

Exploration profonde sur l'étiologie des maladies virales du manioc à l'Est de la R.D. Congo

Yves Kwibuka Bisimwa

Lecturer, plant pathology, UCB

PHD Candidate, University of Liege

Project iCARE (Improved Cassava Virus Resistance mitigation strategies and development of a disease-free seed system)

Promotors: Prof. Espoir Bisimwa, Prof. Herve Vanderschuren, Prof. Claude Bragard, Prof. Sébastien MASSART

PRESENTATION PLAN

I. INTRODUCTION

- I. General context
- II. Specific context
- III. Basic observations
- IV.Research questions
- V. Research objectives
- II. Study 1:
 - I. Methodology
 - II. Results
- III. Study 2:
 - I. Methodology
 - II. Results
- **IV.Perspectives**

1. INTRODUCTION : Contexte de l'étude

Cassava plant:

- The third most important source of calories in the tropics (after rice and maize)
- A staple food for more than 800 million people, mostly in Africa.
- Africa is the highest producing continent & D.R. Congo is the 2nd highest producing country in Africa.

INTRODUCTION: Specific Context

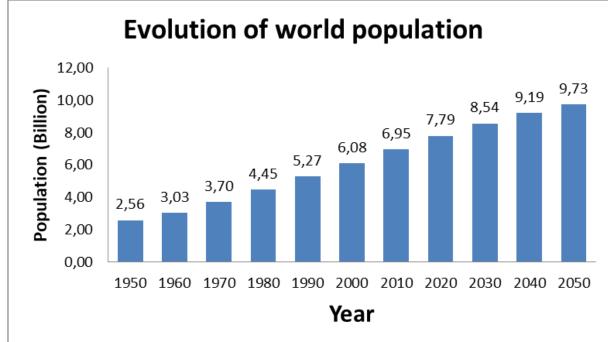
Cassava: « THE ROOT OF THE PROBLEM »

- 1. Cassava mosaic disease: 11 sp. of ss-DNA viruses (CMBs).
- 2. Cassava brown streak disease: 2 sp. of ss-RNA viruses (CBSIs).

INTRODUCTION: Specific Context

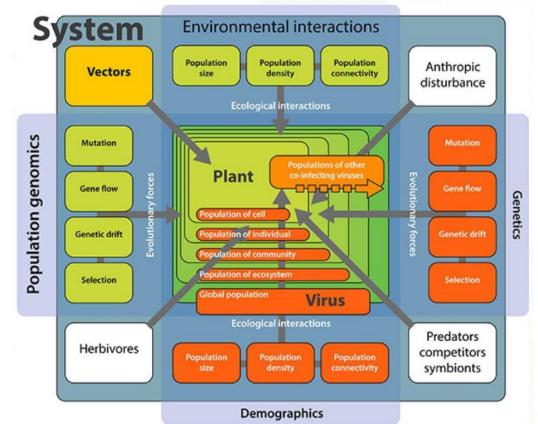
Cassava: « THE ROOT OF THE PROBLEM »

+ 100 insects and mites, ~ 30 diseases induced by viruses, phytoplasmas, bacteria or fungi



- Cassava mosaic disease: \$1.2 2.4 billion annual loss
 Cassava brown streak disease:
 - \$726 million annual loss

INTRODUCTION: General Context


1. The world is undergoing a period of rapid expansion in human activity accompanied by an accelerating climate change.

 Producing enough food, in a sustainable manner, to meet the needs of an increasing global population is one of the greatest challenges we face.

INTRODUCTION: General Context

3. Changes are impacting on plants, vectors& viruses causing increasing instability within virus-plant pathosystems.

Implications regarding our ability to achieve effective control of virus epidemics that diminish food production, especially those associated with virus emergence

INTRODUCTION: Specific Context

 Viral genomes can evolve rapidly, sometimes leading to new diseases completely different. Reconstructing their genomes can advance the understanding and capabilities to combat the diseases they cause.

 Wild flora acts as a reservoir of viruses causing significant losses in nearby crops and vice versa. However, information about viruses in wild species is still quite limited.

Observ. 1: Although timing is not regular, depending on biological events and conditions (area under cultivation and climatic factors), major new diseases or strains of cassava disease tend to appear every 7– 10 years !!!

Observ. 2: These two diseases are spreaded by whitefly vectors (*Bemisia tabaci*) and by the movement of planting materials

- **Question 1. Emergence of new disease every 7-10** years:
- Beyond what is actually known, are there other viruses waiting their time ?
- What can we learn by exploring viruses in wild species plants grown in cassava agrosystems ?

Question 2. Movement of planting materials

- Between 80 and 90 percent of the seed that farmer's access comes from the local seed system.
- →Which channels of cutting supply could be at risk of spreading viruses ?

INTRODUCTION: Research objectives

Study 1 : Cassava brown streak disease in the farmer's seed systems of the Eastern D.R. Congo: a cross-sectional understanding of risk factors associated with virus dissemination through seed channels/sources

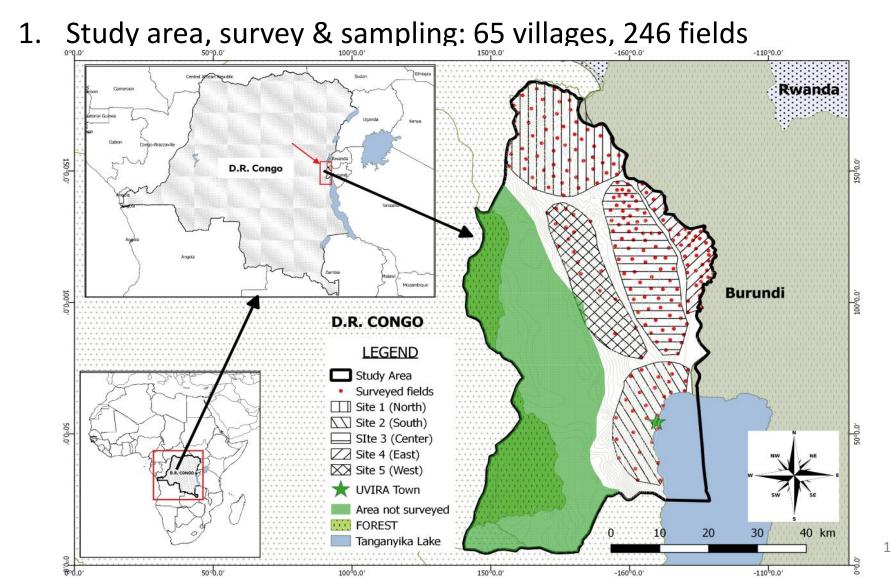
➢Objectives of the study:

- 1. Diversity of viral agents of CBSD & epidemic profile
- Integrated approach (epidemic parameters+molecular detection findings+seed system parameters)→a deep understanding
- 3. Predict risk factors associated to the presence of CBSVs in fields grown with cuttings originated from diverse channels .

INTRODUCTION: Research objectives

Study 2 :

Title: High throughput sequencing elucidate viral population in cassava agrosystems of the Eastern D.R. Congo


Objective of the study: Characterize the diversity of viral population in :

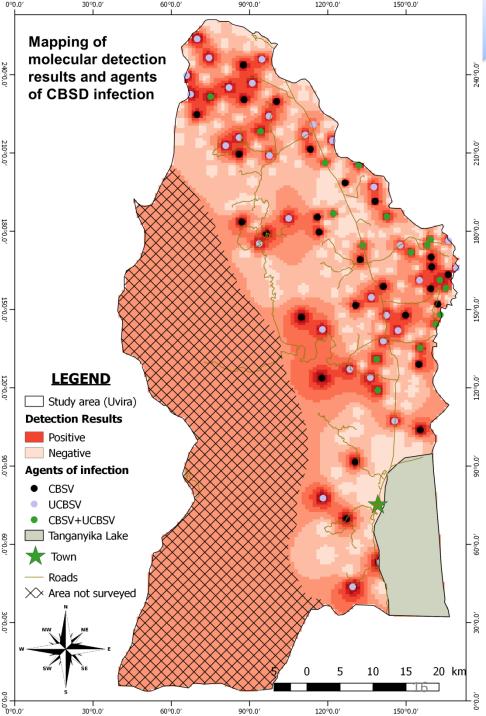
- Cassava plant
- Weed plants

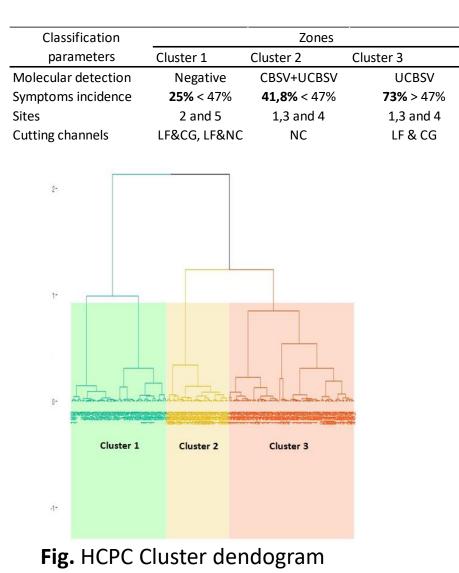
METHODOLOGY: Study 1

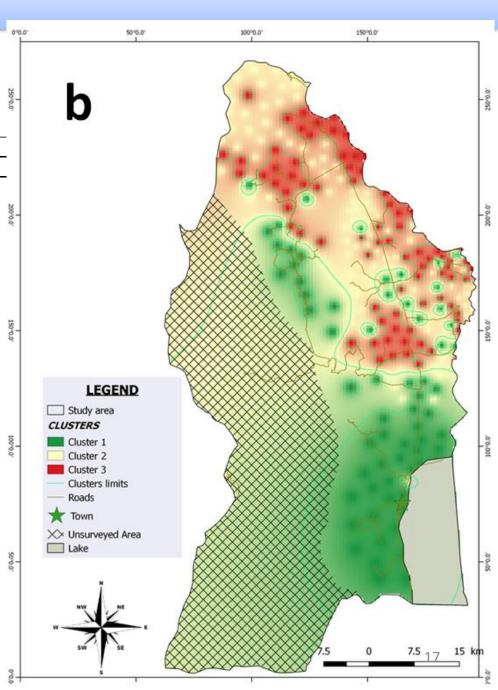
Title: CBSD in farmer's seed systems of the Eastern D.R. Congo: risk factors associated with virus dissemination through seed channels

METHODOLOGY: Study 1

Title: CBSD in farmer's seed systems of the Eastern D.R. Congo: risk factors associated with virus dissemination through seed channels


- 2. Molecular detection: RNA extraction, RT-PCR
- 3. Data analysis: R & Quantum GIS
 - Statistical averaging & means comparison
 - Multivariate analyses: FAMD, HCPC
 - Binary logistic regression
 - GIS

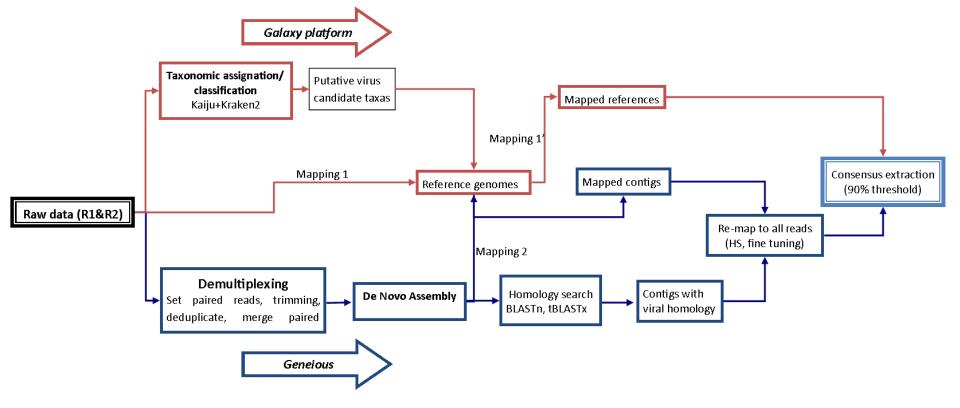

1. Obj. 1: Epidemiologic aspects


Fig. Spatial trends of molecular detection findings (positive and negative samples) as well as the repartition of viral agents and types of infection (CBSV and UCBSV in single and dual infections).

- CBSV: uniform distribution in the whole study area
- UCBSV: North, Center & East
- CBSV+UCBSV: East
- Negative: South & West

2. Obj. 2: Integrated descrition of the study area

METHODOLOGY: Study 2


High throughput sequencing & viral population in cassava agrosystems

- 1. Origin of samples and sampling strategies: sampling from study 1.
 - 1. Cassava samples (leaves)
 - 2. Weeds
- 2. High throughput sequencing protocol:
 - Total RNA extraction: CTAB protocol, DNase treatment,
 - Library preparation: equimolar pooling (2500ng) of 7 samples (10 samples for weeds) → 14 pools in total
 - Sequencing strategy: Illumina TrueSeq Stranded total RNA

METHODOLOGY: Study 2

High throughput sequencing & viral population in cassava agrosystems

3. Bioinformatic analyzes: Discover new viruses **vs** detect known viruses

4. Sequence confirmation & gap-filling: RT-PCR and Sanger

1. Obj. 1: Diversity of viral population in cassava plant

Table. Viral taxas identified in cassava plants

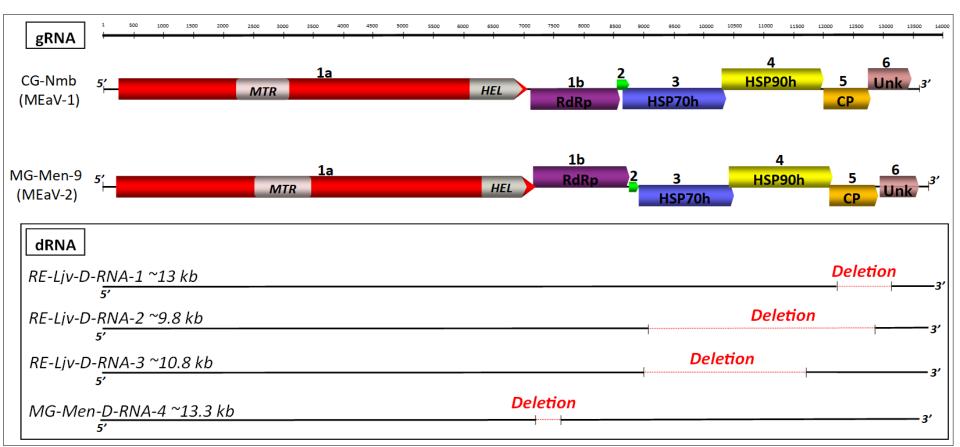
N°	Family>Genus	Species	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14
4	Detericidees Deterious	CBSV														
1	Potyviridae>Potyvirus	UCBSV														
2	Geminiviridae>Begomovi	ACMV														
2	rus	EACMV														
3	Begomovirus satellites															
3	Degomovinus satellites	Ш														
	Closteroviridae>Ampelov															
4	irus	MEaV-1														
r.	Botourmiaviridae>Ourmi	01.0														
5	avirus	CV-C														
6	Secoviridae>Cheravirus	SPV														

2. 1. Obj. 2: Diversity of viral population in weed plant

Table. Viral taxa identified in Weed plants

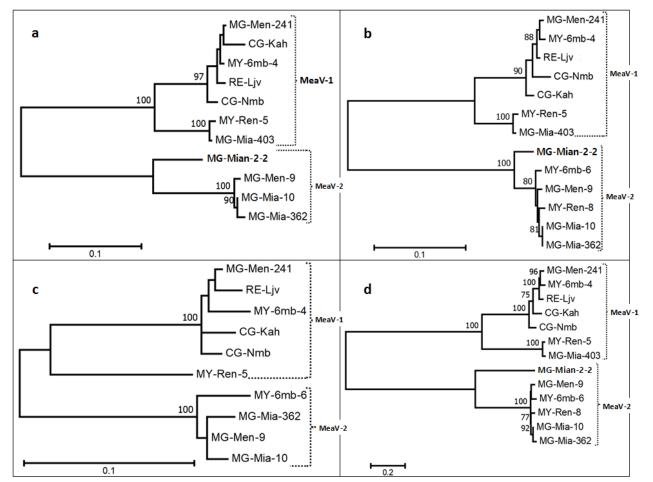
N°	Family>Genus	Species	P12	P13	P14
1	Luteoviridae>Poleroviru	BWYV			
1	S	CCSV			
2	Luteoviridae>Enamoviru	Pepper			
2	S	enamovirus			
		Phaseolus			
	Endornavirida os Alaba En	vulgaris			
3	Endornaviridae>AlphaEn dornavirus	endornavirus-			
	dornavirus	1(PVE-1)			
		PVE-2			
		Potato virus Y			
4	Potyviridae>Potyvirus	(PVY)			
		Sun flower ring blotch virus			
5	Secoviridae>Cheravirus	SPV			
		Tobacco vein			
6	Caulimoviridae>Solendo	clearing virus			
	virus	(TVCV)			
		Turnip			
7	Tymoviridae>Tymovirus	yellows virus			
		, (TYV)			

21

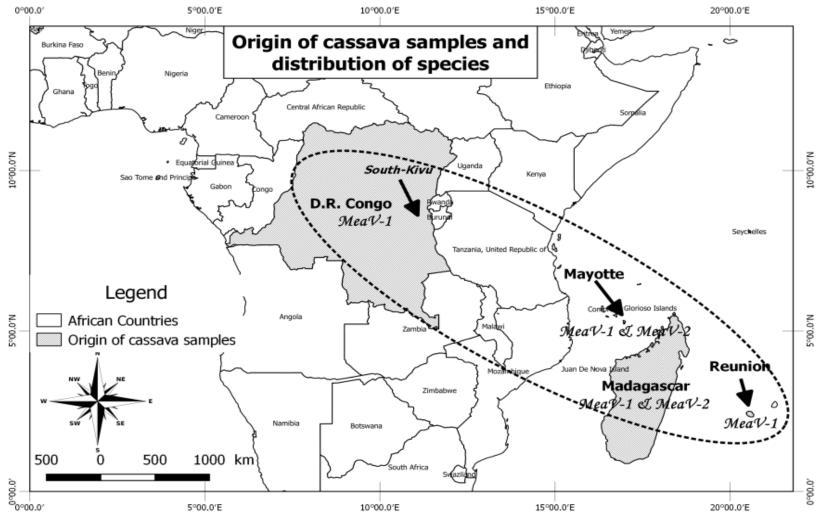

- Two most important findings: new virus species detected in cassava plant:
- 1. Closteroviridae>Ampelovirus
- 2. Secoviridae>Cheravirus

Archives of Virology

NOVEL AMPELOVIRUSES INFECTING CASSAVA IN CENTRAL AFRICA AND THE SOUTH-WEST INDIAN OCEAN ISLANDS


Authors : Yves Kwibuka^{1*}, Espoir Bisimwa², Arnaud Blouin¹, Claude Bragard³, Thierry Candresse⁴, Chantal Faure⁴, Denis Filloux^{5, 10}, Jean-Michel Lett⁶, François Maclot¹, Armelle Marais⁴, Santatra Ravelomanantsoa⁷, Sara Shakir⁸, Hervé Vanderschuren^{8,9} and Sébastien Massart¹

NOVEL AMPELOVIRUSES INFECTING CASSAVA IN CENTRAL AFRICA AND THE SOUTH-WEST INDIAN OCEAN ISLANDS


Fig. Schematic representation of the genomic organization of representative isolates CG-Nmb (MEaV-1) and MG-Men-9 (MEaV-2) (top) and structure of the defective variants (**dRNA**) identified (bottom).

NOVEL AMPELOVIRUSES INFECTING CASSAVA IN CENTRAL AFRICA AND THE SOUTH-WEST INDIAN OCEAN ISLANDS

Fig. 3 Phylogenetic trees reconstructed using the amino acid sequences of the three taxonomically relevant proteins for the family *Closteroviridae*: (**a**) RdRp; (**b**) HSP70h; (**c**) CP and the whole genome nucleotide sequences (**d**). ML, GTR+GI model for nt, Poisson model for a

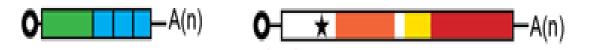

NOVEL AMPELOVIRUSES INFECTING CASSAVA IN CENTRAL AFRICA AND THE SOUTH-WEST INDIAN OCEAN ISLANDS

Fig. Geographic repartition of the two novel cassava ampelovirus species (MEaV-1 and MEaV-2) according to the country of origin of positive samples

Family Secoviridae >Genus Cheravirus>Stocky prune virus

Cheravirus (cherry rasp leaf virus)

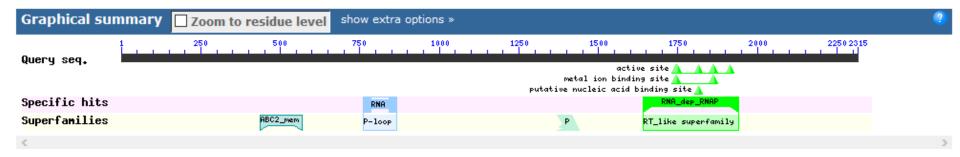
- Distinguishing features
- Bipartite genomes, 3 capsid proteins of similar sizes, transmitted by nematodes (Xiphinema americanum) and through seeds
- Host range
 - ✓ Is broad or narrow, depending on the virus, and includes weeds in the vicinity of infected crops.
 - ✓ Symptoms are usually mild or absent
- Species demarcation criteria:
- i. CP aa sequence < 75% identity
- ii. Replication block aa < 80% identity

RESULTS: Study 2 Family *Secoviridae* > Genus Cheravirus > Stocky prune virus

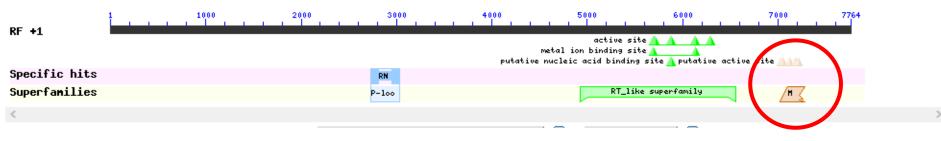
Table. RdRp aa divergence

	Contig_26	Contig_83	Contig_84	Contig_7	Contig_56	Contig_107	Contig_937	Currant_latent	Apple_latent_s	Cherry_rasp_	Arracacha	Stocky_prune
	_P3	P12	P12	P5	P4	P4	_P4	_virus	pherical_virus	leaf_virus	_virus_B	_virus
Contig_26_P3												
Contig_83P12	6,1%											
Contig_84P12	6,1%	0,0%										
Contig_7P5	3,7%	6,1%	6,1%									
Contig_56P4	3,7%	6,1%	6,1%	0,0%								
Contig_107P4	3,7%	6,1%	6,1%	0,0%	0,0%							
Contig_937_P4	3,7%	6,1%	6,1%	0,0%	0,0%	0,0%						
Currant_latent_virus	56,0%	55,0%	55,0%	55,0%	55,0%	55,0%	55,0%					
Apple_latent_spherical_virus	57,3%	56,3%	56,3%	56,5%	56,5%	56,5%	56,5%	24,7%				
Cherry_rasp_leaf_virus	55,7%	55,7%	55,7%	54,9%	54,9%	54,9%	54,9%	28,2%	29,4%			
Arracacha_virus_B	50,3%	50,3%	50,3%	50,0%	50,0%	50,0%	50,0%	43,2%	44,2%	44,5%		
Stocky_prune_virus	36,9%	36,2%	36,2%	35,2%	35,2%	35,2%	35,2%	49,7%	49,7%	50,3%	45,7%	
Contig_152P4	4,6%	7,4%	7,4%	0,0%	0,0%	0,0%	0,0%	52,6%	51,6%	50,9%	50,2%	35,2%

Divergence far below the sp. demarcation criteria in genus Cheravirus

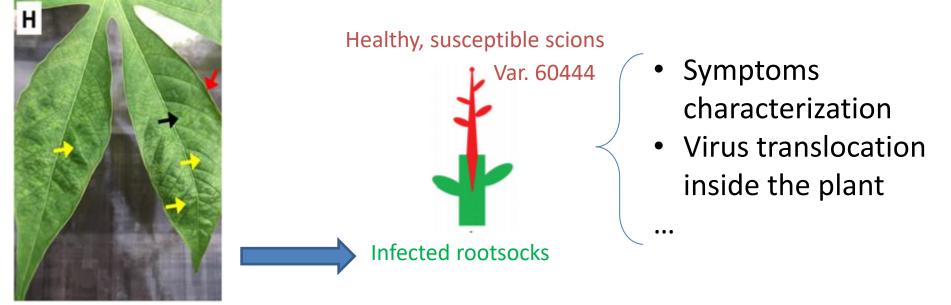

Table. CP aa divergence

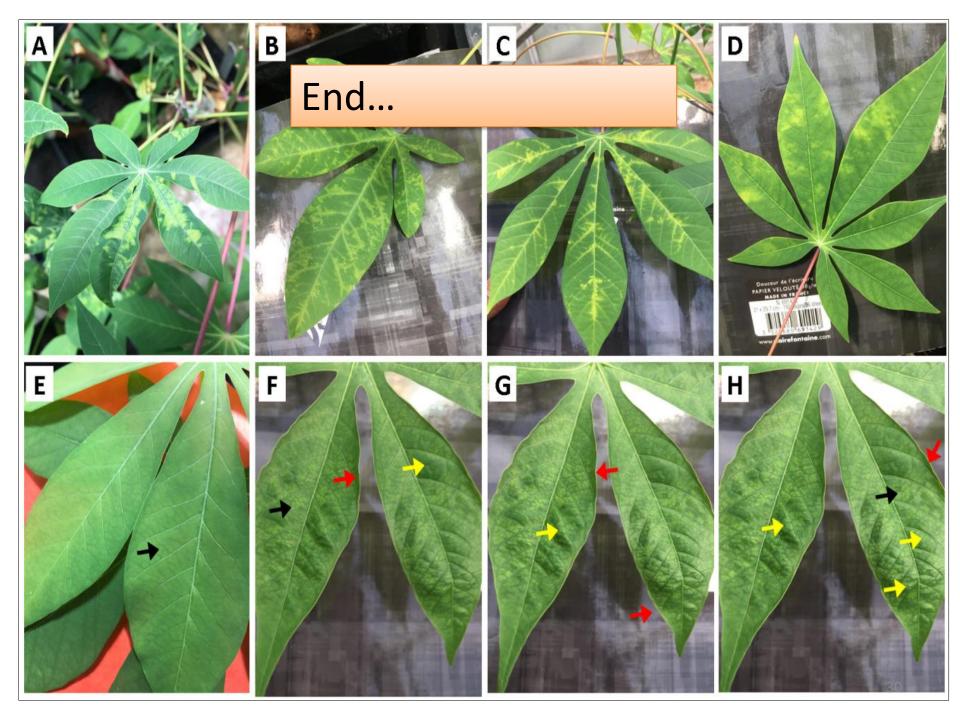
	Contig_926_	Contig_2011_R	Contig_2012_	Currant_latent	Apple_latent_s	Cherry_rasp_	Arracacha	Stocky_prune	Contig_97_	Contig_80_	Contig_919_
	P12	NA_2_P12	RNA_2_P12	_virus	pherical_virus	leaf_virus	_virus_B	_virus	P3_RNA2	RNA2_P5	RNA_2_P4
Contig_926_P12		_									
Contig_2011_RNA_2_P12	0,023161										
Contig_2012_RNA_2_P12	0,023161	0,006353									
Currant_latent_virus	0,735673	0,765557	0,761216								
Apple_latent_spherical_virus	0,762850	0,794798	0,794798	0,355932							
Cherry_rasp_leaf_virus	0,758782	0,790462	0,790462	0,395767	0,297782						
Arracacha_virus_B	0,802850	0,825581	0,824128	0,791418	0,807101	0,787843					
Stocky_prune_virus	0,699571	0,698376	0,700696	0,814385	0,807339	0,799076	0,834532				
Contig_97_P3	0,050797	0,099483	0,099483	0,737430	0,765625	0,760626	0,810286	0,711297			
Contig_80_P5	0,055664	0,098191	0,098191	0,738547	0,767857	0,762864	0,809143	0,713389	0,007656		
Contig_919_RNA_2_P4	0,109529	0,177979	0,177979	0,738095	0,764115	0,762203	0,807990	0,762162	0,056745	0,048218	27
Contig_1397_P4	0,056641	0,098191	0,098191	0,738547	0,767857	0,762864	0,809143	0,713389	0,008612	0,000939	0,047170


RESULTS: Study 2 Family *Secoviridae* > Genus Cheravirus > Stocky prune virus

Presence of a MAF-HAM1 motif !!!

Arracacha virus B


Our sequences


RESEARCH PERSPECTIVES

- 1. Confirmation of HTS results : RT-PCR
- 2. Biological aspects of Ampelovirus & Cheravirus:

Infected plants:

- Cheravirus only
- Cheravirus+UCBSV
- Ampelovirus+UCBSV

