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Abstract

We propose a dynamic measure of extremal connectedness tailored to the short reporting

period and unbalanced nature of hedge funds data. Using multivariate extreme value

regression techniques, we estimate this measure conditional on factors reflecting the

economic uncertainty and the state of the financial markets, and derive risk indicators

reflecting the likelihood of extreme spillovers. Empirically, we study the dynamics of tail

dependencies between hedge funds grouped per investment strategies, as well as with the

banking sector. We show that during crisis periods, some pairs of strategies display an

increase in their extremal connectedness, revealing a higher likelihood of simultaneous

extreme losses. We also find a sizable tail dependence between hedge funds and banks,

indicating that banks are more likely to su↵er extreme losses when the hedge fund sector

does. Our results highlight that a proactive regulatory framework should account for

the dynamic nature of the tail dependence and its link with financial stress.

Keywords: extreme value theory, systemic measure, tail dependence measure.

1 Introduction

In the aftermath of the Global Financial Crisis, European and U.S. market authorities have

become interested in the contribution of unregulated hedge funds to global financial instability

(Ang et al. 2011, Billio et al. 2012). Their preoccupation stems from the high probability that

these funds su↵er extreme losses, which in turn would cause funds’ closures, fire-sales of assets,

and eventually, financial distress of systemically important institutions (King & Maier 2009).
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The high probability of extreme losses among hedge funds is mainly attributable to exotic

investment strategies that make funds highly susceptible to liquidity restrictions (Agarwal

et al. 2017). Typically, funds buy illiquid securities while shorting liquid ones, making them

exposed to huge margin calls likely to generate large losses through fire-sales (Mitchell &

Pulvino 2012). Besides, hedge funds returns are also characterized by a strong connectedness

across investment styles, in particular in crisis periods. Boyson et al. (2010) trace back this

dependence to liquidity spirals a↵ecting all assets owned by speculators and triggered by

capital providers withdrawing their funds. Thus, in case of extreme losses su↵ered by funds

with a given investment style, funds following other styles are more likely to endure a similar

fate. This connectedness amplifies the shocks transmitted to the banking sector via their

brokerage activities; see for instance the recent demise of the Archegos fund (WSJ 2021).

Due to the existence of significant extreme losses, connectedness of hedge funds is un-

doubtedly linked to the notion of concurrent extreme events. However, this feature has been

remarkably overlooked in previous studies on the interdependence between funds, focusing

mostly on commonalities in the expected returns. Therefore, a main contribution of this

paper is to develop an econometric set-up to measure the time-varying extremal connected-

ness between investment styles of hedge funds. To do so, we combine regression modeling

with multivariate extreme value (MEV) theory. With our approach, we are able to compute

probabilities of concurrent extremely negative returns between two investment styles, given

particular market conditions and uncertainty levels. These quantities are then used to anal-

yse the extremal network between hedge funds and construct risk indicators capturing the

vulnerability of the financial system coming from funds interconnectedness. In addition, our

modeling framework can be exploited to measure connectedness between hedge funds and

banks, with the aim of gauging potential spillovers from hedge funds to the banking sector.

Thanks to our MEV-based approach, we overcome the limitations of recently proposed

measures of connectedness that do not explicitly focus on extreme events, but rather focus

on time-varying means (Billio et al. 2012), variance decompositions (Diebold & Yilmaz 2009),

or conditional quantiles (Boyson et al. 2010) of the returns. Moreover, we provide correct

inference on the joint tail distribution of hedge funds returns beyond historical data, a feature

that is critical for systemic risk analysis and that only extreme value theory can handle. This

is a desirable property for regulators when implementing cash and capital requirements with

limited historical data. In addition, a clear mapping of the intensity of the tail dependence

and its dynamic during market stress would be useful to improve risk management.
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The use of MEV has been advocated as being particularly well-suited to study connect-

edness and financial crises, given the importance of extreme events (Hartmann et al. 2004).

Conceptually speaking, classical MEV pursues the same objective as copula modeling, i.e.,

modeling the dependence structure between random variables, but with a focus on the tail of

their joint distribution. In our proposed setting, we rely on MEV to construct risk indicators

derived from probabilities of occurrence of joint extreme returns. Aggregated over various

financial institutions, these indicators form risk measures. This technique was successfully

applied, e.g., to stock indices (Poon et al. 2004), U.S. depository institutions (van Oordt &

Zhou 2019) and crash risk of stocks (van Oordt & Zhou 2016). However, in the case of hedge

funds, we face two major issues that prevent us from using standard MEV. On the one hand,

the highest reporting frequency of the returns is monthly, yielding few observations. On the

other hand, a large fraction of funds are only reported for a short period of time (typically a

few years). Consequently, applying MEV to pairs of funds would certainly leave us with very

few observations to infer the marginal and joint distributions. In addition, previous studies

implicitly acknowledge the time-varying nature of tail risk and tail dependence, e.g., via the

use of rolling-window estimations (Agarwal et al. 2017).

To overcome these issues, we adapt the MEV in several ways. First, we group funds

across investment styles to tackle the low reporting frequency. Thus, instead of working with

individual time series of hedge funds returns, we build our analysis on panels of funds yielding

vectors of extreme returns from a much larger pool compared to an index-based approach.

Second, we rely on univariate extreme value regression techniques (Chavez-Demoulin et al.

2016, Hambuckers et al. 2018) to filter out fund-specific, macroeconomic and financial factors

a↵ecting the marginal tails. Finally, we account for the time-varying tail dependence through

an MEV regression model (Mhalla et al. 2019) where the tail dependence between losses of

investment styles depends on risk factors in a smooth and flexible manner. Since our risk

factors of interest are collected over time, our tail dependence is de facto time-varying. This

is an important improvement compared to previous studies that acknowledge the time-varying

nature of the tail dependence but rather assume a fixed tail dependence over rolling windows.

We apply the proposed approach to the study of hedge funds registered in the Hedge Funds

Research (HFR) database, over the period 1994–2017 and grouped in 12 investment styles.

Our main findings are summarized in the following points:

• We find a strong average tail dependence between Relative value, Event driven, and

Equity market neutral investment styles. On the contrary, Short bias investment style
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appears to be weakly connected at extreme levels with the other styles.

• Several investment styles show important changes in extremal connectedness over time

and market conditions, especially during the Global Financial Crisis (GFC).

• Banks and hedge funds exhibit a sizeable tail dependence, indicating a non-negligible

likelihood of joint bankruptcies, in particular at the onset of the GFC.

These findings have several implications. First, they suggest that tail risk can be diversi-

fied to a certain extend by combining adequately the various investment styles. Second, our

analysis reveals discrepancies in risk profiles between investment styles that can be exploited

to give a focus to regulators. Although an exhaustive screening of individual funds is hardly

possible, our approach provides a compass indicating where the supervisory e↵orts must con-

centrate. Last, the substantial tail connectedness between banks and funds should be taken

into account by supervision authorities wishing to decrease the consequence of spillovers in

the banking sector.

The rest of the paper is organised as follows: in Section 2, we describe the theoretical

foundations of our approach and detail the inference techniques. In Section 3, we describe our

data, conduct both univariate and multivariate tail analyses, and discuss risk management

implications. We conclude in Section 4.

2 Methodology

To infer about extreme funds returns that are beyond the range of observed values, we rely on

multivariate extreme value theory (EVT). As highlighted in Poon et al. (2004), multivariate

EVT requires first to estimate the marginal distributions of the di↵erent components. Then,

the marginal components are accordingly scaled and the dependence structure is estimated

using likelihood-based procedures. However, we are likely subject to marginal non-stationarity

and heterogeneity, due to economic and fund-specific variables influencing the tail distribu-

tions of hedge funds (Agarwal et al. 2017). To account for these issues, we use a dynamic

extreme value regression model in the initial filtering step, where the tail distribution depends

on these variables. This preliminary step is followed by the modeling of the dynamic tail de-

pendence structure with multivariate extreme value regression models, supposing that market

risk factors smoothly a↵ect the strength of the extremal dependence. The resulting measures

of extremal connectedness are thus conditioned on these risk factors.
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2.1 Marginal estimation of extreme value distributions

Let Y represent a random variable with cumulative distribution function F . Here, Y refers

to losses of hedge funds with the same investment style, and the spotlight is put on the

large values of these losses. The key assumption underlying extreme value modeling is that

the distribution F belongs to the maximum domain of attraction (MDA) of an extreme value

distribution G (Fisher & Tippett 1928). Under this fundamental assumption, the tail behavior

of Y can be characterized using the POT approach (Davison & Smith 1990). Namely, for a

fixed finite high threshold u, the distribution of the exceedances Y ´ u | Y ° u satisfies

PrpY ´ u ° y | Y ° uq ›Ñ
uÑyF

$
&

%
p1 ` ⇠y{�q´1{⇠

` , ⇠ ‰ 0,

expp´y{�q, ⇠ “ 0,

where yF is the upper endpoint of F . The limiting distribution of the threshold exceedances

is a Generalized Pareto (GP) distribution, denoted GPDp¨; �, ⇠q, and is defined on ty : y °
0 and p1 ` ⇠y{�q ° 0u. The shape parameter ⇠ governs the behavior of the tail of F , with

positive values reflecting a heavy-tailed distribution. Thus, if the MDA assumption holds,

one can infer the behavior of the losses far in the tails by estimating ⇠ and �, and computing

risk measures such as extreme quantiles. Inference is typically performed using likelihood-

based methods. Starting with a set of observations tyiuni“1, we fix a high threshold u, e.g.,

the empirical quantile at a high probability, and retain solely the subset tyi : yi ° uu. Then,
inference for ✓✓✓0 “ p�, ⇠q P R` ˆ R consists in maximising the log-likelihood

lp✓✓✓0q “
nuÿ

i“1

logtGPDpyi ´ u; �, ⇠qu, (1)

where nu is the number of exceedances above u and tyiunu
i“1 is the set of reindexed exceedances.

The validity of (1) relies on the underlying assumption that the data generating process is

stationary. This assumption does not hold in our application since we collect extreme returns

over time and across various hedge funds with the same investment strategy. For instance,

hedge funds’ extreme losses might depend on a set of covariates that reflect relevant features

such as the state of the economy or characteristics of the fund, see e.g., Agarwal & Naik

(2004) and Boyson et al. (2010). To remedy this issue, dynamic approaches to extreme value

modeling have been proposed by integrating a regression structure to EVT models (Chavez-

Demoulin et al. 2016). This technique allows pooling data with di↵erent tail characteristics,

circumventing issues related to missing data and small samples. In addition, it enables a
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preliminary filtering of the data that removes the heterogeneity in the upper tail specific to a

given investment style, similarly to what is done in Boyson et al. (2010) for the mean.

Thus, we assume ✓✓✓0 to be function of a set of predictors and denote its components by

�px�
0 q and ⇠px⇠

0q. For simplicity of exposition, we consider additive linear functions where the

parameters of the dynamic GP distribution are described by the following equations:

logt�px�
0 qu “ �

�
0 `

k0ÿ

j“1

�
�
j x

�
0j and ⇠px⇠

0q “ �
⇠
0 `

k0ÿ

j“1

�
⇠
jx

⇠
0j, (2)

where x�
0 “

`
x
�
01, . . . , x

�
0k0

˘
and x

⇠
0 “

´
x
⇠
01, . . . , x

⇠
0k0

¯
are the vectors of covariates for the scale

and shape parameters, respectively, and ���
�
0 “

`
�
�
0 , �

�
1 , . . . , �

�
k0

˘
and ���

⇠
0 “

´
�
⇠
0, �

⇠
1, . . . , �

⇠
k0

¯

denote the vectors of their corresponding regression coe�cients.

Although estimates of ����
0 and ���

⇠
0 are easily obtained using maximum likelihood procedures

in the parametric case, Hambuckers et al. (2018) and Groll et al. (2019) highlight the need for

an e�cient model selection procedure to obtain interpretable sparse models. To do so, they

advocate the use of the LASSO-type penalized likelihood given by

lp✓✓✓0;x�
0 ,x

⇠
0,�

�
0 ,�

⇠
0q “

nuÿ

i“1

logtGPDpyi; �px�
0 q, ⇠px⇠

0qqu ` �
�
0

k0ÿ

j“1

|��
j | ` �

⇠
0

k0ÿ

j“1

|�⇠
j |, (3)

where ✓✓✓0 is the stacked vector of regression coe�cients ����
0 and ���

⇠
0 and p��

0 ,�
⇠
0q the regularization

parameters. The resulting estimator is denoted ✓̂✓✓0. One might question the validity of the

oracle properties of such LASSO-type approach, since the considered data generating process

exhibits both tail heaviness and temporal dependence in the covariates, which violate the usual

assumptions of sub-Gaussianity and independence (see, e.g., van de Geer & Bühlmann 2009).

Here, we consider the LASSO penalty in a penalized likelihood framework where, as discussed

in Fan & Li (2001), Negahban et al. (2012) and Lee et al. (2015), the resulting LASSO-type

regularized estimator enjoys the oracle properties under regularity conditions on the likelihood

function. The regularization parameters are usually chosen from a grid via information scores,

e.g., the Bayesian information criterion (BIC). In Section 3.2, we allow for a large number of

risk factors a↵ecting both parameters, and thus use the LASSO-type estimator to infer the

dynamic marginal distributions of threshold exceedances. The resulting estimates of �px�
0 q

and ⇠px⇠
0q are used to infer the marginal tail risk of a given investment strategy. Note that,

as shown in Fan & Li (2001), this approach results in biased estimates, yielding potentially

biased �̂px�
0 q and ⇠̂px⇠

0q. To correct for this bias, we use an additional estimation step where
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we retain only the active set obtained from the LASSO, i.e., the subset of covariates with

non-zero estimates, and fit this model with classical maximum likelihood techniques. This

two-step procedure is a common bias-correction technique (Belloni & Chernozhukov 2013)

and gives the so-called post-LASSO estimator, which we denote by ✓̂✓✓
`
0 . Thus, unless specified

otherwise, estimates �̂px�
0 q and ⇠̂px⇠

0q are to be understood as being computed with ✓̂✓✓
`
0 .

2.2 Multivariate dependence

From an extremal connectedness perspective, we are interested in the joint tail behavior of

several random variables. In this multivariate setting, quantities related to both the structure

and the degree of extremal dependence are of utmost importance.

We now consider Y “ pY1, . . . , YdqJ to be a d-dimensional random vector with joint distri-

bution F . Here, we interpret Yj as a loss related to an investment style j, and Y as the vector

of such losses in the d investment styles under consideration1. Similarly to the univariate

EVT, inquiries about the joint upper tail behavior of Y rely on F being in the MDA of a

non-degenerate distribution G. The limiting distribution G is then a multivariate extreme

value distribution (Resnick 1987, Chapter 5.3) with associated extreme value copula C
EV and

non-degenerate Generalized Extreme Value margins. Inference about the dependence struc-

ture in G, and hence the tail dependence structure in Y, relies on the following representation

of G under unit-Fréchet margins

Gpzq “ exp

"
´
ª

Sd

max

ˆ
!1

z1
, . . . ,

!d

zd

˙
dHp!q

*
, z P p0,8qd, (4)

where H is a positive finite measure defined on the unit simplex Sd “ tp!1, . . . ,!dq P r0, 1sd :
!1 ` ¨ ¨ ¨ ` wd “ 1u and verifying

≥
Sd

!jdHp!q “ 1, for j “ 1, . . . , d. The measure H is termed

the spectral measure and contains the information regarding the structure of the dependence

between the components of the limiting random vector, or equivalently the joint upper tail

dependence of Y. The basic modeling principle is to transform in a first step, the marginal

variables Yj to the unit-Fréchet scale, i.e., Y F
j “ ´1{ logtFjpYjqu. The focus of the second

step is then on the dependence structure, where we rely on the limiting independence of the

radial and pseudo-angular parts of the transformed variables. That is,

Pr pW P B,R ° tr | R ° tq ›Ñ
tÑ8

r
´1
HpBq, B P Sd, r • 1,

1For simplicity, we do not index Yj with respect to a specific fund.
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where R “ }YF }1 and W “ Y
F {}YF }1 are the radial and pseudo-angular components of the

transformed vector YF “ pY F
1 , . . . , Y

F
d qJ, respectively. The strength of the tail dependence in

Y can be summarized through the pairwise coe�cients of tail dependence (He↵ernan 2000)

�
kl “ lim

uÑ1
Pr tFkpYkq ° u | FlpYlq ° uu . (5)

Under the assumption of asymptotic dependence, the coe�cient of tail dependence �
kl is

strictly positive for all pairs of components and the existence of a spectral density hp!q “
dHp!q{d! is assumed whenever H is absolutely continuous. Inference for the spectral density

h is typically performed using likelihood-based methods where flexible classes of parametric

models are assumed (Beirlant et al. 2004, Section 9.2.2). The choice of the parametric model

for the tail dependence between investment strategies is discussed in Section 3.3.

Let ✓ be the p-variate vector of parameters describing the spectral density hp¨;✓q, and as-

sume that we have a sample of n independent copies of YF . Then, likelihood-based inference

for ✓ is performed using the observations with a radial component exceeding a high radial

threshold uR. Denoting the radial threshold exceedances by
!
Ỹ

F
i “ pỸ F

i,1, . . . , Ỹ
F
i,dqJ

)nR

i“1
, in-

ference for the parameter of interest ✓ is performed by maximising the following log-likelihood

`p✓q ” ´pd ` 1q
nRÿ

i“1

log }ỸF
i }1 `

nRÿ

i“1

log

#
h

˜
Ỹ

F
i,1

}ỸF
i }1

, . . . ,
Ỹ

F
i,d

}ỸF
i }1

;✓

¸+
. (6)

When non-stationarity arises in a multivariate setting, both the marginal distributions

and the dependence structure are believed to vary with covariates and flexible tail models

are needed. For instance, tail dependence between stock losses might increase under a stress

scenario (e.g., during financial crises); see Castro-Camilo et al. (2018). To deal with the

e↵ects of multiple covariates in a flexible manner, Mhalla et al. (2019) propose to model

✓ “ p✓1, . . . , ✓pq in a spline-based fashion. Specifically, for a set of covariates x “ px1, . . . , xKq,
the j-th component of ✓pxq is given by

✓jpx;�q “ g
´1
j

#
�j `

Kÿ

i“1

fj,ipxiq
+
, j “ 1, . . . , p, (7)

where gj denotes a link function restricting ✓j to its parameter space, �j is an intercept, and

fj,i describes the e↵ect of the i-th covariate xi on ✓j. The choice of the function fj,i is flexible

and can be either linear or smooth; see Wood (2017, Chapter 5) for a review on smoothing

splines. This flexibility comes however at a price as it increases considerably the number of
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parameters to estimate. Inference for ✓px;�q and hence for the e↵ects of x on the upper tail

dependence in Y
F should be performed by penalizing the log-likelihood (6), i.e.,

max
�,�

` t✓px;�qu ´ �J
Pp�q�, (8)

where the penalty matrix Pp�q controls, through a vector of smoothing parameters �, the

curvature of the smooth functions to avoid over-fitting issues. Under certain regularity con-

ditions outlined in Mhalla et al. (2019), the resulting penalized maximum likelihood estima-

tor (PMLE) �̂ is consistent and asymptotically normal. Therefore, confidence intervals for

hp¨; ✓̂q ” ht¨;✓px, �̂qu can be built using the asymptotic variance of �̂.

Under this dynamic setting, the flexible smooth model (7) induces a non-stationary coef-

ficient of tail dependence

�
klpxq “ lim

uÑ1
Pr tFkpYkq ° u | FlpYlq ° u;xu

“ 2 ´
ª 1

0

maxp!, 1 ´ !qht!;✓px;�qud!. (9)

Thus, an estimate �̂
klpxq of the conditional tail coe�cient �

klpxq obtained by plugging

the PMLE �̂ in (9), enjoys the same nice asymptotic properties through an application of

the Delta method. When the set of considered covariates describes entities evolving through

time, we use the quantity (9) as a measure of the time-varying extremal connectedness

between investment styles’ universes. This measure can be related to the unconditional tail

dependence across financial institutions estimated in Poon et al. (2004) and Balla et al. (2014).

A similar tail dependence measure is advocated in Agarwal et al. (2017) and van Oordt &

Zhou (2019), where emphasis is put on the dependence between an institution and the market,

as opposed to the dependence between institutions themselves. Here, we use �̂
klpxq to build

the extremal network across investment styles as well as several systemic risk indicators; see

Sections 3.3 and 3.4.

Following common practice in the copula modeling literature, the marginal modeling is

performed in a separate step prior to the dependence modeling (Genest et al. 1995). In the

above definition of �klpxq, we assume fixed marginal distributions and omit consequently any

non-stationarity that might arise in the marginal investment styles. Therefore, we assume

that a set of covariates x0 influences the individual tail behavior of the losses Yj of the j-th

investment style, and account for their influence using equation (2). Inference on �
klpxq is
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then based on the resulting pseudo marginal observations F̂kpYk | x0q and F̂lpYl | x0q.

3 Empirical study

Here, we first detail the hedge funds data and present our fund-specific extremal connectedness

analysis. Then, we discuss risk measures obtained from our approach. Finally, we analyse how

the banking sector, represented by a sample of large banks, is connected with hedge funds.

3.1 Description of the hedge funds data

Our sample of hedge funds monthly returns comes from the Hedge Fund Research (HFR)

database. We cover a period between January 1994 and May 2017. Comparative analyses

across databases performed by Aiken et al. (2013) and Joenväärä et al. (2021) emphasize the

quality of HFR with regard to the usual survivorship and backfill biases. To obtain our final

sample, we apply a series of filters to the original dataset of historical returns, which we detail

in Section 1.1 of the Supplementary material. As of May 2017, our final sample consists of

7,924 funds, among which 2,544 are active and 5,380 are dead, i.e., either liquidated or not

reporting. Overall, we have 673,793 monthly observations.

In addition, HFR gives us the (self-reported) investment styles of the funds. The four

broad classes (equity hedge, event driven, macro, and relative value) are subdivided into

12 investment styles as depicted in Table 1. We use this classification to decompose the

dataset into 12 sub-universes across which the dynamic extremal connectedness is investigated.

Descriptive statistics of the returns with respect to the investment styles are reported in

Section 1.2 of the Supplementary material, where we observe important di↵erences in all

aspects of their respective distributions, especially in the skewness and kurtosis dimensions.

Equity Hedge Event Driven Macro Relative Value

Long/Short equity Distressed/Restructuring Global trading Fixed income arbitrage
Equity market neutral Merger arbitrage Managed futures Convertible arbitrage

Short bias Other Yield alternatives
Multi-strategy

Table 1: HFR investment styles

3.2 Marginal tail risk of investment styles

First, we model the marginal distributions Fj of the observed losses tyj,iunj

i“1 of the j-th invest-

ment style, for j “ 1, . . . , 12 and nj “ ∞T
t“1 njptq. Here, T is the number of available distinct
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time periods and njptq the number of funds reporting at time t and following investment style

j. As the focus of the analysis is on the tail behavior within investment styles, we consider,

for each strategy j, a semiparametric marginal approach where

F̂jpy | x0q “

$
&

%
F emp
j pyq, y § uptjq,

PrtYj § uptjqu ` PrtYj ° uptjquGPDty ´ uptjq; �̂jpx�
0 q, ⇠̂jpx⇠

0qu, y ° uptjq,
(10)

and F
emp
j is the empirical distribution of tyj,iunj

i“1 and uptjq its 95% time-varying sample

quantile. That is, denoting the time vector

tj “ p1, . . . , 1loomoon
ˆnjp1q

, . . . , T, . . . , Tlooomooon
ˆnjpT q

q,

we fit the following parametric quantile regression

uptjq “ argmin
�0,�tPR

njÿ

i“1

⇢0.95tyj,i ´ p�0 ` �ttj,iqu,

where ⇢⌧ puq “ p⌧ ´ 1u†0qu is the check function. Thus, PrtYj ° uptjqu “ 0.05 for all

strategies j and at all time periods t. The semiparametric transformation (10) prevents making

assumptions on the distribution of the bulk of the observations, while improving the marginal

empirical transformation in the region of interest, i.e., the tails, through the asymptotically

motivated GP distribution. Such an approach is commonly used in multivariate extreme value

modeling, see, e.g., Huser & Wadsworth (2019).

Relying on this semiparametric approach, we appropriately capture any heterogeneity in

the large losses that might be due to macroeconomic, fund specific, and financial factors

through x
�
0 and x

⇠
0. We fix x

�
0 “ x

⇠
0 “ x0, where x0 describes the set of selected risk factors

driving the tail distribution of a fund with investment style j and at time period t
2. Thus,

the dynamic EVT part of the marginal model (10) yields time-dependent tail risk estimates

within each investment style. For instance, for a given fund, we consider the set

!
|Rt´1|, IncFee, ManFee, TotAsst´1, IntRateSTt´1, IntRateLTt´1,

Leverage, IndProdt´1, UnempRatet´1, StockVolt´1,

PTFSBDt, PTFSFXt, PTFSCOMt, EMFt, ESFt, BD10RETt, BAAMTSYt, SMBt, HMLt, MOMt

)
,

where |Rt´1| and TotAsst´1 denote the absolute loss and total asset (in mio. USD) over the

2For notational simplicity, mention to the investment style j and time period t is omitted.
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previous time period, respectively. Leverage is a binary variable indicating whether the fund

is leveraged or not, and IncFee and ManFee denote its incentive and management fees (in %),

respectively. These variables were provided by HFR. The explanatory variables IntRateSTt´1,

IntRateLTt´1, IndProdt´1, StockVolt´1, and UnempRatet´1 denote the level of short term and

long term interest rates, the changes in industrial production, the stock market volatility, and

the unemployment rate of the registration country provided by HFR, respectively. These

macro data are gathered from the OECD database. Following Fung & Hsieh (2004), PTFSBDt,

PTFSFXt, and PTFSCOMt denote the bond, currency, and commodity trend-following factors.

EMFt, ESFt, BD10RETt and BAAMTSYt denote the equity, size spread, bond market, and credit

spread factors, respectively. SMBt, HMLt and MOMt are the classical size, value, and momentum

factors of Fama & French (1993) and Carhart (1997).

The leverage and incentive fees structure of hedge funds influence the asymmetry of their

return payo↵, impacting the upper and/or lower tail behavior (Titman & Tiu 2011). Besides,

high management fees and the absence of a financial involvement of the managers also con-

tribute to an increase in tail risk exposure (Karagiannis & Tolikas 2019). Unemployment rate,

industrial production, interest rate levels, and stock volatility control for the general macroe-

conomic context, a↵ecting risk exposure (Bali et al. 2014). Regarding |Rt´1|, we use it as a

proxy for the standard deviation of returns at time t´1, a factor found to impact significantly

the tail risk (Agarwal et al. 2017). In Section 5.1 of the Supplementary material, we provide

a simulation study confirming the suitability of this approach to handle the dynamic tail of

various heteroscedastic processes (see, e.g., Bee et al. 2019). Finally, we use the traditional

risk factors to control for systematic risk exposure in the tail. The aim here is to filter out

their e↵ects from the marginal distribution, in the idea of Hale & Lopez (2019).

Estimates of ����
0 and ���

⇠
0 rely on the post-LASSO estimator where the explanatory variables

in x0 are standardized prior to the optimisation step. The regularization parameters are

selected over a 30 ˆ 30 grid of values, using the BIC criterion with degrees of freedom equal

to the number of active covariates. Results are displayed and discussed more extensively in

Section 2.1 of the Supplementary material, along with graphical goodness-of-fit tests.

How to measure marginal tail risk in our universes of hedge funds?

Using the semiparametric marginal model given by (10) and estimated with our panel

approach, we compute the value-at-risk (VaR) at level ↵ of the loss distribution for each fund

observed at any time in our sample. Defining x
i,k,t
0 and TotAssi,k,t as the risk factors and the

total assets of the i-th fund with investment style k, alive at time t, the corresponding value-
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at-risk V aR
k
↵pxi,k,t

0 q is defined as the ↵-th quantile of the marginal distribution Fkp¨ | xi,k,t
0 q,

i.e.,

V aR
k
↵pxi,k,t

0 q “ F
´1
k p↵ | xi,k,t

0 q. (11)

Thus, we obtain a tail risk measure for each existing fund, even when few or no extreme

observations are available for this particular fund at a given date. We discuss the resulting

tail risk profiles for the various investment styles in Section 2.1 of the Supplementary material.

3.3 Tail dependence between investment styles

Relying on the fitted marginal models of the losses for the 12 investment strategies, we trans-

form the observations to the unit-Fréchet scale through

y
F
j,i “ ´ 1

logtF̂jpyj,i | x0qu
, j “ 1, . . . , 12, and i “ 1, . . . , nj,

and proceed with modeling their pairwise extremal connectedness. We refer to Section 5.2 of

the Supplementary material for a sensitivity analysis of this step to marginal misspecification.

We now quantify the extremal connectedness by the conditional tail coe�cient �klpxq. Here,
the set of covariates x consists of four factors reflecting the stress level on the financial markets

over time: the CBOE volatilty index VIX reflecting financial instability, risk aversion, and

the stock market volatility; the stock market performance as measured by the loss of the

MSCI world index; the U.S. Economic Policy Uncertainty EPU index of Baker et al. (2016)

reflecting general macroeconomic uncertainty; and the Financial Stress Index (FSI) of the

Federal Reserve Bank of St. Louis (2014) associated with large shifts in asset prices, abrupt

increase in risk, and illiquidity of the financial system. The frequency of the selected covariates

is either daily (VIX, MSCI, and EPU) or weekly (FSI). Thus, in order to match the reporting

frequency of the HFR database, we use monthly averages. Following Patton & Ramadorai

(2013), we select these factors as they indicate conditions likely to drive managerial decisions

of portfolio rebalancing. In particular, the MSCI accounts for “benchmarking pressures” that

push fund managers to increase their exposure to the market. The VIX captures the fact

that high market volatility can lead fund managers to reduce their risk exposures to keep the

volatility of their own returns constant (Ferson & Schadt 1996). Finally, the EPU and the FSI

control for changes in general uncertainty, cost of borrowing, and liquidity, which are factors

shown to a↵ect leverage and diversification decisions by fund managers (Cao et al. 2013).

We consider a pairwise approach to the tail connectedness where pairs of losses are con-
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structed as follows. For a pair of strategies pk, lq and at a fixed time period t “ 1, . . . , T ,

we retain the n
kl
t largest rescaled losses in each strategy. Here, n

kl
t is the minimum be-

tween the number of funds in strategies k and l at the time period t. The reason for this

pairwise approach is that it results in a more flexible tail modeling, as pairs are allowed to

depend distinctly from each other on the covariates x. The tail dependence of the resulting

bivariate vector is modeled dynamically using a spectral density ht¨;✓klpxtqu, where the pa-

rameter ✓klpxtq depends smoothly on the selected global risk factors at time period t, i.e.,

xt “ pVIXt, MSCIt, EPUt, FSItq. For all the 66 pairs of investment strategies, we describe the

spectral density using the Hüsler–Reiss parametric family (Hüsler & Reiss 1989) with a pair-

specific dependence parameter ✓klpxtq ° 0 describing the strength of tail dependence between

the losses of the l-th and k-th investment styles at time period t. The reason for this choice of

parametric family is twofold. First, the Hüsler–Reiss density is flexible as it captures di↵erent

strengths of asymptotic dependence through the unique parameter ✓klpxtq. Second, from an

inference perspective, the expected Hessian of this density can be obtained in closed form,

thus avoiding numerical issues when optimizing the penalized log-likelihood; see Mhalla et al.

(2019) for details. Note that, although dynamic MEV distributions are the most appropriate

choice for capturing tail dependence when the behavior of the bulk is not relevant, we com-

pared our resulting tail estimates to the ones obtained using a non-extreme but tail dependent

t-copula. The entire dataset is modeled dynamically using the same covariate specification as

in the Hüsler–Reiss model. We notice that this copula specification underestimates the tail

dependence when compared to an empirical approach using rolling windows.

As mentioned in Section 2.2, our inference approach for the tail dependence relies on the

set of bivariate pseudo-angular observations with a radial component exceeding a high radial

threshold. Although the marginal data are assumed stationary after removal of the e↵ect of

marginal explanatory covariates, we model the radial threshold through a parametric quantile

regression at the 95% level. The goal here is to capture any residual time non-stationarity in

the data. We then retain the observations with a radial component exceeding this threshold

to infer about the spectral density. Under the Hüsler–Reiss assumption, our estimate of the

dynamic extremal connectedness between the pair of strategies pk, lq becomes

�̂
klpxtq “ 2 ´ 2�t1{✓̂klpxtqu,

where ✓̂
kl is our estimate of ✓kl obtained by penalized log-likelihood; see Section 2.2.

We now look at our estimates of the tail dependence between the 66 pairs of investment
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styles. We focus first on the mean tail dependence (between each pair) over the entire period

of analysis 1994–2017, represented in Figure 1 (left)3.

[Figure 1 about here.]

Some main tendencies can be deduced. For instance, most Relative value investment styles

seem strongly connected to each other, as well as to the Other (Event driven) and the Equity

market neutral styles. An exception is the Yield alternatives investment style which appears

to be weakly connected to the other ones. A similar observation holds for Short bias whose 11

associated pairwise conditional tail coe�cients hint at weak asymptotic dependencies. From

an economic standpoint, these results are consistent. As suggested in Boyson et al. (2010),

hedge funds are strongly connected because they are all exposed to restrictions in funding

liquidity which force them to reduce leverage and triggers a decrease in asset liquidity. When

the initial liquidity shock is strong enough, it causes a self-reinforcing liquidity spiral. However,

Sadka (2010) shows (although marginally) that exposure to liquidity shocks varies strongly

across investment styles. In particular, the author finds that Short bias is the only investment

style with a negative exposure to liquidity, thus benefiting from price decrease during liquidity

shortage. This mechanism would explain why Short bias is found to be weakly connected with

other styles. Moreover, the strong connection between Event driven, Relative value, and Equity

market neutral can be related to the fact that all these strategies are equity-oriented (Agarwal

& Naik 2004) and rely on some forms of “arbitrage positions” while not being exposed to a

market of reference. For example, Equity market neutral encompasses statistical arbitrage

techniques with no market exposure, whereas Others (Event driven) or Convertible arbitrage

suppose taking long and short positions in equities and convertible debt instruments. Thus,

although these strategies have been di↵erently labelled, it is very likely that the portfolio

compositions of these funds are close from one another. On the contrary, funds following a

Yield alternatives strategy tend to enter the same bets, but targeting asset classes like real

estates or infrastructure, known for their weak correlation with the equity market.

Thus, an investor aiming to diversify its tail risk might consider owning a portfolio mixing

funds with, e.g., Short bias and Yield alternatives investment styles. These findings hold on

average but are no longer valid under a stress scenario as discussed in what follows.

Does financial stress lead to changes in the extremal connectedness?

To investigate this question, we compute the empirical mean pairwise tail coe�cients,

3For better visibility and unless otherwise mentioned, the subsequent network diagrams display the edges
with values exceeding the median of all edges’ values.
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conditional on a given risk factor, e.g., VIXt exceeding its highest (empirical) quartile4. Figure

1 (right) displays these quantities for the VIX (graphs for the other factors can be found in

Section 2.2 of the Supplementary material). We see that under these conditions, some pairs

become more connected, e.g., Managed futures with Multi-strategy and Global trading with

Multi-strategy, while others become less connected, e.g., Equity market neutral and Merger

arbitrage. On the contrary, Short bias appears to be consistently loosely connected to the

other investment styles.

However, these measures are related to a marginal stress condition and do not account

for dependence across stress factors. To investigate changes in the extremal connectedness

under realistic scenarios, we look at the tail dependence on 09/2008 (the beginning of the

GFC) and at the mean tail coe�cients over the time period 01/2013–12/2013 (a time period

reflecting relatively stable market conditions, see, e.g., Lucas et al. (2017)). These quantities

are displayed in Figure 2.

[Figure 2 about here.]

We clearly see di↵erences in the intensity of the tail dependence between the various styles

over the two time periods, highlighting the time-varying nature of our connectedness measure.

To get an empirical measure of the variability in the tail dependence under historical stress

conditions, we compute the di↵erences between the mean tail dependence over the entire

period of analysis and the tail dependence estimated during a financial distress. That is, for

a given pair of investment styles5, we compute an empirical estimate of

Et�pxtq | t P T̃ u ´ Et�pxtq | t P r1994 ´ 01 ´ 01, 2017 ´ 05 ´ 31su, (12)

for T̃ “ 09{2008, and T̃ “ r01{2013, 12{2013s. We display these di↵erences in Figure 3.

[Figure 3 about here.]

Positive (resp. negative) values indicate an increase (resp. a decrease) in tail dependence

with respect to the reference period. As expected, di↵erences in the strength of the tail

dependence are negligible when comparing the mean values in 2013 with the mean values over

the entire period of analysis. Looking at these di↵erences with respect to September 2008,

we notice relatively large increases and decreases in tail dependence. For instance, one of

4This quantity is denoted q0.75pxcq where xc, for c “ 1, . . . , 4 describes each of our four risk factors.
5Mention to the pair in the superscript is omitted when no confusion can arise.
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the strongest decreases in tail dependence is observed for the pair of investment styles Fixed

income arbitrage and Managed futures with a di↵erence equal to ´0.42 (a relative di↵erence

of -87.8%). Among the pairs with increasing tail dependence during the GFC, the pair of

investment styles Merger arbitrage and Yield alternatives displays the strongest increase with

a di↵erence equal to 0.42 (a relative di↵erence of 121.7%).

We focus now on two pairs with a tail dependence that either decreased (Fixed income

arbitrage and Managed futures) or increased (Merger arbitrage and Yield alternatives) at the

beginning of the GFC. A decreasing tail dependence indicates that extreme losses are less

likely to occur jointly, whereas an increasing tail dependence indicates that both styles su↵er

extreme losses simultaneously with a higher likelihood. Figure 4 shows the estimated tail

dependence over time for these two pairs and their asymptotic (pointwise) 95% confidence

intervals.

[Figure 4 about here.]

Interestingly, for the pair Fixed income arbitrage and Managed futures, a drop in tail de-

pendence took also place in August 1998. Similarly to September 2008, August 1998 witnessed

a major financial event, namely the default of Russia on its debt, and was followed by the

bankruptcy of the fund LTCM. September 2008 and August 1998 are also characterised by

record losses of the MSCI (-13.45% in 08/1998 and -12.08% in 09/2008). During these two

time periods, the extremal connectedness reaches its smallest values (1.52 ˆ 10´5 and 0.059

respectively), suggesting weak dependence of extremely large losses.

Examining the pair formed by Merger arbitrage and Yield alternatives, we observe a pro-

gressive build-up of the tail dependence from October 2003 onward until September 2008,

where it reaches its historical maximum at 0.77. Hence, at that point in time, Merger ar-

bitrage and Yield alternatives funds end up with the highest probability of jointly su↵ering

extreme losses. A potential mechanism responsible for these changes is obviously the portfolio

composition of the hedge funds (deriving directly from the strategy), and how they modify its

content in time of market stress (Ben-David et al. 2012, Patton & Ramadorai 2013). When a

large deleveraging takes place, the portfolios are concentrated on a smaller number of assets,

leading either to stronger or weaker commonalities depending on how similar the portfolios are

across strategies. Factors potentially responsible for magnifying this e↵ect are dependencies

and changes in leverage ratio over time. For instance, Ang et al. (2011) show that leverage

decision depends strongly on anticipations of the general state of the economy, suggesting that

funds share a common exposure via this mechanism. In the same idea, Patton & Ramadorai
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(2013) show at the level of hedge funds indices that both the risk factors and their time-

dynamics vary across investment styles. In particular, they find that a macro investment style

like Managed futures loads mainly on the size (SMBt) and bond market (BD10RETt) factors,

whereas relative values or event-driven strategies like Fixed income arbitrage, Merger arbi-

trage, and Yield alternatives are mostly exposed to the market and credit spread (BAAMTSYt)

factors. In addition, Managed futures funds have a rather constant exposure to these fac-

tors, whereas the other styles exhibit a time-varying exposure of the market (resp. credit

spread) factor that is negatively (resp. positively) related to market liquidity, volatility and

leverage. As a consequence, Merger arbitrage and Yield alternatives funds will deleverage

their portfolio and adopt similar risk exposures in time of crisis, leading to an increase in

the likelihood of joint extremely negative returns. On the contrary, funds adopting Managed

futures or Fixed income arbitrage investment styles will load on di↵erent risk factors while

deleveraging, leading to a decrease in the probability of joint extremes. The signs of the large

variations in extremal connectedness for these two pairs (positive and negative, respectively)

observed between 2013 and September 2008 would be consistent with this mechanism. Notice

in addition that all our results are obtained after filtering out the dependence to risk factors

in the marginal distribution of the returns.

To conclude this section, notice that our approach, although related in several ways to that

of Balla et al. (2014) and van Oordt & Zhou (2019), exhibits important di↵erences with these

studies. Similarly to Balla et al. (2014), we measure fund connectedness between financial

institutions, but not with the market as in van Oordt & Zhou (2019). However, similarly to

van Oordt & Zhou (2019), we also measure connectedness conditional on the market since

we use market variables in our tail dependence measures. Contrary to both approaches, our

connectedness measure is explicitly time-varying. Therefore, we can use a large sample for

inference, avoiding rolling-window estimations. Moreover, in Section 3.4.3, we detail how we

adapt our connectedness measure to capture the extremal dependence with the banking sector,

given the state of the financial market. The resulting measure intends to capture some of the

systemic risks associated with hedge funds.

3.4 Extremal risk measures

In this section, we detail how our framework can be exploited to quantify risks stemming from

interconnections between the di↵erent parts of the financial system, and connect our approach

with the popular CoV aR measure of Adrian & Brunnermeier (2016). The resulting tail risk
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measures are applied first to the study of interconnections in the funds’ universe, and second

to systemic interconnections, i.e., connectedness between funds and the banking sector.

3.4.1 Definitions

Total connectedness

The extremal connectedness measure provides us with a first tool to explore tail interconnec-

tions between di↵erent entities. Here, we consider a series of transformations of �̂klpxtq for all
pairs pk, lq to gauge the risk level in the considered investment universe. In the idea of Billio

et al. (2012) and Balla et al. (2014), we first compute a measure of the total interconnections,

referred hereafter as total connectedness. To do so, we compute at each point in time the sum

over all pairs (equally-weighted) of tail dependence measures:

�̃t “
12ÿ

k“1

ÿ

l‰k

�̂
klpxtq{66. (13)

We normalize the sum by the number of pairs, a quantity that indicates the maximum con-

nectedness in the considered system if all tail dependence measures were equal to one. A

natural interpretation of this quantity is that it measures the average co-crash probability

across two investment styles within the hedge fund universe. Moreover, this measure accounts

for the impact of realized market returns and uncertainty levels on extremal interconnections.

To investigate the individual contribution of each investment strategy to the overall connect-

edness, we decompose (13) in its style-specific components given by

�̃
k
t “

ÿ

l‰k

�̂
klpxtq{11. (14)

This measure is a time-varying version of the systemic impact index (SII) proposed by Zhou

(2010). The normalization ensures that �̃k
t P p0, 1s, such that (14) can be interpreted as the

expected proportion of investment styles registering the failure of at least one fund, given that

a fund in the reference investment style goes bankrupt at the same time. For example, a value

�̃
k
t “ .6 implies that, conditional on a fund in investment style k going bankrupt, one would

expect 60% of the other styles to observe a failure as well.

To assess the spillovers of extreme losses in the hedge fund industry to banks, we define a

similar quantity between the hedge fund sector and the banking sector. More precisely, relying

on a sample of banks’ market data, we can estimate the dynamic extremal connectedness
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�̂
banks,lpxtq between the banking sector and funds with an investment strategy l as a function

of the set of covariates tVIX, MSCI, EPU, FSIu. Then, we define the bank-specific connectedness

�̃
banks
t “

12ÿ

l“1

�̂
banks,lpxtq{12, (15)

as the average likelihood that a bank goes bankrupt, given that a hedge fund in any investment

style goes bankrupt at time t. In Section 3.4.3, we conduct an analysis of the connectedness

between banks and funds using a pool of 29 banks; see Section 3.1 of the Supplementary

material for details on the dataset and the marginal dynamic modeling of their large losses.

Extremal CoVaR

So far, we have defined tail risk measures that rely solely on the extremal connectedness mea-

sures. However, since we have at our disposal the joint extremal distribution either between

two investment styles or between an investment style and the banks, we can compute a con-

ditional value-at-risk far in the tail, in the idea of the popular CoV aR measure of Adrian &

Brunnermeier (2016).

Using the generalization in terms of copulas proposed in Girardi & Ergün (2013) and

adapting their results to our setting, we define the extremal CoVaR (eCoVaR) of an investment

style k with respect to investment style l as the quantile at a high level ↵ of a fund’s loss in

style k, conditional on observing a loss in style l larger than its associated quantile at a high

level ↵̃. Intuitively, this quantity measures the value-at-risk of a given fund in style k when

any fund is style l su↵ers from an extreme loss under specific market conditions.

Let pYk, Ylq be the pair of negative returns in styles k and l with marginal distributions

Fkp¨ | x0q and Flp¨ | x0q, as defined in (10). The quantity eCoV ar
k|l,↵̃
↵ is then defined by

 
Yk ° eCoV aR

k|l,↵̃
↵ |Yl ° V aR

l
↵̃px0q

(
“ 1 ´ ↵, (16)

with V aR
l
↵̃px0q as defined in (11). Thus, contrary to the classical definition proposed in Adrian

& Brunnermeier (2016) and Girardi & Ergün (2013) which measures the e↵ect of a distressed

institution on the VaR (at some high level) of the market, the eCoVaR considered here is the

value-at-risk of a given fund in style k conditional on any fund with style l exhibiting a loss

larger than its fund-specific ↵̃-th quantile.
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Rewriting (16) in terms of joint probabilities as

!
FkpYk | x0q ° FkpeCoV aR

k|l,↵̃
↵ | x0q, FlpYl | x0q ° ↵̃

)

1 ´ ↵̃
“ 1 ´ ↵,

our quantity of interest eCoV aR
k|l,↵̃
↵ is thus defined as the u↵-th quantile of Fkp¨ | x0q, i.e.,

eCoV aR
k|l,↵̃
↵ “ F

´1
k pu↵ | x0q,

where the probability u↵ satisfies

tFkpYk | x0q ° u↵, FlpYl | x0q ° ↵̃u ´ p1 ´ ↵qp1 ´ ↵̃q “ 0. (17)

Thus, eCoV aR
k|l,↵̃
↵ depends on macroeconomic, fund-specific, and financial factors through x0.

Additionally, as solving (17) for u↵ requires the copula describing the dependence between

large losses in the pair of strategies pk, lq, the probability u↵ and hence eCoV aR
k|l,↵̃
↵ are

intrinsically varying with xt “ pVIXt, MSCIt, EPUt, FSItq6. As a matter of fact, relying on our

extremal modeling assumptions, the tail dependence in the pair of losses pYk, Ylq is described

by the dynamic Hüsler–Reiss spectral density ht¨; ✓klpxtqu, or equivalently by its associated

extreme value copula C
EV t¨; ✓klpxtqu. Defining the survival extreme value copula as

C̄
EV tv1, v2; ✓klpxtqu “ v1 ` v2 ´ 1 ` C

EV t1 ´ v1, 1 ´ v2; ✓
klpxtqu,

the joint survival probability pYk ° yk, Yl ° ylq can be approximated for large yk and yl by

C̄
EV t pYl ° ylq, pYk ° ykq; ✓klpxtqu. Therefore,

tFkpYk | x0q ° u↵, FlpYl | x0q ° ↵̃u “ C̄EV
”

tYk ° F´1
k pu↵ | x0qu, tYl ° F´1

l p↵̃ | x0qu; ✓klpxtq
ı

“ C̄EV
!
1 ´ u↵, 1 ´ ↵̃; ✓klpxtq

)

“ 1 ´ ↵̃ ´ u↵ ` CEV
!
u↵, ↵̃; ✓

klpxtq
)
,

and the probability u↵ solves

1 ´ ↵̃ ´ u↵ ` CEV
!
u↵, ↵̃; ✓

klpxtq
)

“ p1 ´ ↵qp1 ´ ↵̃q.

Note that u↵ P r↵, 1q and is exactly equal to ↵ when tail independence arises. In case of

6The dependence of u↵ on xt and that of eCoV aRk|l,↵̃
↵ on x0 and xt, is omitted for ease of exposition.
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comonotonicity, u↵ “ 1´ p1´↵qp1´ ↵̃q and is thus very close to 1 when the quantile levels ↵

and ↵̃ are high. This highlights the need of using the appropriate tail distributions provided

by EVT to ensure the reliability of very high quantile estimation.

Relying on the resulting eCoVaR quantity, one can define a dynamic measure of the risk

contribution (RC) of investment style l at the fund ’s level by computing

�eCoV aR
k|l,↵̃
↵ pxi,k,t

0 ,xtq “ eCoV aR
k|l,↵̃
↵ pxi,k,t

0 ,xtq ´ V aR
k
↵pxi,k,t

0 q, (18)

for any fund i with style k, k ‰ l, and associated macroeconomic and fund-specific factors

x
i,k,t
0 . The RC summarizes the “risk premium” at any time t, that a fund with investment

style k has to bear on its V aR
k
↵pxi,k,t

0 q if any fund with investment style l exhibits extreme

losses.

Finally, one could be interested in computing a similar quantity measuring the e↵ect of a

distressed hedge fund in strategy l on the VaR (at some high level) of the banking sector. We

denote this quantity by eCoV aR
banks|l,↵̃
↵ and define it as verifying

 
Ybanks ° eCoV aR

bank|l,↵̃
↵ |Yl ° V aR

l
↵̃px0q

(
“ 1 ´ ↵, (19)

where Ybanks is the losses of the banks. Then, we can show that

eCoV aR
banks|l,↵̃
↵ “ F

´1
bankspu↵ | xbanks

0 q,

where the probability u↵ satisfies (17) (with k “ banks) and Fbanksp¨ | xbanks
0 q is the marginal

distribution of the banking sector. Here, similarly to the marginal modeling of the invest-

ment styles (see Section 3.2), the marginal distribution of the banks’ losses is modeled semi-

parametrically with the right tail being described by a dynamic GP distribution. The selected

set of covariates xbanks
0 is described in details in Section 3.2 of the Supplementary material.

Therefore, eCoV aR
banks|l,↵̃
↵ is the quantile at level u↵ under particular financial and economic

factors summarized in x
banks
0 and xt. Similarly to what we propose for funds, we obtain the

systemic risk contribution (SRC) of hedge funds style l at the bank level by computing

�eCoV aR
banks|l,↵̃
↵ pxi,banks,t

0 ,xtq “ eCoV aR
banks|l,↵̃
↵ pxi,banks,t

0 ,xtq ´ V aR
banks
↵ pxi,banks,t

0 q

with bank- and time-specific factors xi,banks,t
0 .

22



3.4.2 Risk measures in the funds’ universe

Figure 5 displays the total connectedness �̃t over time and within the universe of funds.

[Figure 5 about here.]

The minimum total connectedness is reached in August 1998 (0.207) whereas the maximum

(0.583) takes place in November 2008. We distinguish several periods: from 1994 to 1998, the

total connectedness remains stable around 0.3, before dropping sharply after Russia’s default

in 1998 and the collapse of LTCM fund. Then, from 2003 to 2007, we observe a phase of

increasing connectedness until February 2007. During the GFC, connectedness drops in April

2008 before exhibiting a sharp increase until November 2008. The post-crisis period shows a

progressive increase until 2016. Interestingly, the increase in total connectedness at the end

of 2008 is consistent with an increase in the dependence in assets held by funds during the

GFC (see, e.g., Nickerson & Gri�n (2017) regarding default risks) and with the time-varying

exposures to risk factors, as highlighted in Oh & Patton (2018). The dynamics of our measure

seems also to reflect well the time periods prior to the crisis identified by Agarwal et al. (2017)

where hedge funds modified drastically the composition of their portfolios. In particular, from

February 2007 onwards, hedge funds with long positions in stocks were found to increase their

investments in long put options to hedge against a market drop. This observation is in

accordance with the decrease in extremal connectedness observed over that period, indicating

that joint extreme losses across styles are less likely to occur on average due to reinforced

hedging. Another explanation, suggested by Baele et al. (2019), is the reduction of hedge

funds’ exposure to flight-to-safety phenomena. As shown by the authors, hedge funds from

all investment styles are negatively exposed to this factor and tend to reduce their exposure

several months before flight-to-safety events.

To investigate each investment strategy individually, we compute the style-specific mea-

sures �̃k
t for k “ 1, . . . , 12. These quantities are displayed in Figure 6.

[Figure 6 about here.]

Interestingly, we see that Short bias remains loosely connected with the other styles dur-

ing most of the considered time period. Several styles appear strongly connected (e.g., Fixed

income arbitrage exhibiting �̃
k
t values around 0.45) or with large variations (e.g., Managed

futures with �̃
k
t values ranging from 0.15 to 0.7). Most investment styles exhibit a decreasing

trend in their style-specific connectedness in summer 2008. The drop is particularly pro-

nounced for Long/Short equity, in accordance with an increase in put options hold by equity
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funds to hedge long stock positions before the GFC. However, similarly to observations made

for the total connectedness, we observe a pronounced increase in style-specific connectedness

for Distressed/Restructuring, Managed futures, and Fixed income arbitrage between May 2008

and November 2008. Their estimated levels of connectedness during that time period imply

that, if a fund with one of these strategies fails, then around 70% of the other investment

styles will register bankruptcies as well. Using the style-specific measure (14), we can also

study the contribution of each investment style to the total connectedness. These measures

reflect the proportion of the total connectedness attributed to a particular investment style.

For example, we observe that at the end of 2008, the Distressed/Restructuring strategy had

its contribution to the total connectedness shifting from 8% to 11%, reflecting a style-specific

connectedness above 70% (see Figure 5 in the Supplementary material).

Now, going beyond connectedness measures, we look at the risk contribution (RC) of the

Distressed/Restructuring style to the other investment styles, as defined in (18). An overview

of this risk contribution is obtained by looking at the distributional behavior of the set

!
�eCoV aR

k|l,↵̃
↵ pxi,k,t

0 ,xtq
)

k‰l
i“1,...,nkptq

(20)

for the investment style Distressed/Restructuring and at fixed time points t. We display in

Figure 7 the empirical kernel density estimate of the set (20) with Distressed/Restructuring

as a reference investment style and at three dates (October 2008, March 2009, and January

2013), corresponding to turmoil, post-crisis, and calm periods.

[Figure 7 about here.]

Distinct characteristics of the estimated distributions can be depicted by comparing the

three dates. For instance, di↵erences in the tail heaviness of each density indicate a higher

systemic contribution of Distressed/Restructuring during the GFC, attributable to changes

in extremal connectedness and marginal tail risks. While many funds usually exhibit a

�eCoV aR
k|l,↵̃
↵ around 12%, i.e., an absolute increase over V aR

k
↵ by 12%, �eCoV aR

k|l,↵̃
↵ be-

comes concentrated around 25% in October 2008. In addition, the support of the empirical

density at that date is much wider, suggesting that several funds are susceptible to su↵er from

tremendous losses or go bankrupt if a fund in Distressed/Restructuring registers a large loss.

Finally, we define a dynamic fund-aggregated measure of �eCoV aR
k|l,↵̃
↵ px0,xtq at the style
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level, given by

�eCoV aR
k|l,↵̃
↵ ptq “

∞nkptq
i“1 �eCoV aR

k|l,↵̃
↵ pxi,k,t

0 ,xtq ˆ TotAssi,k,t
∞nkptq

i“1 TotAssi,k,t
. (21)

This quantity describes the weighted risk contribution (as a proportion of the total as-

sets) of investment style l for all funds alive at time t and following an investment style

k ‰ l. As an illustration, we display this quantity in Figure 8 with the investment style

Distressed/Restructuring as a reference and ↵ “ ↵̃ “ .975.

[Figure 8 about here.]

Most styles exhibit a sharp rise during the GFC, e.g., above 30% for Yield alternatives,

consistent with the findings of Figure 7. For some strategies though, these variations are

rather limited and the range of the observed values is relatively narrow. For example, Equity

market neutral registered a maximum �eCoV aR
k|l,↵̃
↵ around 15% and most values around 6%.

3.4.3 Systemic risk measures

In this section, we study the likelihood that systemically important financial institutions may

be in trouble at the same time as hedge funds. To do so, we use daily stock return data from

a panel of 29 international banks over the period 1994–2017, and infer the extremal connect-

edness between these banks and the various hedge funds styles. The full list of banks and

details of the first-stage estimation can be found in Section 3 of the Supplementary material.

For all styles, we find a substantial average tail dependence with the pool of banks, reflecting

that hedge funds and banks tend to su↵er from extreme negative returns simultaneously; see

Figures 9 and 10 of the Supplementary material. The style that is the most connected with

banks on average, is Long/Short equity (�̂ “ .47), whereas Short bias is the less connected

one (�̂ “ .09). These results are consistent with the fact that Short bias tend to perform well

in bad market conditions, contrary to banks.

We display the bank-specific connectedness in Figure 9. We observe first a period of

stability from 1994 to 2003, then a progressive increase followed by a stagnation at a rather

high level up to July 2007. During that month, Bear Sterns had to famously liquidate two

hedge funds over-invested in CDOs, revealing the exposure of banks to subprime loans through

their participation in these funds. Interestingly, after that date, we observe a sharp drop in

connectedness over the next year, until a surge in September 2008 when Lehman Brothers filed
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for bankruptcy. These observations are consistent with the ones made for the fund-specific

connectedness, suggesting a reduction in risk exposure during the period leading to Lehman

Brothers’ bankruptcy. However, whereas fund-specific connectedness keeps increasing after

September 2008 and up to November 2008, we witness an earlier decrease in bank-specific

connectedness. It suggests that, during this period, the likelihood of simultaneous defaults

of funds across investment styles increases, but spillovers to the banking sector become less

likely. These results paint a finer picture than the one portrayed by Billio et al. (2012),

who discussed results aggregated over three-year periods. They observe an overall increase

of their connectedness measure between funds and banks from January 2006 to December

2008. We find a contrario that extremal connectedness increases before the onset of the

crisis (from January 2003 to March 2005), remains at a relatively high level up to July 2007,

peaks in September and October 2008, then mostly decreases during the crisis (up to March

2009). These observations are consistent with the deleveraging phenomenon and the liquidity

disappearance described in Ben-David et al. (2012) and Nagel (2012): starting from July 2007,

hedge funds faced tighter liquidity constraints due to massive redemption and withdrawals

of capital providers. Hedge funds had therefore to withdraw extensively from the market to

meet their obligations. Consequently, banks became less susceptible to su↵er simultaneously

from extreme losses since they were less exposed, via their liquidity-provider activities, to the

bankruptcy of a fund. In September and October 2008, with the near-collapse of the financial

system, this likelihood increased again (suggesting that risk exposure was still significant)

before falling back to its 2003 level. Since 2010, we observe an upward trend in connectedness

that is consistent with a rise in lending activities.

[Figure 9 about here.]

Although informative regarding the existing linkage with financial institutions, our connected-

ness measure neglects possible interaction e↵ects with the marginal distribution. To overcome

this limitation, we turn our attention to the systemic risk contribution (SRC) of the di↵er-

ent hedge funds’ style. The objective is to measure the additional risk to be supported - at

the marginal level - by banks in case of extreme losses among hedge funds. Similarly to our

fund-specific analysis, we consider the distribution of the following set at several dates:

!
�eCoV aR

banks|l,↵̃
↵ pxi,banks,t

0 ,xtq
)
i“1,...,nbanks

t
↵“↵̃“0.975

, (22)

where n
banks
t is the number of observations in our sample of banks at time t. For illustrative
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purposes, we consider Long/Short equity and Short bias as reference investment styles. Recall

that in case of tail independence, the corresponding eCoVaR would be equal to its VaR and

�eCoV aR to 0. The empirical densities of the sets (22) are displayed in Figure 10 at four

di↵erent dates: July 2007, September 2008, October 2008, and March 2009.

[Figure 10 about here.]

We observe the following: in July 2007, the median SRC is around 2.5% for Short bias, and

5% for Long/Short equity, reflecting the di↵erence in connectedness levels (0.06 for Short bias

and 0.52 for Long/Short equity). This SRC value reflects also the fact that the marginal

distributions of the banks are not particularly heavy-tailed at that time (see Figure 8 in

the Supplementary). Thus, the probability of su↵ering from extreme losses among banks

remains limited when taking into account the tail connectedness between banks and funds.

However, in comparison to a situation where funds and banks would be tail independent, we

observe a substantial risk increase, with eCoVaR being roughly from 50% to 100% larger than

the VaR. This interaction between marginal distribution and connectedness becomes much

more pronounced in times of crisis: in September 2008, for Short bias, the connectedness

stays rather stable. However, banks exhibit higher marginal risks. Thus, the risk increase

(in absolute term) is larger compared to July 2007, with a median value of approximately

7%. For Long/Short equity, the connectedness increases during that period (reaching 0.75),

leading to a SRC around 15%. These e↵ects are even more pronounced in October 2008,

with median SRC values reaching around 10% for Short bias and 22% for Long/Short equity,

despite connectedness levels back at 0.05 and 0.48, respectively. Additional results for the full

period considered are available in Section 3.3 of the Supplementary material.

4 Conclusion

We propose an improved econometric approach to measure the extremal connectedness of

hedge funds, a component playing a crucial role in the vulnerability level of the financial

system. The proposed approach combines multivariate extreme value theory with advanced

regression techniques. It adequately deals with extreme events and accounts for both het-

erogeneity and non-stationarity due to changing market conditions. To tackle low reporting

frequencies and short reporting periods at the fund level, we rely on panels of hedge funds’

returns grouped by investment styles. Several extremal connectedness and risk indicators are
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derived from these models.We estimate these various quantities for a large sample of hedge

funds’ returns reported monthly in the HFR database. Our results suggest that some tail

risk diversification is achievable by combining funds from investment styles that are weakly

connected at extreme levels. In addition, for several pairs of styles, we identify important vari-

ations of extremal connectedness during financial crises. Looking at the link between hedge

funds and a panel of banks, we find a significant extremal connectedness. As a consequence,

the risk that the banking sector su↵ers from extreme losses when hedge funds do so is much

higher than supposed by a marginal analysis.
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Figure 1: Left: Unconditional empirical mean of the pairwise conditional tail coe�cient �pxtq.
Right: Empirical mean of the pairwise conditional tail coe�cient �pxtq conditional on VIX
exceeding its third quartile. The width of each edge is proportional to the estimated intensity
of the tail dependence between two styles, used as nodes in the graph. Styles are grouped in
the four broader HFR categories (see Table 1).
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Figure 2: Estimated pairwise conditional tail coe�cient �pxtq for t “ 09{2008 (left), and
t P r01{2013, 12{2013s (right). The width of the edges is proportional to its estimated value.
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Figure 3: Di↵erences (12) in estimated pairwise conditional tail coe�cients for T̃ “ 09{2008
(left), and T̃ “ r01{2013, 12{2013s (right). Edges with values between the first and third
quartiles are removed for better visibility. The width of the remaining edges is proportional
to the absolute value of the di↵erence in tail coe�cients.
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Figure 4: Estimates of the tail dependence over time, for two pairs of strategies. Gray: 95%
confidence intervals. Red: smoothed lowpass moving average filter.
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Figure 6: Measures �̃
k
t of the style-specific connectedness for investment style k “ 1, . . . , 12

(black). Smoothed approximations using a lowpass moving average filter are shown in red.
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Figure 7: Empirical density of �eCoV aR
k|l,↵̃
↵ given by (18), with Distressed/Restructuring as

a reference investment style. We fix ↵ “ ↵̃ “ .975 and use three di↵erent dates: October 2008
(red), March 2009 (dashed black), and January 2013 (solid black).
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Figure 8: �eCoV aR
k|l,↵̃
↵ ptq with Distressed/Restructuring as a reference and ↵ “ ↵̃ “ .975.
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Figure 10: Empirical density of the SRC for Short bias and Long/Short equity.
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