian and wave functions to
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be used in deriving the formulas for a two-atom model. If we consider our model to be

as represented in Fig. 1.5 (a), we can write the Schrödinger equation for this model as:

−
2∑
i=1

1

2
∇2
iψ(r1, r2) + Vc(r1 − r2)ψ(r1, r2)

+
∑
I,i

VeI(ri −RI)ψ(r1, r2) = Eψ(r1, r2)

(1.11)

Where Vc is the electron electron Coulomb interaction and VeI is the nuclei electron

interaction. ψ(r1, r2) is the two electron wave function and it can be written as a linear

combination of the products of two single electron wave function (i.e., φi(r)). If we

consider our single electron wave functions to be orthonormal (i.e., < φ1(r1)|φ2(r2) >=

δ1,2, Wannier like wave functions), then we can write our state as:

Figure 1.5: Schematic representation of magnetic ordering in a two atom model. a)
Ferromagnetic ordering, b) Antiferromagnetic ordering

ψ(r1, r2) = c1φ1(r)φ1(r′) + c2φ1(r)φ2(r′) + c3φ2(r)φ1(r′) + c4φ2(r)φ2(r′) (1.12)

In this equation φ1(r)φ1(r′) and φ2(r)φ2(r′) represent electrons in the same orbital with

opposite spins (Fig. 1.5 (b)), while φ1(r)φ2(r′) and φ2(r)φ1(r′) represent two electrons

in different atoms (Fig. 1.5 (a)). To solve the Schrödinger equation for this system we

will define following parameters: The on-site Coulomb interaction between two electrons

is defined as:

U =

∫∫
φ1(r)∗φ1(r′)∗Vc(r, r

′)φ1(r)φ1(r′)dV dV ′ (1.13)

while the exchange interaction is defined by JD as:

JD =

∫∫
φ1(r)∗φ2(r′)∗Vc(r, r

′)φ2(r)φ1(r′)dV dV ′ (1.14)

and we define the transfer integral or hopping integral as:
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t = −1

2

∫∫
φ1(r)∗φ2(r′)∗∇2φ1(r)φ2(r′)dV dV ′ (1.15)

If we solve the Schrödinger equation, Eq. 1.11, with Eq. 1.12 as wavefunction, and using

the parameters Eq. 1.13, Eq. 1.14 and Eq. 1.15 we can write it as:

H = 2E0 +


U t t JD

t 0 JD t

t JD 0 t

JD t t U

 (1.16)

By diagonalising this Hamiltonian (Eq.1.16) we can write its eigenstates as:

|1 >=
1√
2

(
φ1(r)φ2(r′)− φ2(r)φ1(r′)

)
(1.17)

Where electron one is in one atom and electron two is on the other one. Since the

wavefunction is antisymmetric we will have symmetric spin functions (i.e., ferromagnetic)

|2 >=
1√
2

(
φ1(r)φ1(r′)− φ2(r)φ2(r′)

)
(1.18)

In this state, electron one and electron two are located on the same atom and the wave

function is symmetric which forces the electrons to have an antiferromagnetic state (due

to Pauli’s exclusion principle).

|3 > =
sin(χ)√

2

(
φ1(r)φ1(r′) + φ2(r)φ2(r′)

)
+
cos(χ)√

2

(
φ1(r)φ2(r′) + φ2(r)φ1(r′)

) (1.19)

|4 > =
cos(χ)√

2

(
φ1(r)φ1(r′) + φ2(r)φ2(r′)

)
− sin(χ)√

2

(
φ1(r)φ2(r′) + φ2(r)φ1(r′)

) (1.20)

with tan(2χ) = −4t/U . In the states |3 > and |4 >, since the wavefunctions are

symmetric the spins are going to be antisymmetric (i.e., antiferromagnetic states) . The

corresponding eigenvalues for these states are:
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E1 = 2E0 − JD (1.21)

E2 = 2E0 + U − JD (1.22)

E3 = 2E0 +
U

2
+ JD −

√
4t2 +

U2

4
(1.23)

E4 = 2E0 +
U

2
+ JD +

√
4t2 +

U2

4
(1.24)

Now that we have the energies for different states, we can calculate the exchange ac-

cording to its definition (i.e 1
2(E3 − E1)):

Jdirex = JD +
U

4
−
√
t2 +

U4

16
(1.25)

Although a very simple model is used to derive the exchange interaction, it explains

quite well the exchange interaction in more complex systems. This exchange is called

direct exchange interaction.

In the equation 1.25, among the parameters defining the exchange interaction between

two atoms, JD is small compared to U and t, while, U and t are on the same order.

This is because JD is proportional to the overlap of the orbitals on two different atoms

(i.e., φ1(r)∗φ2(r)) while U and t are proportional to the square of the wavefunctions

(i.e., charge density φ1(r)∗φ1(r)). Since U and t are on the same order, their relative

magnitude can determine the magnetic ordering of the system. Fig. 1.6 shows the relative

change of different eigenstates energies of the model as a function of the t parameter. As

can be seen in the figure 1.6, for low values of t, the model prefers to be in Ferromagnetic

state (state |1 >), while as t value increases, we can see a particular transition point

where the antiferromagnetic state (state |3 >) becomes lower in energy and becomes the

stable state of the model.

1.1.3 Other types of exchange interactions

The exchange interaction developed in the previous section describes the exchange in-

teraction when two atoms are neighbors and it is a direct exchange. Superexchange (SE)

interaction is the exchange interaction between magnetic ions separated by a ligand atom

[see Fig. 1.8]. This exchange was discovered by Kramers in 1934 [6]. The superexchange
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Figure 1.6: Energy of different states as a function of Hopping parameter t. The
states |1 > and |2 > are independent of the t parameter, while for states |3 > and |4 >
the energy changes. The two spheres showing the state of the spin in the two atoms

model [5].

interaction has been derived analytically by Anderson using second-order perturbation

of the exchange [7]. In his work he has shown that this interaction can be written as:

JSEex =
2t2

U
(1.26)

where t is the transfer between two orbitals defined as:

t = −1

2

∫∫
φ1(r)∗φ2(r′)∗∇2φ1(r)φ2(r′)dV dV ′ (1.27)

and U is the on-site Coulomb repulsion of the electrons or Hubbard interaction defined

as:

U =

∫∫
φ1(r)∗φ1(r′)∗Vc(r, r

′)φ1(r)φ1(r′)dV dV ′ (1.28)

The U and t in this exchange are similar to direct exchange but the difference is in the

single-particle wavefunctions that Anderson has defined. These wave functions are mixed

with ligand atoms wave functions and are orthonormal to each other. Superexchange

is antiferromagnetic when there is overlap between orbitals and becomes ferromagnetic

when the overlap is zero; in this case, the exchange is of direct exchange type (Kanamori-

Goodenough-Anderson rules).

Double exchange is also a different mechanism of exchange. This type of exchange is

responsible for the magnetization of systems with different valence charge (e.g., Fe+2
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and Fe+3 in Fe3O4). This interaction is coming from an extra electron that can move

from one atom to another, hence creating a direct interaction between atoms which

results in ferromagnetic exchange interaction. This interaction is similar to the exchange

interaction proposed by Zener [8].

Similar to double exchange, there are also interactions of magnetic ions placed into

a conducting electrons gas with Fermi wavevector kF . This mechanism is studied by

Ruderman, Kittel, Kasuya, and Yosida [9–11]. They have shown that this interaction

can result in an exchange with the following relation:

J(R)rkky = J0
2KFRcos(2kFR)− sin(2kFR))

(2kFR)4
(1.29)

Where R is the distance between two magnetic ions. This interaction has an oscillatory

dependence on the distance between two atoms.

1.1.4 Magneto crystalline anisotropy

The models that have been developed in the previous part are not complete and they are

not capable of describing some of the magnetic properties of materials that have been

observed experimentally (Hysteresis and coercivity). To extend the model we need to in-

clude some other interactions. One such interaction is the magnetocrystalline anisotropy

(MCA) (i.e the dependence of the magnetic energy on the direction of the magnetiza-

tion with respect to crystalline direction). The main mechanism responsible for MCA

is the interaction between crystal field and the spin through spin-orbit coupling [12].

The same mechanism is also explaining the orbital moment and magnetoelasticity and

magnetoresistance.

A model to study the directional dependence of magnetism in materials is through the

phenomenological modeling of MCA. The simplest phenomenological model to capture

directional dependence of the magnetism in materials is using the following equation:

Ea = K1Sin
2(θ) (1.30)

Where K is the anisotropy constant and θ gives the angle between the easy axis in

crystalline direction and spin direction [see fig. 1.7]. In this model, K1 > 0 gives easy-

axis type material in which the magnetic direction is in θ = 0, while K1 < 0 gives easy

plane type magnetization where the magnetic moments of the materials order in a plane

in θ = π/2 and it is free to rotate in this plane.
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To make the model more complete, we can include the dependence of the magnetic

energy on azimuths angle [See figure 1.7 for the definition of the angles]. The Eq. 1.30

that is describing the MCAs has uniaxial symmetries and to extend this model to include

non-uniaxial symmetries we can use the equation:

Ea = (K1sin
2(θ) +K ′1sin

2(θ)cos(2φ) (1.31)

This equation is more general 2nd order phenomenological MCA model and can be used

to describe crystal structures with lower symmetries. In this equation also for K1 > 0,

the system will be of easy axis type while K1 < 0 would result in anisotropy in the basal

plane.

Figure 1.7: Caricature of the SIA direction and definition of the angles (θ and φ)
with respect to crystallographic direction.

The Eq. 1.30 and Eq. 1.31 are the lowest order of the MCA. By including higher orders,

we can describe more complicated MCA’s. By including terms to order 6 we will have

the following equation as a model to describe the MCA.

Ea = K1Sin
2(θ) +K2Sin

4(θ) +K3Sin
6(θ) (1.32)

A point to notice in these equations is that the functions are not orthogonal and if we

transform these to orthogonal functions (ex. spherical harmonics) we will have different

orders.

In addition to mentioned anisotropy sources, we can also have anisotropy in exchange

interaction. This anisotropy is due to spin-orbit coupling and would result in having

JxxS
x
i .S

x
j , JyyS

y
i .S

y
j , and JzzS

z
i .S

z
j with different energy, which would make the spins to

order in the energetically favored direction.
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Finally, magnetic dipole interaction also can result in anisotropy. This anisotropy is

called shape anisotropy and would cause a directional dependence of the magnetism on

the macroscopic scale.

1.1.5 Dzyaloshinskii–Moriya interaction

In the 1950s, scientists were confused by the presence of a weak magnetism in some of

the antiferromagnetic compounds. The first explanations for this weak magnetization

were made to be originating from impurities [13]. In 1958 Dzyaloshinskii showed that

free energy and symmetry allow some interactions of the following from [14]:

EDMI = Dij .(Si × Sj) (1.33)

and using this mechanism he proved that the weak magnetic present in antiferromagnetic

compounds is due to interactions of this type.

In 1960 Moriya used perturbation theory and extended the formalism of Anderson in

which he included second-order perturbation of bi-linear form of spin-orbit interactions

and exchange [15]. In this work, he showed that the interaction proposed by Dzyaloshin-

skii can be written as:

EDMI =2iλ

(∑
m

J(nn′n′m) < n|l1|m >

En − Em
−
∑
m′

J(nn′m′n) < n′|l2|m′ >
En′ − Em′

)
.[S1 × S2]

(1.34)

Which can be written as Eq. 1.33 with Dij between atom 1 and 2 as:

D12 =2iλ

(∑
m

J(nn′n′m) < n|l1|m >

En − Em
−
∑
m′

J(nn′m′n) < n′|l2|m′ >
En′ − Em′

)
(1.35)

This equation is written for a model like the one presented in Fig. 1.8 in which n and

n′ are filled states and m and m′ are empty states of the atom 1 and atom 2. li is

the orbital magnetic moment of the atom i and J(nn′m′n) can be written in terms of

hopping parameter t and coulomb repulsion U as:

J(nn′n′m) = tnn′tm′n/U (1.36)



Chapter 1 15

Figure 1.8: Schematic presentation of two atom model to calculate superexchange
and DMI. n and n′ showing filled states in atom 1 and atom 2 while m and m′ are
presenting empty states. R12 is a vector from atom 1 to atom 2 and a12 is a vector
presenting displacement of the ligand atom from the center of bond. D12 is the DMI

vector direction coming out of the plane.

This interaction is named after Dzyaloshinskii and Moriya as Dzyaloshinskii–Moriya

interaction (DMI). The DMI is another source of magnetic anisotropy in magnetic ma-

terials.

Using symmetry, it is also possible to determine Dij from Eq. 1.33 up to a proportionality

constant. From this analysis, it is shown that this parameter can be written as:

Dij = ηRij × aij (1.37)

Where Rij is a vector from atom i to atom j and aij is the vector from center of the

Rij to ligand atom and η determines magnitude of this interaction [See Fig. 1.8]. This

interaction favors putting spins perpendicular to each other and is in competition with

exchange interaction.

1.1.6 Magnetization in materials

Magnetic materials are classified based on their response to an external magnetic field.

When exposed to magnetic field H, magnetic induction B is the response of a material.

The H and B, both vector fields, are proportional to each other as:

B = µ0(H +M) (1.38)

In this equation, M is the average magnetic moment per unit volume of the material

and it is defined as:
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M(r) =
〈m〉V
V

(1.39)

where the average indicates that we average over all atomic magnetic moments in a

small volume V around position r.

The response of a magnetic material, i.e., magnetization M and induction B, can be

written as the following equations with magnetic susceptibility χ and the permeability

µ as constants of proportionality:

M = χH (1.40)

B = µH (1.41)

where we are considering the simplest expressions for the case where all fields are

collinear, static (that is, independent of time), and homogeneous in space (q=ω=0).

In general, however, the response functions are tensor, i.e. Mi =
∑

j χijHj , and depend

on frequency ω. From Eq. 1.38, we can write the relation between susceptibility and

permeability as:

µr =
µ

µ0
= 1 + χ (1.42)

µr, the relative permeability, is dimensionless and equals unity in free space.

The quantities defined in Eq. 1.40 and Eq. 1.41, can be functions of temperature and

magnetic field H. Based on how the χ changes as a function of magnetic field, the

materials are classified as being:

• Diamagnetic

• Paramagnetic

• Antiferromagnetic

• Ferromagnetic and Ferrimagnet

In diamagnetic materials χ has a negative value and magnetization is in opposite direc-

tion to the applied magnetic field. In paramagnetic and antiferromagnetic materials the

χ is linear and the magnetization is in the same direction with the applied magnetic field

and the magnetization disappears when the magnetic field is removed. In paramagnetic
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materials, the atomic magnetic moments are ordered randomly, and upon application of

the magnetic field, they start to order. In antiferromagnetic materials, the atomic mag-

netic moments are ordered in an anti-parallel fashion and upon application of magnetic

field, they will rotate to the direction of the applied magnetic field. In the fourth class of

materials, magnetization is a nonlinear function of the magnetic field. For ferromagnets

(materials where the atomic moments are aligned in the same direction) and ferrimag-

nets (where magnetic moments are aligned in opposite directions with different magnetic

moments), the magnetization increases nonlinearly by increasing the magnetic field and

becomes constant when reaches saturation. For these materials when the magnetic field

is lowered to zero, a remnant magnetization survives with finite value (This is called

Hysteresis Behavior).

Figure 1.9: Temperature dependence of χ for paramagnetic material a. antiferromag-
netic materials b. and ferromagnetic materials c.

Depending on the class of the material, the magnetic susceptibility changes with tem-

perature differently. In the case of paramagnets, Fig. 1.9 (a), the susceptibility increases

nonlinearly as the temperature goes down. For antiferromagnetic materials, Fig. 1.9 (b),

the behavior is nonlinear above Néel temperature (TN where the magnetic moments of

atoms order anti-parallel) and it shows a nonlinear behavior at Néel temperature. For

ferromagnetic materials, Fig. 1.9 (c), the magnetic susceptibility diverges at Curie tem-

perature (TC where the magnetic moments of the atoms order in parallel) and it shows

a complex nonlinear behavior below TC (shown by gray area in Fig. 1.9 (c)).

1.1.7 Modeling magnetic materials

We have developed the exchange interaction through a simple two-electron system and

for two atom, now we will derive a model for more complex structures. We can use
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the spin algebra to drive Heisenberg model. We consider Hamiltonian as H = −2Js.s′

between two spins s and s′. The total S where S = s+ s′, will be 0 and 1 for antiferro-

magnetic and ferromagnetic ordering of spins, respectively. Since S2 = S(S+ 1) for any

spin, both s and s′ with 1
2 moments, would give s2 = 1

2(1+ 1
2) = 3

4 and s′2 = 1
2(1+ 1

2) = 3
4

and for total S we will have S2 = 0 and S2 = 2 for antiferromagnetic and ferromagnetic

orderings. From the relations S2 = 2s.s′ + s2 + s′2 for S = 0 (AFM case) and S = 1

(FM case) we can calculate 2s.s′ = 3
2 and 2s.s′ = 7

2 , respectively. From these we can

write the Hamiltonian for AFM ordering as

HAFM = −3

2
J

and for FM ordering as

HFM = −7

2
J

and the energy difference between AFM and FM ordeing will be:

∆H = HAFM −HFM = 2J (1.43)

From this we can see that the energy difference between two states is 2J . From this

result, we can write Hamiltonian of the system of spins as:

H = 2
∑
ij

Jijsi.sj − gµbµ0

∑
i

Hext
i .si (1.44)

Where Hext is the external magnetic field on spin site i. This model describes a spin-

lattice model.

In this model, the atomic moments are considered to be localized and interatomic repul-

sion to be very big i.e U →∞. In this approximation, if we consider electronic hopping

integral (t) as a perturbation, then we can write the exchange as:

Jij = Jij,D −
2t2ij
Uij

(1.45)

The model in Eq. 1.44 is the simple Heisenberg model. Solving this equation is not

feasible for most of the systems and to solve this, normally a mean filed approach or

numerical approach is used.

To have a model that includes all the interactions discussed so far, which can capture

properties of the real material with localized magnetic moments, we need to extend the

Heisenberg model (Eq. 1.44) by including MCA and also DMI. The extended Heisenberg

model can be developed as:



Chapter 1 19

HHis = 2
∑
ij

JijSi.Sj − gµbµ0

∑
i

Hext
i .Si

+
∑
ij

Dij .(Si × Sj) +K
∑
i

(ni.Si)
2

(1.46)

In which we have included the MCA to second-order and of easy axis type.

To use this model, we need to calculate its different parameters (i.e J, D, and K). To

do so, we need to solve many-body equations describing the electrons and nuclei in the

materials. In the next section, we will present a method that is used widely by people

interested in the properties of the material, in particular their magnetic properties, to

solve the many-body equations.

1.2 Many body interacting particles

Many-body physics has been a big challenge for scientists for a long time. The difficulty

in these systems arises from the interaction between particles which makes even solving

simple classical Newtonian equations difficult for a three-body system. Description of

the matter as a many-body problem for scientists besides its large numbers of interacting

particles has some other difficulties that arise from the quantum nature of the system

under study.

To understand and describe the physics of the many-body systems, we need to solve

the Schrödinger equation (Eq. 1.47) for that system [16, 17]. Solving this equation for

many-body problems encountered in physics is not feasible (apart from some simple

two-body systems), which obliges scientists to resort to approximations in solving the

problem and in describing the system under study.

The Schrödinger equation for many body system of interacting particles is written as:

i
∂ψ({r}, {R}, t)

∂t
= Ĥψ({r}, {R}, t) (1.47)

In this equation ψ({r}, {R}, t) presents many particles wavefunction as a function of time

t and set of electron positions {r} and nuclei positions {R} where Ĥ is the Hamiltonian

of the many particle system.

To solve the Schrödinger equation (Eq. 1.47), two approaches can be taken. The first

one is through solving the Hamiltonian of the system with no empirical parameter. This
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method is called ab-initio or first principles since we do not need to tune any parameter

to describe the system. Solving Schrödinger equation using density functional theory

(DFT) or Hartree-Fock method to have energies of the electrons and its properties is

one such method.

While in the second method (empirical or semi-empirical), we adjust some parameters

to study the behavior of the system. In this method, we give some parameters to the

model to study it. The Heisenberg model is one such model in which we feed to the

model exchange interactions and all the other degrees of freedom are neglected.

In this section, we will address the difficulties in solving Schrödinger equation. We will

present a very popular method to overcome these challenges. We also present different

approximations used in this method to make simulating these systems feasible.

1.2.1 Solving Schrödinger equation

In our studies, we are mainly interested in the ground state of the system. This brings in

the first simplification to the Schrödinger equation by making it time independent [17].

We can describe the ground state of the system using Eq. 1.48. The ground state can

be used to determine most of the properties of the materials, besides, it is also a good

starting point to study excited states of the system as well.

Ĥψ ({r}, {R}) = Eψ ({r}, {R}) (1.48)

Eq. 1.48 shows the time independent Schrödinger equation. In this equation the Hamil-

tonian (Ĥ) is a many body Hamiltonian and in general it is written as:

Ĥ =
∑
i

T̂i +
∑
ij

V̂e(ri, rj) +
∑
i,n

V̂n(ri, Rn)

+
∑
n

T̂n +
∑
nm

V̂nm(Rn, Rm)
(1.49)

In this equation, T̂i is the kinetic energy of the electrons and it is written as:

Ti = −1

2
∇2
i (1.50)

Where ∇2
i presenting ∂2

∂r2i
, which is the second order derivative of the wavefunction with

respect to position of particle i. V̂e(ri, rj) is the Coulomb interaction between electrons

at position ri and rj and can be developed as:
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V̂e(ri, rj) =
1

|ri − rj |
(1.51)

V̂n(ri − Rn) is the Coulomb interaction between ionic nuclei and electron at positions

Rn and ri respectively and it is:

V̂n(ri −Rn) =
Zn

|Rn − ri|
(1.52)

T̂n is the kinetic energy of the nuclei and it is written as:

T̂n = − 1

2Mn
∇2
n (1.53)

and V̂nm(Rm−Rn) is the Coulomb interaction between ionic nuclei at position Rm and

Rn as:

V̂nm(Rm −Rn) =
ZnZm
|Rn −Rm|

(1.54)

in which Zn and Zm presenting the nuclear charge of the atoms.

This equation, even though time-independent, is not yet soluble, so the next step is to

use approximations to make it more simple. To this end, the equations for the electors

and ions are separated. This simplification is coming from the fact that the mass of the

ions is more than ≈ 2000 times the mass of the electrons which makes the motions of

these particles much slower compared to electrons. This approximation is called Born-

Oppenheimer or adiabatic approximation [18] and for most of the materials, this is a

acceptable approximation. For this approximation, the wave function ψ ({r}, {R}) can

be written as:

ψ ({r}, {R}) = ψe({r})ψN ({R}) (1.55)

and the Hamiltonian operator of electronic part is written as:

ĤE = Ĥe + ĤeI (1.56)
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The electronic part can be solved by considering the ionic part to be constant. So we

can write the Schrödinger equation for electrons as:

ĤEψe({r}) =
∑
i

T̂iψe(ri) +
∑
ij

V̂e(ri, rj)ψe(ri, rj)

+
∑
i,n

V̂n(ri −Rn)ψe(ri)
(1.57)

Where r presents spin and position degrees of freedom of N electrons in space and Rn

are parameters.

The ionic part (i.e., HI) can be solved using the Hellmann-Feynman theorem [see

Eq. 1.58]. Using this theorem, forces on the atoms can be calculated in the field of

electrons and using the classical equation of the motion, ions can be moved [19, 20].

FI = − < ψe({r})|
∂Ĥ

∂RI
|ψe({r}) > (1.58)

According to this theorem, a force on the ions can be calculated using Eq. 1.58. In

this equation, we only need the expectation value of the derivative of the Hamiltonian

with respect to the ionic positions with the wave functions calculated for the electrons

in the ground state. Once the forces are calculated, we can move the ions according to

the classical equation of the motion and find the minimum of the energy for the ionic

structure.

Now all one needs to be able to describe the system, is the electronic wave functions.

Among the first approaches to find the solution to electronic wave function is to use

single particle wave function and build multiparticle wave function as [21]:

ψe({r}) =
∏
i

φi(xi, σi) (1.59)

But later it was shown that these wave functions are not appropriate to describe the

electrons [22], Since these do not show the Pauli exclusion principle. To solve the

electronic part, we need to impose some restrictions on the form of the wave functions.

These wave functions should be antisymmetric with respect to the exchange of the

electrons [22]. This guarantees the Pauli exclusion principle. A common method to

build such wave function is using Slater determinant as:
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ψe({r}) =


φ1(x1, σ1) φ2(x1, σ1) ... φN (x1, σ1)

φ1(x2, σ2) ... ... ...

... ... ... ...

φ1(xN , σN ) φ2(xN , σN ) ... φN (xN , σN )

 (1.60)

Different methods have been developed to solve the electronic part of the Schrödinger

equation including Hartree-Fock, DFT, and quantum Monte-Carlo. The DFT is the

method that has good speed while it also gives acceptable accuracy. In the next section,

we will present the DFT and present approximations used in this method. The idea

behind DFT is to make it possible to perform computation on many-body systems.

1.2.2 Density functional theory (DFT)

DFT is the most common approach used today to study quantitatively the molecules,

finite and periodic structures. This approach owes its success to the local density approx-

imation (LDA) and the generalized gradient approximations (GGA) in Hohenbrg-Kohn

and Kohn-Sham independent particle approach. The original idea of DFT is the method

proposed by Thomas [23] and Fermi [24] in the 1920s. In their approach, kinetic energy

is approximated as a functional of the density and in their theory, they used the local

density approximation to describe exchange energies. But the method of Thomas-Fermi

was missing many important features to describe correctly the physics and chemistry of

the many-body systems besides not having solid mathematical proof. The modern DFT

started in 1964 by Hohenbrg and Kohn (HK) [25], when HK showed that the density

(n(r)) of the many-body particles can be considered as a basic variable from which all

the properties of the materials can be calculated. This method is very efficient due to

its ability to map a many-body Schrödinger equation to one equation for the density.

In 1964 HK based the DFT on a mathematical foundation and show that DFT can be

considered as an exact theory for any interacting many-body system.

The work of HK was proving two theorems. These theorems are as follows [25]:

Theorem one:

“For any system of interacting particles in an external potential Vext(r) the potential is

uniquely determined except for a constant, by ground state particle density n(r).”

This means that there is one to one correspondence between density n(r) and external

potential Vext(r) and hence Hamiltonian of the system, which shows that the density can

be used to describe all the properties of the system as the wave function of the system

does.
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Theorem two:

“A universal functional for the energy E[n(r)] in terms of density n(r) can be defined,

valid for any external potential Vext(r). For any potential Vext, the exact ground state

energy of the system is the global minimum value for this functional, and the density

n(r) that minimizes the functional is the exact ground state density n(r).”

This theorem is equivalent to the Virial theorem in quantum mechanics and gives the

ability to find the ground state of the system variationally.

These two theorems by HK, although put the DFT on a solid mathematical basis, they

do not give a method to how to find the universal functional and the density. To resolve

the problem, Kohn-Sham (KS) in 1965 proposed a method in which they replaced the

many-body interacting problem with an auxiliary independent particle problem [26].

This independent particle problem can be solved exactly with all the difficult many-

body terms described by an exchange-correlation functional of the density. The method

proposed by KS has led to the useful approximation that are the basis of the modern

first-principles or ab-initio methods. This theorem assumes that the ground state (GS)

density can be represented by the ground state density of an auxiliary system of non-

interacting particles. In this ansatz the calculations are done on an auxiliary system

which can be presented by following Hamiltonian:

Ĥσ
aux =

1

2
∇2 + V σ(r) (1.61)

where V σ(r) is to be determined. The density for this system is :

n(r) =
∑
σ

n(r, σ) =
∑
σ

∑
i

|ψσi (r)|2 (1.62)

with kinetic energy as :

Ts = −1

2

∑
σ

∑
i

< ψσi |∇2|ψσi >=
1

2

∑
σ

∑
i

|∇ψσi |2 (1.63)

and the classical Coulomb interaction defined as :

Vc[n] =
1

2

∫
d3rd3r′

n(r)n(r′)

|r − r′|
(1.64)

then the full KS approach is written as:

EKS = Ts[n] +

∫
drVext(r)n(r) + Ec[n] + EII + Exc (1.65)
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Here Vext(r) is an external potential from nuclei and any other external fields. All the

many body effects are grouped into Exc. This energy is written as:

Exc[n] =< T̂ > −Ts[n]+ < V̂int > −Ec[n] (1.66)

In this equation, < V̂int > and < T̂ > are the true interactions and kinetic energy of the

interacting system. This Exc[n(r)] is defined to be universal and once determined it can

be used in all the systems.

The KS equation can be minimized by constraining the wavefunctions to be orthonormal

which leads to a Schrödinger like an equation as:

(Hσ
KS − εσi )ψσi = 0 (1.67)

where εσi are the eigenvalues of the system and Hσ
ks is:

Hσ
KS =

1

2
∇2 + V σ

KS(r) (1.68)

with

V σ
KS(r) = Vext(r) +

δEc[n(r)]

δn(r, σ)
+
δExc[n(r)]

δn(r, σ)

= Vext(r) + Vc(r) + V σ
xc

(1.69)

Where δ represents functional derivative.

1.2.3 Exchange and correlations

The exchange-correlation (XC) approximation is the main part that makes this approach

different from exact many-particle systems. As shown in Eq. 1.66, this energy is the

difference between the independent particle and interacting particle kinetic energy and

also the energy difference between Coulomb interaction in independent and interacting

particles. The first approximation used in exchange-correlation functional was using

local density approximation (LDA). In this approximation, the exchange-correlation

energy is assumed to be equal to the exchange-correlation functional of a homogeneous

electron gas with the same density. This XC is calculated for electron gas with very high

accuracy. For this XC functional, the exchange-correlation energy is.
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ELSDAxc [n↑(r), n↓(r)] =

∫
d3rn(r)εhomxc (n↑(r), n↓(r))

=

∫
d3rn(r)

[
εhomx (n↑(r), n↓(r)) + εhomc (n↑(r), n↓(r))

] (1.70)

Where the arrows show the spin Chanel of the density. The exchange energy in this

functional can be calculated theoretically and the correlation part has been calculated

using quantum Monte-Carlo method [27]. There are different parametrization for this

functional including, Ceperley-Alder [27], Perdew-Zunger [28], Perdew-Wang [29] and

Vosko-Wilk- Nusair [30].

Since this XC is written for homogeneous electron gas, it is expected to work well for

systems that are close to homogeneous electron gas but it fails to give a good result for

systems where the homogeneity is not held. This method underestimates the electronic

gaps and interatomic distances by ∼30% to 100% and ∼3%, respectively. The main

problem is the self-interaction that is included in this XC functional. In the Hartree-Fock

method, the self-interaction energy is subtracted from the equation by exact exchange

energy while in approximate XC only part of this interaction is subtracted. Hence, this

method gives larger self-interactions for localized electrons which fails this approach in

systems with high localization.

To improve the LDA approximation to XC, the first approach was to include ∇nσ in the

XC functional. This XC functional called generalized gradient approximation (GGA)

and this is written as:

EGGAxc [n↑(r), n↓(r)] =

∫
d3rn(r)εxc(n

↑(r), n↓(r), |∇n↑|, |∇n↓|, ...)

≡
∫
d3rn(r)εhomxc Fxc(n

↑(r), n↓(r), |∇n↑|, |∇n↓|, ...)
(1.71)

Where Fxc is dimensionless and εxc is the exchange-correlation energy of the unpolarized

gas.

GGA XC improves the results compared to LDA. But still overestimates the lattice

constants to ∼3% and the Bandgap not well reproduced. For GGA also there are

different parametrizations among which we can name, Perdew-Wang91 [29], Perdew-

Burke-Ernzerhof [32].

To further improve the performance of the XC functional, higher-order derivatives of the

density are also included in the XC functional as well as the corrections to correlations
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Figure 1.10: The figure (Jacob’s ladder) presents different levels of improvements to
the XC functionals [31]. Beyond meta GGA, the improvements are achieved by includ-
ing hybrid functionals where some portion of the exchange interaction are computed
exactly using Hartree-fock method. Further improvements are achieved using more

complex methods such as random phase approximation(RPA)

coming from kinetic energy part [33]. This XC is called meta-GGA. The Proposed

further improvements to XC functionals are shown in Fig. 1.10 by Perdew. Although

there have been many works devoted to improving the XC functionals, these still fail

to correctly describe the properties of the strongly correlated materials (materials with

localized electronic orbitals).

1.2.4 Orbital dependent functionals: LDA +U

As mentioned in the previous part, the simplest XC functionals are not good for systems

with large electronic localization due to self-interaction. These problems are more severe

in systems with a transition metal or rare earth elements (highly correlated systems).

One approach to alleviate this problem is the use of the so-called LDA+U method [34,

35]. This method is inspired by Hubbard model [36]. In this method, an additional

interaction is considered only for highly localized orbitals. In the Hubbard model the

Hamiltonian is written as:
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Ĥ = −
∑
ij

∑
σ

tij ĉ
†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓ (1.72)

where tij is the electron transfer which decreases kinetic energy and tends to delocalize

electrons while U is the repulsion between opposite spin electrons and favors localization

of the electrons.

In LDA+U similar interaction to Hubbard interaction is added to the calculations to

correct the tendency of the LDA for delocalization of the orbitals. This interaction

makes the orbitals more localized. This method improves the results of the calculations

for the cases where the results are wrong with respect to the experiment especially the

band gaps and magnetic moments.

1.2.5 Relativistic interactions in DFT

So far we have neglected relativistic effects in the discussions. In this part, we will

show how the relativistic effects are included in the model. The main contribution from

considering relativity in DFT is coming from spin-orbit interactions (SOI). This inter-

action, from the classical point of view, can be seen as the interaction of the electron’s

spin magnetic moments with the magnetic field created by the electron’s motion in the

electric field of the nucleus. In this picture we can describe the magnetic field felt by

electron moving with momentum p in a radial electric field E = 1
e
∂V (r)
∂r as:

B =
r × p
meec2

1

r

∂V (r)

∂r
(1.73)

By considering the r × p as L (orbital magnetic moment of the electron), and magnetic

moment of the electron as µs = 2µb
S
~ we can write:

ĤSOI = µs.B =
2µB

~meec2

1

r

∂V (r)

∂r
L.S (1.74)

Considering this in DFT, the energy of this term will be:

ESOI ≈
〈
ψi|λi(ri)L̂i.Ŝi|ψi

〉
(1.75)
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This interaction plays a very important role in anisotropy of a magnetic structure.

1.2.6 Density functional perturbation theory (DFPT)

Some of the properties of materials arise from perturbing the system. These pertur-

bations can be described by calculating the energy change of the structure due to a

perturbation. The energy of the system can be expanded in terms of the perturba-

tions and the response come from different orders of the expansion (i.e., ∂E
∂τi

, ∂2E
∂τi∂τj

,
∂3E

∂τi∂τj∂τk
where τ is the perturbation). For example, the polarization is Pi = ∂E

∂εi
, and

the electronic susceptibility is εij = ∂Pi
∂εj

= ∂2E
∂εi∂εj

where εi represent an electric field

perturbation in direction i. Examples of other properties that can be calculated using

perturbation, include polarisabilities, phonons, Raman intensities and infra-red absorp-

tion cross-sections, just name a few.

In the following we are presenting different properties that can be calculated from second

order perturbation of the energy:



τ η ε B

τ Φ γ Z∗ Z∗m

η γ C e q

ε Z∗ e ε α

B Z∗m q α µm

 (1.76)

Physical properties related to second energy derivatives with respect to atomic displace-

ment (τ ) and homogeneous strain (η), electric (ε) and magnetic(B) fields give: force

constant matrix (Φ), elastic tensor (C), dielectric permittivity (ε), magnetic permeabil-

ity (µm), Born effective charge (Z∗ ), magnetic effective charge (Z∗m) piezoelectric (e)

and piezomagnetic (q) tensors, magneto-electric tensor (α) and atom-strain coupling

constant (γ).

To calculate these properties, two different schemes are used: direct method and density

functional perturbation theory (DFPT). In the direct method, the energy of the system is

calculated by including perturbation in the DFT calculations, and using finite differences

the response can be extracted. This method is widely used to calculate phonons in

materials, where the Φij = ∂2E
∂τi∂τj

terms are calculated, with τi is an atomic displacement

that is clamped in the structure. The first derivative is zero since the calculations are

being done in the ground state where the forces (first derivative) are zero. From the

inter-atomic fore constants (Φij), the phonon modes and eigenvectors can be determined.



Chapter 1 30

In the second scheme, i.e, DFPT, the Sternheimer equations are solved self consis-

tently [37–39]. This method is superior to the direct method in the sense it allows the

calculations of the perturbations in reciprocal space and, hence, calculations of the per-

turbations with different wave vectors. Such calculations in the direct method need large

super-cells, which limits the use of the method. In calculating the responses from DFPT,

we need to calculate the different derivatives of the wave functions. Another advantage

of DFPT is the use of the ”2n+1” theorem where to calculate (2n+1)th order of pertur-

bation in energy, we need to calculate nth order derivative of the wavefunctions [40, 41].

We have used DFPT to calculate effective charges (i.e., Z∗), and interatomic force

constants (i.e., Φ) in this work.

1.2.7 Practical implementation of DFT

Solving the KS equation in practice is presented in Fig. 1.11. The method, in practice

is solving the Eq. 1.67 subject to consistency of density (n(r)) and effective potential

(V σ
eff ). The procedure for solving this equation starts with an initial guess for density

by choosing some random independent particle wavefunctions (nσ =
∑

i ci|ψσi ). At the

next step, the potential corresponding to this density is calculated by the selected XC

functional. Solving the KS equation comes next. This step is the most time-consuming

part of the calculations. At this step, a new set of wavefunctions are calculated based on

the given density. At the next step, these new wavefunctions are used to calculate new

density. The convergence test is done on the density where the difference between two

densities is calculated and if this difference is lower than some tolerance the calculations

are converged and at the next step, other properties are calculated. Otherwise, the new

density is used to calculate the effective potential and solve the KS equation again until

the convergence is reached.

Once the calculation at the self-consistent loop is converged, the calculation of the

properties starts. At this step, the eigenvalues of the particles are calculated which

gives the ability to calculate the total energy of the system [see Eq. 1.77].

εi = 〈ψσi |Hσ
KS |ψσi 〉 (1.77)

Having calculated the density of the ground state, it can be used to calculate the forces

on the atoms using the Hellmann-Feynman theorem [19, 20] and to find the ground state

structure of the system by minimizing the forces.
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Figure 1.11: Schematic presentation of the self-consistent loop for calculating ground
state density by solving KS equations.

The HK method only considers the ground state of the system, but there have been some

other works that have extended the method beyond ground state including the work of

Mermin [42] who extended the model to include finite temperature effects (although it

has not been as popular as DFT) and also some works have included time-dependent

external potentials and made it possible to study excited states and time evolution of

the system as well [43].

1.3 Calculation of magnetic interactions

In this section, we are going to present the methods that have been used to calculate the

magnetic parameters of our Heisenberg model. Since the magnetic interactions are small,

the energy levels are very close and a robust method is needed to calculate the magnetic

interactions introduced in section 1.1. We have used the method that was introduced

by Xiang et. al. [44]. This method is called the 4 spin method (4SM) and it gives the

exchange interactions pair-wise. Xiang has also extended the method to calculate other

parameters than exchange such as DMI and single-ion anisotropy. Sabani et.al corrected

the 4SM by considering anisotropic interaction compared to Xiang [45]. In this work, the
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parameters are calculated using both the method of 4SM proposed in references [44–46]

and, in some cases, a local force theorem method that we will describe after.

1.3.1 Total energy mapping

In this part, we will show 4SM that we have used to calculate the magnetic interaction

including exchange, DMI, and single-ion anisotropy. The most general model to be

considered for the magnetic interactions at second order of spins can be written as [6, 47]:

H = Hex +HSIA

H =
1

2

∑
i 6=j

Si.J ij .Sj +
∑
i

Si.Aii.Si
(1.78)

Where i and j are lattice sites. J ij and Aii are 3× 3 matrices in Cartesian coordinates.

From these matrices, we can calculate the parameters presented in our Heisenberg models

as in Eq. 1.46 according to reference [47]. The symmetric exchange or the exchange for

our model is the diagonal elements of the J ijαα matrices, and the parameters for DMI

vector in γ direction are calculated as :

Dij
γ =

1

2

(
J ijαβ − J

ij
βα

)
(1.79)

And we can also calculate anisotropic symmetric exchange interaction as:

M ij
γ =

1

2

(
J ijαβ + J ijβα

)
(1.80)

with α, β and γ represent the Cartesian coordinates and i and j counts the lattice sites.

We can calculate different components of the interactions by cycling the α, β and γ

parameters.

Now that we have a general definition for the Hamiltonian, and the relation between the

parameters of the general Hamiltonian and the extended Heisenberg model introduce in

section 1.1, we continue with the procedure to calculate the parameters.
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The method introduced in [44–46] uses the calculation of 4 different spin structures to

have the parameters introduced. In this method, to calculate the magnetic interaction

between sites 1 and 2, the energy of the system for these sites is considered to be:

Espin = S1.J12.S2 +K1.S1 +K2.S2 + Eother (1.81)

with K1 =
∑

i 6=1,2 Si.Ji1 presenting interaction of the site 1 spin with spin sites other

than site 2 and K2 is K2 =
∑

i 6=1,2 Si.Ji2. To calculate the J12
αβ, 4 different spin ordering

should be considered with all the other site spin constant as:

1)S1
α = S, S2

β = S 2)S1
α = S, S2

β = −S,

3)S1
α = −S, S2

β = S 4)S1
α = −S, S2

β = −S

these four spin structure can be used in energy expression 1.81, for which we can have:

E1 = E0 + J12
αβS

2 +K1S +K2S

E2 = E0 − J12
αβS

2 +K1S −K2S

E3 = E0 − J12
αβS

2 −K1S +K2S

E4 = E0 + J12
αβS

2 −K1S −K2S

(1.82)

and using the following expression we can calculate the J12
αβ:

J12
αβ =

E1 + E4 − E2 − E3

4S2
(1.83)

To calculate the SIA constants, we have used the 4SM too. In this method, the following

spin structures are considered to calculate the anisotropies:

1)S1
α = S 2)S1

α = −S 3)S1
β = S 4)S1

β = −S

and then using the energy corresponding to each of these states we have calculated the

A11
αα as:

A11
αα =

E1 + E2 − E3 − E4

2S2
(1.84)
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1.3.2 Calculation of the magnetic interactions using the local force

theorem

To calculate isotropic exchange interactions, we have also used Green’s function ap-

proach. In this approach, the local force theorem [48, 49] is used. According to the

local force theorem, if we perturb the system locally, the force components can be de-

termined from the change in single-particle energies and the change in the electrostatic

field. When the spins are rotated by δφ, change in total energy can be calculated ac-

cording to local force theorem [48]. To do this, atomic localized orbitals are required.

Since the calculations in this work are mainly done using a plane-wave basis set, we

have used Wannier projection to get localized orbitals from the plane-wave basis set as

suggested by Dm. M. Korotin et. al. [50] and as implemented in TB2J code [51].

According to ref [50], the localized wavefunctions for band n at site T of the system can

be written using Wannier functions as:

∣∣W T
n

〉
=

1√
Nk

∑
k

|Wnk〉 e−ikT (1.85)

Where the summation is over the Brillouin zone for band n and Nk is the number of k

points and T is the lattice translation vector. In this equation Wnk:

|Wnk〉 =

N2∑
µ=N1

|Ψµk〉 〈Ψµk|φµk〉 (1.86)

is the projection of plane wave to φµk atomic-like orbitals. Using these, the matrix

elements of single-particle Hamiltonian in localized basis set can be developed as:

HWF
nm,σ(k) = 〈Wnk|

 N2∑
µ=N1

|Ψµk〉 εσµ(k) 〈Ψµk|

 |Wnk〉 (1.87)

where σ represents the spin. Using this Hamiltonian, we can write the reciprocal Green’s

functions corresponding to k point in this system as:

Gmm
′

ij,σ (ε, k) =
[
ε+ EF −HWF

mm′,ij,σ(k)
]−1

(1.88)

where EF is the Fermi energy of the system under study and m, m′ are orbitals on

atoms on lattice sites i and j. By integrating the Brillouin zone (BZ), the two-particle

Green’s function will be:
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Gmm
′

i′j′,σ(ε) =

∫
BZ

dk Gmm
′

ij,σ (ε, k)eik[(Ri′−R0
i )−(Rj′−R0

j )] (1.89)

From these, we can then calculate symmetric exchange interaction as:

Jij = − 1

2π

∫ EF

−∞
dε

∑
mm′
m′′m′′′

Im
(

∆mm′
i Gm

′m′′
ij,↓ ∆m′′m′′′

j Gm
′′′m

ji,↑

)
(1.90)

where:

∆mm′
i =

∫
BZ

[
Hmm′
ii,↑ (k)−Hmm′

ii,↓ (k)
]
dk. (1.91)

Since in this approach the calculations of exchange interactions are done in the reciprocal

space, it can calculate the interaction of an atom with all of its neighbors. Some of the

calculated interactions are compared to 4SM calculations to ensure consistency of the

method. This method also makes it possible to calculate exchange per orbitals.

To use the method presented in this section we have used it as implemented in TB2J

code [51]. In this method, we first calculate the Wannier functions using Wannier90

code [52, 53]. Then by feeding the results of Wannier 90 code (tight-binding Hamilto-

nian’s) to TB2J code, we can calculate symmetric exchange interaction. The TB2J code

is extended to calculate the anisotropic magnetic interaction as well. But in this work,

we have used the 4SM approach to calculate anisotropic magnetic interactions.

1.4 Conclusion

In section 1.1 of this chapter, we have discussed the origin of magnetic moments in atoms

and the exchange interactions between these magnetic moments that create long-range

magnetic ordering. We have presented direct exchange, superexchange, and also RKKY

exchange interaction. We have also discussed magnetocrystalline anisotropy. We then

described the DMI and its origin. By having all the relevant magnetic interactions, we

have presented an extended Heisenberg model that can describe quite well the magnetic

properties of materials.

In section 1.2, we have given an introduction to DFT. We have discussed different

approximations used in this method as well as their deficiencies.



Chapter 1 36

In the last section, we have introduced two different methods that we will use in our work

to calculate the parameters that we need for our extended Heisenberg model including

DMI, SIA, and anisotropic symmetric exchange interactions.

In the following chapters, we are going to first give an introduction to the physical prop-

erties of the compounds that we are interested in (i.e., rare-earth perovskites RMO3),

including their magnetic properties. Beyond this chapter, we will present our results

concerning the magnetic properties and the origin of some unique behaviors present in

these materials. In Chapter 4, we will use the model developed in chapter 3 to study

the magnetoelectric response of RMO3s. At last, we will present the results of the works

which are done in collaboration with A. Caviglia group on ”Ultrafast control of magnetic

interactions via light-driven phonons of DyFeO3”.
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Physics of rare-earth orthoferrites

2.1 Introduction

Rare-earth orthorhombic transition-metal perovskites oxides (RMO3s where R is a rare-

earth element and M is a transition-metal element) are a big family of materials. Each

member of this family has different entangled degrees of freedom that make this group of

structures an interesting playground to manipulate different functional properties [54].

Transition-metal sites in these structures can pose charge ordering, orbitals ordering, as

well as magnetic ordering [54]. On top of these, Rare-earth elements can also magneti-

cally order and interact with transition-metal sites and create a complex phase diagram.

RMnO3s structures have attracted large attention due to their multiferroicity and con-

siderable magnetoelectric (ME) responses [55–60]. TbMnO3, in particular, is among the

materials that have been studied to a large extent due to its rich magnetic phase diagram

which creates a large ME response. In these materials, the competing ferromagnetic

and antiferromagnetic interactions between the first and second nearest neighbors of the

transition-metal site create a frustrated spiral and cycloidal spin ordering [55, 56, 59].

The frustrated magnetic orders in these structures break the inversion symmetry and

create ferroelectricity [56, 57, 60–62]. Such behavior is either present in most of RMnO3

structures or it can be induced by doping [58, 63–68]. RNiO3 have been under investiga-

tion due to their metal-insulator transition. In this family of materials, there are orbital

ordering, charge ordering, and spin ordering which makes them have different functional

properties including metal-insulator phase transition and multiferroicity [69–71]. RVO3

is not an exception in this group and it poses a rich phase diagram [72, 73]. In this group,

due to strong spin-orbit entanglement, Jahn-Teller distortion, and magnetic ordering,

the magnetic phase diagram is very rich, and to describe their behavior, one should

go beyond Heisenberg model [73–76]. RTiO3 show interesting magnetic behavior [77].

37
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These structures, besides being Jahn-Teller active, have a very sensitive magnetic phase

diagram as a function of the rare-earth atoms radios [77, 78]. In these structure, the

LuTiO3 is ferromagnetic while, DyTiO3 shows a C-type antiferromagnetic order [77, 78].

The rare-earth orthoferrite perovskites (RFeO3s, which is the focus of this study), an-

other family member of these structures, were discovered in the 1940s. These structures

quickly attracted tremendous interest due to their unique magnetic properties [79–

83]. RFeO3s present non-collinear canted spins of the transition-metal (TM) atom,

which often induces weak-ferromagnetism; they can exhibit two genuine magnetic phase

transitions due to the presence of two different magnetic cations (TM and rare-earth);

they can display temperature-driven spin reorientation (SR) and magnetization rever-

sal (MR) [81]. Addressing the origin of these properties has been of scientific interest,

besides being important for practical applications.

Along with their interesting magnetic properties, another appealing property of the

RFeO3 crystals, which has been the focus of numerous recent studies is their bulk mul-

tiferroism [80, 83]. Indeed, multiferroism in RFeO3 compounds was first proposed based

on simple symmetry arguments [47, 82]. For some specific combinations of the spin

orders of the Fe and R sub-lattices, the space inversion symmetry is broken such that

a ferroelectric polarization is induced. By construction, this magnetically-induced fer-

roelectricity has a high potential to yield large ME responses, as it can be expected to

be very sensitive to magnetic-field-induced perturbations of the spin arrangement. This

has been measured in DyFeO3 and GdFeO3, where the ME response appeared to be 2

orders of magnitude larger than the most common ME materials [80, 83].

In this chapter, we are going to present the properties of RFeO3. In the first section,

we will discuss the structure of these materials. Then we will present their magnetic

properties and different magnetic phases and phase transitions present in these materials.

Finally, we discuss some of the magnetoelectric and multiferroic properties of this family.

2.2 Atomic structure of orthoferrites

The RFeO3’s belong to perovskite family. Perovskites have ABX3 general formula and

the high temperature structure is cubic [see Fig. 2.1(a)]. The name perovskite has its

origin in the mineral perovskite, CaTiO3. This family of structures, at high tempera-

tures, adapts a cubic unit cell with five atoms and has Pm3̄m space group (No 221). For

most of the perovskites, the cubic structure is not the ground state structure. In these

structures, there is a phase transition that lowers the symmetry of the structures. The
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type of phase transition is usually determined using the Goldschmidt tolerance factor

which is defined as:

t =
rA + rX√

2 (rB + rX)
(2.1)

Where rA is the ionic radius of the A site atom (rare-earth in our case), rX is the ionic

radius of the cation, which is Oxygen in rare-earth perovskites, and rB is the ionic

radius of the B site atoms (i.e., Fe here). In structures with t=1, the cubic structure

is stable down to very low temperatures. When t >1, the structure goes through a

phase transition of ferroelectric type [see Fig. 2.2(a)]. In this phase transition, the

atomic displacements create a ferroelectric polarization in the structure by breaking

inversion symmetry. When rA < rB (i.e., t < 1), the ground state structure pose Oxygen

octahedral tilts [see Fig. 2.1(b) and (c)]. These two distortions are not exclusive and for

some structures, they both are present [84, 85]. The Oxygen octahedral rotations (OOR)

are quite common in perovskites structures. To describe the OOR, the Glazer notation

is used commonly [86]. In this notation, for OOR around the a axis, the notations
+
a

0
b

0
b

or
−
a

0
b

0
b are used where 0, +, and − superscripts represent the no OOR, in-phase, and

anti-phase OOR respectively, [see Fig. 2.1(a), (b), and (c)].

Figure 2.1: Schematic representation of cubic structure (a) where A, B and X site
atoms are shown by corresponding letters. Oxygen octahedral rotations in-phase (b)
and anti-phase (c). In (b) the Oxygen octahedral rotations are in the same direction
between the planes parallel to the page and in (c) the Oxygen octahedral rotations in

two planes are rotating in opposite directions.

Besides the mentioned structural distortions, perovskites also show other types of dis-

tortions like Breathing mode and Jahn-Teller mode [87, 88]. These distortions are not

observed in rare-earth orthoferrites, so we will not discuss them here.

In 1956 Geller studied GdFeO3 and determined the structure of this material as Pbnm [79].

For rare-earth orthoferrites, the Goldschmidt tolerance factor is less than one (i.e., t <1)

which causes the Oxygen octahedral to rotate and lower the symmetry of the structure.

In the case of RFeO3 structures, the OOR is presented by
−
a
−
a

+
c notation, which shows
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that there are three OOR in the structure. Two anti-phase rotations in a and b direction,

and one in-phase rotation in c direction.

The three OOR (
−
a

0
b

0
b,

0
a
−
b

0
a, and

0
a

0
a

+
c), are represented by R−5 , R−5 , and M+

2 irreducible

representations respectively. These distortions are primary order parameters that lower

the symmetry of the structure. These symmetry lowering distortions allow for the other

distortions that are consistent with OOR to be allowed in the structure. These later

distortions, that are coupled to the primary order parameters are called second order

parameters. Two such distortions are present in RFeO3s and are displacements of the

rare-earth atoms (A-site atoms), namely X+
5 and R+

5 [see Fig. 2.2(b) and (c)]. The X+
5

is larger in amplitude due to couplings with both OOR distortions compared to R+
5 .

Figure 2.2: Caricature of distortions in prerovskites structure for polar distortions
(a), X+

5 antipolar motion of A site atoms (b), and R+
5 antipolar motions of A site atoms

(c).

The OOR are very important in determining the properties of these materials, and their

amplitude depends on the size of R atoms in RFeO3 structure [89]. The angle of OOR

is defined according to [86]:

Θtilt =
180− B̂OB

2
(2.2)

Where B̂OB presents the angle between two neighboring B site atoms.

The OORs lower the symmetry of the structure for rare-earth orthoferrites and cause

the unit cell to become 4 times the cubic unit cell, i.e., the cell becomes a 20-atom cell

[see Fig. 2.3]. For this structure, the magnetic ordering of the Fe sublattice does not

break any symmetry and it is consistent with the chemical unit cell (Pbnm 20-atom

cell). On the other hand, some of the magnetic ordering of rare-earth sublattice breaks

inversion symmetry and reduces the number of symmetries but the cell still is a 20-atom

cell with Pna21 space group [47].



Chapter 2 41

Figure 2.3: Schematic presentation of Pbnm structure with 20 atoms in the unit cell.
Gray sphere representing Fe atoms, green spheres showing R atoms and Oxygen atoms

shown with red spheres.

These materials have also been shown to be stable in different structures like P21am,

P4mm, and hexagonal under epitaxial strain [90, 91]. These structures of the rare-earth

ferrites families are shown to be ferroelectric and antiferromagnetic [90, 91].

2.3 Magnetic properties

The main motivation behind studying RFeO3s has been their unique magnetic proper-

ties [79]. The rare-earth orthoferrites exhibit a great, and sometimes bewildering array

of magnetic properties. A member of this family is typically a canted antiferromagnet,

which displays two genuine first-order phase transitions as the iron and rare-earth mag-

netic moments order. These materials also have a compensation point where the two

sublattices with different M(T) behavior cancel. These also show a spin reorientation

transition during which the ordered spin systems rotate with respect to the crystal axes.

The unique magnetic properties of the rare-earth perovskites are linked to the presence

of both R and Fe magnetic cations [92].

2.3.1 Magnetic structures

The structure of RFeO3s (Pbnm) has 20 atoms from which four Fe and four R atoms

are magnetic. Néel in his studies separated the magnetic interactions of these atoms

to Fe-Fe, Fe-R, and R-R interactions [93]. These interactions make the magnetic phase

diagram of rare-earth perovskites quite rich and complex. To study magnetic behaviors

of these compounds, Bertaut introduced symmetry-adapted irreducible representations
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Table 2.1: Irreducible representation of magnetic states present in the Pbnm phase
of RMO3 for both transition-metal M -site and R site [47].

Irrep M site R site

Γ1 (Ax,Ḡy,Cz) (0,0,Cz)

Γ2 (Fx,Cy,Ḡz) (Fx,Cy,0)

Γ3 (Cx,Fy,Az) (Cx,Fy,0)

Γ4 (Ḡx,Ay,Fz) (0,0,Fz)

(IRREP) for the magnetic structure of these materials [47]. In his work, he has shown

that the symmetry adapted spin ordering for Pbnm space group can be presented by

four IRREPs, namely, Γ1, Γ2, Γ3, and Γ4 [see Tab. 2.1]. Each of these IRREPs is a

linear combination of simpler magnetic orders (A, C, G, and F orders see Fig. 2.4) in

different directions, that transforms according to the same IRREP of the Pbnm space

group.

Figure 2.4: G-, A-, C-, and F-type magnetic ordering in Pbnm structures.

In these structures the dominant magnetic interactions are the exchange interaction

between iron sublattices, that orders Fe atoms in G-type at temperatures of higher

than 650 K. The G-type is the main spin direction (which is shown by a bar in Ta-

ble. 2.1) and other letters in the notation show the cantings that are originating from

Dzialoshinskii-Moriya interactions (DMI). Since the main magnetic interactions are iron

antiferromagnetic, only Γ1, Γ2, and Γ4 are observed in this family of materials, since the

Γ3 phase does not have a G-type ordering.

These structures are such that the Fe sublattice is not completely antiferromagnetic

but is slightly canted to create a small ferromagnetic (wFM) order. Fig. 2.5 shows

the schematic of the Γ1, Γ2, and Γ4 IRREPs in these structures, where we can see a

small ferromagnetic order for Γ2 and Γ4 in the x and z directions in Fig. 2.5(b) and

(c). The wFM in these materials is particularly interesting. This property can be used

in constructing magnetic memory devices, since, these would have a small depolarizing

field. Before Dzialoshinskii’s discovery on the origin of wFM in αFe2O3 [94], the origin of

wFM in RFeO3 structures was believed to be coming from different magnetic moments

in Fe [93] sublattice. Latter Bozorth and Treves [95, 96], following Dzialoshinskii’s

discovery, showed that the origin of wFM in these structures is due to DMI. Recently
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Figure 2.5: Schematic representation of Γ1 (a), Γ2 (b), and Γ4 (c), spin configurations.
Long arrows showing the main G-type spin direction for four sublattices and small
arrows representing the canting of the spins where we can see small magnetization in

panels (b) and (c). Figure taken from ref [92].

Bellaiche et. al [97] has written some energy expressions to describe these cantings. In

this formulations, Energy from cantings due to the DMI can be written as:

∆E = K
∑
ij

(ωi − ωj).(Si × Sj) (2.3)

where ωi presents the OOR around i magnetic site. For Pbnm structure the ωi can be

developed as:

ωi = (−1)nx(i)+ny(i)+nz(i)ωR + (−1)nx(i)+ny(i)ωM (2.4)

Where ωR and ωm are anti-phase and in-phase OOR amplitudes, respectively. From

these, the following relations between different magnetic ordering are written [97] :

∆E = 24NKωR.(G× F ) + 16NKωM .(C × F )

+ 16NKωM .(G×A) + 8NKωR.(C ×A)
(2.5)

where this can be seen that the wFM (F ) is arising from DMI interaction with G-type

order. The interactions resulting in other cantings are also presented. This shows that

the OOR plays a very important role in determining the magnetic properties of these

structures. Specifically, Weingart et. al [98] has shown that the magnitude of canting

and wFM in these structures has direct correlations with the magnitude of OOR [see

Fig. 2.6].
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Figure 2.6: Change in magnitude of wFM as a function of OOR in BiFeO3. The
figure shows the calculated wFM (red circles) compared to arctan(D

J ) of the DMI (D)
and exchange (J) interaction (blue line). Figure taken from ref [98]).

2.3.2 Magnetization reversal

Magnetization reversal (MR or compensation point) is another property of interest in

RFeO3s. In this behavior, the net magnetization of the material, which is originating

from canting of the Fe sublattice at high temperatures, reverses its sign at lower tem-

peratures [see Fig. 2.7 and Fig. 2.8]. This behavior is present in some of these materials,

while it is not the case for some others [see Fig. 2.7 and Fig. 2.8]. First attempt to ex-

plain this behavior, came up with the idea that the rare-earth sites get polarized under

the field of Fe atoms and it is polarized parallel to the Fe wFM for some of these ma-

terials, while in antiparallel direction to wFM for others; hence, causing MR. Although

the explanation was given a long time ago for this behavior, the microscopic mechanism

of the interactions between the two sublattices was not clear. In 2016 Zhao et. al. from

the symmetry of the structure showed that the DMI between two sublattices can polar-

ize the R site [99]. In Zhao’s work, it was not clear why the sign of the interaction is

positive for some of these materials, while it is negative for other ones. The microscopic

mechanism for this behavior is still a question.

2.3.3 Spin reorientation

Most of the literature on RFeO3s is devoted to studying and explaining the spin reorien-

tation (SR) in these materials. This behavior is the rotation of the spins direction from

one crystalline direction to another one. During the Γ4 to Γ2 SR, the spins direction

changes from the a crystallographic direction to the c direction by slowly rotating as

a function of temperature in ac plane [see Fig. 2.9]. The Γ4 to Γ2 SR can develop at
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Figure 2.7: Schematic plot of the evolution of the total magnetization of the crys-
tal and showing two possible cases: (i) MR effect (red line) where the magnetization
changes sign below a critical temperature (compensation point) due to the fact that
the paramagnetic rare-earth atom magnetizes in opposite direction to the wFM of
the transition-metal atom. (ii) Absence of MR (blue line) where the magnetization is
amplified when the temperature is reduced and corresponding to the case where the
rare-earth atom magnetizes in the same direction as to the wFM of the transition-metal

atom.

Figure 2.8: Change of weak magnetic order as a function of temperature for NdFeO3

(left), where there is MR and for GdFeO3 (right) where there is no MR in material [100].

different temperature window: for some materials it is rather fast (e.g., it spans through

a 3 K temperature range [101] for ErFeO3), while for others it can occur over a large

temperature range (e.g., 70 K for NdFeO3 [102]).

In the first explanation of the continuous rotation of spins as a function of temperature,

a temperature-dependent anisotropy for Fe sublattice is defined phenomenologically in

which the temperature width of SR is considered to be due to impurities in materials.

In his studies, Gyorgy et. al using torque measurement showed the slow SR is intrinsic

to these material [103]. So, the temperature-dependent model was not consistent with

the slow rotation of the spins. Latter, a 4th order anisotropy was added to the model
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Figure 2.9: Schematic representation of the SR from Γ4 (red color) to Γ2 (blue color)
as a function of temperature where the transition is smooth by passing through an

intermediate mixed phase containing both states (Γ24).

to account for the temperature width of SR in these materials [104]. In this model the

potential energy surface for Fe sublattice is written as:

F = F0 +K1sin
2θ +K2sin

4θ (2.6)

Solving this equation to find the minimums of the free energy and stable states of the

system will give:

θ1 =
π

2

θ2 = 0

sin2θ3 =
−K1

2K2

(2.7)

Where θ is the angle between c axis and magnetization. The solution θ3, is real only

between temperatures T1 and T2 given by K1(T1) = −2K2 and K1(T2) =0. In this

model, there are two minimums of the spin structure free energy, and the slow rotation

is captured in the model. Although, the model is still based on temperature-dependent

anisotropy. Aring, following these studies, considered the effect of rare-earth ion on

SR [105]. In this model, the temperature-dependent SIA of Fe sublattice was not con-

sidered and the SR is described to be due to interactions between R and Fe sublattices.

Studies on TbFeO3 show that there are two phase transitions, from Γ4 to Γ2 below 8.5 K

and, then, at the ordering of Tb the Fe subsystem transforms back to Γ4 [106]. This

shows the importance of the R site ordering in this SR. It has also been shown that

this SR is of second order [104, 107], and it could be associated with the softening of a

low-frequency magnon mode [108, 109].
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Figure 2.10: Summary of experimentally established spin configurations and magnetic
phase transitions in the rare-earth orthoferrites. “+”, “-” represent the parallel or an-
tiparallel coupling moments of Fe3+ and R3+, respectively. The orange line represents
the position of temperature compensation. The blue triangles represent the moments
of Fe3+ and R3+ undergo a parallel to antiparallel change. The spin switching point
means the antiparallel coupling moments of Fe3+ and R3+ turn to the opposite direc-
tion simultaneously. The black part represents the ordering of rare-earth ions (Figure

adapted from ref [110]).

Figure 2.10 shows the summary of the experimental results regarding magnetic properties

of RFeO3 from ref [110]. For most of the members of this family, the SR is from Γ4 to

Γ2 as presented by green to yellow colors in the plot. Only two of the members show Γ4

to Γ1 SR (Ce and Dy). The figure also shows the MR point (shown by compensating

point) which is below 50 K for all materials. As shown in Fig. 2.10 the rare-earth ordering

temperature is quite low in these structures and their effect on the magnetic behaviors

of these materials is negligible. Figure 2.10 shows the rare-earth ordering temperature

for most of which the ordering temperature is below 6K.

Besides phenomenological models, some theoretical models have also been developed

to describe the SR and magnetic interactions in RFeOs. Moskvin [111] has made a

model to describe the magnetic interactions in RFeO3 and RCrO3. He has also made
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use of the Anderson exchange model [7] to study superexchange and Dzyaloshinskii-

Moriya interaction (DMI) in these materials [112]. A model developed and analyzed by

Yamaguchi in the 70’s [82] through a Heisenberg model featuring an effective exchange

field of the Fe spins acting on the R spins. This model has been used as a reference

work to explain the temperature-induced MR and SR and is often invoked to explain

the multiferroic properties of RFeO3 crystals. In his model, he has explained SR to be

originating from the DMI between R and Fe sublattice, and the slow rotation is captured

correctly. However, regarding theoretical or first-principles studies, only a little has

been performed to understand the microscopic origin of the interactions between the

two magnetic cations, as well as their role in the development of large magnetoelectric

and multiferroic responses; hence, our current picture of these materials continues to be,

to a large extent, speculative.

2.3.4 Magnetization hysteresis loops

Hysteresis in a ferromagnet refers to the history dependence of the magnetization upon

sweeping an external magnetic field. RFeO3s have also interesting magnetic Hysteresis

loops. The behavior of these loops is shown to be dependent on the temperature where

the MR happens [113]. These loops are rectangular close to MR point while they change

their shape and show a s like shape at lower temperatures [see Fig. 2.11].

Figure 2.11: Magnetic Hysteresis Loops for ErFeO3 from ref [113]. For temperatures
close to MR (T=26) the Hysteresis loops are rectangular while for temperatures far

from MR point the Hysteresis loops become s like.

Rare-earth orthoferrites also show an exchange bias effect. The exchange bias effect

is a shift of magnetic hysteresis loop away from the center of symmetry, which has

been used in a variety of magnetic storage and sensor devices [114] [see Fig. 2.12]. The

basic mechanism of the exchange bias effect is that the magnetization direction in a

ferromagnetic layer (free layer) can be pinned by an adjacent antiferromagnetic layer

(pinning layer) [115].

The exchange bias effect has been observed in the single crystal ErFeO3 [116]. This

effect is particularly interesting since the behavior strongly depends on temperature. The

ErFeO3 has an MR temperature at 45 K. In ErFeO3, it has been shown that the direction
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Figure 2.12: Schematic representation of exchange bias effect taken from ref [115].
The dashed hysteresis showing the behavior of the free ferromagnetic material. The
solid blue line showing the hysteresis loop for ferromagnetic material on top of a anti-

ferromagnet where we can see a shift (i.e., exchange bias effect).

of the exchange bias, changes sign at temperatures close to MR (TMR) [116]. Fita et.al.,

have shown that the direction of the exchange bias can change sign depending on its

temperature history. The exchange bias sign may be changed to the opposite one by

varying the field-cooling protocol, depending on whether TMR is crossed with decreasing

or increasing temperature [see Figure. 2.13] [116]. This behavior has also been observed

in other RFeO3 that have magnetization reversal like SmFeO3 and NdFeO3[117].

2.4 Magnetoelectric and multiferroic properties

Magnetoelectric (ME) materials are compounds in which there is a coupling between

magnetic field (magnetization) and electric field (polarization) [118, 119]. Magnetoelec-

tricity is an attractive material’s response because it allows controlling of the magnetic

properties using an external electric field or, the other way around, to control the polar-

ization using an external magnetic field which can have a plethora of possible applications

in spintronics, sensors, etc [114, 120, 121]. In particular, these materials can be used for

memory devices and improve their performances by enhancing the speed of the device

together with reducing its energy consumption [121, 122].

Since the first experimental observation of the ME effect by Astrov [123] there have

been many attempts to find the ME effects in other materials but it appeared that most

of these ME responses were very small to be considered practical [114, 121, 124, 125].

So far the discovered ME materials have either a small coupling [126], or a very low-

performance temperature [56] which hinders putting them into applications. Different

paths were introduced to enhance the ME response of materials. To name a few, we have
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Figure 2.13: Magnetization hysteresis loops for ErFeO3 for a magnetic field applied
along a axis (direction of magnetization). (a) and (c) for T < TMR with TMR = 45K
and (b) and (d) for T > TMR for different cooling procedures: FC in 10 kOe from 300
to 10 K and then warming to the given T (abbreviated in the figure as FCW), and
FC in 10 kOe from 300 K to given T (abbreviated in the figure as FC). In the figure
the possible magnetic ordering of the sublattice are also shown. Figure adapted from

ref [116].

structural softness through epitaxial strain [127, 128], solid solutions [129], or making

artificial structures and superlattices [90, 130].

Bulk multiferroic (MF) materials are a subclass of MEs in which there exist two ferroic

orders in the same phase, i.e., ferroelectricity and ferromagnetism (or antiferromag-

netism) [131]. This class of materials are divided into two groups, namely, type-I and

type-II [132]. Type-II MFs are materials in which the magnetic ordering is the mech-

anism that breaks the inversion symmetry causing ferroelectricity. Hence, in type-II

MFs a strong coupling between magnetism and polarization is present by construction,

resulting in stronger ME responses compared to type-I MFs where the coupling is more

indirect. The reported ME responses for these materials show that indeed the strongest

ME responses are found in type-II MFs [56, 80, 83, 133, 134]. In a type-II MF, the ME

response can result from either non-collinear spin ordering, in which we expect small

polarization since it arises from spin-orbit coupling (SOC) (10−2µC/cm2 ); or it can

result from inversion symmetry breaking due to collinear ordering of the spins. In the

latter case, the mechanism can be other than SOC, like e.g. exchange striction, which

typically yields large polarization (one to two orders of magnitude larger) compared to

the first mechanism.

More than 50 years ago, Bertaut from a symmetry point of view showed that some of
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Table 2.2: Rare-earth orderings that breaks the inversion center and the ME response
matrix for these states from ref [47, 82]

Γ5(Gx,Ay, 0 ) Γ6( 0 , 0 ,Az) Γ7( 0 , 0 ,Gz) Γ8(Ax,Gy, 0 )

αxx 0 0
0 αyy 0
0 0 αzz

 0 0 0
0 0 αyz
0 αzy 0

  0 0 αxz
0 0 0
αzx 0 0

  0 αyz 0
αzy 0 0
0 0 0



the magnetic ordering on rare-earth sublattice in RFeO3 structures would break the

inversion symmetry [see Tab. 2.2] [47]. Yamaguchi also used symmetry and derived

the magnetoelectric response matrices for these materials (the response matrices are

shown in Tab.2.2) [82]. Indeed some of the rare-earth orthoferrites (e.g. GdFeO3) are of

type-II multiferroics, in which the collinear ordering of spins creates the polarization [80].

Hence, they have larger polarization compared to other type-II MFs as well as larger ME

responses. Although the temperature at which the multiferroicity appears is very low

(it requires that the rare-earth spins become ordered), their ME responses are among

the highest reported in single-phase materials [80, 83] and, regarding the amplitude,

they can compete with laminated composites (sandwiched structures of piezoelectric

and magnetostrictive materials in which the strain coupling between the two materials

is the mechanism creating large ME response) [135, 136]. These rare-earth orthoferrite

materials have such a strong coupling that makes it possible to control ferroelectric or-

der using magnetic fields or to control the magnetic ordering using electric fields [80].

However, the exact origin of their large responses has not been fully analyzed from

first-principles or model Hamiltonian (fitted to first-principles) calculations due to the

complexity associated with the presence of two different and coupled magnetic sublat-

tices, and because the rare-earth magnetism comes from f electrons which are difficult

to handle in density functional theory (DFT) calculations [137, 138].

In DyFeO3, Dy atoms order in Γ8 (see Tab. 2.2) at temperatures lower than 4 K. For

this material Tokunaga et. al have shown that by applying a magnetic field of 25 kOe,

the magnetic structure goes through an SR from Γ8 to Γ5 state [83]. Measuring the ME

response in this material in these two states, they have found that this material shows

a gigantic linear ME response when it rotates to the Γ5 state. According to this report,

DyFeO3 becomes multiferroic, when it orders in the Γ5 with a magnetization of 0.5

µB/f.u. and a polarization of 0.2 µC/cm−2. The measured response is αzz ∼2.4*10−2 esu

[see Fig. 2.14]. The reported response for DyFeO3 is large enough to be used in different

applications but the low temperature of this response is a big hindrance. Following

this work, using density functional theory Stroppa et. al. confirmed that the exchange

striction mechanism is responsible for observed ME response [137].
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Figure 2.14: ME response for H||c dependence of the residual P obtained by P-E hys-
teresis loops (filled circles) and the displacement current measurement (solid line) [83].

Another family member of these structures that is worth mentioning is GdFeO3. In

this material, the Gd atoms order in Γ5 at a temperature lower than 2.5 K. GdFeO3

is both ferromagnetic and also ferroelectric at low temperatures [80]. For this mate-

rial Tokunaga et. al. have reported a large nonlinear ME response, which originates

from exchange striction between Gd and Fe atoms [see Fig 2.15]. Two different ME

responses are observed in GdFeO3, which are due to applied magnetic field in two dif-

ferent direction [see Fig. 2.16 and 2.15]. Due to this large ME response, it is shown

that the magnetic ordering in this material can be controlled using an electric field [see

Fig. 2.15] and ferroelectric ordering can be controlled by using a magnetic field. Zhao

et. al. have used DFT and studied the general mechanism behind the ME responses

in these materials [139]. In their studies, they have shown that relativistic effects are

not important in the observed responses and the mechanism behind ME responses is

exchange striction. They have also derived phenomenological and atomistic models that

describe these couplings which can be used to predict and engineer these responses.

There have been some other works on the other family members of RFeO3. In particular,

we can name the work on SmFeO3 by Lee et. al, who claim that SmFeO3 is MF at

room temperatures, a temperature that is higher than the ordering temperature of Sm

ions [140]. The ferroelectricity is claimed to be due to the inverse DM effect. following

this work Kou studied SmFeO3s and found that there is no ferroelectricity in SmFeO3

and explained previous ferroelectric observations to be due to spurious effect in the

experiment. Their findings suggest that magnetoelastic effects may also lead to an

artificial observation of pyrocurrents and, hence, the magnetoelastic coupling can easily

be misinterpreted as a ferroelectric response [141]. But there is still conflict on this

behavior and recently Dey et.al have reported a polarization in temperature close to

room temperature in HoFeO3 [142]. They claim that this ferroelectricity is coming from

Oxygen atoms’ displacements in the c direction and the space group is Pb′n′21.
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Figure 2.15: ME response of GdFeO3. The change of polarization and weak magne-
tization of the material as a function of magnetic field. The magnetic field is applied
in c direction (i.e., in the direction of weak ferromagnetic moment and perpendicular
to G type order). The blue line shows the response under constant electric field of 8.6
kVcm−1 while red line is the response with no electric field.( Figure taken from ref [80])

Figure 2.16: ME response of GdFeO3. Change of polarization and weak magnetiza-
tion of GdFeO3 as a function of applied magnetic field. The magnetic field is applied in
the x direction (i.e., in the direction of G type order). The blue line shows the response

under constant electric field of 8.6 kVcm−1 [80])

In ref [143], it has been shown that it is possible to induce ferroelectric and ferromagnetic

orders in DyFeO3 by applying uniaxial stress. In this work, it has been shown that

the driven ferroelectric and ferromagnetic orders are coupled and they monotonically

increase by increasing the uniaxial stress.
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Figure 2.17: Top panel shows the applied time dependent electric field. Low panel,
change of magnetization of the material as a function of the time dependent applied
magnetic field (blue curve). Red curve showing the change in the polarization of the

material as a function of applied magnetic. These results are for T=2 K [80].

This class of materials is also shown to be stable in different multiferroic structures.

When the A site atom is small enough, the hexagonal structure can be stabilized too.

LaFeO3 has been grown in a hexagonal structure that is ferroelectric as well as anti-

ferromagnetic [91]. In ref, [90] it is shown that applying large enough strain to these

structures causes a phase transition to different noncentrosymmetric space groups. In

this work, it is shown that by inducing high compressive strain, the structure transforms

to a tetragonal state, even for large rare-earth ions, which have a giant polarization. By

exerting a large tensile strain, it is shown to be possible to reach two different ferro-

electric phases, one of which never observed in perovskites before, and both of which

have large polarizations. Close to the phase transition points a multiphase boundary

also occurs, which may lead to optimization of properties or unusual features. It is also

concluded that the epitaxial strain allows tuning different properties of these predicted

materials including polarization and magnetic ordering temperature [see Fig. 2.18].

Figure 2.18: Figure shows different physical properties of the phases accessible to
CeFeO3 as a function of lattice parameter in (001) films. Panel (a), (b), and (c)

showing the c/a ratio, polarization and Néel temperatures, respectively. [90].



Chapter 2 55

2.5 Conclusion

To sum up, in this chapter we have given a brief overview of the properties of rare-

earth orthoferrites. We have discussed their crystal structure and the lattice distortions

present in them. We have also discussed their magnetic properties. In particular, we

have discussed open questions regarding their magnetic properties (magnetization re-

versal and spin reorientation) and also some interesting magnetic properties observed in

these structures, like hysteresis loops and exchange bias effect. Furthermore, we have

discussed the magnetoelectric and multiferroic properties of RFeO3 and the most im-

portant reports regarding their ME responses. In the following chapter, we are going

to answer the open questions regarding the magnetic properties of these materials and

investigate their microscopic origin.
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Magnetic phase diagram of

rare-earth orthorhombic

perovskite oxides

3.1 Introduction

All the unique properties of RFeO3, rely on the presence of two magnetic sublattices, R

and M with very different Néel temperatures such that for a wide range of temperatures

the R spins are paramagnetic while the M spins are ordered. The associated magnetic

interactions between these two sublattices have been proved to be the key ingredients

for the origin of the SR, MR, and multiferroic properties [81, 144, 145], hence for their

use in technological applications [97, 99, 146]. So, it is of paramount importance to

understand the magnetic interactions and magnetic properties in these structures.

As discussed in chapter 2, there are still open questions regarding magnetic properties of

RFeO3s (i.e., MR and SR). In this chapter, we shed some light on the magnetic properties

of the RMO3s. We have used DFT [For the technical detail see Appendix B.1] to fit a

microscopic Heisenberg model that includes the superexchange and the DMI interactions

between the magnetic cations M -M and M -R (where M is Cr or Fe, and R is Gd). This

model is then used as starting point, and we tune the different parameters to understand

their specific role in the magnetic behaviors of the material using classical spin dynamics.

The spin dynamics results are also compared with analytical solutions to confirm their

consistency. Our work allows us to explain the origin of the SR and the parameters

determining the SR temperature interval and how the R magnetism is affected while

in its paramagnetic regime. We find that the occurrence of a slow SR comes from an

original evolution of the Γ4 and Γ2 orders due to the presence of two different interacting

56
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magnetic cations; this allows to have two magnetic phases to co-exist while no coupling

exists between them in the Hamiltonian.

Before analyzing the fitted model, we start with an analytical model of the magnetic

interactions present in RMO3 systems.

3.2 Analytical model

To understand the mechanism behind SR and MR, we develop in this section the Heisen-

berg model and solve it analytically to understand the phase diagram of RMO3 versus

their microscopic magnetic interactions. This will also allow for comparison with the

spin dynamics calculations to confirm that both give consistent results.

3.2.1 Symmetry-adapted spin representation

We develop an analytical model of RMO3 using the symmetry-adapted spin representa-

tion. For each of the sub-lattices (M or R) in the Pbnm unit cell, we have four magnetic

sites that result in four different magnetic orders: A, C, G, and F type as presented in

Fig. 3.1(b). Using these four magnetic orderings, we can define four symmetry adapted

spin states, namely, Γ1, Γ2, Γ3, Γ4 that are a linear combination of the A, G, C, and F

orderings in different directions (Fig. 3.1) [47]. Because the ground state of the M spin

sub-lattice is a robust G-type antiferromagnetic ordering in the Pbnm perovskite phase,

the most relevant Γj states are those with j = 1, 2, and 4, which present a dominant

G type in one of the three crystallographic directions with the presence of canted A,

C, and F -type magnetic orders in the other directions. We summarize in Table 2.1 the

different Γj states where Ḡ shows the main magnetic order and the components without

a bar are small spin cantings.

Using these notations, we can write the symmetry-adapted magnetic states in terms of

their modulation vectors for magnetic sub-lattice a as follows [Eq. (3.1) to Eq. (3.4)]:

SΓ1
i,a = Aa,x(−1)(niz) + Ḡa,y(−1)(nix+niy+niz) + Ca,z(−1)(nix+niy) (3.1)

SΓ2
i,a = Fa,x + Ca,y(−1)(nix+niz) + Ḡa,z(−1)(nix+niy+niz) (3.2)

SΓ3
i,a = Ca,x(−1)(niy+niz) + Fa,y +Aa,z(−1)(niz) (3.3)
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Figure 3.1: (a) Position of transition-metal ions (gray spheres) and rare-earth ele-
ments (blue spheres) in Pbnm structure, purple spheres represent oxygen atoms. (b)
Schematic representation of the G, A, C and F magnetic orders for transition-metal
sites present in Pbnm structure as highlighted by the red box in (a). Symmetry adapted

representations Γ1, Γ2, Γ3, and Γ4 present in perovskites (c).

SΓ4
i,a = Ḡa,x(−1)(nix+niy+niz) +Aa,y(−1)(niz) + Fa,z (3.4)

Here S
Γj
i,a is the spin of lattice site i for magnetic sub-lattice a (M or R) in irreducible

representation Γj and the lattice site vector for lattice site i can be written as nixû1 +

niyû2 + nizû3 where û1, û2, and û3 are unit cell vectors while the coefficients G, A, F ,

and C represent the magnitude of spin canting in each direction, the G-type order being

the main one. From now on, we will use these spin representations in our Heisenberg

model.
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3.2.2 Heisenberg model

In this section, we develop the Heisenberg Hamiltonian for RMO3 in which we include

the magnetic interactions between all the magnetic species: transition-metal atoms (M)

and rare-earth atoms (R), which can be summarized as follows if one stays at the second-

order of interactions ( higher-order spin interactions like biquadratic or four-spin cou-

plings are neglected):

H = HMM +HRM +HRR, (3.5)

where HMM is the Hamiltonian of M -M interactions, HRR the Hamiltonian of R-R

interactions and HRM the Hamiltonian of R-M interactions. HMM can be written as

follows:

HMM = HMM
ex +HMM

DMI +HMM
SIA , (3.6)

whereHMM
ex , HMM

DMI andHMM
SIA represent the superexchange, DMI, and single-ion anisotropy

(SIA) interactions of the M cations. In our simulations, we have neglected anisotropic

symmetric exchange interactions since our DFT calculations show that they are two

orders of magnitude smaller than DMIs (results not shown here).

For HRR we have neglected the HRR
ex and HRR

DMI since we are interested in behaviors that

take place at temperatures higher than the Néel temperature of the R spin sub-lattice.

We will only keep the SIA interactions for this site.:

HRR = HRR
SIA (3.7)

The Hamiltonian taking care of the R-M interactions can be written as follows:

HRM = HRM
ex +HRM

DMI (3.8)

The superexchange, DMI, and SIA terms can be developed as follows:

Hab
ex =

1

2

N∑
ij

(Jab,ijSi,a.Sj,b) , (3.9)

Hab
DMI =

1

2

∑
i,j

(Dab,ij × Sj,a) .Si,b (3.10)

Haa
SIA =

∑
i

Ka (Si,a.êi)
2 , (3.11)

where ab could be a = b = M , a = b = R or a = M and b = R and êi is a unit vector

pointing to the direction of the SIA axis, which, according to our DFT calculation for

GdFeO3 and GdCrO3, is the easy axis.
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We can show that there is no interaction between the different Γj magnetic orderings

[see Appendix A] such that we can write the total energy of the system as the sum of

the energy of each state. In this case we can write the total energy as:

H = HΓ1 +HΓ2 +HΓ3 +HΓ4 (3.12)

In our analytical derivations, we have neglected the Γ3 state since this state is much

higher in energy than Γ1, Γ2 and Γ4. This is related to the fact that the Γ3 state does

not contain G-type order, which is the order driving the lowest energy in the crystal

through the strongest superexchange interactions between transition-metals.

By putting the spin states in the Hamiltonian we can derive the following expressions

for each of the states [see Appendix A]:

HΓ1 =HM
ex +HM

DMI +HRM
ex +HRM

DMI

=NJM (AM,x)2 − 3NJM (ḠM,y)
2 −NJM (CM,z)

2

− 6NdMx ḠM,yCM,z − 6NdMy CM,zAM,x − 6NdMz AM,xḠM,y

− 8NdRMx CR,zḠM,y − 8NdRMy CR,zAM,x

(3.13)

HΓ2 =HM
ex +HM

DMI +HRM
ex +HRM

DMI

=3NJM (FM,x)2 −NJM (CM,y)
2 − 3NJM (ḠM,z)

2

− 6NdMx CM,yḠM,z − 6NdMy ḠM,zFM,x − 6NdMz FM,xCM,y

− 8NJRMFM,xFR,x − 8NdRMx ḠM,zCR,y − 8NdRMy FR,xḠM,z

− 8NdRMz FR,xCM,y − 8NdRMz CR,yFM,x

(3.14)

HΓ4 =HM
ex +HM

DMI +HRM
ex +HRM

DMI +HR
SIA +HM

SIA

=− 3NJM (ḠM,x)2 +NJM (AM,y)
2 + 3NJM (FM,z)

2

− 6NdMx AM,yFM,z − 6NdMy ḠM,xFM,z − 6NdMz ḠM,xAM,y

− 8NJRMFM,zFR,z − 8NdRMx Fz,RAM,y − 8NdRMy FR,zḠM,x

−NKM (ḠM,x)2 −NKR(ḠR,x)2

(3.15)
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Table 3.1: Calculated magnetic interactions from DFT of GdFeO3 and GdCrO3. J
(average values between nearest neighbors) values are for the nearest neighbors and di
are the DMI vector components along i = x, y and z. The units are in meV and to have
the exchange and DMI parameters these values should be divided by the spin moment
multiplication shown in last column. This from is convenient for comparing different

systems with different spin amplitudes.

dx dy dz J S1.S2

Fe-Fe 0.00 -1.80 -1.10 38 25/4

Cr-Cr -0.00 -0.81 -0.60 7.2 9/4

Gd-Fe 0.00 -0.06 0.03 1.85 35/4

Gd-Cr -0.01 0.04 -0.02 2.15 21/4

Gd-Gd – – – 0.19 49/4

Where JM and JRM are, respectively, the superexchange interaction magnitude for

M sublattice and between R and M spins(Ja is considered as Jii for isotropic exchange

interaction); dai is the magnitude of ith component of DMI vector for magnetic sub-lattice

a; and N is the number of magnetic atoms while Ka represent the SIA magnitude of

magnetic sublattice a.

With Eqs. (3.13)–(3.15) we have decomposed the Hamiltonian in terms of three inde-

pendent representations Γ1, Γ2, and Γ4, themselves decomposed into the superexchange,

DMI and SIA of their constituent A, C, G, and F magnetic orderings. This form allows

us to decompose the different microscopic contributions of the magnetic energy of the

RMO3 systems.

3.3 Calculation of the magnetic interaction parameters

In this section, we will present the parameters that we have calculated using DFT for

GdFeO3 and GdCrO3, which will serve as a reference starting point in our spin dynamics

simulations. These values will guide us to scan the magnetic phase diagram in regions

that are relevant to these materials.

3.3.1 Superexchange and DMI parameters

The dominant interactions are the superexchange interaction between transitions met-

als. The DFT results for GdFeO3 and GdCrO3 show that the strongest superexchange

interactions are between the nearest neighbors transition-metals; going further in dis-

tance gives very small values with respect to the nearest-neighbors such that they can be

neglected. These interactions are 38 and 7.2 meV for nearest neighbors [see Table 3.1],

in GdFeO3 and GdCrO3 respectively and 1 meV or below for the next nearest neighbors.
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The R-M superexchange interactions are one order of magnitude smaller (approximately

2 meV) than the ones between transition metals. The R-R superexchange interactions

are two orders of magnitude smaller than the transition-metals ones (around 0.2 meV)

such that we have neglected the R-R interactions in our spin dynamics simulations.

Calculated SIA for both sublattices in GdFeO3 shows that these parameters are small

around 72 µeV for Gd with easy axis along c direction and 75 µeV for Fe with easy

axis along the b in the Pbnm structure; in GdCrO3 the SIA constant for Cr in along c

direction and it is 25 µeV.

The most relevant parameters for our behaviors of interest are the DMIs. Table 3.1

shows the obtained results, where the relation dy > dz � dx is always valid. It is

the
−
a
−
a

+
c octahedral rotation pattern that breaks the bond inversion center of symmetry

and creates the DMI [98]. Hence, we will have the biggest distortion in the [110] cubic

direction (amplitude of the rotations in the y direction of the Pbnm structure) and the

smallest one will be in the [
−
110] cubic direction (x direction of the Pbnm structure), (as

shown in Fig. 3.2 the oxygen octahedral rotation has the same sign in the [110] direction

and add up while in [
−
110] direction they have an opposite sign and subtract from each

other), while the distortion in the [001] cubic direction (c direction of Pbnm) will be

almost half of the one in the [110] cubic direction. The ratio between these distortions

is close to being the same for any Pbnm crystal and this structural ratio also drives the

key magnetic interactions as we will show below.

Figure 3.2: Schematic presentation of the cubic ([100] and [010]) and Pbnm ([110]
and [1̄10] ) crystallographic directions with respect to each other. The curved arrows
represent the oxygen octahedra rotations that are in the same direction when projected
in the [110] direction while they are in opposite direction when projected in the [1̄10]

direction.

At high temperatures, there is no magnetic ordering on R sites (paramagnetic phase)

and the interactions between the R spins are negligible. Hence, at high temperatures,

the SIA and DMI interactions of the M sites determine the magnetic equilibrium state.

From the formulas 3.13,3.14 and 3.15 we can notice that both dMy and dMz , which have



Chapter 3 63

the biggest components compared to dMx [see Table 3.1] in the Γ4 state, are coupled with

the main magnetic order and spin direction (i.e, GM,x), making the energy of this state

lower compared to Γ1 and Γ2. When comparing Γ1 and Γ2, we can observe that for the

Γ2 state we have the dMy terms that couple with the main spin direction, hence stronger

than the dMz component present in Γ1. This implies that the Γ2 state is lower in energy

than the Γ1 state. Hence, we can have:

EMM,Γ4

DMI < EMM,Γ2

DMI < EMM,Γ1

DMI

where E
MM,Γj
DMI is the energy from DMI between M atoms in the Γj state, i.e., the DMI

between M cations favour the Γ4 state [111].

We can also see the effect of these interactions in RCrO3 structures. According to Table

3.1, the DMIs and superexchanges in these structures are smaller than for RFeO3, which

makes the energy difference between different spin orders (Γ1, Γ2, Γ4) smaller. This is

consistent with the fact that the Γ2 and Γ4 states are both presents at high temperature

for the RCrO3 crystal series [147].

Considering the DMIs between R and M , we notice that in the Γ2 state we have

HRM,Γ2

DMI = −8NdRMx ḠM,zCR,y−8NdRMy FR,xḠM,z−8NdRMz FR,xCM,y−8NdRMz CR,yFM,x

terms in which dRMy couples with the main spin directions and also this state has more

degrees of freedom compared to the other states making energy of this state lower. As

for Γ4 we have HRM,Γ4

DMI = −8NdRMx Fz,RAM,y − 8NdRMy FR,zḠM,x and for Γ1 we have

HRM,Γ1

DMI = −8NdRMx CR,zḠM,y − 8NdRMy CR,zAM,x which again due to having the cou-

pling 8NdRMy FR,zḠM,x compared to 8NdRMx CR,zḠM,y terms the Γ4 state is lower than

that of Γ1 (dRMy � dRMx ). Hence we can write the order of the different energies due to

DMI of R and M as:

ERM,Γ2

DMI < ERM,Γ4

DMI < ERM,Γ1

DMI .

From this analysis, we can see why an SR transition is possible when lowering the

temperature.

Indeed, as the temperature is lowered the interactions between R and M cations become

stronger due to the magnetization of the R site in the field created by the M spins, and

the Γ2 is more and more favored through the DMIs between R and M sites. Hence,

we can explain the Γ4 to Γ2 SR due to the DMIs between R and M sites as discussed

previously by Yamaguchi [81].
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3.3.2 Origin of ordering on R site

The MR observed in RMO3 is the change of sign in the net magnetization of the mate-

rial. This property has been related to the polarization of the R site atoms as a result of

interaction with transition-metal atoms. In this interaction, R site atoms could polarize

in the direction of the weak magnetic moment of the transition-metal or opposite direc-

tion, which would result in the presence or the absence of the magnetization reversal

respectively [see Fig. 2.7]. The remaining question is why the R paramagnetic atoms

magnetize in opposite direction for some R elements (e.g. NdFeO3, SmFeO3, DyFeO3,

ErFeO3, TmFeO3, YbFeO3) and why they magnetize in the same direction for others

(e.g. PrFeO3, EuFeO3, GdFeO3, TbFeO3, HoFeO3) [100] and what is the microscopic

origin of this effect.

With our model, we can have access to the detailed microscopic interaction between R

and M cations. Equations 3.13,3.14 and 3.15 show that there are two types of interac-

tions acting on R sites: (i) the superexchange interaction between the weak ferromag-

netic (wFM) order of the M and R sublattices (JRMFMFR) and (ii) the DMI between

the G-type orders on the M and R sublattices (dRMy FR,(z,x)ḠM,(x,z) and dRMx CR,zḠM,y).

These interactions can induce either F - or C-type ordering on the R site. To check the

validity of these possibilities, we have used DFT calculations as computer experiments

where we have replaced the Gd site by Cr in GdFeO3’s Pbnm (i.e., CrFeO3) structure

to allow the study of full non-collinear calculations and to have stronger interactions

between R-site and Fe-site atoms compared to the Gd case. Our model is valid for two

magnetic sublattices in perovskites whatever the magnetic cations, such that replacing

Gd by Cr will show the same qualitative trend.

We have done different calculations in which we constrained the magnetic moments on

the Fe site and relaxed the magnetic order of the R site within two different settings.

In the first setting, we set the spin-orbit coupling (SOC) to zero to suppress the DMI

such that the resulting magnetic order on the R site would be due to superexchange

interactions only. In the second setting, we considered SOC, hence activating the second

term (dRMy FR,(z,x)ḠM,(x,z)) that couples the G type order of the M sublattice to F order

on R site. In Fig. 3.3 we show the result of these two types of calculations where we can

see that the magnetization line jumps to higher values when the SOC is present. This

shows that the DMI can polarize the R site as the superexchange, which is in agreement

with the results obtained by Zhao et al. [99] using DMI energetic expressions between

R and M sites.

We should also mention that in our simulations for R = Cr since the superexchange

interaction is AFM, it polarizes the R site in the opposite direction to the wFM direction



Chapter 3 65

of the M , while the DMI polarizes the R site in the same direction as the wFM of the

M site [see Fig. 3.3]. Our calculations for GdFeO3 also show that these interactions

compete with each other such that the final magnetization direction of the R site will

be determined by the balance between them.

Considering GdCrO3 we can see in Table 3.1 that the DMI interactions between the

Gd and Cr spins have opposite signs compared to the DMI interaction between Gd and

Fe spins. This shows that we can also have a sign change of the DMI depending on

the electronic structure of the atoms in the structure. The calculated magnetic ground

state of the GdCrO3 shows that the wFM of Cr and magnetic polarization of the Gd are

in opposite directions, while for GdFeO3 the wFM of the iron atoms and the magnetic

polarization direction of the Gd atoms are in the same direction. Hence, depending

on the electronic structure of the atoms we can have the superexchange and DMI that

compete or cooperate that will result in the presence or the absence of the MR. This

shows that the DMI between the two sublattices is the interaction that is responsible

for polarizing the R site. The calculated DMI interaction signs are in agreement with

experimental results which shows that for GdFeO3 there is no MR [100] while it is

present in GdCrO3 [148].

Figure 3.3: Calculated magnetization of R as a function of magnetization of Fe in
RFeO3 simulated at fixed atomic positions of relaxed Pbnm GdFeO3 (R is Cr here i.e.,
CrFeO3). Orange points are without spin-orbit coupling (with a linear fit orange line)

and green points are with spin-orbit coupling (with linear fit green line).

3.4 Spin dynamics

In this section, we present the spin dynamics results obtained with the VAMPIRE code

[see Appendix B.1 for details] through the Heisenberg model presented above (with
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R − R superexchange and DMI set to zero). First, we worked with the parameters of

the magnetic interaction obtained for GdFeO3. Then, we made additional spin dynam-

ics calculations by varying the values of these parameters (related to larger spin-orbit

interaction present in other rare-earth elements) to understand how the phase diagram

and associated SR transitions are affected by the change of the magnetic interactions.

To verify that our model qualitatively respects the symmetry of the Pbnm phase of

RMO3 compounds, we first simulated the ground state (0 K) of these structures by

tuning the SIA to obtain the magnetic moment direction along the different x, y, and

z crystallographic directions. By doing so, we verified that the obtained cantings corre-

spond to the ones of the Γ4, Γ1, and Γ2 orders when magnetic moments lie along x, y,

and z directions, respectively [see Table 2.1].

In the following, we will analyze both Γ4 to Γ2 and Γ4 to Γ1 SR transitions.

3.4.1 Γ4 to Γ2 reorientation

As a first step, we have done temperature-dependent SR. To have temperature-dependent

SR, we have tuned the parameters obtained for GdFeO3 to induce such behavior, since

this effect is not present in GdFeO3. More precisely, we increase the DMI interaction

between R and M by one order of magnitude to have the SR. Figure. 3.4(a) shows the

evolution of the magnetic moment directions with respect to the temperature when there

is an SR, as obtained from our spin dynamics simulations.

Figure 3.4: Temperature-dependent SR as obtained from our spin dynamics calcula-
tions. Panel (a) shows the transition-metal M site spin projections along the x and z
directions. Panel (b) shows the evolution of the x and z magnetic moment projection
of the rare-earth R site in the same temperature range as panel (a). The spin dynamics
are done in 0.5 K intervals and we have interpolated the lines. The units on the y axis

are spins normalized with their moments( 5
2 and 7

2 for Fe and Gd, respectively).
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We can see a slow rotation of the spins from x to z direction as the temperature decreases

and that this reorientation is continuous in a range of temperature where the two orders

(associated to the Γ4 and Γ2 states) are present together. Figure. 3.4(b) shows the

temperature evolution of the magnetic ordering of the R spins due to its interaction with

the Fe spins. Here, we can see that the SR happens around 15 K when the normalized

magnetic moment of the rare-earth element is about 0.3. Below this critical temperature,

the R site magnetization increases in a more pronounced way. Such an increase of the

magnetization for the Er has been observed experimentally in ErFeO3 at the vicinity of

the SR region [145]. The increased magnetization of the R sites creates a torque that

induces the rotation of the Fe magnetic direction. This result shows that we need the

ferromagnetic ordering on the R site to have this Γ4 to Γ2 SR transition. This is also

observed experimentally in, e.g., TbFeO3 where the crystal goes from the Γ2 state to

the Γ4 state when the Tb atom orders into the AxGy magnetic phase (no ferromagnetic

order) at very low temperatures [106].

Figure 3.5: Temperature-dependent spin dynamics results for GdFeO3: (a) normal-
ized magnetic moment of the Fe site as projected along z and the mean magnetization
of Fe sublattice(M). The second axis in panel (a) shows the susceptibility of the Fe
sublattice shown in red and (b) normalized magnetic moment of the Gd site (ferromag-
netic order along the z direction). The spin dynamics are done in 10 K intervals and

the lines are interpolated.

In Figure. 3.5(a), we report the evolution of the magnetic orders at a higher temperature.

From the susceptibility shown in red, we can see that the Néel temperature is around

650 K. We also obtain a Néel temperature of 654 K (using the M −M superexchange

parameters as obtained for GdFeO3) which is calculated by fitting the curve with (1 −
T
TN

)β with β=0.44. The wFM (Fz) appears at temperatures below the Néel temperature

and, after a jump at the phase transition, stays constant (0.10 ×5
2µB). In Fig. 3.5(b) we

show the evolution of the R site magnetic moments where we can see that the induced

magnetization of the rare-earth spins is visible at temperatures as high as 400 K.
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Figure 3.6: Decomposition of magnetic ordering on different irreducible representa-
tions (Γj) for x, y and z directions of the spins in the Γ4 to Γ2 SR phase transition
case. The calculations are done at 0K (ground state). The horizontal axis shows the
magnitude of the z component DMI between R and M sites in the unit of meV and
the vertical axis shows the normalised order parameter magnitude. The simulations are

done in 0.01 meV grid and the lines are interpolation between the points.

To further understand the SR, we have studied how the stability of the magnetic orders

is affected by the value of the DMI coupling between R and M . This allows us to

determine how the strength of the interaction between R and M spins influences the SR.

Figure. 3.6 shows the equilibrium state of the structure which is projected to the different

irreducible magnetic orders along x, y, and z directions versus dRMz . (The figure presents

three components of the spin as projected to different irreducible representations.)

For values of dRMz < 1.6 (meV) we can see that we have the Γ4 state with the main

direction of the spin along x with G-type AFM order (Gx) and small components (cant-

ing) of the spins along the y and z directions with A-AFM (Ay) and FM (Fz) ordering

respectively. For 4.3(meV) > dRMz > 1.6 (meV) we have a coexisting region that we

denote Γ24, where mostly Γ2 and Γ4 states are present. The system enters this state

through a sudden jump in magnetic order (we also have a discontinuity in the energy of

the system). As we move towards higher values of dRMz the Γ4 contribution is reduced

while Γ2 contribution increases up to dRMz > 4.3 (meV) where only the Γ2 is present,

the SR being completed. The transition from Γ2+Γ4 to Γ2 at dRMz = 4.3 (meV) is

continuous.

To get further insight into this transition, in Fig. 3.7 we show the evolution of the atomic

site projection of the spins in x, y, and z components. Since the SR transition is due to

the dRMz FR,xCM,y term in the Hamiltonian, we can observe an increase of the C-type

canted order along the y direction as the interaction between R and M becomes stronger.

Additionally, since the magnitude of the canted ferromagnetic order on M is constant

(FM order along x and z direction before and after SR), this increase in C-type order

can only come from a reduction of the G-type order component of the spin.
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Figure 3.7: Plot of the evolution of the x, y, and z projections of the local Fe cation
spin components versus the DMI strength between R and Fe cations. A schematic
representation of how the Fe spins look like is also given for the three main phases
Γ4, Γ24, and Γ2. The color of the spins are chosen the same as the magnetization
amplitude in the figure. The dashed black line shows the zero of magnetization and is
plotted for a guide to the eye. The simulations are done in 0.01 meV grid and the lines

are interpolation between the points.

In Fig. 3.8 we show how the different energy contributions of the system (superexchange

and DMI) evolve with respect to the dRMz parameter. We can see that the contributions

coming from dMz and superexchange interactions between transition-metals are positive

and increase as we go from Γ4 to Γ2 state, which means that they are against the SR.

These interactions are determinants for how fast the SR happens. The superexchange

interaction is the main interaction that resists against the SR and this is because the

SR involves an increase of the magnitude of C-type order parameter on M sites (via
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Figure 3.8: Decomposition of the total energy from spin dynamics to its components
i.e., energy from superexchange interaction (exch), energy from y component of the
DMI between M and RM in (dM

y ,dRM
y ), and energy from the z component of the DMI

between M and RM (dM
z ,dRM

z ). The simulations are done in 0.01 meV grid and the
lines are interpolation between the points.

dRMz FR,xCM,y, as mentioned above) and the reduction of the magnitude of the G-type

order, which costs some energy. Therefore, to overcome this energy penalty we need

larger interaction between R and M to complete the SR which is provided by more

ordering of the R site atoms.

3.4.1.1 Parameters affecting the Γ4 to Γ2 SR

One of the properties that is important to understand is the temperature range in

which the spins complete their reorientation. From our model, we found that three

parameters affect how fast the SR happens: the DMI dRMz between R and M cations

(related to the ordering amplitude of the R sites), the DMI dMz between M cations, and

the superexchange interaction JM between M cations. The ratios between these three

parameters drive and determine the energy difference between the Γ4 and Γ2 states and

hence the temperature range where the SR takes place.

To highlight these parameter effects we report in Figs. 3.9 and 3.10 a two-dimensional

(2D) plot showing the presence of the Γ4, Γ2 and Γ24 regions with respect to dMz and

dRMz values at fixed JM as calculated for GdFeO3. Figure 3.10 shows the same but for

a fixed value of JM corresponding to the one calculated for GdCrO3. As we can see,

for too small values of dMz the system only experiences an abrupt transition (first-order)

between Γ4 and Γ2 without any coexisting region and the ratio between dMz and dRMz

at which the transition appears is rather constant. However, beyond a critical value of
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Figure 3.9: Phase diagrams for Γ4 to Γ2 SR as a function of dRM
z (panel a) and dMz

with constant superexchange of 38 meV (corresponding to the ferrites) and between
dRM
z and superexchange interaction of the transition-metals (panel b) with constant

value of 1.1 meV for dRM
z interaction. The dashed lines with green background showing

the DMI (panel a) and superexchange (panel b) of iron for the whole range of La family
(La to Lu) in RFeO3.

dMz a Γ24 coexisting region appears and grows with the amplitude of dMz . This means

that, for a given value of JM , if dMz is not large enough the system will never experience

a SR in finite temperature window. Once the coexistence region opens, it grows very

fast with dM such that for large enough dMz and dRMz values a SR in finite temperature

window is always guaranteed. On the other side, in Figs. 3.9(b) and 3.10 we can see how

the coexisting region area is affected by the value of JM at a fixed value of dMz . Here we
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Figure 3.10: Phase diagrams for Γ4 to Γ2 SR as a function of dRM
z (panel a) and dMz

with constant superexchange of 9 meV (corresponding to Cr) and between dRM
z and

superexchange interaction of the transition-metals (panel b) with constant value of 0.6
meV for dRM

z interaction . The dashed lines with green background showing the DMI
(panel a) and superexchange (panel b) of Cr for the whole range of La family (La to

Lu) in RCrO3).

can remark that if JM is too large or too small then the Γ24 area is strongly reduced.

In Figs. 3.9 and 3.10 we also draw the maximum and minimum values of dMz and JM as

obtained for RFeO3 and RCrO3, respectively, for the whole series of Lanthanides R =La

to Lu (horizontal dashed lines). We can see that the range of these parameters is not

too large and that they cross small areas of the coexistence region where SR is possible.
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We can remark that the SR area for M = Cr is particularly small while it is potentially

larger for Fe.

These phase diagrams help if one wants to design engineering of SR speed in these

crystals. For example, if a slower SR is desired, the Fe case will be more interesting

through doping with atoms that will reduce the superexchange interactions between

irons and/or that will increase the DMI between irons (an increase of the wFM).

3.4.1.2 The Γ4 to Γ2 rotation in finite temperature window

Figure 3.11: Decomposition of the energy of the Γ2 and Γ4 as a function of dRM
z .

(a) Shows the energy of Γ2 and Γ4 and Γ2 + Γ4 which is the sum of the energies of the
two states and Etot which is the total energy from simulations. In b), the energy of
each state is decomposed into its pure M sublattice contributions and the interaction
contribution between R and M , the pure R-R interactions being neglected. In (b), the
zero-energy reference of M and R interactions is taken to be the one of MΓ2 . We can
notice that the RM interacting term is the one that lowers the energy of Γ2 by becoming
larger than the energy difference between pure MΓ

4 and MΓ2 . The simulations are done
in 0.01 meV grid and the lines are interpolation between the points.
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Figure 3.12: Order parameter (Γ2 with orange color and Γ4 with blue color and gray
lines are guide to the eye) decomposition into M and R sublattices when crossing a
SR region (here as a function of dRM

z ). The inset shows the area where the SR starts
and we can notice the change of order of the R site first that drags the M site order
afterward. The simulations are done in 0.01 meV grid and the lines are interpolation

between the points.

As we show in the analytical part of our model, there is no interaction between Γ2 and

Γ4, and we have < Γ2|H|Γ4 >= 0. This would mean that the transition should be fast

from our model since, without interaction between the two states, there is no reason why

their coexistence will reduce the energy, and we should have a sharp transition between

them. However, our simulations based on this non-interacting Hamiltonian show that a

coexisting region exists where both Γ2 and Γ4 are present together.

To figure out what is happening, we plot in Fig. 3.11(a) the energy change with respect

to the dRMz as decomposed into a pure Γ4, pure Γ2, the sum of the energy of Γ2 and Γ4,

and total energy from our simulations Etot. To understand if there is hidden coupling

between Γ2 and Γ4 states, we have plotted the sum of energies of Γ2 and Γ4 (Γ2 + Γ4)

and total energy from our simulations Etot and, as we can see, the two energies match

exactly which proves that although there is no coupling between the two states, the SR

is slow.

In Fig. 3.11(b) we report the energy decomposition to M sublattice only (MΓ4 , MΓ2)

and interaction between R and M in each state (RMΓ4
int, RM

Γ2
int,). We can see that the
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M sublattice energy of the Γ2 state (MΓ2 , blue line) is higher than the energy of the

M sublattice in the Γ4 state (MΓ4 , green line), as expected since the Γ4 phase is the

ground state when only the M sublattice is considered. The two RMΓ4
int (red line) and

RMΓ2
int (orange line) interaction terms clearly show that RMΓ2

int lowers the energy of the

Γ2 phase with an amplitude that can compensate the energy difference between MΓ4

and MΓ2 , such that the Γ2 phase can be lower in energy than the Γ4 phase. This also

proves that the M sublattice alone prefers to stay in the Γ4 state while the R sublattice

pushes the M sublattice to be in the Γ2 state (the RMΓ2
int energy is stronger and more

negative than the RMΓ4
int energy).

In Fig. 3.12 we show the evolution of the order parameters but decomposed into sub-

lattice contributions (Γ4 M, Γ4 R , Γ2 M, and Γ2 R). We can observe that in the SR

region, when going from Γ4 to Γ2 the R spins start to rotate first and they drag the M

sublattice afterward (highlighted in the inset). Since the M sublattice prefers to stay in

the Γ4 state while the R −M interaction favors the Γ2 state, the system ends up in a

mixed state even if no Γ2−Γ4 interaction is present in the Hamiltonian. To understand

this better, note that in this problem we do not have two competing orders (Γ2 and Γ4),

but four ((Γ4(M), Γ4(R), Γ2(M) and Γ2(R)). As we vary the key Hamiltonian parame-

ter in Fig. 3.12, the Γ2(R) order becomes favorable over Γ4(R); we thus have a Γ4 → Γ2

rotation of the R sublattice (accompanied by a relatively tiny Γ2(M) component) that

yields a reduction of the energy as compared to a pure Γ4 state. Eventually, the Γ2(R)

order grows and drags the M spins to rotate as well, the final result being a pure Γ2

state.

3.4.1.3 Effect of SIA on Γ4 to Γ2 SR

Although the SIA amplitude on the M site is not very large, we can probe it from our

model and have an estimate of its effect on SR. To that end, we report in Fig. 3.13(a) the

phase diagram of the Γ4, Γ2, and Γ24 presence with respect to dRM and SIA of M . We

can see on this plot that the SIA does not change the Γ4 to Γ24 transition position; in

contrast, when the SIA increases, it tends to increase the Γ24 SR area at the expense of

the Γ2 state. However, the effect of the SIA is much smaller than the ones of JM , dM , or

dRM such that it can not affect the temperature window of the SR as other parameters.

3.4.1.4 Summary for the Γ4 to Γ2 transition

In summary, in this section, we have shown that our model reproduces well the temperature-

dependent SR. This behavior shows that the SR is directly linked to the ordering of the

rare-earth in ferromagnetic order and proves that the mechanism behind the SR in
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Figure 3.13: Effect of SIA on the Γ4/Γ2 SR phase diagram. The horizontal axis shows
the amplitude of z component of the DMI between R and M sites while the vertical

axis shows the amplitude of the SIA of the M site.

RMO3 compounds is not related to the SIA [92], but it is the DMI between R and M

that drives this SR.

A study by Vibhakar et al. [149] on triple A-site columnar-ordered quadruple perovskites

has shown that the mechanism behind SR in these structures is the competition between

DMI and SIA, which is similar to the mechanism that we found to be at play in RMO3’s

SR.

In our simulations, we have also studied how different parameters affect the temperature

window where the SR happen. We can say that the presence of a smooth transition

between Γ4 and Γ2 phases through a coexisting region Γ24 is very subtle and depends

on the ratio between JM , dMz , and dRMz interactions. If dMz is zero, a transition between

Γ4 and Γ2 can exist but only through a first-order abrupt change; the dMz interaction is

mandatory to have a smooth SR transition.

3.4.2 Γ4 to Γ1 reorientation:

To explain the Γ4 to Γ1 SR we need a strong interaction between the R and M sites

within the Γ1 state to allow the M site order to go from its energetically favorable state

Γ4 to the less energetically favorable state Γ1. If not, we would have each sublattice

ordering in different direction like what is observed experimentally in TbFeO3 [106].

However, according to our model, the sole interactions between R and M atoms in

the Γ1 state are −8NdRMx CR,zḠM,y and −8NdRMy CR,zAM,x. The second term is the

coupling between AM,x and CR,z, which is small since the AM,x canting is very small
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Figure 3.14: Magnetic structure for Γ4 to Γ1 SR decomposed to different irreducible
representations for different components of the spin in x, y, and z directions. The
horizontal axis showing the magnitude of ASE in the x direction between R and M and
vertical axis showing the order-parameter magnitude normalized. The simulations are

done in 0.01 meV grid and the lines are interpolation between the points.

compared to ḠM,y. Hence, the only remaining term which can make this SR possible

is −8NdRMx CR,zḠM,y. From our DFT calculations and from symmetry analysis (since

these parameters are originating from
−
a
−
a

+
c oxygen octahedral rotations as discussed in

previous section) we know that dRMx is very small [see Table 3.1] such that it is not

possible to explain the Γ4 to Γ1 SR using this interaction.

So far we have neglected the anisotropic spin-exchange interactions (ASE) in our model

because the effects from these interactions are often negligible with respect to the su-

perexchange or DMI. Now that we have the DMI small too, we will consider the ASE

to check whether it can take some importance while the DMI is small. The definitions

of DMIs and ASE vector components are as follows:

dabx = 1
2(Jabyz − Jzbzy) (3.16)

εabx = 1
2(Jabyz + Jabzy), (3.17)

where εabx (dabx ) represents the ASE (DMI) vector component in the x direction between

atom a and atom b and Jyz is the superexchange interaction between spins directing

in the y direction on atom a and in z direction on atom b (another component, i.e., in

y and z directions, can be obtained by cyclic permutation of the xyz directions). We

can see (from their definitions) that when a component of the DMI vector is small it is

possible to have the ASE vector with that component to be big.

In Table 3.2 we show the calculated ASE between Fe and Cr sites. The calculated results

show that the x component of the ASE vector is the largest with respect to the y and z

components for Fe-Fe and Cr-Cr atom pairs. In Table 3.2 we also report the calculated

ASE vector for Fe-Gd and Cr-Gd pairs. The biggest component of the ASE vector is in

the y direction for Gd-Fe while it is along the x direction for the Gd-Cr case. We note
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Table 3.2: Calculated ASE components from DFT of GdFeO3 and GdCrO3 (units
are in µeV). εi are the ASE vector components along i = x, y, and z.

εx εy εz
Fe-Fe -15 0 0

Cr-Cr 51 0 7

Gd-Fe 6 -16 7

Gd-Cr -30 10 -9

that the ASE interaction in the Hamiltonian takes the same place as the DMI does, i.e.,

for the Γ1 state we have:

−8NεRMx CR,zḠM,y (3.18)

8NεRMy CR,zAM,x (3.19)

Considering these ASE interactions, we can say that the Γ4 to Γ1 SR can happen through

the x component of the ASE (through −8NεRMx CR,zḠM,y interaction), which will take

the place of the DMI when the latter is small. This conclusion is in agreement with

Zvezdin [150] who explained the origin of the Γ4 to Γ1 SR to originate from ASE.

We will now study this SR by tuning the εRMx ASE coupling in our model. In Figs. 3.14

and 3.15 we report how the relative Γ4 and Γ1 stability evolves with respect to the εRMx

parameter at 0 K (ground state). In contrast to the Γ4 to Γ2 transition, we can see

that there is no coexisting region between Γ4 and Γ1 states, the transition is always first

order with respect to the εRMx amplitude. To confirm this, we also explore in Fig. 3.14

how the superexchange parameter JM affects the Γ4 to Γ1 SR transition. We can clearly

see that whatever value of JM we considered, the Γ4 to Γ1 SR is always abrupt without

any coexisting region. We can also remark that JM favors the Γ1 state with respect to

the Γ4 state, which can be logically understood by the fact that in the Γ1 phase all the

directions are AFM and, since the torque creating this SR is acting on GM,y (in contrast

to Γ4 to Γ2 SR where the torque is acting on CM,y), the cantings are smaller than in

the Γ4 state. Hence, unlike the Γ4 to Γ2 case, the SR involving Γ1 happens as soon as

the system overcomes the energy difference due to ASE and SIA between the two states,

making this transition first order.

We also need to mention that this mechanism explains the Ising-type nature (strong

anisotropic) of the Γ1 state [150]. Since the force creating this SR is acting between

G-type order of M site and C-type order of R site (i.e., −8NεRMx CR,zḠM,y), the M

atoms in Γ1 state will have a very small canting compared to other states and the spins

will mainly order in the Gy type, hence closer to an Ising-type nature.
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Figure 3.15: Phase diagrams of Γ4 to Γ1 transition by plotting superexchange on
transition-metal sites (JM ) vs the anisotropic exchange εRM

x . We can see that the SR
transition is abrupt for the whole range of superexchange.

3.5 Conclusion

We have studied in this chapter the microscopic mechanism behind the SR and MR

magnetic behaviors of the RMO3’s through a Heisenberg model where we considered

the superexchange interactions and DMI between the transition-metal sites, as well

as between the rare-earth (R) and transition-metal sites (M), and we neglected the

superexchange and the DMI between the R spins as they are much smaller than the

other interaction parameters.

We conclude that there are two interactions polarizing the R atom site, i.e., (i) the

superexchange between M sites (through its wFM) and R sites and (ii) the DMI between

R and M , which can result into two effects. Indeed, we can have that both interactions

polarize the R element parallel to the M wFM canting direction such that there will be

no MR but an amplification of the total magnetization of the crystal [see Fig. 2.7]. We

can also have that both interactions polarize the R element in the opposite direction to

the wFM of the M cation such that the total magnetization amplitude can be reduced

up to a critical temperature below which its sign changes [see Fig. 2.7]. The change of

sign appears when the negative R cation magnetization compensates the positive one of

the M site (wFM).

Our analysis of the SR transitions has shown that the Γ4 to Γ2 transition similarly comes

mainly from the DMI interactions between the M and R site but it can be weighted by

the superexchange between the M sites. We found that within a relatively wide range of

these three interactions this SR transition is smooth and happens through a mixed state

where the Γ4 and the Γ2 phases coexist. How broad is the temperature range in which
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the SR takes place through the Γ24 mixed state depends on a subtle ratio between DMI

and superexchange interactions between M sites, which can vary depending on the rare-

earth and transition-metal cations that are present in the Pbnm perovskite structure.

We also found that the Γ4 to Γ1 SR transition depends on even more subtle interactions

(anisotropic superexchange that acts as the DMI) but, contrary to the Γ4 to Γ2 SR, it

never presents a coexisting region, i.e., it always proceeds through an abrupt change.

The model we have presented can help in designing the strength and amplitude of SR

and MR in RMO3 through, e.g., doping, strain, or pressure that would tune the ratio

between the key interactions as desired. Our model can also be easily extended by

including the interactions between the rare-earth spins to study the complex magnetic

phase diagrams below the Néel temperature of the rare-earth sublattice. It can be

enlarged too with the anisotropic exchanges (important for the Γ4 to Γ1 SR) [150] or

with a four-spin interaction term, which is important in rare-earth manganites [151].

Because it contains all the key interactions that allow describing most of the important

magnetic properties of RMO3 compounds, the model can be used to study dynamically

magnetic domain walls. Going beyond, the model can be coupled with a lattice model

(second principles [152, 153]) to have access to a full atom plus spin dynamics for the

simulations of, e.g., recent ultrafast laser excitation experiments made on these crystals

[154–156].
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Origin of nonlinear

magnetoelectric response in

GdFeO3

4.1 Introduction

In this chapter, we report a simulation study of the microscopic origin of the large

non-linear ME response of GdFeO3. Experimentally it has been observed that the

polarization can go from 0.12 µC/cm2 to 0 µC/cm2 under an applied magnetic field

of 3.7 T [see Fig. 2.15 and 2.16] [80]. If we extrapolate an effective linear response

in the unit of ps/m by calculating ∆P
∆B between 0 and 3.7 T, we obtain an effective

amplitude of about 406 ps/m, i.e the same order as in the linear ME crystal TbPO4

( 730 ps/m among the largest linear ME responses)[157]. Although this response is not

the strongest non-linear ME response reported in materials [158, 159], understanding its

microscopic mechanism will help in designing and engineering other ME materials. To

tackle this problem from a simulation viewpoint, we first derive an analytical form of the

ME response of this material using both Heisenberg Hamiltonian and DFT calculations

to fit the parameters [For the technical detail see Appendix B.2]. Then, we report the

results obtained through classical spin dynamics to calculate the ME response and the

polarization of these materials under an applied magnetic field. Our results reproduce

the response observed experimentally on GdFeO3, i.e., the fully non-linear response and

the appearance of two regimes, associated with a magnetic phase transition under the

applied magnetic field.

81
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4.2 Theoretical derivation

In this section, we derive an analytical expression of the ME response of the GdFeO3.

This ME response is originating from the exchange striction. To derive the ME response,

we use the fact that interaction between the G-type (or A-type) magnetic order of the

rare-earth site and G type order on Fe sublattice is the driving force that breaks the

inversion symmetry and causes the polarization in rare-earth orthoferrites [47, 80, 139].

Hence, we will consider the polarization to be a function of the rare-earth site G-type

order such that we can expand the polarization in terms of the corresponding order

parameter (Fe G type is considered as constant). From this assumption, we can write

the ME response in these structures using the following relations (Einstein summation

rule applies):
∂Pi
∂Bappl

= ∂Pi
∂GRj

∂GRj
∂Bappl

, (4.1)

where Bapp
l is the applied magnetic field in the l direction, Pi is the polarization in the

i direction and GRj is the magnitude of the G-type order on rare-earth site in the j

direction.

To probe the variation of G-type order with respect to the magnetic field,
∂GRj
∂Bappl

, we

use the general Heisenberg model developed by us for RMO3 crystals (R = Rare-earth,

M = Fe or Cr) [160] but using the data fitted from DFT calculations done on GdFeO3.

In deriving the ME response from theory, we have neglected the changes in Fe sublattice.

The effect of magnetic field on Fe sublattice is to change the AFM order to FM order on

Fe atoms and it competes with exchange interactions between Fe atoms. Fe sublattice

has a Néel temperature of more than 600K. This corresponds to an effective magnetic

field from exchange interactions on the order of 102 T. The estimated effective field is

much larger than the fields relevant in this work. So, we can neglect the Fe sublattice

changes in our theoretical model and consider its magnetic order as G type in the x-

direction from now on. According to our spin dynamics simulations also, the magnetic

order on the Fe sublattice is not affected by the range of magnetic fields that we are

interested in (see Fig. 4.3).

The energy of rare-earth spins per formula unit can be derived from the Heisenberg

Hamiltonian to obtain:

HR
Heis = −3JR(GRi )2 + 3JR(FRj )2 −KR(GRi )2 −Bapp

l FRj δjl −BRM
n FRj δmj , (4.2)
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where JR is the exchange interaction between rare-earth sites and GRi and FRj are the

G-type AFM and FM orders on rare-earth in the i and j directions respectively, K is

the single-ion anisotropy in the i direction. The interaction of Gd and Fe spins can

be reduced to an effective magnetic field BRM
n , which can be written as follows (see

chapter 3) [99, 160]:

BRM
n = 8JRMFMn + 8(dRMy GMn′ ), (4.3)

This formula represents the effective field in n direction on Gd sublattice from Fe.

JRM is the exchange interaction between Gd and Fe and the dRMy is the y component

of Dzyaloshinskii-Moriya interaction (DMI) between rare-earth and transition metal

cations (DMI has the largest component in y direction see chapter 3 [160]). GMn′ rep-

resents G-type order in direction n′ that is prependicular to n and y. We consider the

effective magnetic field BRM
n to be in the same direction as the applied magnetic field,

or small compared to it such that it can be neglected. In the case where the applied field

is in the z direction and the rare-earth orders in the G type in x direction, the BRM
n

and the applied magnetic field are in the same direction [99, 160]. When the applied

field is in the x direction, BRM
n and the applied field are perpendicular to each other

before the phase transition (in which we can consider BRM
n to be negligible compared

to the applied magnetic field), while after the phase transition they will be in the same

direction.

We can minimize the energy with the following constraint using Lagrange multipliers

(the constraint is coming from considering the magnitude of the spin as normalized with

spin magnetic moments of each atom, i.e., 5
2µB for Fe and 7

2µB for Gd):

(GRi )2 + (FRj )2 = 1, (4.4)

which gives us the Gi and Fj orders as a function of the applied magnetic field:

GRi = ±
√

1−
(
Bappl +BRMl
12JR+2KR

)2
(4.5)

FRl =
Bappl +BRMl
12JR+2KR . (4.6)

From these expressions we can obtain the following term:

∂GRj
∂Bappl

= ∓
B
app
l

+BRMl
(12JR+2KR)2√

1−
(
B
app
l

+BRM
l

12JR+2KR

)2
. (4.7)

Now, we are left with the determination of the variation of P with respect to GRj : ∂Pi
∂GRj

.
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Because the exchange striction between the rare-earth site and the transition metal site

is the interaction responsible for polarizing the material [80, 139] we are going to use

the energy expression for this interaction to derive the ∂Pi
∂GRj

. To derive this expression

we are going to use the energy expression which is written as a function of change in

exchange interaction due to atomic displacement and elastic potential that resist against

this deformation as:

Eint = −4GRi G
M
j ε

ij
l ∆rijl + 1

2k(∆rijl )2 (4.8)

where the change in exchange interaction (JRMij ) between R and M atoms is written as

εijl ∆rijl (changes of JRMij expanded to linear order). In this relation the εijl is the constant

of proportionality and ∆rijl is the magnitude of change of l component of the position

vector between atoms. k in this equation shows the elastic constant. By minimizing the

Eq. 4.8 we can have the equilibrium displacement as:

∆rijl = εijl
4GRi G

M
j

k
(4.9)

If we expand the l component of the polarization to linear order on atomic displacement

from center of symmetry, we can write it as:

Pl = ζijl ∆rijl (4.10)

From Eq. 4.10 and Eq. 4.9 we can write the polarization in l direction as:

Pl = 4δijl G
R
i G

M
j (4.11)

Where we have used the δijl =
ζijl ε

ij
l

k . In this equation we can neglect the anisotropic

symmetric exchange, i.e., i 6= j. These interactions are negligible compared to the

other interactions in GdFeO3 [160]. Hence, we can write the polarization for isotropic

exchanges as:

Pi = 4δjji G
R
j G

M
j (4.12)

In this case we have:
∂Pi
∂GRj

= 4δjji G
M
j , (4.13)

To determine the strength of the change of polarization as a function of the magnitude of

the G-type AFM ordering of rare-earth ( as Eq. 4.13), we performed DFT calculations.

We have calculated the polarization for different magnetic ordering of Gd atoms by

changing their spin order from G-type order in x direction to FM order in z direction by
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Figure 4.1: Polarization of the GdFeO3 as a function of magnitude of G-type order
in the material. The x-axis represents the magnitude of G-type order normalized to
1 (Fully G-type=1) as we rotate it to F-type order (G=0 for fully ferromagnetic Gd
atoms) using constraint DFT calculations. We also have shown the fitted line with the

theory.

rotating it slowly [see Appendix B.2 for the detail of calculations]. In Fig. 4.1 we report

the results, i.e., the change of polarization as a function of the G-type order magnitude

of Gd atoms as we go from G-type to the FM order. We can notice the linear relation

between G-type order magnitude and the polarization, which proves that the Eq. 4.12

is a good estimation of the polarization of the materials as a function of G-type order

magnitude.

By fitting the Eq. 4.13 with the results of Fig. 4.1, we can extract the coefficients of

this equation. We obtain a slope of 0.328 µCcm−2µ−1
B with the polarization in the z

direction which is perpendicular to Gx type magnetic ordering (from now on we will

consider the polarization in the z direction). Hence we have:

∂Pz
∂GRx

= 4δxxz GMx = 0.328 µCcm−2µ−1
B (4.14)

for GdFeO3. With this coupling term at hand, we can explore how the crystal responds

to an applied magnetic field with the Heisenberg model and deduce how the polarization

changes, i.e. the ME response. We use the same applied field conditions as reported

experimentally for GdFeO3 by Tokunaga et. al. [80].

We can now have following analytical expression for the ME response (in the following

equations we are considering Beff
l = Bapp

l +BRM
l ):

∂Pz
∂Bappl

= ∓
4δjjz G

M
j

B
eff
l

(JP )2√√√√1−
(
B
eff
l
JP

)2 (4.15)
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In this equation we consider Beff
l < Jp with Jp = 12JR + 2KR. This means the system

is not completely ferromagnetically ordered. This assumption is a good assumption

since we are studying the response of the system in this regime. We can expand the ME

response in Eq. 4.15 around zero applied magnetic field as follows:

∂Pz
∂Bappl

= ∓
4δjjz G

M
j

B
eff
l

(Jp)2√√√√1−
(
B
eff
l
Jp

)2
= ∓4δjjz GMj

Beffl
(Jp)2

(1 + 1
2

(
Beffl
Jp

)2

+ 3
8

(
Beffl
Jp

)4

+ ...), (4.16)

where the negative and positive signs are for the positive and negative direction of the

applied magnetic field respectively.

Our derivation gives us the ability to understand the origin of non-linear behavior.

Since ME calculated from two terms, (i.e., ∂Pi
∂GRj

and
∂GRj
∂Bappl

) we can see that the ME

response is non-linear because the AFM order changes non-linearly under an applied

magnetic field (i.e.,
∂GRj
∂Bappl

term) and we can expect this non-linear behavior for all the

cases where the AFM order breaks the inversion symmetry (this should be the case for

A-type AFM order and E-type AFM order). While the AFM order creates a non-linear

ME response, the FM order that drives ferroelectricity will have a linear ME response

before magnetization saturation (since the FM order changes linearly with respect to

the applied magnetic field, see Eq. 4.6). Another point to mention is the fact that the

A-type AFM ordering of the rare-earth site can also break the inversion center in these

structures and can induce nonlinear polarization. If we consider the ME response from

this ordering we should change the denominator 12JR by 4JR in the ME response.

If we integrate Eq. 4.15 with respect to the magnetic field, we can calculate the polar-

ization as a function of the magnetic field for these materials using the initial values

obtained from DFT. This integration gives the following final analytical expression:

Pz(B
app
l ) = 4δjjz GMj

√1−
(
Beffl
JP

)2


= 4δjjz GMj G
R
j

(4.17)

In the second equation, we are using Eq. 4.5. Now that we have analyzed analytically

the ME response of rare-earth perovskites in the magnetic phases as present in ferrites

and chromites, in the next section we present our numerical results coming from the

simulations for GdFeO3.
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4.3 Simulations

In this section, we present the results of the spin dynamics simulations to study nu-

merically the effect of the applied magnetic field on magnetism and the resulting ME

response. For GdFeO3, the magnetic ground state is Γ4 as shown in Fig. 4.2(b) in which

the main spin component is in AFM order in the x direction (i.e., GxAyFz for Fe and

GxFz for Gd) and it has a small FM canting in the z direction (i.e., Fz). When the

magnetic field is applied in the z direction, the magnetic ordering of the Gd sublattice

changes slowly from Gx type to Fz while the magnetic symmetry does not change. When

the applied magnetic field is in x direction, the magnetic field induces an FM order in the

x direction which is not allowed by symmetry in Γ4 magnetic state. So, by increasing the

magnitude of the applied magnetic field, the energy from Fx.B
app
x interaction increases,

and once this energy is large enough to compensate the energy difference between two

magnetic states (i.e., Γ2 and Γ4) a phase transition takes place for Gd sublattice from Γ4

to Γ2 ((Fig. 4.2(a)). In this phase transition the order for Fe sublattice stays in GxAyFz

and for Gd sublattice changes to FxGz). This spin-flip phase transition can be seen as

a change in magnetic anisotropy for the Gd sublattice from the x to the z direction. We

will present the results for two different regimes (Bapp
z and Bapp

x ) in the two following

sections.

Figure 4.2: Schematic presentation of the two magnetic phase a) Γ2 and b) Γ4. In
his figure the G type shows the main spin component with its direction presented as

subscript and other letters in the presentation showing the canting due to DMI

.

4.3.1 Magnetic fields perpendicular to the Gd G-type order direction

In this part we discuss the ME response of GdFeO3 as a function of the magnetic field

applied perpendicular to the direction of the Gd spins with G-type order.
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In Fig. 4.3(a) and Fig. 4.3(b) we show the spin dynamics results of the effect of an

external magnetic field on Fe sublattice. We notice that the Fe sublattice does not

change much as the magnetic field is applied to the structure, we can only observe a

small change in its weak FM canting (see Fig. 4.3(b)). This result shows that we can

neglect the Fe magnetic order changes effects on the ME response since the effects for

Gd sublattice are much larger.

In Fig. 4.3(c) and Fig. 4.3(d) we report the effect of the applied magnetic field in the z

direction on the Gd sublattice. We can see a continuous decrease of the G type ordering

along the x direction and an increase of the F type along the z direction. Hence, the

applied magnetic field can fully magnetize the Gd parallel to the field direction. Beyond a

critical field of 4 T, we can see that the ground state G type AFM order has disappeared,

the magnetic field having fully magnetized all the Gd moments in the same direction.

This transition is fully consistent with the experimental results of Ref. [80].

To check the consistency of the spin dynamics results with the analytical solution that we

have obtained in the previous section, we fitted the results of the FM order (z component

of the Gd spin) with Eq. 4.6 to obtain the JR, KR and BRM
l parameters. The orange

dashed line in Fig. 4.3(d) shows the resulting fit that is in good agreement with the spin

dynamics results ( blue dots). We then used these parameters and put them in Eq. 4.5

and plotted the results in Fig. 4.3(c) for the x component of the Gd spin. The values for

the parameters obtain from the fit with spin dynamics are close to the values calculated

from DFT. As we can see these results agree well with the spin dynamics simulations.

Having calculated the required coefficients for the magnetic response, we can calculate

the ME response. In Fig. 4.4 we report the evolution of the change of polarization

versus the applied magnetic field. We can see that the change of polarization response is

negative (i.e. the magnetic field reduces the polarization), symmetric for each magnetic

field direction, and diverges when approaching the critical field where the Gd order goes

from Gx to Fz. This critical field is directly related to the amplitude of the Gd exchange

interaction (JR), which governs the energy change associated with the change of the Gd

magnetic order (here from G to F type). This corresponds to the phase transition from

the polar m′m2′ (Pna21) phase to the para-electric m′m′m (Pbnm) phase

In Fig. 4.5 we report the ME response decomposed into its different expansion orders as

made in Eq. 4.16. We can see that close to zero magnetic fields the response is mainly

driven by its linear term (second-order ME response) but as we are going with higher

magnetic field amplitudes the higher-order non-linear responses become more and more

important.
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Figure 4.3: Fe and Gd site magnetic ordering for spins in x and z direction as a
function of applied magnetic field in z direction. Panel (a) presents the Fe sublattice
magnetic order in x direction which G-type here, and panel (b) presents z component
of the spins in Fe sublattice which is FM order. Figure (c) and (d) represents the x

component (G-type) and z component (FM order) for Gd sublattice.

Figure 4.4: Non-linear Magneto electric response of GdFeO3 orthofrrites plotted ac-
cording to Eq. 4.15 where we can see a divergence in the response as applied magnetic

field strength get closer to Jp

In Fig. 4.6 we show the polarization versus the magnetic field of GdFeO3 as obtained from

Eq. 4.17. We obtain that the polarization decreases non-linearly for both directions of the

field and reaches zero at the critical magnetic field where the crystal goes to the Pbnm

paraelectric phase. In this figure, we have also included the magnetization of the crystal

coming from the Gd where we can see that when the Gd sublattice is ferromagnetically

ordered, the polarization vanishes. This result is in very good agreement with the
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Figure 4.5: Non-linear Magneto electric response of Gd orthoferrites plotted according
to Eq. 4.16 for different orders of the equation where we can see that the divergence is

mainly coming from higher order terms in response of the material

Figure 4.6: Polarization as a function of the magnetic field for GdFeO3 where it
reaches to zero as the applying magnetic field strength reaches that of exchange inter-

action between Gd (JR), and magnetization of the Gd (red line)

experimental results of Tokunaga et al. [80], which also proves that our model describes

correctly the ME response of this material.

4.3.2 ME response for magnetic field parallel to the Gd G-type order

In this section we discuss the ME response of GdFeO3 for an applied magnetic field

parallel to the direction of the Gd G-type magnetic order. Similar to the applied field

along the z direction, our simulations give that the magnetic ordering of the Fe site is

not strongly affected by the applied magnetic field along the x direction such that we

can neglect it. In Fig. 4.7 we report the evolution of the Gd sublattice spin from spin

dynamics when we apply a magnetic field in x direction. We can see that for a critical

magnetic field of about 0.7 T, the Gd goes thorough a spin-flip phase transition from

the Γ4 state with G-type order in x direction (orange line) to the Γ2 state with the

G-type order along the z direction (blue line). In this structure, the Gd atoms prefer to
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be in Γ4 state due to single-ion anisotropy and the effective field of Fe. By applying a

magnetic field in the x direction, we lower the energy of the Γ2 state by Bx.Fx (where

Fx is a weak canted moment characteristic of the Γ2 state) and once this energy is larger

than the energy difference between Γ4 and Γ2 we will have a phase transition. Beyond

this phase transition, the Gd spins start to be more and more FM and it becomes fully

magnetized for the amplitude of the 4 T magnetic field.

As done previously for the applied field along the z direction, we can also calculate

how the polarization is affected by the applied field along the x direction and so the

ME response. In Fig. 4.8 we report the evolution of the polarization versus the applied

magnetic field along x. We encounter a non-linear ME response again where the polar-

ization is decreased for both directions of the field. We, however, observe two regimes,

one between 0 and ±0.7T where the polarization is approximately constant and not

affected by the field. Exactly at ±0.7 T, we observe a sharp polarization drop (from

0.36 µC/cm2 to 0.05 µC/cm2, a reduction by a factor of 5 (calculated from DFT) due

to the transition of Gd sublattice from the Γ4 to the Γ2 phase.

Then, beyond ±0.7T we have a non-linear further reduction of the polarization down to

zero when the Gd is fully magnetized by the field along the x direction. The polarization

will change like Eq. 4.17 for the range of fields between 0.7 T and 4 T with a different

exchange coupling: in the first case (where we apply the magnetic field in z direction)

we had both Gd and Fe atoms main spin component in the x direction and we were

considering δxxz = ζxxz εxxz
k ; instead, now we will have δzxz = ζzxz εzxz

k (Fe in G-type ordering

in the x direction and Gd in G-type ordering in z direction) which is much smaller than

the first δxxz hence resulting in a smaller polarization for this part. The ME response

will also be similar to Eq. 4.15 for magnetic fields higher than 0.7 T.

Again, our results reproduce well the experiments of Tokunaga et al.[80] where two

regimes of non-linear ME response were also observed with a polarization drop around

the critical field of 0.7 T and a disappearance of the polarization beyond a critical field

of about 4 T.

4.4 Conclusion

In this chapter, we have analyzed the magnetoelectric response of the rare-earth or-

thoferrite perovskite oxides through theoretical methods based on DFT calculations,

Heisenberg, and analytical models taking into account the exchange striction that in-

duces the polarization. With this analysis, we have shown that the non-linear character
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Figure 4.7: Re site magnetic ordering as a function of applied magnetic field in x
direction. For the magnetic field of less than 0.7 T we can see the sudden drop of G-
type order in x direction (the orange line in x component of spin) which is accompanied

by a increase in G-type order in z direction (blue line in z component of spin)

Figure 4.8: Change of polarization as a function of applied magnetic field in x direction
where we can see the ordering of R site in Gx before phase transition and in Gz with

lower polarization.

of the magnetoelectric response of GdFeO3 is coming from the fact that the G-type or-

dering that breaks the inversion center changes non-linearly with respect to an externally

applied magnetic field. When the applied magnetic field is along the z direction, the

polarization reduces down to zero at a field of 4 T, i.e., when the Gd spins are all aligned

with the magnetic field in an FM state where the exchange striction is absent. When

the applied magnetic field is along the x direction, the field is parallel to the main Gd

G-type spin direction such that we observe two regimes: (i) from 0 to 1 T, the polariza-

tion is not affected by the field, and (ii) at 1 T the Gd spin directions change from x to

z direction (but keeping its G-type AFM ordering), which induces a strong reduction of

the polarization. From 1 to 4 T the polarization is reduced non-linearly down to 0 when

the Gd becomes ferromagnetically aligned with the field along x. These two regimes

and the non-linear evolution of the polarization observed for the two directions of the
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applied magnetic field in GdFeO3 is in good agreement with the experiments such that

we are confident about the validity of the developed model.

Our analysis can be generalized to other rare-earth perovskites in which the polarization

arises from the AFM ordering and the exchange striction effect. Our conclusions are

also general for all materials where the AFM order breaks the inversion symmetry in

the presence of two different magnetic sublattices. For example, Wang et. al [159]

have reported the ME response of Fe2Mo3O8 where the AFM order breaks the inversion

symmetry through the exchange striction effect. The ME behavior is similar to what we

have for GdFeO3, i.e. giant and non-linear with similar shapes of the polarization versus

magnetic field curves. Additionally, for the systems in which it is the FM order that

breaks the inversion symmetry, the same analysis can be done but instead of having a

non-linear response, we will have a linear response that will be observed.
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Light-driven ultrafast

phonomagnetism in DyFeO3

5.1 Introduction

Today’s technology largely relies on changing and controlling the properties of materials.

Switching ferromagnetic and ferroelectric order in materials, metal to insulator phase

transitions, colossal magnetoresistance, just to name a few, are among the properties

that are desirable to have control over. One of the focuses of the scientific community is

to enhance and improve the control over phases and properties of the materials that will

result in technological devices with improved performances. One path in this direction

is to achieve shorter time scales in the processes of controlling and changing the phases

of the materials to have devices with higher performance speeds [161].

Using laser and matter interaction is one of the approaches employed to achieve a higher

speed in dynamics in controlling phases of the materials [161]. Until recently, two mech-

anisms have been used to experimentally excite the crystal lattice using laser. The

first one is the direct coupling of the laser field to the infra-red (IR) active phonons

(phonons that possess electric dipole). In the second method, the coupling is indirect

and the phonons are excited due to coupling with electrons, like stimulated Raman scat-

tering [162–164]. A third path named ionic Raman scattering (IRS) was proposed 50

years ago but was not possible to prove it experimentally [165–167]. In IRS, an IR active

mode excites a Raman active mode and it relies on lattice anharmonicities rather than

electron-phonon couplings [168].

Recently, Forst et. al [168] showed experimentally that it is possible to excite Raman

active phonon modes by exciting IR-active mode with large amplitudes (IRS scattering).

94
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The possibility to induce ultrafast dynamics in a material using nonlinear phononics

was observed by Forst [168] but it was not possible to validate this mechanism using an

all-optical experiment. Later, the nonlinear modulation of the structure using ultrafast

X-ray diffraction is observed directly by Mankowsky in 2016 [169] proving the possibility

of exciting Raman modes using excitation of the IR modes. This mechanism needs laser

pulses with energies in the mid-IR region while previously used laser pulses to induce

dynamics in Raman modes were using laser pulses with energies in the visible or near-IR

region.

The IRS can be seen as a new tool for materials discovery, with optical lattice control

providing a perturbation analogous to strain, fields, or pressure that can induce exotic

collective electronic behavior [170]. Exciting an IR active mode in manganites has shown

to melt the spin order [171] or to enhance the coherent transport in cuprite’s [172]. In an-

other work, using IRS, it has also been possible to make a transition from stripe-ordered

(spin ordered and charge-ordered) non-superconducting phase to superconductive state

in cuprite’s [173]. Rectification of two IR modes with large amplitudes has shown to

excite magnons in ErFeO3 [174]. In 2015, Subdi proposed switching ferroelectric or-

der using IR modes excitation from density functional theory calculations [175] which

has been followed by a demonstration of ultra-fast optical reversal of the ferroelectric

polarization in LiNbO3 [176]. IRS mechanism is also used to induce transient ferroelec-

tric polarization in SrTiO3 (where the structures is in transition from one stable state

to another stable state) [177]. Recently, ultrafast laser has been also successfully used

to induce anomalous Hall effect in graphene [178]. Although pioneering experiments

demonstrated that driving optical phonons can also affect magnetism [174, 179–181],

however, no coherent switching of the spin orientation or coherent light-induced mag-

netic symmetry breaking has been shown so far.

In this chapter, we present the results of a collaboration with experimentalists doing

ultrafast laser excitation of crystals. Our collaborators investigated phonon-induced

magnetism (phono-magnetism) in dysprosium orthoferrite (DyFeO3) using IRS. DyFeO3

is a material in which a strong exchange interaction between the transition metal ion

and the rare-earth ion leads to a distinctive first-order spin-reorientation phase transition

accompanied by a change of the magnetic symmetry from the antiferromagnetic (AFM

i.e., Γ1) to the weakly ferromagnetic order (WFM i.e., Γ4) [150]. Our collaborators

show that a subpicosecond pulse of an intense multiterahertz electric field, tuned in

resonance with an IR active phonon mode, drives a coherent spin reorientation, which

develops a long-living WFM order within a half-cycle of the spin precession. Phonon-

induced magnetism emerges via a non-equilibrium metastable state, inaccessible not

only via a thermodynamic transformation but also via optical pumping of the high-

energy electronic transitions. We have demonstrated experimentally and theoretically
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that phono-magnetism originates from phonon-induced lattice distortions and it leads

to ultrafast modification of the Dy-Fe exchange interaction. To study and investigate

the processes involved in the excitation of DyFeO3 we used DFT calculations (for the

technical detail see Appendix B.3).

5.2 Ground state calculation

One of the drawbacks of the DFT is its self-interaction error (see Sec. 1.2.4). To solve this

problem an energy penalty is added to reinforce localization. A Hubbard-like interaction

“U” is added in the interaction between localized orbitals of the same kind and this

makes the electron occupying these orbitals to be more localized [35]. Adding this

into DFT forces the electrons from the partial occupation of the orbitals to go toward

integer occupations. However, this method enable multiple minima of energy associated

to different orbital occupations such that the electronic states obtained at the end of

the SCF cycle might be in one of these local minima that is not the ground state of

the system [182]. Different methods have been implemented to tackle this problem,

including occupation matrix control [183, 184], quasi adiabatic [185], U ramping [182],

meta-heuristic approaches [186].

Since we are studying DyFeO3, where Dy atoms have f electrons, for which we need

to add Hubbard interaction, we might end up in an electronic state other than the real

ground state. In this work, we have used the occupation matrix control to achieve the

true GS of the system [184]. In this method, different possible occupations of the density

of localized orbitals are tested to find the GS of the system (for details of the calculation

see Appendix C) where we have relaxed the structure by using different occupation

matrices. For Fe, Since we have half filled orbitals (all orbitals for one spin channel are

filled) and since the exchange splitting is large, we are sure that we will reach to ground

electronic state even if we use U in the calculations.

We found that the ground state of the Dy-f orbitals occupation is also the one that gives

the best agreement with the experimental cell parameters, which confirms our choice of

the U parameter (see Tab. 5.1). All the results given below are those obtained for this

GS occupation of the f orbitals in DyFeO3, which we verified to be the case for all the

further different calculations (relaxation, frozen phonon, and condensed phonons).

In Tab. 5.1 we present the calculated lattice parameters and band gaps from our simu-

lations. The calculated results for the case where f electrons are in the valence are in

good agreement with the results from the experiments. If we do a calculation where the

f electrons are frozen in the core, the lattice parameters deviate from the experimental
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Table 5.1: Lattice parameters and band gaps from our calculations compared to
values from experimental values.

a b c Band-gap(eV)

Exp [187] 5.302 5.598 7.623 2.1 [188]
DFT(fvalence) 5.292 5.594 7.615 2.30

DFT(fcore) 5.247 5.588 7.588 2.28

values. So, in the calculations where we put the f electrons in the core, we have fixed

the lattice parameters coming from the case where the f electrons are put in the valence.

Figure 5.1: Optical absorption of the sample from the experiment. The absorption
in higher energies than 2.1 eV are due to O2p to Fe3d electronic transition. While lower

than 2.1 eV absorption are coming from d-d spin-forbidden transitions.

The optical absorption of the sample from experiments is shown in Fig. 5.1. In energies

higher than 2.1 eV, the absorption is coming from a charge transfer from O2p to Fe3d in

agreement with the calculated band gaps from DFT [188]. Lower energy transitions are

due to spin forbidden d− d transition in Fe3+ multiplets.

In the experiment, ultrafast laser pulse is tuned to be in the frequency range of the

phonon modes, which accordingly will excite the phonon modes of the structure. In the

following part, we calculate the phonon modes of the structure to study which one of

the modes will be affected by the range of the laser pulse frequencies that hit the sample

during the experimental ultrafast laser excitation.

5.3 Phonons

In Tab. 5.2 we report our calculated Raman and IR active mode frequencies for both

Dy-f electrons treated as valence states (fvalence) and as core states (fcore) (only B2u,
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B3u and Ag modes are shown for a complete list of phonons see Appenedix D). The

main difference between these two calculations is that with fvalence Dy is magnetic while

with fcore Dy atoms do not possess magnetic moment. The Raman active modes are in

good agreement with respect to the experiments and previous DFT calculations (done

with fcore) [187]. The few deviations between our results and the previous calculations

can be due to the fact that they have used different lattice parameters compared to us

(experimental cell in previous calculations vs relaxed PBEsol+U cell parameters in our

case) and also different PAW atomic potentials.

We note that in the fcore case, the space group of the crystal is Pbnm. In the fvalence

case, we obtain that the G-type AFM magnetic ordering of Dy has the lowest energy

(with respect to the A- and C-type AFM or the ferromagnetic state), in agreement with

the experimental reports. This G-type AFM of Dy atoms combined with the G-type

AFM ordering of the Fe breaks the inversion center such that the space group of the

crystal becomes Pna21 (see Tab .2.2).

The main idea behind doing calculations with f electrons in the core and in the valence

is to estimate the effects of f electrons and magnetism on phonons frequencies. The

difference between the fcore and fvalence could thus be accounted to the effect of the

magnetic order of the Dy, though the differences are rather small for most of the modes

(the largest difference is about 12cm−1). We will use fcore calculations to estimate the

couplings of phonons and we then use fvalence when we want to calculate the change in

magnetic interactions as a funciton of phonons.
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Table 5.2: Calculated DyFeO3 Raman active and IR active mode frequency (cm−1).
In the first column, we show the mode label within the Pbnm structure and in the
second column, we report the frequency of the mode with f electron in the core. The
third column presents the mode labels in the Pna21 space group and the last column
is the frequency of the mode in Pna21 structure by considering the f electrons in the
valence with the G-type AFM ordering of the Dy. The last column gives the change
in frequency between the two cases. In the fifth column we also report the calculated
frequencies and in the sixth column the experimental measurements reported by Weber

et al. in Ref. [187].

label(Pbnm) fin-core label(Pna21) fvalence ref exp ∆(fcore − fvalence)

Ag(1) 109 A1(1) 107 112 113 2
Ag(2) 129 A1(2) 133 135 140 -4
Ag(3) 255 A1(3) 249 262 261 6
Ag(4) 330 A1(4) 328 332 341 2
Ag(5) 401 A1(5) 408 422 422 -6
Ag(6) 415 A1(6) 408 415 417 7
Ag(7) 401 A1(7) 413 422 422 -11
Ag(8) 479 A1(8) 480 490 496 -1

B1u(1) 109 B2(6) 106 – – 2
B1u(2) 168 B2(7) 175 – – -7
B1u(3) 244 B2(8) 250 – – -6
B1u(4) 274 B2(9) 278 – – -3
B1u(5) 324 B2(10) 322 – – 2
B1u(6) 346 B2(11) 347 – – -1
B1u(7) 399 B2(12) 393 – – 6
B1u(8) 501 B2(13) 497 – – 4
B1u(9) 541 B2(14) 543 – – -2

B3u(1) 97 B1(6) 100 – – -2
B3u(2) 189 B1(7) 187 – – 2
B3u(3) 228 B1(8) 234 – – -6
B3u(4) 289 B1(9) 290 – – -0
B3u(5) 307 B1(10) 309 – – -1
B3u(6) 333 B1(11) 332 – – 1
B3u(7) 425 B1(12) 424 – – 1
B3u(8) 510 B1(13) 514 – – -4
B3u(9) 523 B1(14) 525 – – -2
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5.4 Laser phonon interaction

Figure 5.2: Schematic presentation of the laser pulse and B1u (red lines) and B3u

(Blue lines) modes frequency positions. The length of the lines modes is representing
mode effective charge normalized with effective charge of the mode with highest effective

charge.

To understand to which phonon modes the laser pulse couples, we plotted the laser pulse

and polar modes in Fig. 5.2. Here, we are considering the laser field to be a Gaussian

function with formula Eq. 5.1. In this function σω gives the spread in frequency and E0

gives the peak of the laser pulse.

E(ω) =
E0

2πσω
e
−(ω−ω0)

2

2σω (5.1)

The modes presented in Fig .5.2 are B1u and B3u. These two modes are those that are

polar in the a and b directions respectively, the direction in which the laser is polarized

in the experiments. The laser in this case couples to B1u and B3u with the highest

frequencies. The schematic representation of polar distortion of the B1u(9) and B3u(9)

are shown in Fig 5.3. The B1u(9) mode is polar in b direction and B3u(9) is polar in

a direction of the Pbnm structure. This polarization is mainly coming from oxygen

displacements and other atoms are not moving in these modes.

In the experiment, the optical absorption of the sample below 150 meV was measured

and the result is shown in Fig. 5.4. From this figure the absorption close to highest

frequency phonon modes (i.e., B1u and B3u modes) is the highest and the result is in

agreement with the DFT calculations.

The highest frequency B1u(9) (Fig. 5.3-A) mode is the closest to the laser pulse peak

frequency and it also has a large effective charge compared to other modes in this region.
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Figure 5.3: Schematic picture of a) B1u(9) and B3u(9) modes

Figure 5.4: Optical absorption of the sample below 150 meV energy of the laser from
the experiment. The absorption is maximum close to 0.6 eV (i.e., ∼500 cm−1 ) coming

mainly from B1u and B3u modes.

This mode’s eigenvector corresponds to oxygen bond stretching as shown in figure 5.3-A.

Considering all these facts, we can conclude that the laser will excite the B1u(9) more

strongly. The point to notice here is the fact that deriving this IR mode does not create

a magnetic phase transition, since this vibration does not change the potential energy

surface and magnetic interactions in macroscopic time scales.

5.5 Phonon-phonon interaction

To understand what is causing the spin reorientation in the sample exposed to the laser

pulse, we studied the coupling of IR mode to other modes that could consequently

change the magnetic interactions of Dy and Fe and result in spin reorientation [168] as
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Table 5.3: Coupling coefficients for B1u and Ag(1) and Ag(2) modes. The units
are (meV/(

√
amuÅ)n) with square root of atomic mass unit (amu) times angstrom

(
√
amuÅ)

CR dIR dR γ1

Ag(1) -0.004 0.0072 0.000 0.0681
Ag(2) 0.003 0.0072 0.000 0.1246

suggested by IRS mechanism. To determine the phonon-phonon couplings, we used the

potential energy as expanded according to Eq 5.2. We fitted this equation against DFT

calculations to get the coupling constants in the spirit of Juraschek et.al [156]. We did

the fitting with fvalence and fcore and since the differences were negligible, all the fitting

is done with fcore PAWs for Dy.

V (Q) = ω2
IRQ

2
IR + ω2

RQ
2
R + CRQ

3
R + γ1QRQ

2
IR

+
1

4
dIRQ

4
IR +

1

4
dRQ

4
R

(5.2)

In this equation, QX are mode amplitudes of phonon mode X (X = IR or R) with

eigenfrequencies ωX . The coefficients CR, γ1, dIR and dR are the ones fitted on DFT

data. In this case, we have considered the highest IR frequency B1u(9) mode (noted IR

in Eq 5.2) excited by the laser and its couplings to any Ag modes (noted R in Eq 5.2) that

are the first order couplings coming into play in the 20 atoms perovskite Pbnm phase

(the Ag mode label being invariant under all the symmetry operation of the crystal,

any coupling order with this mode is allowed). We found that the strongest coupling

is obtained by the second-lowest frequency Ag(2) (Fig. 5.5 (c)) mode, followed by the

first one Ag(1) (Fig. 5.5 (b)), such that we consider these two modes in our model. This

also shows that considering the lowest Ag mode frequency by default is not necessarily

physically relevant. The calculated model parameters for these Ag(1) and Ag(2) modes

are presented in Tab. 5.3.

As one can see, the γ1 parameter drives the strongest coupling with the B1u mode. This

coefficient couples Ag modes with the square of the Bu modes. This means that the Bu

mode forces the Ag mode in the same direction irrespective of the direction of the Bu

mode distortion. This interaction then shifts the Ag mode to one direction. The effect

of this interaction is shown in Fig. 5.6. Fig. 5.6 shows that the minimum of the energy

surface for Ag mode shifts to a different position for higher amplitude oscillations of the

Bu mode which means the Ag mode will be quasi statically condensed in the structure.

In the experiments, a SHG signal around 100 cm−1 (3 THz) is observed after the laser

excitation. This symmetry breaking could be due to the excitation of a low-frequency
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Figure 5.5: Schematic picture of Ag(1) mode, c) Ag(2) mode

Figure 5.6: Schematic representation of the potential energy change for Ag mode as
a function of different amplitudes of IR mode as we go from lower amplitudes (IR mode
distortion 1) to higher amplitude (IR mode distortion 4) of distortions of the B1u mode

mode

polar mode. We then also considered the coupling of the highest B1u mode with the

lowest B1u mode as a possible phenomenon to explain the observed SHG signal at 100

cm−1. To consider this possibility, we fitted Eq. 5.3 against DFT calculations:
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Table 5.4: Coupling coefficients for B1u(9) and B1u(1) modes. The units are
(meV/(

√
amuÅ)n) with square root of atomic mass unit (amu) times angstrom

(
√
amuÅ)

dIR1 dIR2 γ1 γ2 γ3 γ3

B1u(9)-B1u(1) 0.0072 0.0000 -0.0046 0.0010 0.0002 0.0045

V (Q) =ω2
1Q

2
IR1 + ω2

2Q
2
IR2 +

1

4
dIR1Q

4
IR1

+
1

4
dIR2Q

4
IR2 + γ1QIR1QIR2 + γ2Q

2
IR1Q

2
IR2

+ γ3QIR1Q
3
IR2 + γ4Q

3
IR1QIR2

(5.3)

The calculated coefficients are presented in Tab. 5.4. For this mode, the coupling co-

efficients are one to two orders of magnitude smaller than the Ag mode coupling to

B1u.

In this section, we have shown which modes are coupled to the laser pulses. In the

following section, we will consider the dynamics of the modes due to laser excitation.

5.6 Phonon dynamics

Since the amplitude of the coupled phonon condensation is related to the inverse of its

squared frequency, from the coupling coefficient it is not possible to say which coupling

is important [156]. To clarify this point, we simulated phonon dynamics to understand

how large the distortion for each of the Ag modes could be through their coupling with

the B1u mode. The phonon dynamics associated with our phonon potential is studied

through the following equation of motion (Eq. 5.4):

Q̈+ γQ̇+5Q[V (Q)− F (t, Q)QIR] = 0 (5.4)

Where Q=QB1u , QAg are the line width of each mode and F(t,Q) is the laser force

induced on the B1u(9) mode. The results of the phonon dynamic are shown in Fig. 5.7

(for modes Ag(1) and Ag(2)) and Fig. 5.8 (for mode B1u(1)) where we plot the amplitude

evolution of each mode eigendisplacement with respect to time.

As confirmed from the fitted parameter coupling strength, we observe that the Ag(1) and

Ag(2) have similar excitation amplitudes while it is much smaller for the B1u(1) mode

(note the range change). According to these calculations, the dynamics are strongly
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Figure 5.7: Dynamics of amplitude of Ag(1) and Ag(2) phonons as driven by B1u(9)
mode. The x-axis represent time in pico-seconds and y-axis shows the mode amplitude

in units of square root of atomic mass unit (amu) times angstrom (
√
amuÅ).

dominated by the Ag modes excitations, the B1u-B1u mode coupling cannot be the

source of the SHG signal.

Figure 5.8: Dynamics of amplitude of B1u(1) phonons as driven by B1u(9) mode. The
x-axis represent time in pico-seconds and y-axis shows the mode amplitude in units of

square root of atomic mass unit (amu) times angstrom (
√
amuÅ).

From Fig. 5.7 we can see that the Ag modes are oscillating around different minima

than their ground state. This shift in minimum has a longer lifetime than the laser

pulse duration and also a lifetime of the B1u mode. This quasi-static shift in minima

could change the interactions and material properties in picosecond time scales.

To understand the change in magnetic interaction resulting from the dynamics of the

Ag(1) and Ag(2) modes, we will study in the following how the magnetic interactions

are modified as a result of these modes rectification.
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Figure 5.9: Superexchange interactions between Dy and Fe as a function of a) Ag(1)
mode amplitude and b) Ag(2) mode (color scheme corresponds to the Dy-Fe bond color
of panel c). The x-axis represents the mode amplitude in square root of atomic mass
unit times angstrom (

√
amuÅ) and y axis shows exchange interaction in meV. The

panel c) shows to which Dy-Fe neighbor each J corresponds to. Blue ball corresponds
to Dy and yellow balls correspond to Fe; The empty black circle corresponds to the Dy

atom as if not displaced from the high-symmetry cubic position.

5.7 Phonon-magnetism interaction

To study how the indirectly driven Ag modes can change the magnetic interaction be-

tween Dy and Fe, we used the Greens function method to calculate the superexchange

interaction as a function of Ag modes amplitude following the scheme of Korotin et

al. [50] as implemented in the TB2J code [51].

We report in Fig 5.9 the evolution of the Dy-Fe superexchanges with respect to both

Ag(1) and Ag(2) mode amplitudes. As we can see the two modes can drive different

modifications of superexchanges, which can be decomposed into eight contributions re-

lated to the eight Fe ions surrounding one Dy ion as shown in Fig. 5.9(c). For example,

J3 and J7 have opposite trends with respect to both Ag(1) and Ag(2) mode condensa-

tion, while all the other J have the same trend. We also note that the Ag(2) mode has

a larger effect on the J than the Ag(1) mode.

To have a more qualitative understanding of the way the Ag modes modify the exchange

interactions, we have shown in tables the change in the exchange interactions between

iron and iron (see Tab. 5.6) and between Iron and Dysprosium (see Tab. 5.5). As can be

seen from the tables, the iron Dysprosium interaction has changed with a higher slope,
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Table 5.5: The table represents the slope of a line fitted to the exchange interactions
change between Fe and Dy as a function of Ag modes distortions according to the

Fig. 5.9 a and b. The units are meV /
√
amuÅ

Exchange dj/(jdQ) [Ag(1)] dj/(jdQ) [Ag(2)]

J1 -0.011 -0.047
J2 0.077 0.060
J3 0.022 -0.050
J4 -0.129 -0.081
J5 0.041 -0.067
J6 0.059 0.607
J7 -0.001 0.084
J8 0.037 0.289

Table 5.6: The table presents the slope of a line fitted to the exchange interactions
change between Fe atoms as a function of Ag modes distortions amplitude. The units

are meV /
√
amuÅ

Exchange dj/(jdQ) [Ag(1)] dj/(jdQ)[Ag(2)]

Fe-Fe 0.001 0.001

and changes in exchange interactions for iron and iron are negligible and could not be

responsible for spin reorientation.

Figure 5.10: Average exchange interactions change for two Ag modes as a function of
Ag modes distortion amplitudes. The x-axis shows the Ag modes amplitudes in units
of
√
amuÅ and The y-axis represents the sum of the exchange interactions between Fe

and Dy in meV.

To have a more clear picture of the way the Ag mode modifies the exchange interactions,

in figure 5.10 we present the average exchange interaction change between each Dy and

its 8 Fe neighbors. The figure shows that both Ag(1) and Ag(2) change the exchange

interaction with the same sign and they both will change the interactions between Fe

and Dy so that the magnetic phase transition happens.

To conclude the theoretical part of the work, we have shown that laser pulse couples to

highest frequency IR active phonon modes and excite these modes with large amplitudes.

The excited high frequency IR active modes will couple to two lowest frequency Ag
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Raman active modes and shift their minimum to a new position and freezing these modes

quasi statically in the structure. This rectification of the Raman active modes will change

the exchange interactions between Dy and Fe and causes a phase transition. In the

following section we will present experimental results concerning the laser excitation of

the DyFeO3. From these results we will see that other possible mechanism (e.g., thermal

dissipation) will be ruled out and the one suggested by the theory is the mechanism that

is responsible in the phase transition.

5.8 Nature of spin reorientation

Figure 5.11: The magnetic potential F as a function of the angle ϕ that the spins
form with the y axis before (dashed black line) and after (orange line) phonon exci-
tation. The potential is shown only for T < TM . The red and blue arrows depict
the spin configurations that correspond to the antiferromagnetic (AFM) and weakly
ferromagnetic(WFM) phases. The orange arrow highlights the destabilization of the
AFM ground state together with the reduction of the potential barrier that separates

the phases

The spin reorientation in DyFeO3 can be described by the magnetic potential F, which

depends on the temperature and the angle ϕ the spins form with the y-axis (see Sec. 2.3.3

and Eq. 2.6). In a broad temperature range, this potential function features two char-

acteristic minima at 0 and 90 degrees (Fig. 5.11), which signals two ordered states. The

height of the potential barrier that separates the two competing states, as well as their

relative energy, is controlled by the strength of the Fe–Dy interactions. This interaction

is not only sensitive to the temperature but also changes in the crystal environment,

both via direct modulation of the Fe–Dy electronic overlap and via structurally driven
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changes in the orbital state of the Dy 4f multiplet [189]. In according to DFT calcula-

tions, we considered light-induced oscillations of atoms driven far from their equilibrium

positions to control the strength of the Fe–Dy exchange [190, 191] and to realize lattice

control of the spin arrangement on an ultrafast timescale.

A comparison of the Fourier spectra [see Fig. 5.12-(a) and (b)] reveals that the frequency

of the spin precession excited by pulses in resonance with the lattice mode is shifted as

compared to the equilibrium value. The sign of the shift ∆f depends on the initial

magnetic configuration, being red in the AFM phase and blue in the WFM phase. To

underline the resonant character of the frequency shift, we tuned the photon energy of the

pump pulse across the phonon resonance and extracted the central frequency of the spin

oscillations [see Fig. 5.12-(c)]. The data acquired in both magnetic phases show that the

onset of the frequency shift follows closely the spectrum of the linear absorption of the

Bu phonon mode and therefore reveals a correlation between the light-driven phonon

and spin dynamics. These observations contain important information on the effects

of phonon pumping on magnetic potential. The redshift indicates a flattening of the

potential energy in the vicinity of the AFM minimum (ϕ = 0), which may lead to phase

instability. The blue shift observed in the WFM phase points at an increased curvature

of the potential and enhanced phase stability in the vicinity of the WFM minimum (ϕ

= 90).

In Fig. 5.13, we have shown the dynamics of the magnetism as driven by a laser pulse

with 85 meV pulse in blue. The magnetism with this energy arises immediately in

less than 5 ps. It is important to compare the observed kinetics of the ultrafast Morin

phase transition launched via the phonon-pumping with those driven via a dissipative

mechanism. Therefore, we performed an auxiliary experiment in which the sample was

excited with visible light having photon energy of 2.3 eV and 3.1 eV, above the change-

transfer electronic gap, the onset of this absorption band is visible in the right part of

figure 5.1. Here the optical absorption is large (α �1000 cm−1), and the transition is

expected to be driven by the heat deposited in the medium. As was shown in Fig. 5.13

(green line), the experiment shows that although the spin oscillations are launched nearly

instantaneously for high photon energy excitation with pump fluences similar to those

for the phonon-pumping, it takes more than 30 ps before a photo-induced magnetization

∆M starts to appear and about 100 ps to complete the growth. This indicates that the

heat-driven evolution of the potential is significantly slower than the one guided by

coherent pumping of the lattice. Note that the optical absorption at the above-bandgap

energy of 2.3 eV and especially 3.1 eV is significantly larger than the optical absorption

due to phonons at 85 meV. The slow dynamics can be explained by the slow heat transfer

from the excited electrons to the 4f electrons of Dy3+, which determines the dynamics

of the magnetic potential. This kinetics stands in sharp contrast with the one studied
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Figure 5.12: (Results from experiment) a, b, time-resolved transient rotation of the
probe polarization plane θR after light excitation with photon energies of 85 meV (or-
ange traces) and 165 meV (black traces) performed in the AFM (a) and WFM (b)
phases. Bottom insets: normalized amplitude spectra of the soft mode oscillations.
Top insets: schematics of the corresponding spin precessions, with the resulting oscil-
lating magnetic component ∆Mz. c, Central frequency of the exciting soft mode as a
function of the photon energy of the pump pulse in the two magnetic phases. The solid
lines serve as a guide to the eye. The shaded curve shows the sample’s optical density.
Insets: schematics that indicate changes in the local curvature of the magnetic poten-
tial. a.u., arbitrary units. The error bars represent the standard error of the extracted

frequency f.

here by the phonon pumping where the potential is altered on a timescale shorter than

a single cycle of the coherent spin precession. All this leads us to conclude that a very

different mechanism from regular heating is at play in the case of phonon pumping. We

also note that the frequency difference between the excited phonon (17 THz) and the

magnon (0.2 THz) rules out direct phonon–magnon coupling.

As shown in Fig. 5.14, measurements of the frequency of the magnetic mode at equi-

librium as a function of temperature revealed a cusp-like evolution in proximity to TM ,

in excellent agreement with Balbashov et al. [192]. In contrast, the frequency of the

magnons launched via resonant phonon excitation was characterized by a split-up of the

magnon branches at TM , which led to a pronounced discontinuity of more than 50 GHz

(Fig. 5.14). The discontinuity leads to the emergence of magnetic responses at frequen-

cies well below the minimum value attainable at equilibrium (140 GHz). Although the

heat capacity of DyFeO3 changes by a factor of 20 between 10 and 60 K (ref. [193]),

the magnitude of the observed frequency change is nearly temperature independent in

the range 10–100 K, which provides another indication that a non-thermal process is at

play.

Importantly, phonon pumping substantially increases the energy of the AFM state, which

simultaneously lowers the potential barrier, such that close to TM the AFM phase may
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Figure 5.13: (Results from experiment) a direct comparison of the dynamics of the
magnetization initiated by a pump pulse with above-bandgap photon energy (2.3 eV)

and in resonance with the phonon mode (85 meV)

lose its thermodynamic stability.

Figure 5.14: (Results from experiment) Frequency of the spin precession as a function
of the temperature across the Morin phase transition for different photon energies of

the pump excitation

From these considerations, we can see that other possible mechanisms, for the phase

transition studied here, can not explain the observed magnetic dynamics. Hence, in
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accordance with the results of DFT, we can consider the IRS as the mechanism inducing

the phase transition.

The results of this section are adapted from ref [154], For a complete discussion see the

corresponding reference.

5.9 Conclusion

In this chapter, we have shown a mechanism to manipulate magnetic phase using non-

linear phononics in DyFeO3. The experimental results show that excitation of the

DyFeO3 using a laser tuned to IR mode frequency induces dynamics that are faster

than the ones resulting from heat dissipation phase transition. Our results (in accor-

dance with experiment) prove that the excitation of the DyFeO3 using a laser tuned to IR

active phonon modes, can cause a rectification of the low-frequency Rama active modes.

This quasi-statically frozen Raman mode in the structure can change the exchange in-

teractions between Dy and Fe, which induces a magnetic phase transition. The same

mechanism can be present in other magnetic materials of rare-earth based compounds

with anisotropic magnetic interactions (i.e., manganites, nickelates and orthochromites).

The discussed mechanism is an effective approach to manipulating magnetic interactions

and magnetic phases in the materials. This mechanism is much faster than the other

mechanism (i.e., heat dissipation phase transition) and can offer devices that have much

faster operation times.

The results presented in this chapter show the power of nonlinear phononics as an

efficient method to manipulate and control properties of materials in fashion that is not

achievable through other physical mechanisms. Advances in this filed, and achieving

more powerful laser sources, may allow controlling and achieving new classes of materials.

Nonlinear phononics has recently shown to propagate in macroscopic length scales thanks

to phonon-polariton which makes this scheme more important.
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Concluding remarks

In this thesis, we have studied the magnetic and magnetoelectric properties of rare-earth

orthoferrites (RFeO3). Since the thesis is mainly concerned with magnetic properties,

in Chapter 1, we have discussed the origin of magnetism and the theories to explain it.

We have discussed the different mechanisms of interactions between magnetic moments

in materials and finally we have derived an extended Heisenberg model Hamiltonian

that we used to study RFeO3. To make our model we have used DFT calculations

such that in the second part of Chapter 1, we have discussed the DFT, its theory, and

the approximations used to practically solve the equations. We have finished this first

chapter by describing the methods to fit and extract parameters that we used in our

Heisenberg models.

In Chapter 2, we have discussed the material properties of RFeO3 crystals. We have

introduced their magnetic structures and their different magnetic phases. We have also

discussed some of the magnetic properties arising due to the inclusion of two magnetic

sublattices in the structure. In particular, we discuss the main open questions about the

magnetic properties of these materials, i.e. magnetization reversal and spin reorientation.

The Chapter 3 was devoted to study and understand the magnetic properties and be-

haviors present in RFeO3. We have derived the Heisenberg Hamiltonian for RFeO3

analytically and we fitted it against DFT calculations. Using our model, we have ex-

plained the origin of the different magnetic behaviors in these materials. In particular,

we have shown that the DMI interaction between rare-earth and transition-metal cations

can create the spin rotation transition in these materials. We have also shown that the

origin of magnetization reversal in RFeO3 is DMI interaction between rare-earth and

iron. Besides, we have presented how DMI can polarize the rare-earth element in differ-

ent directions depending on the atoms in A site or B site.

113
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In chapter 4 we have used our model developed in Chapter 3 to study the magnetoelectric

(ME) responses of RFeO3. The main focus of this chapter is the nonlinear ME responses

observed experimentally in GdFeO3. Our model correctly reproduces the results of the

experimental observations and it allows us to study the origin of the nonlinear and large

ME responses observed in GdFeO3. We have shown that the origin of the nonlinear ME

response is related to the fact that the G-type order, that breaks inversion symmetry,

changes nonlinearly with respect to an applied magnetic field, hence creating a nonlinear

ME response.

In chapter 5 we have presented the results of our collaboration with the experimental

group of A. Caviglia regarding the manipulation of the magnetic phase of DyFeO3 under

an ultrafast laser excitation. In this work, we presented a mechanism that can be

utilized to induce magnetic phase transitions in very short time scales. We have proved

that nonlinear phononics is the mechanism that drives the magnetic phase transition.

We have also shown that the dynamics of the magnetic phase transition arising from

nonlinear phononics are much faster than the dynamics originating from heat dissipation.

Rare-earth perovskite oxides, a big family with different properties and functionalities

can play an important role in technology. Current researches on this family show that

they are multiferroic materials where we can achieve large magneto-electric responses.

This property paves the way for utilizing electric field to control magnetism (a crucial

part in efficient spintronics). Our work sheds light on the magnetic interactions and

magnetic properties of these materials, their understanding being very important in

advancing the technology that might emerge from these materials either as a magnetic

material or as a type-II magneto-electric.

Although we have addressed some of the questions regarding the magnetic properties

of these materials, there are still some other aspects that can be studied. Our findings

regarding the magnetic interactions present in these materials shows that B site atoms

polarize the A site atoms at higher temperatures than their Néel temperature. On

the other hand, the direction of these interactions depends on the A site atom and its

orbital magnetic moments. Hence, if we have a checker board ordering of two different

atoms on A site, it is possible to induce G-type magnetic order on A site atoms at

higher temperature than their Néel temperature. In this case we will have two different

mechanism that makes these materials polar (checker board ordering of A site atoms

and G-type ordering of A site atoms), switch-ability of which needs to be investigated.

Besides, our primary studies on Hysteresis behavior of these materials shows that we

can reproduce well the s like shape of hysteresis loops close to the spin-reorientation and

the rectangular shape far from this point. Hence this model can used to study hysteresis
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loops and the exchange bias effects in these materials to study origin of the sign change

in exchange bias effect with these materials.

We have further extended our magnetic model and used it to study the magnetoelectric

response of these materials. The findings of our studies on ME response of GdFeO3 can

be generalized to other similar structures where we can estimate the magnitude of the

magnetoelectric response based on the parameters fitted from DFT calculations. Our

results also show the limitation of these materials as magneto electrics. For example if

we want to have a A site magnetic ordering at high temperature (e.g., like Fe with 600

K Néel temperature), then changing its magnetic order would require a large magnetic

field which hinders their use as ME devices. On the other hand if we use materials

with large enough exchange interaction so that the operating temperature is close to the

phase transition we can expect large ME responses.

According to our model, exchange interaction in RFeO3 will create a nonlinear ME

response. The ME response measured in DyFeO3, and claimed to be originating from

exchange interaction, is a linear response which is in conflict with our findings. The

origin of this behavior is not explained well and needs further studies.
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Appendix A

Derivation of Heisenberg model

To model the magnetic properties of RMO3 perovskite structures, we have used the

following Hamiltonian which includes magnetic interactions for transition metal atoms,

HMM , and magnetic interaction between rare earth atoms HRR, and the interaction

between the two sublattices HRM (Eq.A.1).

H = HMM +HRM +HRR (A.1)

The Hamiltonian for each of the sublattices can be written as following.

For the transition metal atoms we would have:

HMM = HMM
ex +HMM

DMI +HMM
SIA , (A.2)

For the R atoms the DMI and exchange interactions are very small and can be neglected

such that:

HRR ≈ HRR
SIA, (A.3)

and for the interaction between two sublattices we have:

HRM = HRM
ex +HRM

DMI , (A.4)

where the exchange and DMI interactions are considered to have the following forms

respectively:
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Hab
Ex =

1

2

N∑
ij

(Jab,ijSi,a.Sj,b) (A.5)

Hab
dmi =

1

2

∑
i,j

(Dab,ij × Sj,a) .Si,b (A.6)

and the SIA is considered to have the following form on both magnetic sublattices:

Haa
SIA =

∑
i

Ka (Si,a.êi)
2 , (A.7)

where i and j are magnetic lattice sites and the some is over magnetic sites with spin S

and the êi shows the SIA direction.

For these structures we have four different symmetry adapted spin states that can be

written as shown in Eq. A.8 to Eq. A.11.

SΓ1
i,a = Aa,x(−1)(niz) + Ḡa,y(−1)(nix+niy+niz) + Ca,z(−1)(nix+niy) (A.8)

SΓ2
i,a = Fa,x + Ca,y(−1)(nix+niz) + Ḡa,z(−1)(nix+niy+niz) (A.9)

SΓ3
i,a = Ca,x(−1)(niy+niz) + Fa,y +Aa,z(−1)(niz) (A.10)

SΓ4
i,a = Ḡa,x(−1)(nix+niy+niz) +Aa,y(−1)(niz) + Fa,z (A.11)

Where the Ḡ shows the main spin direction while the other letters showing small cant-

ings.

from now on we will only consider the state with G type order which is the dominant

order in RMO3s (i.e Γ1, Γ2 and Γ4). The general spin state of the atoms in these

representations could be written as Follows (Eq.A.12):

Si,a = C1
α,aS

Γ1
i,a + C2

α,aS
Γ2
i,a + C4

α,aS
Γ4
i,a, (A.12)

where Cgα,a is the ratio of the spins in g state.
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Using these definitions we can write the exchange interactions for atom a as (Eq. A.13)

Haa
Ex =

1

2

∑
i,j

JijSi,a.Sj,a

=
1

2

∑
i,j

∑
α

Jij(C
1
α,aS

Γ1
i,α + C2

α,aS
Γ2
i,α + C4

α,aS
Γ4
i,α).(C1

α,aS
Γ1
i,α + C2

α,aS
Γ2
j,α + C4

α,aS
Γ4
j,α)

=
1

2

∑
i,j

∑
α

Jij(C
1
α,aC

1
α,aS

Γ1
i,αS

Γ1
j,α + C2

α,aC
2
α,aS

Γ2
i,αS

Γ2
j,α + C4

α,aC
4
α,aS

Γ4
i,αS

Γ4
j,α

+ 2C1
α,aC

2
α,aS

Γ1
i,αS

Γ2
j,α + 2C1

α,aC
4
α,aS

Γ1
i,αS

Γ4
j,α + 2C2

α,aC
4
α,aS

Γ2
i,αS

Γ4
j,α)

= Haa,Γ1

Ex +Haa,Γ2

Ex +Haa,Γ4

Ex +Haa,Γ12

Ex +Haa,Γ14

Ex +Haa,Γ24

Ex

(A.13)

This equation shows the exchange interaction between spins in each state (Haa,Γ1

Ex ,

Haa,Γ2

Ex , Haa,Γ4

Ex ) and the exchange interaction beween two statesHaa,Γ14

Ex , Haa,Γ12

Ex , Haa,Γ24

Ex .

Exchange interaction between two states can be written as Eq. A.14 which can be

proven to be zero since the final result is the dot product of the spins between different

modulations:

Haa,Γ24

Ex =
∑
i,j

∑
α

Jij(C
2
α,aC

4
α,aS

Γ2
i,αS

Γ4
j,α)

=
∑
i,j

Jij(Fa,xḠa,xs
Γ2
i,xs

Γ4
j,x + Ca,yAa,ys

Γ2
i,ys

Γ4
j,y + Ḡa,zFa,zs

Γ2
i,zs

Γ4
j,z)

=
∑
i,j

Jij(Fa,xḠa,x(−1)(nix+niy+niz) + Ca,yAa,y(−1)(niz)(−1)(nix+niz)

+ Ḡa,z(−1)(nix+niy+niz)Fa,z) = 0

(A.14)

such that we will have :

Haa,Γ12

Ex +Haa,Γ14

Ex +Haa,Γ24

Ex = 0, (A.15)

and the Exchange interactions in this system can be written as follows which is the sum

of the exchange interactions in each state:

Haa
Ex = Haa,Γ1

Ex +Haa,Γ2

Ex +Haa,Γ4

Ex
(A.16)
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To calculate the DMI in this system we can write:

Haa
dmi =

∑
i,j

(Da,ij × Sj,a) .Si,a

=
∑
i,j

{
Da,ij ×

(
C1
α,aS

Γ1
i,a + C2

α,aS
Γ2
i,a + C4

α,aS
Γ4
i,a

)}
.
(
C1
α,aS

Γ1
i,a + C2

α,aS
Γ2
i,a + C4

α,aS
Γ4
i,a

)
= Haa,Γ1

dmi +Haa,Γ2

dmi +Haa,Γ4

dmi +Haa,Γ12

dmi +Haa,Γ14

dmi +Haa,Γ24

dmi

(A.17)

It is shown that the DMI vector in these systems can be written as Eq .A.18. We are

going to use this vector to describe the properties of these materials regarding DMI [81].

Daa,ij = dax(−1)n
z
ij î+ day(−1)n

x
ij+n

y
ij+n

z
ij ĵ + daz(−1)n

x
ij+n

y
ij k̂ (A.18)

The DMI between two state can be proven to be zero since for this interaction also we

will have product of the spins with two different modulations.(see Eq. A.19)

Haa,Γ24

dmi =
∑
i,j

(
Da,ij × SΓ2

j,a

)
.SΓ4
i,a +

(
Da,ij × SΓ4

j,a

)
.SΓ2
i,a = 0. (A.19)

So, the DMI between two states would be as follows:

Haa
dmi = Haa,Γ1

dmi +Haa,Γ2

dmi +Haa,Γ4

dmi . (A.20)

Hence, the total Hamiltonian of the system can be written as follows:

H = HΓ1 +HΓ2 +HΓ4 . (A.21)

The exchange interaction in Γ4 state can be written as in Eq. A.22. The n′ is the nearest

neighbours at the position i as shown in Fig A.1 and it can be (±1, 0, 0),(0,±1, 0),(0, 0,±1).
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Figure A.1: Figure showing how we have considered nearest neigbours of position i.

HMM,Γ4

Ex =
1

2
JM

N∑
i

NN∑
j

ḠM,xḠM,x(−1)(nix+niy+niz)(−1)(njx+njy+njz)

+
1

2
JM

N∑
i

NN∑
j

AM,yAM,y(−1)(niz)(−1)(njz) + FM,zFM,z(1)n
i
x(1)n

j
x

=
1

2
JM

N∑
i

NN∑
n′

(Ḡ2
M,x(−1)(nix+niy+niz)(−1)(nix+niy+niz)(−1)(n′x+n′y+n′z)

+ (AM,y)
2(−1)(niz)(−1)(niz)(−1)(n′z) + (FM,z)

2(1)n
i
x(1)n

i
x(1)n

′
x)

= −3JM (ḠM,x)2
N∑
i

(−1)2(nix+niy+niz) + JM (AM,y)
2
N∑
i

(−1)2(niz)

+ 3JM (FM,z)
2
N∑
i

((1)2(nix))

= −3NJM (ḠM,x)2 +NJM (AM,y)
2 + 3NJM (FM,z)

2

(A.22)

Similarly for Ha,Γ1

Ex and Ha,Γ2

Ex we can derive the following:

HMM,Γ1

Ex = NJM (AM,x)2 − 3NJM (ḠM,y)
2 −NJM (CM,z)

2, (A.23)

HMM,Γ2

Ex = 3NJM (FM,x)2 −NJM (CM,y)
2 − 3NJM (ḠM,z)

2, (A.24)

as well as for the exchange interactions between R and M sites we can write:

HRM,Γ2

Ex ' 8NJRMFM,xFR,x, (A.25)
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HRM,Γ4

Ex ' 8NJRMFM,zFR,z. (A.26)

The DMI between M atoms in HM,Γ4

dmi can be written as follows:

HMM,Γ4

dmi =
1

2

N∑
i

NN∑
n′(

dMx (−1)(nzi )(−1)(n′z)î×AM,y(−1)(nzi )(−1)(n′z)ĵ
)
.S

(Γ4)
i,M +(

dMx (−1)(nzi )(−1)(n′z)î× FM,zk̂
)
.S

(Γ4)
i,M +(

dMy (−1)(nxi +nyi +nzi )(−1)(n′x+n′y+n′z)ĵ × ḠM,x(−1)(nxi +nyi +nzi )(−1)(n′x+n′y+n′z)î
)
.S

(Γ4)
i,M +(

dMy (−1)(nxi +nyi +nzi )(−1)(n′x+n′y+n′z)ĵ × FM,zk̂
)
.S

(Γ4)
i,M +(

dMz (−1)(nxi +nyi )(−1)(n′x+n′y)k̂ × ḠM,x(−1)(nxi +nyi +nzi )(−1)(n′x+n′y+n′z)î
)
.S

(Γ4)
i,M +(

dMz (−1)(nxi +nyi )(−1)(n′x+n′y)k̂ ×AM,y(−1)(nzi )(−1)(n′z)ĵ
)
.S

(Γ4)
i,M ,

(A.27)

and from this we can write:

HMM,Γ4

dmi =
1

2

N∑
i

− 12dMx (−1)2(nzi )AM,yFM,z − 12dMy (−1)2(nxi +nyi +nzi )ḠM,z

− 12dMz (−1)2nzi ḠM,xAM,y

= −6NdMx AM,yFM,z − 6NdMy ḠM,xFM,z − 6NdMz ḠM,xAM,y.

(A.28)

Similarly for HMM,Γ1

dmi and HMM,Γ2

dmi we can write:

HMM,Γ1

dmi = −6NdMx ḠM,yCM,z − 6NdMy CM,zAM,x − 6NdMz AM,xḠM,y, (A.29)

HMM,Γ2

dmi = −6NdMx CM,yḠM,z − 6NdMy ḠM,x − 6NdMz FM,xCM,y, (A.30)

and for DMI between R and M we can write:

HRM,Γ4

dmi =
1

2

N∑
i

NN∑
j

((Dij × SΓ4
j,M ).SΓ4

i,R

+
1

2

N∑
i

NN∑
j

(Dij × SΓ4
j,R).SΓ4

i,M .

(A.31)
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The first part of this equation is the DMI from 8 M neighbours of R and R which can

be written as (Eq. A.21):

1

2

N∑
i

NN∑
j

(Dij × SΓ4
j,M ).SΓ4

i,R =

1

2

N∑
i

8∑
n′

(
dRMy (−1)(nxi +nyi +nzi )(−1)(n′x+n′y+n′z)ĵ × ḠM,x(−1)(nxi +nyi +nzi )(−1)(n′x+n′y+n′z)î

)
.SΓ4
i,R+

1

2

N∑
i

8∑
n′

(
dRMx (−1)(nzi )(−1)(n′z)î×AM,y(−1)(nzi )(−1)(n′z)ĵ

)
.SΓ4
i,R

=
1

2

N∑
i

−8dRMy (−1)2(nxi +nyi +nzi )ḠM,xFz,R − 8dRMx (−1)2(nzi )AM,yFz,R

= −4NdRMy ḠM,xFz,R − 4NdRMx AM,yFz,R

(A.32)

The interaction of Fe with its 8 R neighbours is as follows:

1

2

N∑
i

NN∑
j

(Dij × SΓ4
j,R).SΓ4

i,Fe =

1

2

N∑
i

8∑
n′

(dRMy (−1)n
x
i +nyi +nzi ĵ × Fz,Rk̂).SΓ4

i,Fe+

1

2

N∑
i

8∑
n′

(dRMx (−1)n
z
i (−1)(n′z)î×AM,y(−1)(nzi )(−1)(n′z)ĵ).SΓ4

i,Fe

= −1

2

N∑
i

(8dRMy (−1)2(nxi +nyi +nzi )Fz,RḠM,x + 8NdRMx (−1)(2nzi )AM,yFz,R)

= −4NdRMy Fz,RḠM,x − 4NdRMx AM,yFz,R

(A.33)

Finally for the DMI between R and M we can write:

HRM,Γ4

dmi = −8NdRMx Fz,RAM,y − 8NdRMy FR,zḠM,x, (A.34)

and similarly for the other states we can write:

HRM,Γ1

dmi = −8NdRMx CR,zḠM,y − 8NdRMy CR,zAM,x, (A.35)

HRM,Γ2

dmi =− 8NdRMx ḠM,zCR,y − 8NdRMy FR,xḠM,z

− 8NdRMz FR,xCM,y − 8NdRMz CR,yFM,x.
(A.36)
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By summing all the energy components and by including SIA energy we can reach the

final energy of each states as follows:

HΓ1 =HM
ex +HM

DMI +HRM
ex +HRM

DMI

=NJM (AM,x)2 − 3NJM (ḠM,y)
2 −NJM (CM,z)

2

− 6NdMx ḠM,yCM,z − 6NdMy CM,zAM,x − 6NdMz AM,xḠM,y

− 8NdRMx CR,zḠM,y − 8NdRMy CR,zAM,x

(A.37)

HΓ2 =HM
ex +HM

DMI +HRM
ex +HRM

DMI

=3NJM (FM,x)2 −NJM (CM,y)
2 − 3NJM (ḠM,z)

2

− 6NdMx CM,yḠM,z − 6NdMy ḠM,zFM,x − 6NdMz FM,xCM,y

− 8NJRMFM,xFR,x − 8NdRMx ḠM,zCR,y − 8NdRMy FR,xḠM,z

− 8NdRMz FR,xCM,y − 8NdRMz CR,yFM,x

(A.38)

HΓ4 =HM
ex +HM

DMI +HRM
ex +HRM

DMI +HR
SIA +HM

SIA

=− 3NJM (ḠM,x)2 +NJM (AM,y)
2 + 3NJM (FM,z)

2

− 6NdMx AM,yFM,z − 6NdMy ḠM,xFM,z − 6NdMz ḠM,xAM,y

− 8NJRMFM,zFR,z − 8NdRMx Fz,RAM,y − 8NdRMy FR,zḠM,x

−NKM (ḠM,x)2 −NKR(ḠR,x)2

(A.39)
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Technical details

B.1 Chapter 3

The main goal of this chapter is to give a qualitative picture of the magnetic properties

of RMO3’s. We choose to work with Gd because the DFT calculation results are more

robust and reliable for fully filed f -electron channel (Gd-f7) that does not have many

multiplets. However, the Gd ion is a special case with a very small angular momentum

compared to the other rare-earth elements but, once the model is built for Gd, we can

tune the model parameter values, i.e., the single-ion anisotropy and DMI, to reproduce

the physics of the other rare-earth atoms.

To understand these magnetic behaviors we have used DFT calculations on GdFeO3 and

GdCrO3, as reference materials, to have an estimation of the the magnetic interactions

in these crystals. We then tuned these parameters to study how they affect the overall

magnetic behavior of the system. We build a Heisenberg model containing M -M and

M -R superexchange and DMI interactions. Because we will focus on the temperature

range where the R sublattice is paramagnetic, we will neglect the R-R interactions

(these interactions are nevertheless small as compared to the M -M and M -R couplings).

We fit this model against DFT calculations [25, 26] done for the orthorhombic Pnma

phase of GdFeO3 and GdCrO3. We used the VASP package [194, 195] and its projected

augmented wave implementation of DFT [196]. We used the so-called PBEsol-GGA [197]

functional for the exchange correlation part of the density functional; a Hubbard U

correction [198] on Fe, Cr, and Gd of, respectively, 4, 2, and 5 eV has been used with J

parameter of 1 and 0.5 eV on Fe and Cr. All the calculations were done with a 6×6×4

mesh of k points for sampling the reciprocal space and a cut-off energy on the plane-wave

expansion of 700 eV to have a good convergence on single-ion anisotropic and DMIs (less

than 5 µeV convergence).
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The calculations of the superexchange interactions were done using Green’s function

method as implemented in the TB2J [51] code. In this method the maximally localized

Wannier function [52] as implemented in WANNIER90 [53] are calculated using DFT

(VASP interface to maximally localized Wannier functions) and using these Wannier

functions and the Green’s function method, the superexchange parameters are calcu-

lated. Some of these superexchange interactions were compared to the ones calculated

using total energy to ensure the consistency of the method. To calculate the DMI cou-

plings, we calculated the energy of different spin configurations and used the method

given by Xiang et al. [46]. We have checked that the results are qualitatively the same

by using different Hubbard U and J corrections while we have used the ones giving

the best Néel temperature for both sublattices. All of the fitted magnetic interaction

parameters were used to do spin dynamics with the VAMPIRE code [199]. In this code

the Landau-Lifshitz-Gilbert (LLG) equation for the spin dynamics [Eq. (B.1)] is solved

numerically.

∂Si
∂t = γ

1+λ2

[
Si ×Bi

eff + λSi ×
(
Si ×Bi

eff

)]
(B.1)

In the temperature-dependent spin dynamics simulations we have used a simulation cell

of 20 nanometers in each direction. The thermalization step was done in 50000 time

steps of 1.5 fs and the measurement is done in 90000 time steps of 1.5 fs.

B.2 Chapter 4

In this work we have used the Heisenberg model that has been derived previously by

us in Ref. [160], which includes both rare earth and transition metal site interactions

(superexchange and Dzyaloshinskii-Moriya interactions). This model is fitted against

density functional theory (DFT) calculations [25, 26] of the Pna21 phase of GdFeO3.

We used the VASP DFT package [194, 195] and its projected augmented wave imple-

mentation [196]. We used the so-called generalized gradient approximation (GGA) of

the PBEsol flavor [197] for the exchange correlation functional and added a Hubbard U

correction [198] on Fe and Gd of respectively 4 eV and 5 eV as well as a J parameter of

1 eV on Fe. Since the behavior that we are interested in is arising from exchange inter-

actions, we have chosen Hubbard interaction parameters (U) so that we get the closest

Néel temperature compared to experiments. All the calculations were done considering

non-collinear magnetism and including the spin orbit interaction. The calculations were

converged with a 6×6×4 mesh of k-points for sampling the reciprocal space and a cut-off
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energy on the plane wave expansion of 700 eV (giving a precision of less than 5 µeV on

the single-ion anisotropy and the DMIs).

The calculations of the superexchange interactions were done using Green’s function

method as implemented in the TB2J [51] code. In this method the maximally localized

Wannier function [52] as implemented in WANNIER90 [53] are calculated using DFT

(VASP interface to Maximally localized Wannier functions) and, using these Wannier

functions and the Green’s function method, the superexchange parameters are calcu-

lated. Some of these superexchange interactions were compared to the ones calculated

using total energy to ensure the consistency of the method. To determine the DMI

amplitudes, we have calculated the energy of different spin configurations as described

by Xiang et al. [46]. All of the fitted magnetic interaction parameters were used to do

spin dynamics with the VAMPIRE code [199]. In this code the Landau-Lifshitz-Gilbert

(LLG) equation for the spin dynamics

∂Si
∂t = γ

1+λ2

[
Si ×Bi

eff + λSi ×
(
Si ×Bi

eff

)]
(B.2)

is solved numerically. The ground state (lowest energy solution at T=0 K) for each of

the calculations (with applied magnetic field) is found by minimizing the energy with

respect to the magnetic order .

The calculation of the polarization is done using the Berry phase approach as imple-

mented in VASP [200, 201]. In order to calculate the ferroelectric response as a function

of magnetic order in the structure, we have constrained magnetic order and rotated the

spins on rare earth site from antiferroamgnetic order to feromagnetic order and relaxed

the atomic structure at each step. To make a model to simulate the ME response of

the materials we have fitted the spin dynamics results with the models that we have

developed in the following.

B.3 Chapter 5

In the experiment, laser driven spin dynamics of a [001] cut single crystal of DyFeO3 is

studied. The laser provide an intense (with electric field of more than 10 MV cm−1 with

polarization direction in ab plane of the crystal) phase locked mid-infrared impulsive

source (250 fs, 1 kHz); which is tunable in a broad photon energy range from 65 to

250 meV (16-60 THz). The energy range provided by the laser can be in the range of

the highest frequency IR active transversal optical phonon mode centered at 70 meV of

the DyFeO3 crystal. The spin dynamics were measured using a pomp-probe scheme, by
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tracking the polarization rotation, imprinted by the magneto-optical Faraday effect, on

co-propagating near-infrared probe pulses at the photon energy of 1.55 eV.

To address the origin of the behaviors observed in the experiments, we simulated the

Pnma phase of DyFeO3 through density functional theory (DFT) [25, 26] and its

projected augmented wave (PAW) [196] flavor as implemented in the ABINIT pack-

age [202, 203]. The PAW atomic potentials used for Fe and O were from the GBRV

pseudopotential library [204] with 3s, 3p, 3d, 4s and 2s, 2p considered as valence states

for Fe and O respectively. For Dy we used the PAW atomic potential from M. Topsakal

et. al. [205]. For Dy potential we considered two different cases: one where the valance

states are 4f , 5s, 5p and 6s (with f electrons in the valence) and one where we have put

the f states in the core such that the valence electrons are 5s, 5p and 6s. We used the

PBEsol [197] GGA functional for the exchange correlation interaction and a Hubbard

correction [198] on both Fe and Dy of respectively 4 and 7 eV have been used to have

the closest possible properties with respect to experiments (band gaps, lattice constants

and Neel temperature). All the calculation was done with 6×6×4 mesh of k-points for

the reciprocal space and a cut-off energy on the plane wave expansion of 36 Hartree and

72 Hartree for the second finer grid inside the PAW spheres. To calculate the phonons,

the frozen phonon scheme has been used through the Phonopy software [206].

The calculations of the exchange interactions were done using Green’s function method

as implemented in the TB2J [51] code. In this method the maximally localized Wannier

function [52] as implemented in WANNIER90 [53] are calculated using DFT (VASP

interface to Maximally localized Wannier functions) and using these Wannier functions

and the Green’s function method, the superexchange parameters are calculated. Some

of these superexchange interactions were compared to the ones calculated using total

energy to ensure the consistency of the method.
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f electrons ground state

We have considered the occupations of the f orbitals with respect to the symmetry given

by the crystal field splitting of Dy environment in DyFeO3. The crystal field splits the

7 degenerate f orbitals of the Dy to 7 different energy levels and these state are mixed

as follows:

Ψi =
∑
m

cm|l,m >

where m = −3,−1, 1, 3 and

Ψj =
∑
m′

cm′ |l,m′ >

where m′ = −2, 0, 2.

f electrons calculations

We have started from different occupation matrices and forced (constrained) these ini-

tialized occupation matrices for the first 30 self-consistent field cycles (SCF) of each

ionic relaxation step, the constraint being fully released beyond 30 SCF. We summarize

in Tab. C.1 the resulting occupation state for each starting occupation case, their rela-

tive energy with respect to the lowest energy case and the relaxed cell parameters. The

states shown in Tab. C.1 are the states that have converged, other state either did not

converged or relaxed to the same states as shown in table.

Among the converged states shown in Tab. C.1, states 1 and 7 are degenerate and states

5,6,8 are also degenerate.
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Table C.1: Energies and relaxed cell parameters of the different Dy-f orbitals occu-
pation matrices. The second column represents the starting occupation state and the
third column shows the resulting occupation state obtained after full relaxation and
release of the constraint. The fourth column shows the relative energy with respect to
the lowest energy state and the last three columns shows the associated relaxed cell

parameters (Angstrom).

# starting state final state ∆E a b c

1 (1 -1 3)(3 -1 1) (-3 -1 1)(-1 -3 3) 0.3 5.291 5.595 7.616
2 (0 -3)(2 ) (-3 0)(2 -1) 18.2 5.284 5.601 7.615
3 (-1 -3 ) (2 ) (-3 0) (2 -1) 18.7 5.282 5.603 7.615
4 (1 3) (2) (1 3) (2 ) 52.3 5.279 5.601 7.620
5 (1 0 2 3 ) (3 1 0 1) (3 0)(2 0 -1 -2) 7.7 5.275 5.609 7.616
6 (0 3 2 ) (2 -3 -2 -1 0) (3 0)(2 0 -1 -2) 7.5 5.274 5.610 7.616
7 (-3 1 -1) (-1 3 1) (-3 -1 1)(-1 -3 3) 0.0 5.292 5.594 7.615
8 (-1 0 2)(3 -1) (2 0 -1 -2) (3 0) 7.4 5.274 5.611 7.616
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Phonons

D.1 Phonons of GdFeO3 for different magnetic ordering of

Fe

Table D.1: A2 mode phonons for GdFeO3

label G-type label F-type label C-type label A-type

A2 81.6 A2 83.0 A2 81.3 A 84.2
A2 106.8 B2 107.4 B2 106.6 A 106.9
A2 155.9 B1 155.1 B2 156.4 A 154.9
A2 159.6 A2 159.8 A2 159.8 A 159.0
A2 195.4 A2 189.7 A2 192.4 A 192.3
A2 238.3 A1 238.3 B1 239.1 B 233.6
A2 284.7 B2 286.8 B2 286.9 A 283.5
A2 298.6 A2 302.7 A2 299.2 A 301.8
A2 342.7 A2 348.6 B1 346.0 A 347.0
A2 346.5 A1 350.2 A2 346.9 B 349.2
A2 463.1 B2 461.0 B2 461.3 A 460.5
A2 489.9 A1 491.0 B1 485.3 A 488.8
A2 512.9 B2 507.0 A2 512.3 A 508.0
A2 516.0 A2 507.5 B2 512.5 A 515.8
A2 606.3 B2 631.5 B2 606.7 A 628.6

Tab. D.1 and Tab D.2 represents the phonon modes frequencies in cm−1 for G-type,

F-type, C-type, and A-type ordering of Fe sublattice in GdFeO3. In these calculations

the Gd sublattice had G-type order. In the Tab D.2 the first column represents the

mode effective charges (Z∗) in electronic unit charge (e).

D.2 Phonons of DyFeO3
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Table D.2: IR-active phonons for GdFeO3

Z* label G-type label F-type label C-type label A-type

z-direction
-0.1 A1 108.2 A1 108.9 A1 108.3 A 109.3
-0.1 A1 134.1 A1 136.6 A1 134.6 A 135.4
4.3 A1 159.2 B2 158.3 B1 159.6 A 156.9
-4.2 A1 163.2 B1 164.0 B1 165.1 A 161.2
-0.1 A1 246.4 B2 241.5 A1 247.5 B 236.6
-7.3 A1 261.7 B1 255.0 B1 256.0 A 261.3
-2.9 A1 297.5 B1 302.5 B1 298.0 B 301.6
0.0 A1 321.3 A1 322.5 B2 320.9 A 322.7
6.9 A1 342.3 B1 345.6 B2 343.1 B 342.5
-0.1 A1 393.0 A1 405.3 A1 394.1 A 396.2
0.1 A1 405.5 A1 410.1 A1 407.5 A 405.6
0.0 A1 467.3 A1 473.8 A1 468.0 A 469.3
0.6 A1 487.6 A2 478.4 B2 485.1 B 482.6
4.0 A1 525.6 B2 521.8 B1 521.0 A 523.9

y-direction
-0.8 B1 99.9 B2 104.7 A1 100.5 B 103.7
0.0 B1 143.6 A2 140.4 B1 142.8 B 141.6
2.4 B1 187.9 B2 187.2 A1 188.8 B 186.5
6.6 B1 236.4 A2 229.8 A1 238.5 A 229.3
0.0 B1 239.1 A2 240.0 A2 239.2 B 235.4
2.9 B1 287.1 B2 291.2 A1 288.0 B 287.1
10.2 B1 303.2 B1 306.0 A1 307.9 A 302.9
0.9 B1 327.8 B2 331.2 A1 328.3 B 329.1
0.0 B1 347.0 A2 352.4 B2 349.2 A 351.3
1.7 B1 414.1 A2 417.4 A2 412.5 B 413.5
3.2 B1 414.8 B1 418.5 A1 418.5 B 420.7
3.4 B1 508.4 B2 495.2 A1 509.2 B 504.9
-0.7 B1 517.7 B1 518.2 A1 516.3 B 517.7
0.0 B1 588.6 A2 609.9 B1 603.7 B 587.7

x-direction
1.0 B2 109.7 A1 115.3 B2 109.7 B 113.9
0.1 B2 126.3 B1 127.8 A2 127.3 B 125.6
5.4 B2 171.7 A1 173.8 B2 174.5 B 170.4
8.7 B2 246.7 A1 251.1 B2 250.4 A 246.4
-4.4 B2 277.0 A1 283.8 B2 281.5 B 278.3
0.0 B2 309.0 B2 309.5 A2 309.4 B 304.9
1.0 B2 316.0 A1 319.2 A1 319.8 B 313.9
4.4 B2 342.0 B2 343.6 B1 340.2 A 339.8
6.0 B2 381.7 A1 386.1 B2 382.1 B 384.3
0.1 B2 414.3 B2 418.0 B1 415.5 B 415.4
0.0 B2 446.3 B1 446.5 A2 446.3 B 445.1
1.1 B2 480.8 B1 478.0 A2 479.3 A 480.0
-2.5 B2 536.8 A1 533.8 B2 535.7 B 535.2
0.0 B2 636.8 B1 661.3 A2 641.3 B 650.3
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Table D.3: Calculated DyFeO3 Raman active mode frequency (cm−1). In the first
column we show the mode label within the Pnma structure and in the second column
we report the frequency of the mode with f electron in the core. The third column
presents the mode labels in the Pna21 space group and the last column is the frequency
of the mode in Pna21 structure by considering the f electrons in the valence with the
G-type AFM ordering of the Dy. The last column give the frequency difference between
the two cases. In the fifth and sixth column we also report, respectively, the calculated
frequencies and the experimental measurements reported by Weber et al. in Ref. [187].

label(Pnma) fin-core label(Pna21) fvalence ref exp ∆

Ag(1) 109 A1(1) 107 112 113 2
Ag(2) 129 A1(2) 133 135 140 -4
Ag(3) 255 A1(3) 249 262 261 6
Ag(4) 330 A1(4) 328 332 341 2
Ag(5) 401 A1(5) 408 422 422 -6
Ag(6) 415 A1(6) 408 415 417 7
Ag(7) 401 A1(7) 413 422 422 -11
Ag(8) 479 A1(8) 480 490 496 -1

B1g(1) 129 B1(1) 136 135 – -7
B1g(2) 241 B1(2) 245 250 – -4
B1g(3) 351 B1(3) 353 359 361 -2
B1g(4) 412 B1(4) 419 427 427 -7
B1g(5) 585 B1(5) 591 593 – -6

B2g(1) 105 A2(1) 107 109 111 -3
B2g(2) 157 A2(2) 155 161 163 2
B2g(3) 307 A2(3) 298 311 325 9
B2g(4) 346 A2(4) 348 351 – -2
B2g(5) 479 A2(5) 474 482 494 4
B2g(6) 527 A2(6) 527 534 – 0
B2g(7) 607 A2(7) 610 612 624 -3

B3g(1) 117 B2(1) 120 123 – -3
B3g(2) 304 B2(2) 307 311 – -4
B3g(3) 408 B2(3) 417 424 433 -9
B3g(4) 453 B2(4) 455 460 474 -1
B3g(5) 629 B2(5) 637 637 639 -8
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Table D.4: Calculated DyFeO3 phonon IR active mode frequency (cm−1). The first
column gives the mode label of the Pnma structure with f electrons in the core and the
second column the calculated frequency. The third column presents the mode label in
the Pna21 space group and the fourth column the corresponding calculated frequencies
with f electrons in the valence. The last column (∆) gives the difference in frequency

between fin-core and fvalence.

label(Pnma) fin-core label(Pna21) fvalence ∆

B1u(1) 109 B2(6) 106 2
B1u(2) 168 B2(7) 175 -7
B1u(3) 244 B2(8) 250 -6
B1u(4) 274 B2(9) 278 -3
B1u(5) 324 B2(10) 322 2
B1u(6) 346 B2(11) 347 -1
B1u(7) 399 B2(12) 393 6
B1u(8) 501 B2(13) 497 4
B1u(9) 541 B2(14) 543 -2

B2u(1) 148 A1(9) 152 -4
B2u(2) 159 A1(10) 162 -2
B2u(3) 253 A1(11) 260 -6
B2u(4) 299 A1(12) 300 -1
B2u(5) 348 A1(13) 351 -2
B2u(6) 480 A1(14) 490 -9
B2u(7) 515 A1(15) 527 -12

B3u(1) 97 B1(6) 100 -2
B3u(2) 189 B1(7) 187 2
B3u(3) 228 B1(8) 234 -6
B3u(4) 289 B1(9) 290 -0
B3u(5) 307 B1(10) 309 -1
B3u(6) 333 B1(11) 332 1
B3u(7) 425 B1(12) 424 1
B3u(8) 510 B1(13) 514 -4
B3u(9) 523 B1(14) 525 -2
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