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Abstract: A simulation method is developed herein based on the particle finite element method 

(PFEM) to simulate processes with surface tension and phase change. These effects are important in 

the simulation of industrial applications, such as welding and additive manufacturing, where 

concentrated heat sources melt a portion of the material in a localized fashion. The aim of the study 

is to use this method to simulate such processes at the meso-scale and thereby gain a better 

understanding of the physics involved. The advantage of PFEM lies in its Lagrangian description, 

allowing for automatic tracking of interfaces and free boundaries, as well as its robustness and 

flexibility in dealing with multiphysics problems. A series of test cases is presented to validate the 

simulation method for these two effects in combination with temperature-driven convective flows 

in 2D. The PFEM-based method is shown to handle both purely convective flows and those with 

the Marangoni effect or melting well. Following exhaustive validation using solutions reported in 

the literature, the obtained results show that an overall satisfactory simulation of the complex 

physics is achieved. Further steps to improve the results and move towards the simulation of actual 

welding and additive manufacturing examples are pointed out. 

Keywords: particle finite element method (PFEM); multiphysics simulation; phase change; welding; 

additive manufacturing (AM) 

 

1. Introduction 

Phase change plays a key role in some state-of-the-art manufacturing processes, such 

as welding and additive manufacturing. Characteristic of these applications is that phase 

change occurs very locally at a specific length scale, which we call the mesoscale. The 

mesoscale is the length scale at which the melt pool and the concentrated heat source are 

well-resolved. Other phenomena relevant to engineers occur on all length scales while 

still strongly depending on phenomena at the mesoscale. Examples include residual 

stresses and material warping at the part scale and the crystallographic evolution upon 

freezing at the microscale, which are closely related to convective flows, heat transfer and 

melt pool evolution at the mesoscale. Few methods have been developed that can fully or 

even partially simulate these effects at the mesoscale. 

In the literature, there are some examples of simulation methods that neglect the fluid 

flow altogether and only concentrate on solid mechanics and heat transfer at the 

mesoscale. Some authors [1–3] use a Eulerian or Lagrangian finite element method (FEM) 

to obtain the temperature field around the laser heat source in selective laser melting 

(SLM). The latter includes elasto-perfectly plastic behavior of the liquid melt pool; 

however, no convective flows are modeled that would greatly influence the heat transfer. 
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The focus lies more on the accurate representation of the solid behavior under strong 

temperature gradients and fast cooling. 

Conversely, much work can be found investigating the fluid flow in the melt pool 

and the evolution of the melt pool geometry. Several authors [4,5] use an Arbitrary 

Lagrangian–Eulerian (ALE) description of the liquid melt pool, with the former example 

assuming the powder to be a continuum, and the latter using the discrete element method 

(DEM) to create a powder bed where individual particles are resolved. The aim of such 

studies is to explore the physics of the melt pool, such as the recoil pressure from 

evaporation and the Marangoni effect, as well as other phenomena such as denudation of 

the powder bed, spattering, pore formation and keyhole evolution. 

The most common approach for simulating melt pool fluid dynamics is the use of the 

finite volume method (FVM) in combination with an interface tracking method such as 

Level set (LS) or Volume of Fluid (VoF). Often, the powder bed is created using the DEM. 

This is done by many groups, and a good summary can be found in Cook and Murphy’s 

review paper [6]. The modelling of the solid mechanics is omitted in all of these works, 

which are thus geared towards predicting melt track topology and provide impressive 

results thereof. 

There are limited examples of other methods used for welding and additive 

manufacturing, such as smoothed particle hydrodynamics (SPH) and the lattice 

Boltzmann method (LBM). Both share the drawback that some boundary conditions and 

the Marangoni effect are difficult to implement, making these a rare choice in the context 

of additive manufacturing. See also Cook and Murphy [6] for details. 

One particularly noteworthy work devoted to the modeling of the additive 

manufacturing process in which the problem is split into a solid and fluid parts is that of 

Chen [7]. The powder is modeled as a flowable continuum, and hence included in the 

fluid part. For the fluid phase, a Eulerian FEM code for Newtonian fluids with a level set 

method for interface tracking together with remeshing at regular intervals is used. For the 

solid, a separate Eulerian FEM code with an elasto-plastic solid model is used. Both are 

coupled and solved in sequence for each time increment. While the fluid and powder are 

solved using the Navier–Stokes equations, the solid region in the domain is also included, 

although with an extremely high viscosity. Based on the fluid flow and the heat transfer, 

the melt pool can evolve in this step. Then, only the new outlines of the melt pool and the 

temperature profile are transferred to the solid solver. There, the yield stress reduces to 

zero in the fluid and powder regions. This means that the fluids can deform without any 

resistance, while the actual solid around the melt pool deforms elasto-plastically. To our 

best knowledge, this is the only approach that incorporates both the convective flow in 

the melt pool (to obtain a realistic heat transfer) and the elasto-plastic solid (to obtain 

residual stresses) in one single simulation method. Chen obtains excellent agreement with 

experimental results. The main drawbacks of this method are the complex and expensive 

coupling and the necessity of using the level set interface tracking, which further increases 

cost and complexity. 

As an alternative approach we use the Particle Finite Element Method (PFEM), which 

can be described as a Lagrangian FEM with frequent and automatic remeshing to avoid 

mesh distortions, even when simulating fluid flow [8]. The Lagrangian description allows 

the free surface to deform without the need for an interface tracking technique. The 

remeshing algorithm also includes the alpha shape technique [9], which makes the 

remeshing fully automatic even when large or chaotic deformations of the free surface 

occur (e.g., sloshing, breaking waves, splashing etc.). The main advantage of the PFEM is 

its proven capability to simulate fluids [10], thermo-fluids [11,12], solids [13] and thermo-

solids [14–16]. A further advantage is its robustness, as it is based on the mature FEM. It 

has also been shown that free surface deformation and surface tension can easily be 

included in the PFEM [17]. Many works focus on fluid–structure interaction (FSI) using 

the PFEM [18–21], and one work that we are aware of includes phase change, in which 

Franci et al. [22] simulate a core melt accident in a nuclear power station using the PFEM. 
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Other than this, PFEM has not been utilized for phase change problems, despite its unique 

capability to simulate fluids and solids equally well. An extensive yet concise review on 

PFEM was recently published by Cremonesi et al. [17], where more details are explained 

and the different directions of recent research into PFEM are outlined. 

In this work, we aim to show the general suitability of PFEM in the context of additive 

manufacturing and welding at the mesoscale. The focus lies on the evolution of the melt 

pool and the physics that drive fluid flow, such as buoyancy and the Marangoni effect. 

Two main simplifications are made at this stage of our in-house PFEM code development. 

First, the solid material is replaced by a fluid with a momentum sink term that prevents 

further deformation upon freezing, instead of using an elasto-plastic solid. Secondly, all 

simulations use the 2D plain strain assumption. These simplifications are planned to be 

abandoned in the future to arrive at a simulation method that can simulate both phase 

change, convective flows in the melt pool and residual stresses in the solid in 3D. To 

demonstrate the suitability of the method for simulations with phase change and fluid 

dynamics, three validation test cases are presented and compared against the results from 

the literature. Known limitations of PFEM include the increased computational cost due 

to the frequent remeshing when compared with traditional FEM. Furthermore, with the 

connectivity changing constantly, parallelization of the solving process is difficult and is 

not included in the present code. Other than that, the limitations are those of traditional 

FEM. 

The novelty of this work lies in the utilization of PFEM for phase change, which has 

only been published once before and that with limited focus on the intricacies of latent 

heat and the transition from solid to fluid. Applications such as welding and additive 

manufacturing are characteristically sensitive to accurate representation of the phase 

transition. This work serves as validation for the simulation of welding and additive 

manufacturing applications in the future. 

2. Governing Equations and Solution Methods 

2.1. Kinematic Description 

Using the Lagrangian description, the frame of reference follows the material as it 

moves and deforms. This facilitates keeping track of the history of a material particle, 

(which is necessary for certain constitutive models, e.g., elasto-plastic materials) as well 

as keeping track of deforming boundaries and interfaces. As the bulk of a material 

deforms, its boundaries deform with it, eliminating the necessity of dedicated boundary 

and interface tracking methods. This is a substantial advantage over more traditional 

Eulerian methods. The notable disadvantage of the Lagrangian description is the 

deformation and subsequent distortion of the mesh, which is avoided through continuous 

re-meshing. 

2.2. Navier–Stokes Equations 

The Navier–Stokes equations include the linear momentum conservation equation 

and the continuity equation. The continuity equation for incompressible media can be 

written in its local form as 

∇ ⋅ � = 0, (1)

where ∇ ⋅ ( ) is the divergence operator and � is the velocity vector. The conservation of 

linear momentum is written in the Lagrangian form as 

�
��

��
− ∇ ⋅ � − �� − � = 0, (2)

where � is the density, �/��( ) is the material time derivative, � is the Cauchy stress 

tensor and � is the body force vector, which usually represents gravitational acceleration 

in �-direction � = −9.81 m/s� unless otherwise stated. � is a source term that permits 
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adding or removing momentum, which we utilized for the solid phase as explained in 

Section 2.5 For the momentum equation, the Dirichlet and Neumann boundary conditions 

are 

�(�, �) = ��(�, �)  on Γ� (3)

�(�, �) ⋅ � = �̅(�, �)  on Γ� (4)

where � is the current location in space, �� is the imposed velocity and �̅ is the imposed 

surface traction. Γ� and Γ� are the parts of the boundary Γ where velocity or traction is 

imposed, respectively, such that Γ� ∪ Γ� = Γ and Γ� ∩ Γ� = ∅. Next, a Newtonian fluid 

constitutive law is introduced, 

� = −�� + 2��̇, (5)

where � is the pressure, � is the identity matrix, � is the dynamic viscosity and �̇ is the 

strain rate, which can be re-written in terms of velocity � as 

� = −�� + �(∇� + ∇��). (6)

Injecting the constitutive law (6) into the momentum Equation (2) and re-writing in 

the Lagrangian form gives us the strong form of the incompressible Navier–Stokes mo-

mentum equation: 

�
��

��
+ ∇� − �∇ ⋅ (∇� + ∇��) − �� − � = 0. (7)

2.3. Traction Term at the Free Surface 

At the free surface, external forces such as the atmospheric pressure and surface ten-

sion forces are applied through the surface traction vector �̅, which is be split into its tan-

gential and normal components: 

�̅ = ��� + ���, (8)

where in 2D �� and �� are the magnitudes of normal and in-plane tangential surface trac-

tion and � and � are the normal and tangent vectors on the boundary Γ�. In this work, 

only test cases with a Eulerian description were replicated for the purpose of validation. 

Hence, the free surface is not able to deform in the normal direction and we therefore have 

�� = 0. (9)

The Marangoni effect is a tangential force caused by a gradient in surface tension 

which itself is caused by a gradient in temperature. In the case of welding or additive 

manufacturing, the concentrated heat source on the liquid melt pool creates a large gradi-

ent of temperature along the surface, leading to the Marangoni effect, which is found to 

be a main driving force for convective flows in the melt pool [23,24]. The Marangoni shear 

stress �� can be modeled using the equation 

�� =
��

��
∇�� =

��

��
(∇� − (� ⋅ ∇�)�), (10)

where ∇� is the tangential component of the spatial derivative that can be recovered by 

subtracting the normal component of the temperature gradient from the temperature gra-

dient, as shown on the rightmost part of Equation (10). �� ��⁄  is a material property that 

is referred to as the Marangoni coefficient, and can be a function of temperature. 

2.4. Buoyancy 

The media considered here are incompressible, with the exception of thermal expan-

sion. The density � is calculated using 
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� = ���� exp �− � ��(�)
�

����

��� (11)

where ����  is the reference density at a reference temperature ����  and �� is the coeffi-

cient of volumetric thermal expansion. The effect of thermal expansion on the continuity 

equation (local volume change) is neglected. Only the change in density in the body force 

term in Equation (7) is taken into account, recovering the well-known Boussinesq approx-

imation. 

2.5. Phase Change and Solid Flow Resistance 

To model the changes in the momentum equation for the two phases, we must first 

define the phase fraction �� that indicates the resulting phase as a function of tempera-

ture, where �� = 1  marks a liquid, �� = 0  marks a solid and 0 < �� < 1  marks the 

mushy zone. We use the following definition for ��: 

�� =

⎩
⎨

⎧
1 for � ≥ ��  

� − ��

�� − ��

for �� > � > ��  

0 for � ≤ �� ,

 (12)

where ��  and �� are the liquidus and solidus temperatures that form the phase change 

interval with a linear distribution inside this interval. Note that more realistic transitions 

are possible (see for example [25]). In the case of isothermal phase change, both tempera-

tures are equal and there is only the melting temperature, ��. There, the transition of the 

liquid fraction in Equation (12) collapses into a step function. In the context of numerical 

methods, such discontinuities can cause instabilities; however, none were observed here 

and no special treatment was necessary (compare Section 2.7). 

When using the Navier–Stokes equations, the treatment of the solid and semi-solid 

or mushy phases is not straightforward. Instead of changing the constitutive equation for 

the non-fluid phases, we continue to use the Newtonian fluid law, but add the sink term 

s to the momentum equation. The purpose of this sink term is to remove momentum lo-

cally wherever the material is not fully in the liquid phase. This effectively adds a re-

sistance to the flow as the material freezes. When fully frozen, the sink term removes all 

momentum and a particle remains fixed. This is a modelling approach that is widely used 

in the context of phase change simulations with fluid solvers at this length scale [6]. In the 

literature, the choice of model for the sink term s is often the well-known Carman–Kozeny 

equation (e.g., [26–28]): 

� = −�
�1 − ���

�

� + ��
�

� (13)

where � is the drag coefficient, which must be large, and � is a small coefficient that is 

used to avoid division by zero. This equation is normally used to describe the pressure 

drop of a flow through a porous medium, which may not accurately represent the mushy 

zone in a welding or additive manufacturing application. However, it appears that the 

equation is widely used because it is a reasonable approximation of the physics without 

being prohibitively complicated. According to Cook and Murphy [6], the parameters are 

usually arbitrarily chosen to be on the order of � =  10� kg m�� s�� and � = 10��, alt-

hough different sources use different values without explaining their specific choice. 

To summarize, this term subtracts momentum from a particle as it approaches the 

solid state. When fully solid (i.e., �� = 0), the velocity is nearly zero. Conversely, when 

fully liquid (i.e., �� = 1), this entire term becomes zero and the regular Navier–Stokes 

equations are recovered. 
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2.6. Heat Equation 

The heat equation is used in the form of the so-called temperature equation, 

���

��

��
+ � ⋅ � − � − � = 0, (14)

where �� is the specific isobaric heat capacity, � is the temperature, � is the heat flux 

vector, � is the external volumetric heat source term and � is the latent heat term. The 

boundary conditions are 

�(�, �) = ��(�, �) on Γ� (15)

�(�, �) ⋅ � = ��(�, �) on Γ�, (16)

where �� is the imposed temperature, �� is the imposed surface heat flux, and Γ� and Γ� 

are the parts of the boundary Γ such that Γ� ∪ Γ� = Γ and Γ� ∩ Γ� = ∅. The constitutive 

law for the heat equation is Fourier’s law, which reads 

� = −�∇� (17)

where � is the conductivity of an isotropic material. Inserting Equation (17) into Equation 

(14) gives us the final form of the temperature equation, 

���

��

��
− � ⋅ (�∇�) − � − � = 0. (18)

Note that in this work, when replicating test cases from the literature no heat source 

or imposed surface heat flux appears except for adiabatic boundaries, where �� = 0 on Γ� . 

2.7. Latent Heat Term 

The latent heat of fusion that is absorbed or released upon melting and freezing, re-

spectively, is non-linear and spatially very localized, with a high magnitude. In the context 

of numerical simulation, this can cause oscillations and convergence issues. In our work, 

the latent heat is treated as a separate source term, although some authors incorporate it 

into the heat capacity term. The specific enthalpy h stored in the material at any point is 

ℎ = Δℎ���(�) + � ���

�

�

(�) (19)

where Δℎ�  is the latent heat of fusion (a material property) and �� is the phase fraction, 

defined in Equation (12). The first term is the latent heat and the second term is the sensi-

ble heat of the material for any given temperature �. The rate at which the latent heat is 

stored or released is thus 

� =
�

��
�Δℎ���� = Δℎ�

���

��

��

��
. (20)

In the worst case, with isothermal phase change the phase fraction function ��(�) 

becomes a step function at the melting point ��, and the derivative with respect to tem-

perature hence becomes infinite. Even when ��(�) is not a step but rather a steep ramp, 

numerical problems can arise and regularization is needed, as in Figure 1a. 

A regularization is a smoothing of the discontinuous function to restore at least C1 

continuity by replacing the discontinuous function �� by a function ��
�  that closely ap-

proximates the original but is also sufficiently smooth. We used a cubic function that is 

tangential at both ends of the regularized interval. In the case of non-isothermal phase 

change with a simple ramp function for ��, one can choose to either replace the entire 

ramp by one cubic function or to replace each side the ramp by an individual cubic func-

tion (Figure 1b). The second option was selected here, both for its flexibility and to pre-

serve as much of the original function as possible. 
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(a) (b) 

Figure 1. Total specific enthalpy h over temperature T, showing the physically correct curve in solid 

black and regularized curve in dotted color. A regularized curve is tangential to the solid curve at 

both ends and has the freely chosen width ∆Treg. (a) Isothermal phase change; (b) Non-isothermal 

phase change. 

It is worth noting that when ��
�  is not a good approximation for ��, the non-linear 

algorithm may not be able to approximate the physically correct solution very well and 

may prevent the iterative solution from converging, depending on how badly chosen the 

regularization is. Assuming that a cubic function is used for ��
� , there is one freely chosen 

parameter, and it is this that determines the width, ∆Treg, of the interval. It has been found 

that with a good spatial resolution and the Newton–Raphson non-linear iterations for the 

heat equation, a very small ∆Treg works very well and no oscillations are encountered. 

2.8. Weak Form, Discretization and Integration 

The PFEM was chosen as the underlying method due to its favorable properties, as 

briefly outlined in the introduction. Being based on the well-known finite element method 

(FEM), Equations (1),(7) and (18) are written in the weak form to reduce the differentiabil-

ity requirements. We define 

� ∈ �, � = {� ∈ ��(Ω) | � = ��  on Γ�} (21)

� ∈ ��, �� = {� ∈ ��(Ω) | � = �  on Γ�} (22)

� ∈ �, � = {� ∈ ��(Ω)} (23)

� ∈ ℛ, ℛ = {� ∈ ��(Ω)}  (24)

where � is the space of vector trial functions for the velocity, �� is the space of vector test 

functions for the velocity, � is the space of scalar test functions for the pressure and ℛ is 

the space of scalar test function for the temperature. ��(Ω) denotes the space of square 

integrable functions with square integrable first derivative and ��(Ω) denotes the space 

of square integrable functions over the domain Ω. By multiplying the equations by a 

smooth and kinematically admissible scalar test function � or a vector test function �, 

taking the integral over the volume, and then integrating by parts, the weak form is ob-

tained. The weak forms of Equations (1),(7) and (18), respectively, are: 

� �� ⋅ � ��
�

= 0  ∀� ∈ � (25)
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� ��
��

��
⋅ �  + �∇ ⋅ � − �(∇� ∶ ∇� + ∇�� ∶  ∇�) − �� ⋅ � − � ⋅ �� ��

�

+ � �̅ ⋅ � ��
��

= 0  ∀� ∈ �� 
(26)

� �����

��

��
− �� ⋅ (���) − �� − ��� �� + � ��� ��

���

= 0  ∀� ∈ ℛ (27)

and solve for � ∈ � × [��, ����] , � ∈ � × [��, ����]  and � ∈ ℛ × [��, ����].  To solve the 

equations using discrete elements, the continuous solution variables of velocity �(�, �), 

pressure �(�, �) and temperature �(�, �) are discretized. This can be achieved with the 

Galerkin method, where we use the approximations 

p(�, �) ≈ ��
�(�) �(�) (28)

�(�, �) ≈ ��
�(�) �(�) (29)

�(�, �) ≈ ��
�(�) �(�) (30)

where � is the vector of nodal pressures, � is the vector of nodal velocities, � is the vec-

tor of nodal temperatures and �� and �� are the vectors of linear shape functions. �� is 

used for scalar fields and its length equals the number of nodes ������ , whereas �� is 

used for vector fields and its length is the ������ ⋅ ����, where ����  is the number of di-

mensions (here, ���� = 2). 

Using an equal order shape function for both pressure and velocity interpolation is 

known to violate the Ladyzhenskaya–Babuška–Brezzi (LBB) condition, which allows 

more than one solution for the pressure field. This leads to undesirable oscillations if left 

untreated. In this work, the so-called Pressure-Stabilizing Petrov–Galerkin (PSPG) 

method was chosen to stabilize the solution, as developed by Tezduyar [29]. There, the 

continuity equation is modified to become 

− � �� ⋅ � ��
�

+ � �
1

�
� ��

��

��
  + �∇ − �� − � � ��

�

= 0 (31)

where � is a user-chosen parameter. Note that the first term is the original continuity 

Equation (25); the second term has been added to stabilize the pressure. There, one will 

recognize that most terms of the momentum Equation (7) re-appear inside the round 

brackets, which should cancel out, when the momentum equation is converged. The vis-

cous term is missing, as it would require a second derivative in space, which cannot be 

obtained using linear shape functions. This method is discussed in more detail by Cer-

quaglia and colleagues in [30]. 

The discretization in time was done by advancing in time by discrete time steps of 

length ∆t. The time derivatives acceleration dv/dt and rate of temperature change dT/dt are 

calculated from velocity v and temperature T, respectively, using the fully implicit back-

ward Euler scheme 

���

��
≈

�� − �����

Δ�
 (32)

where � is a placeholder for � or �. The superscripts � and � − Δ� refer to the current 

and previous time steps, respectively. The backward Euler scheme is also used to deter-

mine the displacement � of the nodes from �: 

�� = ����� + �� = ����� + ��Δ�. (33)

Inserting Equation (32) into Equations (25)–(27) we get the discretized global system, 

comprised of the following equations for continuity, momentum and heat: 
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�
1

Δ�
� − �� ⋅ �� + �� ⋅ �� = � +

1

Δ�
� ⋅ ����� (34)

�
1

Δ�
� + �� ⋅ �� + �� ⋅ �� = � +

1

Δ�
� ⋅ ����� (35)

�
1

Δ�
��� + ���� ⋅ �� = ��� +

1

Δ�
��� ⋅ ����� (36)

where � is the dynamic matrix of the stabilization, � is the discrete divergence opera-

tor, �� is the pressure Laplacian operator of the stabilization, � is the stabilization term 

arising from external and body forces, � is the mass matrix, � is the viscosity matrix, � 

is the vector of external forces, ��� is the heat capacity matrix, ���  is the conductivity 

matrix, and ��� is the vector of heat sources. The terms in Equations (34) and (35) are ex-

plained in more detail in Cerquaglia’s thesis [30], while the terms in Equation (36) were 

built to be analogous to those in Equation (35), hence the similar naming convention. 

2.9. Solution Procedure 

The continuity Equation (34) and momentum Equation (35) are strongly coupled and 

are solved using a monolithic approach. Since the system of equations is non-linear and 

an implicit time integration was chosen, each time step is solved iteratively. We used the 

fixed-point iteration, also known as Picard iteration. 

The heat Equation (36) is significantly more non-linear due to the latent heat term 

(Equation (20)), and therefore required a non-linear algorithm with better convergence in 

order to preserve stability. We chose the well-known Newton–Raphson method, accom-

panied by a line search algorithm that is described in more detail by Bobach et al. [31]. The 

convergence was assessed using the normalized residual of the heat equation, which must 

fall below a chosen threshold. 

The fluid flow is governed by the strongly coupled momentum (35) and continuity 

(34) equations, together referred to as incompressible Navier–Stokes equations (NSE). The 

heat Equation (36), which governs the temperature field and the NSE, is solved in se-

quence in each time step. First, the heat equation is iteratively solved while the domain is 

rigid until the convergence criterion is reached. Then, the NSE are iteratively solved, de-

forming the domain until convergence while the temperature remains constant. This can 

be described as a weakly coupled staggered scheme. 

2.10. Mesh 

A particular feature that separates the particle finite element method (PFEM) from 

the well-known finite element method (FEM) is the special remeshing procedure, which 

combines two concepts: frequent remeshing and the alpha shape technique. 

PFEM is used for fluid flows; therefore, large deformations occur which also deform 

the computational mesh. To avoid mesh distortion, remeshing is performed at regular 

intervals. Each time, only the computational nodes are kept after the domain is deformed, 

and a new mesh is generated. This means that the connectivity between nodes changes. 

As the solution is defined in the form of nodal values in vectors (namely v, p and T), no 

information is lost in this process, although some unwanted diffusion is introduced [17]. 

The most important downside of this procedure is the cost of regenerating a mesh with 

each time step and of recomputing all the matrices and vectors in Equations (34)–(36). 

Another special feature of PFEM is the use of the alpha shape technique, as in Edelsbrun-

ner and Mücke [9], which is used to determine the boundary of the computational domain. 

This technique is discussed in more detail in general by Cremonesi et al. [17], and more 

specifically to this work in Cerquaglia’s thesis [30]. 

Mesh refinement is used to adapt the mesh density locally to the requirements of the 

physics while improving the computational efficiency. Local mesh refinement in PFEM is 
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achieved by adding or removing nodes to directly change the node density before remesh-

ing, which then changes the element density as a result. The mesh density is increased 

when velocity gradients or temperature gradients are high or when the temperature is 

near the freezing. Additional detail can be found in Bobach et al. [31]. 

3. Results 

A series of test cases is presented here to attempt to validate the physics included in 

the PFEM based model for welding and additive manufacturing simulations. The main 

modeling capabilities needed for such simulations are a thermo-fluid solver that can 

model the buoyancy and Marangoni effects that drive the convective flow in the melt pool 

and the phase change effects on momentum and heat equation. 

The validity of the pure fluid solver and the non-slip boundary condition is docu-

mented in Cerquaglia’s works [10,30]. Based on Cerquaglia’s fluid solver, the first test case 

in the present work validates the extension to a thermo-fluid solver. Cases of 2D natural 

convection were previously investigated by Aubry et al. [32] and by Marti and Ryzhakov 

[12], in both cases using a PFEM-based method. Next, we introduce the Marangoni effect 

to the otherwise very similar test setup and compare with simulation results from Saldi 

[33] and Bergman and Keller [34]. The restriction of the movement of the material upon 

freezing is simulated using a momentum sink term and the latent heat absorption is mod-

eled using a regularized linear phase fraction function, as described above. This method-

ology is validated using a test case describing the melting of a block of Gallium, which 

has been experimentally investigated by Gau and Viskanta [35], numerically by Brent et 

al. [36], and more recently by Saldi [33]. Note that a static 2D phase change test case (also 

known as a Stefan problem) to validate the capabilities for phase change with conduction 

has been shown in our previous work [31]. 

3.1. Buoyancy-Driven Convection in a Square Cavity 

This simple 2D test case contains a square cavity in which a fluid encounters a hot 

wall on one side and a cold wall on the opposite side, leading to natural convection, as 

illustrated in Figure 2. For any choice of material parameters and experimental setup, the 

resulting flow and the balance between heat conduction and heat convection can be com-

pared using dimensionless numbers, which use the thermal diffusivity, α: 

� =
�

���

 (37)

It has the dimension m� s⁄  and characterizes the rate of conductive heat transfer 

through a medium. The first relevant dimensionless number in this case is the Prandtl 

number ��, which reads 

�� =
�

�
=

���

�
, (38)

where � is the kinematic viscosity. �� describes the ratio between momentum diffusion 

and thermal diffusion. The second relevant dimensionless number is the Rayleigh num-

ber, ��, which reads: 

�� =
���Δ���

��
 =

�������Δ���

��
, (39)

where Δ� is the characteristic temperature difference and � is the characteristic length 

scale of the problem; �� describes the ratio between convective heat transfer and con-

ductive heat transfer. Following Aubry et al. [32], we use an edge length � = 1 m and a 

temperature difference Δ� = 1 K, where the left side is arbitrarily chosen by the authors 

to be “hot” at 20.5 K and the right side to be cold at 19.5 K. The authors have taken these 

settings from Strada et al. [37], whom they use as their reference. The dimensionless num-

bers are given as �� = 1 and �� = 10� . To achieve these, we chose � = 1 kg m�⁄ , � =
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10�� Pa s,  �� = 1 J kg K⁄ ,  � = 10�� W m K⁄ , �� = 10�� K��,  � = −10 m s�⁄ , although the 

other authors do not state their exact choice and their mesh specifics are also not men-

tioned. We use a uniform triangular mesh with an average edge length of ℎ = 0.0125 m, 

and the time step is set to Δ� = 0.5 s. 

 

Figure 2. Schematic of cavity with buoyancy-driven convective flow. Thin black arrow indicates the 

expected sense of rotation of the convective flow. Velocities are extracted from the dashed center-

lines. 

When using the same Pr and Ra, the steady state solutions are expected to match. 

Aubry et al. [32] reach the steady state solution after a long simulation time of 396 s. In 

Figure 3a, good agreement of the temperature distribution can be observed. The color 

maps may not match exactly, as the color distribution over the range of temperatures is 

not provided by Aubry et al., but the temperature fields are obviously very similar. 

  
(a) (b) 

Figure 3. Temperature field at steady state in a cavity with convection driven by buoyancy. Com-

parison between (a) Aubry et al. [32] and (b) this work. 

Next, the transient evolution of the temperature field before reaching the steady state 

is compared in Figure 4; good agreement during the whole simulation time can be ob-

served. The gradual mixing of cold and hot fluid, along with the developing convective 

flow are clearly visible and no major differences can be found. It is interesting to note that 
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a different combination of input parameters can produce the same Pr and Ra, and there-

fore the same steady state solution, whereas the evolution over time may be at a different 

rate. This can be explained by the fact that the input parameters are non-dimensional, 

while the time is dimensional. The use of a non-dimensionalized time, such as the one 

discussed in the following section, would be more appropriate. Strada and Heinrich [37], 

the reference used by Aubry et al., only features the steady state results; thus, no dimen-

sionless time is required. Also note that Strada and Heinrich define Ra using K (instead of 

the usual α) as the symbol for the thermal diffusivity, which led Aubry et al. to acci-

dentally define Ra with a �, denoting thermal conductivity, in the place of thermal diffu-

sivity, K. 

 

   

 

(a) (b) (c)  

   

 

(d) (e) (f)  

Figure 4. Temperature field of a cavity with buoyancy-driven convective flow shortly after initialization. Top (a–c) shows 

results from Aubry et al.; bottom (d–f) shows results from our work. The first pair (a,d) is after 38 s, the second pair (b,e) 

is after 58 s, and the third pair (c,f) is after 98 s. 

An almost identical test case is presented by Marti and Ryzhakov [12], simulated 

with their own PFEM code. The quadratic domain still has an edge length of L = 1 m and 

a temperature difference of ∆T = 1 K. The main differences are that the steady state results 

are compared with the existing literature and that the input variables are changed. Marti 

and Ryzhakov first show the temperature contour plots, as above, then compare the max-

imum velocities encountered on the horizontal and vertical centerlines with the works of 

de Vahl Davis [38], Corzo et al. [39] and Sklar et al. [40]. Distance, time and velocity are 

non-dimensionalized as follows: non-dimensional position �� = �/� and �� = �/�, a non-

dimensional time �̂ = ���/� and non-dimensional velocity �� = �� �⁄ , as explained by 
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Corzo et al. and de Vahl Davis. The other parameters used by Marti and Ryzhakov are � 

= 1 kg/m3, v = 10−3 m2/s, α = 10−3 m2/s, g = −10 m/s2. Furthermore, Marti and Ryzhakov 

mention using Pr = 0.71, while the parameters inserted into Equation (38) give Pr = 1.0, 

which we use in this work. The comparisons are done using Ra = 104, Ra = 105 and Ra = 106. 

The uniform triangular mesh has an edge length of h = 0.015 m, the same as Marti and 

Ryzhakov, with a time step of ∆t = 0.5 s, ∆t = 0.05 s and ∆t = 0.005 s, respectively, for the 

different Rayleigh numbers in respect of the condition CFL = vmax ∆t/h < 1, and results av-

eraged over 25 time steps after reaching the steady state. 

Tables 1–3 show good agreement between our results and those reported in the liter-

ature. The differences lie somewhat in the range of the fluctuations between the various 

results in the literature. The best agreement was expected with Marti and Ryzhakov, as 

they used the same method and the same mesh. De Vahl Davis and Corzo et al. used 

different simulation methods, the Finite Difference Method (FDM) and the Finite Volume 

Method (FVM) respectively, both of which use Eulerian formalism. 

Table 1. Resulting maximum velocities (���,���  and ���,���) on the centerlines (�� = 0.5 and �� = 0.5 

respectively) and positions of maxima (����,��� and ����,��� respectively) along centerlines Ra = 106. 

All values are non-dimensionalized. 

Data  

(�� = ���) 
This Work 

Marti & 

Ryzhakov 
de Vahl Davis Corzo et al. Sklar et al. 

���,��� 65.115 65.45 65.81 64.558 64.483 

����,��� 0.854 0.85 0.852 0.851 0.845 

���,��� 225.913 213.07 214.64 221.572 218.054 

����,��� 0.0404 0.0474 0.0396 0.067 0.037 

Table 2. Resulting maximum velocities (���,��� and ���,���) on the centerlines (�� = 0.5 and �� = 0.5 

respectively) and positions of maxima (����,��� and ����,��� respectively) along centerlines for �� =

10�. All values are non-dimensionalized. 

Data  

(�� = ���) 
This Work 

Marti & 

Ryzhakov 
de Vahl Davis Corzo et al. Sklar et al. 

���,��� 33.481 34.924 34.870 − − 

����,��� 0.847 0.862 0.855 − − 

���,��� 70.309 67.910 67.910 − − 

����,��� 0.0700 0.0576 0.067 − − 

The temperature contours obtained were also compared with those shown by Marti 

and Ryzhakov, with good agreement observed (not shown here). 

Table 3. Resulting maximum velocities (���,��� and ���,���) on the centerlines (�� = 0.5 and �� = 0.5 

respectively) and positions of maxima (����,��� and ����,���  respectively) along centerlines for Ra = 

104. All values are non-dimensionalized. 

Data  

(�� = ���) 
This Work 

Marti & 

Ryzhakov 
de Vahl Davis Corzo et al. Sklar et al. 

���,��� 15.948 16.250 16.182 16.282 15.982 

����,��� 0.820 0.821 0.823 0.822 0.824 

���,��� 19.551 19.541 19.509 19.547 19.378 

����,��� 0.120 0.115 0.120 0.123 0.116 

3.2. Buoyancy and Marangoni-Driven Convection in a Square Cavity 

This 2D test case also uses a square cavity with a buoyancy driven flow, as above, 

but with additional surface tension acting on the top surface, see Figure 5. Comparisons 
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are done with literature results from Saldi’s PhD thesis from 2012 [33], who himself uses 

older results from Bergman and Keller from 1988 as a reference [34]. Since all the authors 

use a Eulerian Finite Volume Method, the top surface is assumed to remain flat, limiting 

the effect of surface tension to the tangential component, which is referred to as the Ma-

rangoni effect. Three test cases are investigated; the first one does not include the Maran-

goni effect, recovering a test case similar to those in the previous section. The second test 

case includes a negative Marangoni coefficient ��/��, causing the Marangoni effect to 

push fluid at the surface in the same direction as the circulation caused by the underlying 

buoyancy-driven convective flow, reinforcing the circulation. The third case uses a posi-

tive ��/��, leading to an opposite effect where the surface tension pushes against the 

underlying buoyancy-driven flow, counteracting the circulation at the surface. 

 

Figure 5. Schematic of square cavity with buoyancy driven and Marangoni effect-driven convective 

flow. The top surface is free to move in x but not in y direction. The thin arrows indicate the isolated 

direction of the flow from the two different effects. Three cases are shown: Case 1 (brown): no Ma-

rangoni effect, only buoyancy driven flow (black arrow). Case 2 (blue): Marangoni effect has the 

same orientation as buoyancy driven flow (blue and black arrows superimposed). Case 3 (green): 

Marangoni effect has the opposite orientation as buoyancy driven flow (green and black arrows 

superimposed). 

The material data are given in detail by Bergman and Keller, resembling molten alu-

minum at 660 °C: � = 2385 kg/m3, μ = 1.3 × 10−3 Pa s, cp = 1080 J/kg K, � = 94.03 W/m K, βV 

= 1.17 × 10−4 K−1. This gives us Pr = 0.0149 and Ra = 4.6 × 104. These settings fully describe 

case 1, where only the buoyancy effect is driving the flow. For the other cases we super-

impose the Marangoni effect; thus, the Marangoni number Ma (sometimes denoted as Mg 

to avoid confusion with the Mach number) that describes the relative importance of the 

Marangoni effect compared to the viscosity is defined as 

�� =

��
���  Δ��

��
 =

��
���  ���Δ��

��
. (40)

The Marangoni coefficient is �� ��⁄ = 2.0 × 10�� N m K⁄  for case 2 and �� ��⁄ =

−3.5 × 10�� N m K⁄  for case 3. This results in �� = 0 , �� = 1.47 × 10�  and �� =

−8.4 × 10� for cases 1, 2 and 3, respectively. The cavity has an edge length of � = 0.02 m 

and a Temperature difference Δ� = 100 K between cold and hot walls. All results are 

compared after reaching steady state equilibrium. We use an element size of Δ� =
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0.001 m and a time step of Δ� = 0.001 s, Δ� = 0.0005 s and Δ� = 0.0005 s for the three 

cases, respectively, to accommodate the higher local velocities produced by the Maran-

goni effect. Further refinement of the time step mesh size does not improve the results. 

Saldi uses a Eulerian FVM approach, and does not state mesh size or time step length. 

Bergman and Keller use a steady state Eulerian FVM approach with a similar mesh size, 

but with a refinement near the boundaries. 

Both Saldi [33] and Bergman and Keller [34] compare streamlines that highlight the 

flow pattern for each case. As we do not have the stream function (see e.g., [41], p. 14) 

available in our results, we constructed the streamlines by integrating from a given seed 

point in space over the velocity vector field. For this approach, the seed points must be 

chosen by the user, and the resulting streamlines do not necessarily represent the same 

value of the stream function as given by Bergman and Keller. We chose each seed point at 

a location that is intersected by the streamlines from Bergman and Keller in an attempt to 

produce the most qualitatively similar representation of the main flow field. For the recir-

culation bubbles that can appear in the corners, we freely chose a convenient location for 

the seed points with the aim of best capturing the flow pattern in the corners. Crucially, 

these different procedures for obtaining the streamlines introduce some uncertainty when 

comparing streamlines. The comparison between Bergman and Keller (top), Saldi (mid-

dle) and our work (right) can be found in Figure 6. 

The results show good overall agreement, although a few discrepancies can be found 

as well. For case 1 in Figure 6a,d,g, the main flow fields are nearly indistinguishable. Small 

differences can be found with the recirculation bubbles in the corners, and no bubble is 

found in the bottom left corner at all. Such recirculation bubbles are, however, naturally 

rather unstable and sensitive to the main flow field. Good agreement regarding the size 

and position of cells of slow-moving fluid and reversed flow can be seen. 

For case 2 in Figure 6b,e,h, the effect of the surface tension enhancing the underlying 

buoyancy-driven circulation can be seen. The streamlines reach much further into the top 

right corner before changing direction, and the streamlines there also come closer to-

gether. Otherwise, the flow pattern is largely the same as in case 1. The agreement is better 

between Bergman and Keller (b) and Saldi (e) than with our results (h). Again, we find 

slightly different recirculation bubbles in the corners, and the vortex center of the main 

circulation is more centered in (h) than in (b) and (e). 

For case 3, in Figure 6c,f, the surface tension can clearly be seen counteracting the 

buoyancy, as the flow pattern is neatly divided into two distinct vortices. A line of zero 

vorticity, where the two vortices meet, would occur close to the diagonal between bottom 

left and top right corner. This flow pattern is found to be sensitive to Ra and Ma, such that 

a small change in input parameters would quickly favor one of the two effects over the 

other, quickly leading to one of the main vortices to dominate over the other. It is possible 

that this delicate balance was deliberately chosen by Bergman and Keller to emphasize 

the importance of the Marangoni effect, as they argue that the Marangoni effect has been 

largely neglected in applications where convective flows in liquid metals are of im-

portance. The agreement of all three results is less good than before, and the size and 

position of the two distinct vortices is slightly different in each case. Given the delicate 

balance that causes this flow pattern, our result agrees well with the literature, as the dif-

ferences are very minor. 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 6. Streamlines representing the flow field in the cavity. Results from Bergman and Keller [34] at the top (a–c), Saldi 

[33] in the middle (d–f) and this work at the bottom (g–i). Left (a,d,g) for case 1 with only buoyancy driven flow. Middle 

(b,e,h) showing case 2 with Marangoni effect reinforcing the buoyancy-driven circulation. Right (c,f,i) showing case 3 with 

Marangoni effect counteracting the buoyancy-driven circulation. Note that Bergman and Keller give the maxima and min-

ima of the stream function � for each case. 

Both Saldi [33] and Bergman and Keller [34] also present plots of isotherms using a 

non-dimensionalized temperature θ = (T − Tmin)/∆T with a spacing of 0.1. The agreement 

between all three publications is good. Comparing Bergman and Keller’s result in the top 

row of Figure 7 with Saldi’s in the middle and ours on the bottom row, a similar tendency 

as in the previous comparison can be observed: qualitatively a good agreement when 

looking at the overall appearance of the plots; the spacing of the isotherms in most cases 
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is especially well captured, indicating that the important temperature gradients are well-

captured. On the other hand, several discrepancies can be found for cases 2 and 3 between 

literature results in Figure 7b,e and Figure 7c,f and our results Figure 7h,i respectively. In 

both cases 2 and 3, the isotherms appear more twisted in a clockwise direction in the areas 

where the convective flow is strongest. Unfortunately, no experimental results that can 

validate the simulation results from the literature could be found, which leaves some un-

certainty regarding any of the results presented. 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 7. Isotherms of non-dimensionalized temperature θ = (T − Tmin)/∆T. Top (a–c) shows results by Bergman and Keller 

[34], Saldi [33] in the middle (d–f) and this work at the bottom (g–i). Left (a,d,g) shows case 1 with pure buoyancy-driven 

flow. Middle (b,e,h) shows case 2, where the Marangoni effect enhances the underlying buoyancy-driven circulation. 
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Right (c,f,i) shows case 3, where the Marangoni effect counteracts the underlying buoyancy-driven circulation. A normal-

ized temperature, � = �/Δ�, is used. 

3.3. Melting of a Block of Gallium 

A rectangular block of solid gallium slightly below the melting point is in a closed 

box. The block is exposed to a hot wall on the left, which is of constant temperature sig-

nificantly above the melting point. The gallium then progressively melts from left to right. 

This test case combines a buoyancy-driven convective flow and the modelling of phase 

change, which affects momentum equation and heat. All of these effects are strongly cou-

pled, leading to an interesting test case. A schematic is provided in Figure 8. 

 

Figure 8. Schematic of the gallium melting test. The entire domain is just below freezing temperature 

initially, then unfreezes from left to right, with the melting front indicated by a magenta line. The 

resulting buoyant convective motion of the liquid gallium, indicated by a thin black arrow, influ-

ences the advancement of the melting front, resulting in a curved front such as the one shown here. 

This test case is based on experiments originally conducted by Gau and Viskanta in 

1986 [35]. The advantage of choosing gallium is that the melting point, Tm = 302.78 K, is 

near room temperature, greatly simplifying the experimental setup. Likewise, a pure 

metal exhibits a sharp melting front, which is easier to measure. The remaining material 

parameters are � = 6093 kg/m3, μ = 1.81 × 10−3 Pa s, cp = 381.5 J/kg K, � = 32.0 W/m K, βV = 

1.2 × 10−4 K−1 and ∆hL = 8,016,021 J/kg. The hot wall on the left has Thot = 311.0 K, and the 

cold wall on the right has Tcold = 301.3 K, which is also used as initial temperature T0 from 

the entire domain. Note that the initial temperature is very close to the melting point. The 

experimental setup is shown in Figure 9. The cavity can be adjusted to have different di-

mensions, resulting in different aspect ratios A = H/W, where H = 0.0635 m and W = 0.0889 

m are typically used for the height and width of the cavity, respectively, to arrive at an 

aspect ratio of A = 0.714. This aspect ratio is used in the simulations described below, and 

other aspect ratios mentioned by Gau and Viskanta are ignored in this work. 
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(a) (b) 

Figure 9. Setup for the gallium melting experiment by Gau and Viskanta 1986 [35]; (a) top view and (b) side view showing 

heated side wall with constant temperature, adiabatic side walls made of plexiglass (thick black solid lines) and holes for 

filling and evacuating. 

The process of obtaining the position of the melting front in the experiment is not 

simple, as gallium is not visually transparent. First, melted gallium is poured into the cav-

ity through the opening at the top, which is sealed afterwards. Then, the entire cavity is 

cooled down to the initial condition, which is a fixed temperature slightly below the melt-

ing point. At this stage, the gallium has completely solidified in the cavity. The experiment 

begins by pushing fluid of a constant given temperature through the side walls, the left 

one hot and the right one cold; this way, the side walls maintain a constant temperature 

throughout the entire experiment. As time passes, the gallium melts near the hot wall and 

convective flow sets in. After a given time, the experiment is interrupted and the liquid 

quickly evacuated from the cavity, leaving only the remaining solid part of the gallium 

block behind. From this block, the melting front is traced and photographed. For each 

time duration, the experiment is repeated from the beginning to finally reconstruct the 

progression of the melting front over time. This way, the melting front position is obtained 

for nine different time marks (2, 3, 6, 8, 10, 12.5, 15, 17 and 19 min). It is not disclosed if the 

experiment was repeated several times and the results averaged for each time mark. It is 

also not discussed in detail how the experiment could be flawed. Potential issues can arise 

from: 

 3D effects that are not represented in the 2D curves of the melting front; 

 Shrinkage after filling the cavity with liquid gallium and letting it solidify, leading to 

potential loss of contact between the gallium and the walls; 

 Heat losses or parasitic heat conduction in the walls; 

 Possible transient temperature evolution in the “constant temperature walls” upon 

switching on the constant temperature liquid feeding system; 

 Possible continuation of the melting while the liquid is evacuated too slowly, leading 

to sloshing potentially affecting the roughness of the resulting surface; 

 Possible errors from tracing and photography, not explained in detail. 

Another large uncertainty is introduced through the strong anisotropy of the thermal 

conduction of solid gallium. This issue is discussed in the work Gau and Viskanta in the 

context of the inverse experiment, where the gallium is initially liquid and then solidified 

on a constant temperature cold wall, as opposed to the melting of solid gallium on a hot 

wall, which is the topic of this work. In the solidification experiment, the physical behavior 

has been found to be highly dependent on the crystallography of the freshly solidified 

gallium, introducing significant variability into the position of the solidification front. In 

the melting experiment, the authors explain that the anisotropy of the solid gallium plays 

a lesser role, as the physical behavior is dominated by the heat transfer in the liquid, which 

is plausible. However, a quantitative evaluation of the variability of the experiment 
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should have been included. It is also not clear if the presented results were obtained 

through several repetitions and subsequent averaging. 

In 1988, Brent et al. [36] attempted to match the experimental results with a Eulerian 

Finite Volume Method approach that used an extremely coarse mesh by today’s stand-

ards. The latent heat absorption was accounted for using an iterative nodal enthalpy for-

mulation that also works on coarse, fixed grids. The authors point out that this scheme 

creates a diffuse phase change region rather than a sharp front. The momentum equations 

are modified for the solid using the same Carman–Kozeny equation for porous media as 

in Section 2.5. This combination of nodal enthalpy with an iterative scheme for the phase 

change and the porosity model for the solid is called the enthalpy–porosity approach in 

their work. The authors model the experiment as closely as possible, using the same ma-

terial properties and a fixed rectangular domain with an aspect ratio A = 0.714. The bound-

ary conditions at all walls are no-slip conditions. The authors provide results on stream-

lining and temperature contour plots for four time marks (3, 6, 10, 19 min) as well as the 

melting front position for all nine time marks, as was done for this experiment. 

More recently, Saldi [33] also used a Eulerian Finite Volume Method approach with 

the same Carman–Kozeny equation to freeze the fluid’s motion as in Section 2.5. For the 

latent heat, Saldi uses a separate source term calculated using an iterative scheme similar 

to the one used by Brent et al. [36]. Saldi’s work unfortunately does not state what numer-

ical parameters (such as time step size, mesh size or residual target) were used. It is also 

not clear which type of boundary conditions were used on the walls. 

The latest research publications that feature this test case tend to use it as a validation 

step. Unfortunately, this means that these publications provide neither an exhaustive de-

scription of the setup, nor an in-depth discussion of the results. We have picked two recent 

publications that highlight the variability of numerical results. First, Tiari et al. 2021 [42], 

who use the commercial FVM fluid dynamics code Ansys, with a mesh resolution be-

tween 12,500 and 50,000 elements. Secondly, Sharma et al. 2021 [43], who use the commer-

cial (Eulerian) FEM code COMSOL. The equations to be solved are clearly described, but 

no further details about the simulation setup are given in either reference. 

Our simulation setup is shown in Figure 8. Several mesh densities were tested to 

determine the required mesh resolution, as further discussed below. It was found that an 

initial mesh with 61 × 85 = 5185 nodes and 10′080 triangular elements is sufficiently fine to 

adequately capture the main features of the solution. Further refinement does not improve 

the results. A constant time step of ∆t = 0.02 s was used, which requires 57,000 time steps 

to complete 19 min of real time. The normalized residuals for momentum and heat equa-

tion must reach a threshold of ����� = 10��. The width of the regularization was chosen to 

be ∆Tpc = 0.4 K, which is a close approximation of the step function, although not the small-

est value that we could achieve before encountering convergence issues. The results 

shown below were obtained with an adaptive mesh refinement, where the regions of the 

mesh that are solid and far from the melting front were allowed to be coarsened by a factor 

of ten. 

The top boundary was originally modelled with a no-slip boundary condition, the 

same as all other walls. This was specifically described by Brent et al., whereas other au-

thors do not explicitly mention it. Alternatively, we repeated the simulation with a free 

slip boundary condition at the top. This choice is discussed below. 

A comparison of the position of the melting front at four time instances with the orig-

inal no-slip boundaries is found in Figure 10. None of the methods agree perfectly with 

the experiments by Gau and Viskanta, but all show at least the same overall behavior: The 

melting front is faster near the top, as the heat transfer is convection-dominated there. 

This effect becomes more pronounced over time. Conversely, the bottom advances con-

siderably more slowly due to the reduced influence of the heat convection compared to 

heat conduction, which dominates there. These effects combine to produce the curved 

shape of the melting front. 
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. 

Figure 10. Position of the melting front with all boundaries having no-slip condition at four time instances: gray after 2 

min, blue after 6 min, red after 10 min and green after 17 min. Comparing simulations by Brent et al. [36] (solid line), Tiari 

et al. [42] (finely dotted), and Sharma et al. [43] (dashed) and experiments by Gau and Viskanta [35] (circles) with our 

simulation results (large dots). 

Evidently, this creates a shape of the curve that does not agree well with the experi-

ments. One finds a backwards curved front near the top boundary that is not observed in 

the experiments. When instead switching to a free slip boundary at the top, the results 

seem to agree better with the experiments, as shown in Figure 11. With the original no-

slip condition, the advancement of the front is slowed near the top surface. A hypothetical 

explanation regarding the experimental results relies on the strong assumption that the 

top surface of the liquid gallium may not be in contact with the casing during the experi-

ment due to shrinkage. We cannot know if this was the case during the experiments; how-

ever, the possibility persists, and our results improve noticeably with this boundary con-

dition. An alternative justification could be a thin boundary layer that is best modelled by 

a free slip condition; however, assuming a laminar flow, the mesh that we use seems to 

be sufficiently fine. More work is needed to confirm or reject this assumption. We also see 

this shape in the results by Saldi [33] and Brent et al. [36], although there is no reason to 

assume that a free slip condition was used at the top boundary. 

In general, we observe the same overall behavior in all cases: At the 2-min mark, all 

simulation results seem to have the same tendency of a rather straight vertical melting 

front that exhibits a slight shift to the right at the very top. This effect is not observed in 

the experiments. After 6 min, when the problem transitions from conduction-dominated 

to convection-dominated, the greatest dispersion of results is observed. While the experi-

ments start to show the effect of the convective heat transfer in the top half of the domain, 

where the front position is slightly shifted to the right, the simulations all tend to overes-

timate the advancement of the melting front. At later time instances (10, 15, 17, 19 min) all 

simulation results agree much better with the experimental result, as the curves have the 

more or less correct shape and advancement in the x-direction. This can be explained by 

the stable vortex structure that has formed at these times, as discussed in following para-

graphs. 
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Figure 11. Position of the melting front with free slip boundary at the top edge at four time instances: grey after 2 min, 

blue after 6 min, green after 15 min and magenta after 19 min. Comparing simulations by Brent et al. [36] (solid line) and 

Saldi [33] (dash-dotted line) and experiments by Gau and Viskanta [35] (circles) with our simulation results (large dots). 

Some explanations for the above observations can be drawn from a more detailed 

look at the velocity and temperature field. No such information is provided in the exper-

imental work of Gau and Viskanta [35], and details provided about the simulation results 

of Saldi [33] and Brent et al. [36] are scarce. Tiari et al. [42] and Sharma et al. [43] do not 

provide any deeper insight into the velocity and temperature fields. The flow field at the 

beginning is characterized by a narrow vertical column of fluid between the hot left wall 

and the comparably cold melting front, which is advancing evenly towards the right. This 

column of fluid, with its large temperature gradient, immediately begins to develop a cir-

culation driven by buoyancy. The circulation forms into several separate circulation cells 

or vortices. When the width increases over time as more material is continuously melted, 

the size of the vortices increases, which means that the number of vortices that can fit in 

the height of the fluid column must decrease over time; this process thus begins with 

many small vortices and develops into few large vortices. 

The development of the vortex structure over time can be analyzed using Figure 12. 

It is at around 60 s (a) that the vortices establish themselves for the first time, in this case 

three distinct vortices and three transition regions where the fluid motion is less pro-

nounced. Shortly after, at 80 s (b), the dominant vortices are found to be more compact 

and more round, creating more space at the bottom, where a fourth vortex is in the process 

of establishing itself. Before it can fully develop, the entire flow field collapses and two 

dominant vortices emerge after 100 s (c). Again, the vortices grow more compact, faster 

and more circular, allowing a weak vortex at the bottom to grow into a fully developed 

one, as apparent after 120 s (d). This flow structure gains further momentum and stabilizes 

itself at 180 s (e), before it begins collapsing after 240 s (f), where a completely different 

flow field has emerged. In the transition between 180 s and 240 s, the two strong vortices 

at the top have merged temporarily into one vortex that shortly afterward gives rise to 

another weak vortex, which can be seen in (f). From there on, the final more stable flow 

field develops, as the strong vortex in the middle becomes more and more dominant, as 
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evident in (g) and (h). Note that all vortices literally carve concave cavities into the re-

maining solid over time. As a result, the phase front is never perfectly straight and con-

stantly evolves in a curving fashion according to the flow pattern. Conversely, the only 

reason the front remains mostly straight for so long in the beginning is because the vorti-

ces shift around, collapse and reappear so vigorously and frequently that no vortex ever 

stays in one position for long, therefore not getting the time to carve deeper into the solid. 

This process of vortex formation and collapse between 1 min and 5 min is found to 

be strongly mesh-dependent, as each slight modification can produce a very different evo-

lution of the flow field. There is no tendency that a mesh refinement necessarily converges 

to some sort of final result. However, for the flow field after 5 min when the main vortex 

has established itself, mesh dependence is no longer observed. As for the effect on the 

position of the melting front shown in Figure 10, there is a delay of 1–2 min after a given 

vortex pattern has established itself. This explains the discrepancies at the 6 min mark, as 

the curve in Figure 10 depends on the vortex configuration at 4–6 min. 

When directly comparing the flow field at the 2 min mark in Figure 12d to Saldi’s 

vector plots in Figure 13, one can see that the best match is obtained with the coarse mesh 

in Figure 13a. This may not be surprising at first, as the presented results are obtained on 

a mesh that is coarser than any of the ones used by Saldi. However, from the evolution 

over time in Figure 12 it becomes apparent that choosing a snapshot at one single time 

instance does not describe the flow very well due to how rapidly the flow field changes. 

Whether Saldi’s solution features the same rapid and chaotic development of the vortex 

structure over time cannot be deduced from the single snapshot that is provided. 

     
(a) (b) (c) (d) (e) 
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(f) (g) (h) 

Figure 12. Development of the early flow field on the left side of the domain. Many vortices establish themselves, become 

unstable and decay or merge as time advances. Note the effect of the convective heat transport on the melting front (ma-

genta line). (a)-(d) show the progression over time in steps of 20 seconds and (d)-(h) in steps of 1 minute, with the time 

instance mentioned in the top left corner.  
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(a) (b) (c) (d) 

Figure 13. Simulated flow field after 2 min as given by Saldi [33]. The vector field represents the velocity direction and 

magnitude in the liquefied gallium. No velocity scale is provided. The large black circles represent the experimentally 

determined position of the melting front by Gau and Viskanta [35]; (a–d) have increasingly finer meshes, as indicated at 

the top of each plot. The coarse meshes (a–c) produce three distinct vortices, while the finer mesh (d) produces four vorti-

ces. 

Saldi’s plots are instead intended to show the mesh dependence of the early solution. 

Upon further refinement, the flow field changes completely. Instead of 3 well developed 

vortices, the fine mesh in Figure 13d produces 4 vortices. The effect of this is an even 

straighter phase front as with the coarser mesh, which, as pointed out by Saldi, agrees 

better with the experiments (black circles). However, for the results in Figure 10 Saldi 

seems to use one of the coarser meshes (Figure 13a–c or even coarser), since the melting 

front at the 2-min mark in Figure 10 is curvy and shifted slightly to the right. Brent et al. 

[36] use an even coarser mesh of 42 × 32 cells, which is not sufficient to resolve the vortex 

structure found in the other simulations. In fact, there seems to be only one vortex that 

covers the entire liquid region at all times in Figure 14. Unfortunately, a direct comparison 

with Saldi is not possible, as Saldi only provides details about the flow field at 2 min, while 

Brent et al. provide details for 3 min and later (Figure 14a). Nevertheless, it can be clearly 

concluded that the extremely coarse mesh does not resolve the physics of the flow well. It 

is also remarkable that Brent et al. seem to generally produce rather small velocity gradi-

ents, which we do not observe (see Figure 15). Our streamlines also show steeper gradi-

ents and relatively large vortex centers. 
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(a) (b) (c) 

Figure 14. Streamlines at three time marks from simulations by Brent et al. [36]: (a) after 3 min; (b) after 6 min; (c) after 19 

min. Note that at any time there is only one single vortex. 

   
(a) (b) (c) 

Figure 15. Streamlines at three time marks from our simulations: (a) after 3 min; (b) after 6 min; (c) after 19 min. Phase 

front is shown in green. 

Likewise, in the results of Brent et al. the isotherms in Figure 16 reflect the smooth-

ness of the flow field, as they are not strongly twisted or curved. Our results clearly show 

the influence of the flow on the temperature field, as isotherms are twisted by the vortices 

and re-circulation bubbles (Figure 17). 

  
(a) (b) (c) 

Figure 16. Isotherms with temperatures in °C at three time marks from simulations by Brent et al. [36]; (a) after 3 min; (b) 

after 6 min; (c) after 19 min. 
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(a) (b) (c) 

Figure 17. Isotherms with temperatures in °C at three time marks from our simulations: (a) after 3 min; (b) after 6 min; (c) 

after 19 min. 

In summary, neither the streamlines nor the isotherms agree well. The explanation is 

that the simulations by Brent et al. use such a coarse mesh that all the details of the com-

plex flow field are smeared out or not captured at all. Note that the streamlines of our 

results are obtained by integrating over the velocity field from freely chosen seed points. 

This leaves some uncertainty when comparing velocity gradients. Nonetheless, the overall 

flow pattern and vortex structure can be reliably compared. 

While some minor differences in the results remain, the overall behavior of the melt-

ing of Gallium is well-captured. The PFEM-based method can run a simulation featuring 

complex physics without stability issues, even over a long simulation time. The agreement 

with other simulation methods has been shown to be good. Future work should explore 

the effects of further mesh refinement, which may require better optimization of the sim-

ulation code to counteract the quickly-increasing computational cost. 

4. Conclusions 

A new approach for simulating industrial processes that involve localized melting of 

a solid, such as welding or additive manufacturing, is being developed based on the par-

ticle finite element method (PFEM). The use of PFEM is rooted in its robustness, which 

stems from the underlying FEM; at the same time, the particle character of this method 

allows simulation of large deformations, including complex fluid flow. Furthermore, 

PFEM is particularly suited for free surface deformation, as boundaries and interfaces are 

naturally captured. The free surface flows are not included in this work, but the first val-

idation step for a thermo-fluid solver that can simulate such processes is shown and its 

suitability for some of the most important physics involved in these processes is demon-

strated. 

The Marangoni effect and natural convection are the driving forces of flow in the 

melt pool of a welding or additive manufacturing process. Both effects are correctly cap-

tured by the presented method in 2D. Melting of metal with natural convection has been 

simulated here in order to prove the suitability of the methods utilized to model the phase 

transition in 2D. Minor discrepancies with results from the literature were found; how-

ever, the overall behavior observed in experiments has been well-captured. It can be con-

cluded that the PFEM-based method is capable of simulating phase change. 

Further developments should aim to investigate the combined effects of free surface 

deformation, surface tension, natural convection and phase change. Extension to 2D ax-

isymmetric cases and then 3D cases should follow thereafter. Once this point is reached, 

the thermo-fluid simulation of welding or additive manufacturing will be possible, and 

models of powders and elasto-plastic solids as well as metallurgical models could be 

added to complete the physics required at the mesoscale. 
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