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Abstract—This paper focuses on online control policies applied
to power systems management. In this study, the power system
problem is formulated as a stochastic decision process with large
constrained action space, high stochasticity and dozens of state
variables. Direct Model Predictive Control has previously been
proposed to encompass a large class of stochastic decision making
problems. It is a hybrid model which merges the properties of
two different dynamic optimization methods, Model Predictive
Control and Stochastic Dual Dynamic Programming. In this
paper, we prove that Direct Model Predictive Control reaches
an optimal policy for a wider class of decision processes than
those solved by Model Predictive Control (suboptimal by nature),
Stochastic Dynamic Programming (which needs a moderate
size of state space) or Stochastic Dual Dynamic Programming
(which requires convexity of Bellman values and a moderate
complexity of the random value state). The algorithm is tested on
a multiple-battery management problem and two hydroelectric
problems. Direct Model Predictive Control clearly outperforms
Model Predictive Control on the tested problems.

Index Terms—Dynamic Optimization, Power System Manage-
ment, Predictive Control, Theoretical Analysis.

I. INTRODUCTION

Energy management problems are a class of sequential
decision making problems under uncertainties. Nowadays, the
underlying stochastic process (e.g. production and consump-
tion uncertainties, market prices forecasts) gains in complexity.
Different research domains handle such systems, such as
mix integer programming or stochastic programming, however
these methods are limited to represent complex stochastic
processes [2]. Section I-A formalizes the sequential decision
making under study in this paper. Section I-B dresses an
overview of the best algorithms dedicated to sequential de-
cision making problems and their limitation.

A. Formalism of Markov Decision Processes

The sequential decision making problem is modeled by
a Markov Decision Process. The dynamical system under
study is in a state, and evolves to a new state, depending on
random variables and decisions. After a given number of such
transitions, the system is stopped. Each transition provides a

cost, and the cost is cumulated from the initial state to this
stopping time. More formally, given:
• D: set of time steps at which a decision is made;
• D: set of time steps at which no decision is made;
• S ⊂ Rd: set of states;
• Lt(s): set of legal actions in state s at time t;
• Ω: set of random variables;
• an initial state s0 ∈ S;
• a final step time T ;
• a sequence of random variables ω0, . . . , ωT−1 ∈ Ω;
• a policy Π : S × D → Lt(s) ;
• a transition function Tnl : S × D × Lt(s)→ S;
• a random transition function RT : S × D × Ω→ S;
• a cost function Cnl,t : S × Lt(s)→ R;

we define:

∀t ∈ D, at = Π(st, t) : the decision at t (1)
∀t ∈ D, st+1 = Tnl(st, t, at) (2)
∀t ∈ D, st+1 = RT(st, t, ωt) (3)
∀t ∈ D, ct = Cnl,t(st, at) : the cost at time t (4)

CΠ =
∑
t∈D

ct : the total cost function. (5)

Eq. 2 refers to decision-based transitions, whereas Eq. 3 refers
to randomized transitions. In all the following, we consider:
a given transition function Tnl and a linear approximation T
of Tnl; a given cost function Cnl,t and a linear approximation
Ct of Cnl,t.

Then CΠ is a random variable, only depending on Π.
Dynamic optimization is the search for an approximation of
Π∗ such that E[CΠ∗ ] is as small as possible:

Π∗ ∈ arg min
Π

E[CΠ]. (6)

B. State of the Art in Dynamic Optimization

Dynamic Programming methods have been proposed back
to the 50’s to solve this problem, with the pioneering work
of [3]: the Stochastic Dynamic Programming (SDP). It is



based on computing a value function backwards in time.
For a given state, the value function (also termed Bellman
function) provides the expected reward that an agent will get,
if it starts in this state and makes optimal decisions. Without
enhancements, SDP is only tractable for simple problems.

Dual SDP (SDDP) [12] is the best known improved variant
of SDP. Convexity of Bellman values and a random process of
moderate state space size [16] are required for applying this
method. It consists in approximating the value function by
linear cuts. Assuming that the Bellman function is convex, a
piecewise linear approximation can be obtained thanks to sub-
gradient values at various locations in the state space. SDDP
runs simulations and computes subgradients in the visited
states. The moderately sized state space of the random process
is a key assumption. The Bellman function should be indexed
by all state variables, including the variables describing the
state of the random process. This is often intractable, hence
the random process is often heavily simplified, in particular by
stage-wise independence [16], or at least the random process
is replaced by a small Markovian representation.

An alternative to dynamic programming is the use of Model
Predictive Control (MPC) [4]. The principle is as follows: each
time a decision is required, a forecasting modules is applied for
estimating the random variables of the next h time steps, where
h is the tactical horizon. Then, all uncertainties are removed –
just assuming that the forecasts are exact for the next h time
steps. Then, the decision which optimizes the reward over the
next h time steps is made. This methodology is quite simple
and the assumptions are clearly understood: we assume that the
forecasts are perfect and that the effects beyond the horizon h
can be neglected. There are many methods for mitigating these
two assumptions. Regarding the first one, it is customary to
restart the optimization as soon as you get new observations
or to replace forecasts by pessimistic estimates in order to
reduce the risk. On the other hand, adding an approximate
value function for the reward beyond the horizon h mitigates
the effect of the second assumption. MPC is quite convenient,
robust, simple and remains a main tool in spite of theoretical
shortcomings. In particular, it often outperforms [20] the far
more sophisticated SDDP which relies on a modelization by
a usually stage-wise independent random process [16] or at
least a Markov process with moderate size.

Another possibility is to use Direct Policy Search (DPS)
[13], which optimizes a parametric function used as a policy
of the Decision Process. This parametric function (e.g. a neural
network) can be more or less problem specific. Compared to
the above approaches, DPS has the strength that it does not
need a simplified model: simulation-based optimization of the
policy can be applied as soon as simulations are possible.
On the other hand, traditional DPS fails in front of huge
action spaces unlike all previously presented approaches which
can deal with huge constrained action spaces provided that
all involved functions are linear or can be encoded in linear
programming (or in other frameworks with moderate com-
plexity). Main applications considered in our work are made
of huge constrained problems (unit commitment problems)

whose action space is too big for DPS.
Direct Model Predictive Control (DMPC) has been proposed

in [6] to relax the aforementioned assumptions. DMPC is
a hybrid model which merges the properties of the above
methods. The structure of SDDP remains, but the Bellman
values are replaced by a parametrized function, e.g., a neural
network, optimized offline. Notably, no assumption on the
convexity of the reward is required. Besides, the stochastic
setting is handled (contrarily to simple forms of MPC) and
no assumption on the Markovian nature of the stochastic
processes is required (contrarily to SDDP).

Section II introduces the DMPC method. We carry out a
theoretical analysis of DMPC in Section III and prove that,
provided that the noisy optimization routine converges, DMPC
reaches an optimal policy. Section IV presents a test on a
multiple-battery management problem and two hydroelectric
problems. Note that, compared to the results of [6] on multiple-
battery management problem, an extended version of DMPC
is implemented (neural network parametrizations, more eval-
uations).

II. DIRECT MODEL PREDICTIVE CONTROL (DMPC)

A. Formulation

This section is devoted to the presentation of DMPC,
formulated in Alg. 1. It consists into selecting the next action
according to a policy Πθ, parametrized by θ, defined as
follows:

∀ (st, t) ∈ S×D, Πθ(st, t) ∈ arg min
at∈Lt(st)

Ct(st, at)+Nθ[st,T(st, t, at), t].

(7)
Nθ is a mapping parametrized by θ, such that for all

(st, s
′
t, t) ∈ S × S ×D, Nθ[st, s′t, t] ∈ R. In particular, we

perform the optimization (Alg. 1, Line 3) using the linear
approximations C and T, and not the ‘real’ transition and
cost functions Cnl,· and Tnl respectively. We will see later
how this a priori suboptimality can be mitigated thanks to the
valorization term Nθ(.).

Algorithm 1 Direct Model Predictive Control (DMPC): Simulation
Input:

an initial state s0;
a policy Πθ as in Eq. 7;
a generator of random sequences get random(·)
a final time step T

Output:
a cost CΠθ := DMPC(s0,Πθ, T, get random(·))

CΠθ ← 0
t← 0

1: while t < T do
2: if t ∈ D then
3: at ← Πθ(st, t) as in Eq. 7 . Linear cost and transition functions
4: st+1 ← Tnl(st, t, at) . Non-linear transition function
5: CΠθ ← CΠθ + Cnl(st, at) . Non-linear cost function
6: else
7: ωt ← get random(t)
8: st+1 ← RT(st, t, ωt)
9: end if

10: t← t+ 1
11: end while

Return CΠθ



When Nθ is handcrafted rather than optimized, this is MPC.
When Nθ is computed backwards, this is SDP. When Nθ is
approximated by linear cuts built on subgradients extracted
from simulations, this is SDDP. The mathematical analysis
just assumes that Nθ can approximate any necessary function,
provided that θ is correctly chosen. This assumption will
be formalized in Theorem 1. In practice, in the experiments
presented in Section IV, Nθ is a neural network, chosen for
the approximation properties of neural nets. θ is then selected
such that:

θ∗ = arg min
θ

CΠθ (8)

In practice, θ is optimized by offline simulations describes in
Alg. 2.

Algorithm 2 Offline optimization of DMPC parametrization.
Input:

an initial state s0;
an initial parameter θ0;
a black box noisy optimization algorithm Opt, e.g. [8], [15], [7], [10],
[17], [18]
a generator of random sequences get random(·)
a final time step T

Output:
an optimal parameter θ∗

θ∗ ← θ0
n← 0

1: while budget not exhausted do
2: CΠθn

← DMPC(s0,Πθn , T, get random(·))
3: θn+1 ← Opt(CΠθ0

, . . . , CΠθn
, θ0, . . . , θn)

4: n← n+ 1
5: end while

Return θ∗ := θn

In addition, we assume that Lt(st) is defined by linear
constraints, i.e., ∀(st, t) ∈ S × D, there exist some matrix
A = A(t, st) and B = B(t, st) such that Lt(st) = {at;Ast ≥
at and Bst = b}.

B. DMPC Brings Consistency into MPC
First and foremost, no assumption on the convexity of the

reward is required, contrarily to SDDP and variants of dynamic
programming based on convex piecewise linear functions.
Also there is no assumption on the Markovian nature of the
stochastic processes involved (contrarily to SDDP). Besides,
we work in a stochastic setting, contrarily to brute force
conformant planning or simple forms of MPC.

III. CONSISTENCY ANALYSIS

We show that the DMPC structure includes optimal policies
under the following linearity assumptions on the approxima-
tions T and C of Tnl and Cnl,. respectively:
(A1) ∀(st, t) ∈ S × D, at 7→ T(st, t, at) is linear;
(A2) ∀(st, t) ∈ S × D, at 7→ Ct(st, at) is linear.
Theorem 2 states that the DMPC method is optimal under
the extra assumptions that the ‘real’ transition function and
cost functions are linear, i.e., T = Tnl and Ct = Cnl,t
respectively. Then, Section III-B (Theorem 3) shows that under
an additional technical hypothesis, these extra assumptions can
be relaxed.

A. Optimality of DMPC

In all the paper, ‖.‖ denotes the standard Euclidean norm
and (.|.) denotes the scalar product. In Section III-A, and only
in this section, T = Tnl and Ct = Cnl,t.

Definition 1: A mapping p : S × D → S will be termed
consistent if for all (st, t) ∈ S × D, there exists an action
at ∈ Lt(st, t) such that T(st, t, at) = p(st, t).

Theorem 1 (DMPC policies can follow arbitrary prescrip-
tions): Under assumptions (A1) and (A2), for all consistent
mapping p : S×D → S, there exists a mapping Nθ such that:

∀(st, t) ∈ S ×D, ∀ a ∈ arg min
a∈Lt(st)

Ct(st, a) +Nθ[st,T(st, t, a), t],

T(st, t, a) = p(st, t).

Furthermore, Nθ[s, ., t] can be written as a max of (d + 1)
linear functions, where d is the dimension of S. The mapping
p is termed a prescription function.

Proof 1: Let p be a prescription function. In the following,
we use Lemma 1 (see Appendix A for the proof).

Lemma 1: There exist d + 1 unit vectors w1, . . . , wd+1

in Rd, and there exists a constant c > 0 such that, for any
unit vector u ∈ Rd, there exist i ∈ {1, . . . , d + 1} such that
(u|wi) > c.

For all s ∈ S, we define v(s) = max
i∈{1,...,d+1}

(s|wi), where

(wi)i∈{1,...,d+1} are as in Lemma 1. By Lemma 1, there exists
c > 0 such that,

∀s ∈ S \ {0}d, v(s) > c‖s‖. (9)

Under assumptions (A1) and (A2), by applying [14, Theorem
10.5 P126-127], the function s′ 7→ min

a|s′=T(st,t,at)
Ct(st, at) is

Lipschitzian, i.e, there exists a constant D = D(st) > 0 such
that ∀ (s1, s2) ∈ S × S ,∣∣∣∣ min
at∈Lt(st)|s1=T(st,t,at)

Ct(st, at)− min
at∈Lt(st)|s2=T(st,t,at)

Ct(st, at)

∣∣∣∣
≤ D‖s1 − s2‖. (10)

For a constant D > 0 fixed in Eq. 10, we define:

∀ (s, s′, t) ∈ S × S ×D, Nθ[s, s′, t] :=
2D

c
v(s′ − p(s, t)). (11)

Then the minimum of s′ 7→ Nθ[s, s′, t] is reached in
s′ = p(s, t) and Nθ[s, ., t] is written as a max of (d+1) linear
functions. Define f(a) = Ct(st, a) +Nθ[st,T(st, t, a), t] and

a∗ ∈ arg min
at∈Lt(st)|T(st,t,at)=p(st,t)

Ct(st, at)+Nθ[st,T(st, t, at), t].

Such an a∗ exists because we have assumed that the prescrip-
tion is consistent. Then

f(a∗) = Ct(st, a
∗) +Nθ[st, p(st, t), t] = Ct(st, a

∗).

Let a′ ∈ Lt(st) be an action satisfying:

a′ ∈ arg min
at∈Lt(st)

f(at).



Define s′ = T(st, t, a
′). To conclude, we need to prove that

s′ = p(st, t). By definition, a′ minimize f on Lt(st) and a∗
minimize f on a subset of Lt(st), therefore,

f(a∗) ≥ f(a′),

≥ Ct(st, a
′) +Nθ[st, s′, t],

≥ f(a∗)−D‖s′ − p(s, t)‖+Nθ[st, s′, t] by Eq. 10,

≥ f(a∗)−D‖s′ − p(s, t)‖+ 2D‖s′ − p(s, t)‖ by Eqs. 9, 11,

≥ f(a∗) + D‖s′ − p(s, t)‖.

Hence s′ = p(s, t), which is the expected result. ut
Theorem 2 (The structure of DMPC policies includes op-

timal policies): Let us assume (A1) and (A2). Assume that
Ct = Cnl,t, T = Tnland that an optimal policy exists1. Then
there exists a mappingNθ such that Πθ minimizes Π→ E[CΠ]
i.e. ∀Π,E[CΠ] ≥ E[CΠθ ]. In addition, Nθ[s, ., t] can be written
as a max of (d+1) linear functions, where d is the dimension
of S.

Proof 2: By assumption, there exists Π∗ which minimizes
Π→ E[CΠ]. Let p∗ : S ×D → S be the prescription function
defined by:

∀(st, t) ∈ S × D, p∗(st, t) = T(st, t,Π
∗(st, t)). (12)

Then, by Theorem 1, there exists N ∗θ such that

∀(st, t) ∈ S × D,
∀ admpct ∈ arg min

at∈Lt(st)
Ct(st, at) +N ∗θ [st,T(st, t, at), t],

T(st, t, a
dmpc
t ) = p∗(st, t). (13)

Let a∗t be the action chosen by a given optimal policy Π∗ at
(st, t), i.e. a∗t = Π∗(st, t) ∈ arg min

Π
E[CΠ] and by definition,

CΠ =
∑
t∈D ct. By Eq. 12,

p∗(st, t) = T(st, t,Π
∗(st, t)) = T(st, t, a

∗
t ).

Together with Eq. 13, T(st, t, a
dmpc
t ) = T(st, t, a

∗
t ). Then

N ∗θ [st,T(st, t, a
dmpc
t ), t] = N ∗θ [st,T(st, t, a

∗
t ), t]. (14)

Hence, by definition of admpct , a∗t and Eq. 14, ∀ (st, t) ∈ S×D,

Ct(st, a
dmpc
t ) +N ∗θ [st,T(st, t, a

dmpc
t ), t]

≤ Ct(st, a∗t ) +N ∗θ [st,T(st, t, a
∗
t ), t],

Ct(st, a
dmpc
t ) ≤ Ct(st, a∗t ). (15)

By Theorem 1, the distribution of s0, . . . , sT is the same with
actions chosen by Π∗ and with actions chosen by Πθ. We
show this by induction on the step time t:
• The initialization s0 is the same in both cases.
• Induction:
(I1) By Eq. 13, st+1|st is the same in both cases when

t ∈ D.
(I2) Both are Markov chains, hence st+1|st is the same in

both cases when t 6∈ D.

1An optimal policy exists, by Bellman principle of optimality, as soon as
relevant extrema in Bellman’s equation are reached

The expected cost for Bellman’s policy Π∗ is therefore

E
∑
t∈D

Ct(st, a
∗
t ),

whereas for DMPC it is

E
∑
t∈D

Ct(st, a
dmpc
t ).

These two summations are over the same distribution for st,
and for each st, Eq. 15 shows that DMPC has a less or equal
cost. This concludes the proof of Theorem 2. ut

B. Non-linear Setting

In the previous section, Theorem 2 states that the DMPC
methodology provides an asymptotically optimal solution to
the Markov Decision Problem. To achieve this, it was assumed
that the transition and cost functions Tnl and Cnl,. defined in
Eqs. 2 and 4 are linear in the action variable. However, in
real word applications, it happens that these assumptions are
not satisfied [9], [19], [11]. With many algorithms, there is
no solution for using non-linear transitions and costs. Usually,
to mitigate the computational cost, a linear approximation is
used instead of the non-linear original version. In this section,
we want to emphasize that, while a linear approximation is
necessary for having a polynomial computational cost, the
advantage of simulation-based algorithms (such as DMPC) is
that there is no need for simulating with the linear functions.
Just the function used inside the decision function (Eq. 7)
has to be linear. Thanks to the use, in the simulation part
(Alg. 1, Lines 4-8), of the real (nonlinear) transition and cost
functions, we get an optimal policy on the real problem, in
spite of the use (for the sake of polynomial decision time)
of linear functions in the policy function Πθ. We show that
DMPC can thereby accommodate such a case under some
injectivity condition detailed in Theorem 3. We can still have
an optimal policy if the Nθ function is ad hoc. In some sense
(made precise in Theorem 3), the simulations, performed with
the ‘real’ transition Tnl and cost Cnl,., can offset the linear
approximations of the non-linear functions.

Theorem 3 (DMPC can counterbalance the bias induced by
its linear approximations): Under assumptions (A1) and (A2),
and if for some optimal policy Π∗,

∀(st, t) ∈ S ×D,∃! at ∈ Lt(st), T(st, t, at) = T(st, t,Π
∗(st, t)),

(16)
where “∃!” stand for “there exists a unique”, then for all

cost functions c0, . . . , cT−1, there exists a mapping Nθ such
that the corresponding policy Πθ minimizes Π 7→ E [CΠ].
Furthermore, Nθ[s, ., t] can be written as a max of (d + 1)
linear functions, where d is the dimension of S.

Proof 3: Let us define Π∗ the optimal policy, for
the real transitions and costs (i.e. Tnl and Cnl,t, and
not their linear counterparts T and Ct). The proof of
Theorem 2 applies, except that instead of the prescrip-
tion p(st, t) = Tnl(st, t,Π

∗(st, t)) we use the prescription
p(st, t) = T(st, t,Π

∗(st, t)). The proof of Theorem 2 can be
applied until Eq. 13. Eq. 13 and Eq. 16 imply that Πθ plays
optimal moves, and therefore it is optimal. ut



IV. EXPERIMENTS

A. Experiments with a 10 Batteries Problem

We first provide experiments on a buying/selling energy
problem defined as follows. 10 batteries are used to store
energy bought on a simulated market; stored energy can be
resold on the market; market price varies realistically at each
simulation time step (based on real data). Algorithms are
evaluated on multiple simulations of 168 decision time steps
(each one representing one hour in the simulation). They have
to make one decision per battery and per decision time step
(i.e. decide the quantity of electricity to either insert or extract
of each battery) in order to find the policy that maximize
the average profit (i.e. buy when the market price is low
and sell when the market price is high). For each t ∈ D,
an approximation of the market price is made for the next 5
decision time steps so that a decision is made for the next 5
decision time steps at once. The energy market price changes
for each simulation (the time series are randomly taken in a set
of 1000 scenarios). For each battery, the maximum input and
output capacity is 1000 kW and the maximum storage capacity
is 96000 kWh. Batteries have different efficiencies (the per-
centage of energy actually sold for a given output command)
and a smart control has to take it into account: the “output
efficiency” of the i-th battery is 0.8−max

(
bi/2c

10 , 0.4
)

.
Please note that previous sections have described algorithms

for minimization problems but in this experiment algorithms
are tested on a maximization problem thus notations are
adapted.

Three algorithms are compared:
• MPC with a null valorization of the stock at tactical

horizon (i.e. Nθ(s, s′, t) = 0 in Eq. 7 with s the stock
level of the batteries);

• MPC with the best constant marginal valorization of the
stock at tactical horizon (i.e. Nθ(s, s′, t) = α · s′ with α
a constant optimized to maximize the total gain);

• DMPC, with a penalization (denoted Nθ in Eq. 7) pro-
vided by a fully connected neural network, with various
numbers of neurons on the hidden layer. According to Eq.
8, this neural network is optimized with a Self-Adaptive
Evolution Strategy [5] using resampling principles (see
[1]) for ensuring convergence in spite of noise (with
n2 evaluations at iteration n). The inputs to the neural
network are the stock levels of the batteries, plus a cosine
and a sine function of time with periodicity corresponding
to 24 hours.

Results are presented in Fig. 1. They are satisfactory, but
need a long optimization time, hence new policies (not a
neural network) are designed before switching to large-scale
problems in the next section (Section IV-B).

B. Experiments on a Real-World Hydroelectric Problem

1) Problem Description.: We here focus on a real world
problem, the management of a hydroelectric dam, for national
consumption, optimized jointly with many thermal power
plants. The naive MPC algorithm does not perform well on

Figure 1. DMPC experimental results with 0, 1, 2, 4 neurons over 1000
scenarios, compared to the two baselines: a null valorization and the best
constant marginal valorization at tactical horizon. Here, printed results are
rewards (i.e. the higher the better). 0 neuron is almost immediately better than
the baselines; later, 2 neurons perform well; 4 neurons need more computation
time for outperforming baselines but eventually works well.

this problem, due to the necessary long term management: a
valorization term is necessary in the unit commitment, so that
water is stored when the stock is low and/or there are still
load peaks in the forthcoming months. Two algorithms are
compared:
• The MPC improved by a long term management (LTM)

constraint on stock level, optimized offline. This is the
baseline (horizontal curve in our results), and needs an
offline optimization phase (in the present case, combined
with human expertise).

• The DMPC approach, with a handcrafted policy rather
than a neural network. The handcrafted policy is de-
scribed in Eq. 17.

Nθ(s, s′, t) = (θ1cos(t/T0) + θ2sin(t/T0) + θ3 + θ4s/S0)·s′.
(17)

where t is the time step, T0 is one year, S0 is a stock
constant, s is a stock level, and Nθ(s, s′, t) is the valorization
as in Eq. 7. The two first terms can represent any sinusoid of
period 2πT0, the third is a constant marginal cost of stocks,
and the fourth term is a first order approximation of the
decrease of marginal costs when a stock increases (law of
diminishing returns).

2) Discussion on the Long Term Management (LTM) Con-
straint.: When applying MPC to a real world problem with
long term dependencies (e.g. an hydroelectric stock), it is
clearly visible that using a tactical horizon corresponding to
the horizon at which forecasts are excellent is not sufficient:
costs (over the strategic horizon) become huge, because hy-
droelectric stocks are used way too early. Simulating such a
system with 48 hours tactical horizon, without dealing with
long term storage, is unrealistic - estimating the cost of a fic-
titious system with such a simple tool leads to overestimating
its cost, in particular if it needs storage.



On the other hand, using a large tactical horizon is unreal-
istic; we do not have excellent long term forecasts for wind,
load and market prices. The cost of a system simulated with
one month anticipation is underestimated, in particular when
there are many uncertainties - typically, the cost of a system
with a lot of renewable energies is underestimated.

A simple solution is to use human expertise: define a
constraint (LTM constraint), lower bound on stock levels, so
that you are sure that some energy is saved up in dams. The
LTM constraint used in our experiments has been defined by
collecting human expertise. This approach leads to MPC costs
empirically close to the real world costs; however, this method
has the following drawbacks:
• The LTM constraint (extracted by humans by analysis of

data) is not effective when the system is modified, and we
need to simulate fictitious systems for making investment
decisions.

• The one month tactical horizon used in the version
designed by human experts is not realistic, as we certainly
not have high precision forecasts over one month.

• A pernicious effect is that the LTM constraint is designed
over data, and tested on the same data; this is typically
an example of overfitting. Nothing guarantees that per-
formance will be the same on other data than those used
for designing the LTM constraint.

An alternate solution would be optimizing a LTM constraint
on top of the MPC. However, this is expensive and leads
to an unprincipled hard constraint on the stock. Indeed, the
present work is motivated by the decision to get rid of the
LTM constraint and its difficult assumptions.

3) Results.: Results are presented in Fig. 2. We observe that
DMPC always outperforms the baselines (horizontal curves).
In addition, the results are, to a large extent, independent of
the LTM constraint after the optimization by DMPC, whereas
the LTM constraint methodology without DMPC had a big
impact on the result.

V. CONCLUSIONS

We have studied Direct Model Predictive Control, both
mathematically and experimentally. The approach has various
advantages and can in particular mitigate the difficulties of
high scale dynamic optimization. High scale action spaces can
be handled thanks to polynomial decision making, because
the neural network provides the parameters of the decision
problem but is not involved in the optimization loop (see Eq.
7).

Non-linear transitions can be mitigated by the use of a non-
linear model in simulations (in Eq. 8), as shown by Theorem 3.
We can still have an optimal solution. Therefore, we combine
polynomial time decision making, and consistency.

Theorem 2 shows that with a limited number of cuts in the
representation (Eq. 7) we have approximately optimal policies,
outperforming classical MPC. Prior to any optimization, our
algorithm is equal to a MPC with, possibly, a handcrafted
valorization. It is therefore easy to use, on top of an existing
MPC implementation; MPC might be the most efficient usual

approach in such contexts, due to its handling of arbitrary com-
plex stochastic processes; we indeed modify it by including a
direct policy search layer, so that we preserve the polynomial
decision making, while handling non-linear effects.

The main drawback is the heavy computation of θ∗ as in
Eq. 8. This however can be mitigated by warm starts and
parallelization - as noisy optimization is highly parallel. At
the cost of a few hours or days of offline optimization, DMPC
brings a policy that does not require any linearity or convexity
assumption and that is not restrained to a Markovian random
process.
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APPENDIX

Lemma 1: There exist d + 1 unit vectors w1, . . . , wd+1

in Rd, and there exists a constant c > 0 such that, for any
unit vector u ∈ Rd, there exist i ∈ {1, . . . , d + 1} such that
(u|wi) > c.

Proof 4: (x)k is the k-th coordinate of vector x.
Consider S = {x ∈ Rd+1 |

∑d+1
i=1 (x)2

i = d2 +

d and
∑d+1
i=1 (x)i = 0}. S is the intersection of a d-

dimensional sphere of Rd+1 and of a hyperplane in dimen-
sion d + 1; it is therefore a (d − 1)-dimensional sphere of
a d-dimensional Euclidean space (which is the hyperplane
H = {x;

∑d+1
i=1 (x)i = 0} of Rd+1). We show the result in

this d-dimensional Euclidean space.
Let us consider w1, . . . , wd+1 defined by:

∀i ∈ {1, . . . , d+ 1}, wi ∈ Rd+1

and ∀j ∈ {1, . . . , d+ 1}, (wi)j =

{
d if j = i,
−1 otherwise.

The wi are elements of S. They are a regular simplex. For any
x ∈ S, we define v(x) = max

i∈{1,...,d+1}
(x|wi). Let us show that

for any x ∈ S, v(x) > 0.

Without loss of generality, let us assume that (x)1 > (x)j ,
for any j ∈ {2, . . . , d+1} (otherwise just permute coordinates,
the problem is invariant by such permutations).

(x|w1) = (d+ 1)(x)1 −
d+1∑
i=1

(x)i︸ ︷︷ ︸
0, because S⊂H

,

so for any x ∈ S, v(x) = (d+1) max
i∈{1,...,d+1}

(x)i. By definition

of S, max
i∈{1,...,d+1}

(x)i > 0, therefore v(x) > 0. Since S is a

compact Hausdorff space, v reaches its lower bound on S:
there exists c > 0 such that ∀x ∈ S, v(x) ≥ c.

We have the above conclusion for the hyperplane∑d+1
i=1 (x)i = 0 of Rd+1, thus we have the same conclusion

for the domain Rd. We have concluded the proof for x such
that ‖x‖2 = d2 + d; a fortiori the result holds for x such that
‖x‖ = 1.


