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Uncertainty Quantification of Aerothermal
Flow-Material Simulations of Low-Density
Ablative Thermal Protection Systems

Coheur Joffrey

Abstract

Essential to space missions involving an atmospheric entry, the thermal protection system (TPS)
shields the spacecraft and its payload from the severe aerothermal loads. Low-density car-
bon/phenolic composite materials have gained renewed interest to serve as ablative thermal
protection materials (TPMs). These materials can accommodate the high heating rates and
heat loads encountered during the atmospheric entry, at hypersonic velocities, by absorbing part
of the incoming heat through physico-chemical transformations. One of the main endothermic
processes is the pyrolysis of the resin compound, whereby volatile products are released, leaving
a carbonaceous residue on the fibers.

Whereas new experimental data have already been published to characterize the decom-
position of these low-density carbon/phenolic materials, they are yet to be exploited for the
inversion of physico-chemical models. In addition, the issue of uncertainty quantification, re-
quired to assess the reliability of the numerical model and the physico-chemical models, is yet to
be addressed. Therefore, the overarching objective of this thesis is to contribute to the develop-
ment of an uncertainty-quantified numerical modeling of the ablation of new porous composite
materials and to the analysis of the impact of uncertainty on TPS design. To that aim, we first
address the development and the uncertainty characterization of physico-chemical models for
resin pyrolysis on the basis of new experimental data relevant to the pyrolytic decomposition of
the phenolic resin used in carbon/phenolic composite TPMs. Then, we analyze the impact of
the uncertainty in the physico-chemical models on the numerical modeling of ablation of TPS
by means of non-intrusive stochastic methods.

The central contribution of this thesis is to infer from these new experimental data an
uncertainty-quantified pyrolysis model. We adopt a Bayesian probabilistic approach to account
for uncertainties in the model identification. We use an approximate likelihood function involv-
ing a weighted distance between the model predictions and the time-dependent experimental
data. To sample from the posterior, we use gradient-informed Markov chain Monte Carlo meth-
ods with an adaptive selection of the numerical parameters. We develop a versatile code for
performing uncertainty characterization using Bayesian inference tools on engineering problems
in which the proposed methods are implemented. To select the decomposition mechanisms to
be represented in the pyrolysis model, we proceed by progressively increasing the complexity of
the pyrolysis model until a satisfactory fit to the data is ultimately obtained. To improve the
computational time, we derive a fast semi-analytical solution for the resin pyrolysis using multi-
component parallel reactions both for the case of a constant temperature and the case of a linear
heating rate. The pyrolysis model thus obtained involves six reactions and has 48 parameters.

A second contribution is the assessment of the impact of uncertainties on the material re-
sponse of an ablating TPS relevant to in-flight performance prediction. Using the six-reaction
pyrolysis model, we demonstrate its use in a numerical simulation of heat shield surface reces-
sion in a Martian entry. We provide probabilistic projections of the recession of the surface, the
production of gaseous species at the surface, and the temperature.

In addition to the aforementioned contributions, we also provide three supplementary pieces
of research. For the first one, we contribute to the development of a model for representing
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the process of ablation from resin pyrolysis to char ablation in a unified flow-material approach
where the Volume-Averaged Navier-Stokes equations are solved. This model is implemented in
the high-fidelity numerical code Argo from the research center Cenaero and verified by a code-
to-code comparison. The second one pertains to the development of an uncertainty-quantified
pyrolysis model including competitive mechanisms for the pyrolytic decomposition of the PICA
material. Finally, the third one concerns the calibration of material properties and environ-
mental conditions in a Bayesian inference framework using post-flight data of the Mars Science
Laboratory mission.

Keywords Atmospheric entry, thermal protection system, carbon/phenolic composite, Bayesian
inference, chemical kinetics, Markov chain Monte Carlo
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Quantification des incertitudes pour la
simulation aérothermique fluide-matériau des

systèmes de protection thermique ablatifs légers

Coheur Joffrey

Résumé

Essentiel aux missions spatiales impliquant une entrée dans l’atmosphère, le système de pro-
tection thermique (SPT) protège le véhicule spatial et sa charge utile contre les contraintes
aérothermiques importantes. Les matériaux composites de type carbone/phénol à faible densité
ont connu un regain d’intérêt dans leur utilisation comme matériaux de protection thermique
(MPT) ablatifs. Ces matériaux peuvent supporter les taux de chauffe élevés et les contraintes
thermiques rencontrées lors de l’entrée dans l’atmosphère, à des vitesses hypersoniques, en ab-
sorbant une partie de la chaleur grâce à des transformations physico-chimiques. L’un des prin-
cipaux processus endothermiques est la pyrolyse du composé résineux, qui libère des produits
volatiles et laisse un résidu carboné sur les fibres.

Alors que de nouvelles données expérimentales ont déjà été publiées pour caractériser la
décomposition des matériaux carbone/phénol légers, ces données restent encore à être exploitées
pour l’inversion des modèles physico-chimiques. En outre, la question de la quantification des
incertitudes, nécessaire pour évaluer la fiabilité du modèle numérique et des modèles physico-
chimiques, n’a pas encore été abordée. Par conséquent, l’objectif global de cette thèse est de
contribuer au développement d’une modélisation numérique avec quantification des incertitudes
sur l’ablation de ces matériaux composites poreux et à l’analyse de l’impact de l’incertitude sur
la conception des SPT. Dans ce but, nous abordons dans un premier temps le développement
et la caractérisation de l’incertitude de modèles physico-chimiques pour la pyrolyse de la résine
sur base des nouvelles données expérimentales relatives à la décomposition pyrolytique de la
résine phénolique. Ensuite, nous analysons l’impact de l’incertitude des paramètres des modèles
physico-chimiques sur la modélisation numérique de l’ablation des MTP au moyen de méthodes
stochastiques non intrusives.

La contribution centrale de cette thèse est d’inférer à partir de ces nouvelles données ex-
périmentales un modèle de pyrolyse avec quantification des incertitudes. Nous adoptons une
approche probabiliste bayésienne pour tenir compte des incertitudes dans l’identification du
modèle et de ses paramètres. Nous utilisons une fonction de vraisemblance approximative
impliquant une distance pondérée entre les prédictions du modèle et les données expérimen-
tales dépendant du temps. Pour échantillonner le postérieur, nous utilisons des méthodes de
Monte-Carlo par chaînes de Markov informées par gradient avec une sélection adaptative des
paramètres numériques. Nous développons un code polyvalent pour effectuer la caractérisa-
tion de l’incertitude en utilisant des outils d’inférence bayésienne sur des problèmes d’ingénierie
dans lesquels les méthodes proposées sont mises en œuvre. Afin de sélectionner les mécanismes
de décomposition du modèle de pyrolyse, nous procédons par augmentation progressive de la
complexité du modèle jusqu’à ce qu’un ajustement satisfaisant aux données soit obtenu. Afin
d’améliorer le temps de calcul, nous dérivons une solution semi-analytique au modèle de pyrolyse
faisant intervenir des réactions parallèles de composants multiples, à la fois pour le cas d’une
décomposition à température constante et le cas d’un taux de chauffe linéaire. Le modèle de
pyrolyse ainsi obtenu implique six réactions et comporte 48 paramètres.

Une deuxième contribution est l’évaluation de l’impact des incertitudes sur la réponse du
matériau d’un SPT ablatif, pertinente pour la prédiction des performances en vol. En utilisant
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le modèle de pyrolyse à six réactions, nous démontrons son utilisation dans une simulation
numérique de la récession de la surface du bouclier thermique lors d’une entrée dans l’atmosphère
de Mars. Nous fournissons des projections probabilistes de la récession de la surface, de la
production d’espèces gazeuses à la surface et de la température.

En plus des contributions susmentionnées, nous apportons également trois travaux de recherche
supplémentaires. Pour le premier, nous contribuons au développement d’un modèle représentant
le processus d’ablation, à partir de la pyrolyse de la résine jusqu’à décomposition de la matière
carbonisée, suivant une approche unifiée fluide-matériau dans laquelle les équations de Navier–
Stokes moyennées en volume sont résolues. Ce modèle, implémenté dans le code numérique
haute-fidélité Argo du centre de recherche Cenaero, est vérifié au moyen d’une comparaison des
résultats numérique avec ceux d’un autre code. Le second concerne le développement d’un mod-
èle de pyrolyse avec quantification des incertitudes, incluant des mécanismes compétitifs pour la
modélisation de la décomposition pyrolytique du matériau PICA. Enfin, le troisième concerne
la calibration des propriétés du matériau et des conditions environnementales dans un cadre
d’inférence bayésienne en utilisant les données post-vol de la mission Mars Science Laboratory.

Mots-clés Entrée atmosphérique, système de protection thermique, matériau composite car-
bone/phenol, inférence bayésienne, cinétique chimique, Monte-Carlo par chaînes de Markov
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Chapter 1
Introduction

1.1 Research context: atmospheric entry and thermal
protection systems for spacecraft

“The exploration of space will go ahead [...], and it is one of the great adventures
of all time.”

John F. Kennedy, 1962

More than half a century after the first Apollo missions, the adventure of space exploration has
become even more of a reality as humans are now preparing to go back to the surface of the Moon
and further on Mars. The number of space missions that will need to enter into the atmosphere
of a planet and safely deliver their payload is going to increase in the next decade (Bousquet et al.
[2015]). With the Artemis program, the National Aeronautics and Space Administration (NASA)
is planning to send astronauts to the Moon and increase the presence of humans in space, which
will require to safely return on Earth. Missions that will collect samples on the surface of Mars
or other celestial bodies will have to bring back the samples to Earth, such as for instance
the Mars Sample Return campaign (Joffre et al. [2018]), a joint effort of the European Space
Agency (ESA) and NASA. Future missions, increasingly more ambitious in scope, with heavier
payloads and targeting more extreme environments, call for the development of new technologies
and robust methods for the design of all parts of spacecraft.

One critical part of space exploration missions is the atmospheric entry, descent, and landing
(EDL) phase. It begins when the spacecraft reaches the uppermost layer of the atmosphere, after
its separation from the cruise spacecraft, until touchdown. For instance, Fig. 1.1 illustrates the
EDL sequence of events for the Mars Science Laboratory (MSL), whose entry capsule successfully
delivered the Curiosity Rover on the surface of Mars on the 5th August 2012 (Way et al. [2007];
Prakash et al. [2008]; Vasavada et al. [2012]).

First, during the atmospheric entry, the spacecraft follows a ballistic descent. As it reaches a
hypersonic flow regime, a strong shock wave is created in front of the body and leads to a sharp
increase of the temperature of the surrounding flow, typically more than 10000 K in the shock
layer (Anderson [2006]). The spacecraft loses most of its kinetic energy and is exposed to a
severe aerothermal environment. A thermal protection system (TPS) is essential to protect the
spacecraft from these harsh conditions. For instance, the Galileo probe was designed to survive
a peak heating of 30 kW cm−1 and a total heat load of 300 kJ cm−1 during its atmospheric entry
on Jupiter while transmitting data until the pressure and temperature completely destroyed the
spacecraft (Milos [1997]). Second, during the descent, parachutes are released to reduce further
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Figure 1.1: MSL entry, descent and landing sequence of events (artist’s concept). Image credit:
NASA/JPL-Caltech.

the speed of the spacecraft. A series of parachutes can be deployed, and the heat shield can be
separated from the main part. Eventually, the spacecraft operates its final descent and, for some
missions, operates its landing, in which case the spacecraft also includes lander in its payload
for the touchdown, such as for instance the MSL (Prakash et al. [2008]), or more recently the
NASA’s Perseverance mission to Mars. In all cases, the spacecraft has to go through the severe
atmospheric entry and requires to be protected by a heat shield.

1.2 Atmospheric entry flows and thermal protection ma-
terial (TPM) decomposition

Atmospheric entry flows are intimately related to hypersonic flows. There is no general criterion
to define hypersonic flows, but it can be identified by the appearance of several complex multi-
physics phenomena that become dominant as the Mach number increases (Anderson [2006]). The
effects of high temperature flows are by far the most dominant effects that are responsible of
two typical mission-killers, namely the gas-surface interactions (GSIs) and the radiation. Some
of these effects are illustrated in Fig. 1.2 and described below.

Because of the presence of the spacecraft entering the atmosphere at high-speed velocities,
the density of the flow changes drastically across the shock wave: the ambient air in front of the
body is strongly compressed and intense frictional dissipation creates high temperatures. Part
of the kinetic energy of the spacecraft is transferred to the internal energy of the flow molecules,
which increases the gas temperature. The internal energy modes are progressively excited due
to the rise of the translational temperature through the shock and molecules start to vibrate,
dissociate and even ionize (and thus is commonly referred as a plasma flow) for sufficiently high
temperatures. The gas can also emit radiation when going from an excited state to a less excited
one, adding radiative heating to the surface of the TPS. The importance of the radiation varies
from one mission to another. For low-speed entries, the radiative heat flux is low but increases
fastly with velocity (Duffa [2013]). It also depends strongly on the atmosphere considered:
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Figure 1.2: The hypersonic flow results in high enthalpy conditions with a bow shock and a
rarefied region behind the capsule. The figure shows the temperature in the symmetry plane
and flow streamlines. Image adapted from https://boltzplatz.eu/.

for example, the atmosphere of Titan is largely dominated by nitrogen (98.6%) with a small
amount of methane (1.4%). During the atmospheric entry of the Huygens probe, the formation
of cyanide (CN) molecules, which is known to be a strong radiator, was particularly prevailing
in that case (Magin et al. [2006]).

The gas in the shock layer is hot because of the strong shock wave. In the boundary layer (BL)
close to the surface of the TPS, where viscous effects are important, the high viscous dissipation
can also generate high temperatures. Chemical reactions occur inside the gas and the surface of
the vehicle is covered by a chemically-reacting boundary layer that interacts with the surface of
the TPS. This chemically-reacting boundary layer leads to high heat-transfer rates to the TPS.
The aerodynamic heating of the surface of the TPS induced by the hot boundary layer is called
the convective heating. At the surface, the recombination of the atoms can be triggered. These
phenomena strongly influence the behavior of the flow around the spacecraft and the interaction
with its surface, and depending on the type of material used for the TPS, additional phenomena
can occur. In any case, the high heat flux transmitted to the surface of the TPS results in the
heating of its surface and the increase of its inner temperature, which can eventually cause the
recession of its surface. Hence, a careful design of the heat shield is of utmost importance for
the integrity of the vehicle and its payload, and for the safety of the crew in the case of manned
missions.

1.2.1 Thermal protection materials
The type of materials used in TPS depends on the entry conditions. The TPS has to sustain
the peak heating and all the heat loads encountered over the entry trajectory. Examples of
entry trajectories expressed under the form of a velocity-altitude map are shown in Fig. 1.3 for
certain reentries into Earth’s atmosphere. Spacecraft coming from extra-terrestrial bodies (Mars
Sample Return, Apollo missions) usually enter on Earth’s atmosphere at a relatively high speed
(> 11 km/s), and the aerobraking will generate very high heat fluxes that are transferred to the
heat shield. Yet, for moderate velocity entries, such as for the Space Shuttle, the heat load on
the spacecraft is lower.

Therefore, TPMs are classically divided into two main categories (Williams and Curry [1992]).
On the one hand, non-ablative materials are used for reusable TPSs. They absorb the incoming

https://boltzplatz.eu/
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Figure 1.3: Atmospheric entry flight paths on a velocity-altitude map for the Space Transporta-
tion System (STS), or Space Shuttle, Apollo capsule and Mars Sample Return (MSR) missions.
The peak heatings are indicated by dots. Real gas effects as dissociation (more than 10% after
the shock) and ionization are drawn in dotted lines. For the comparison with a supersonic air-
craft, the Concorde trajectory is also represented. Figure modified from Howe [1989].

heat from the shock and boundary layers and re-radiate the energy away from the surface towards
the gas. They are more subjected to recombination because of the nature of the material used
(metals, ceramic). Reusable TPSs are preferred for moderate speed entries, typically below 7.5
km/s and heat fluxes up to 1 MW/m2. A well-known example of reusable TPS was implemented
on the Space Shuttle, for which the underside part of the TPS was made up of silica ceramic tiles.
Two other examples are the ESA Intermediate eXperimental Vehicle (IXV), shown in Fig. 1.4(a),
and the Space Rider (Bernard et al. [2019]). The TPS tiles are made up of a thin outer layer
of carbon fiber reinforced carbon-silicon carbide (C/SiC) material designed to withstand the
mechanical loads and resist to the heat fluxes (Pichon et al. [2006]; Panerai [2012]), while layers
of insulating material are inserted underneath for thermal insulation (alumina blankets close to
the outer surface and silica aerogels close to the cold structure). The Space Rider is planned to
be used up to six times, with minimum maintenance between two flights (Bernard et al. [2019]).

On the other hand, ablative materials can accommodate the high heating rates and heat
loads encountered during the reentry through phase change and mass loss. They lose their mass
when heated, due to chemical reactions such as oxidation or nitridation (Helber et al. [2017]),
or mechanical erosion which can further fasten the recession process. Generally ablative TPMs
are filled with resin that also sublimates when subjected to high heat fluxes, called pyrolysis
reactions. They are largely used for entry speeds higher than 8 km/s and heat fluxes exceeding
1.5 MW/m2, typically for extra-orbital high-velocity entry missions. The AVCOAT material
(density ≈ 510 kg m−3) has been used for the TPS of the Apollo missions for direct lunar return
at ≈ 11 km/s (Erb et al. [1970]) and is planned to be used for the multi-purpose crew vehicle
Orion (Harris et al. [2018]).

Lightness is an important factor to account for in order to reduce the energy costs associated
to the propulsion of the spacecraft and for maximizing its payload. Yet TPSs must be strong
enough to resist to mechanical erosion (spallation) and other possible mechanical failures of
the material. By the end of the 80’s, these requirements led to the development of a new
class of low-density carbon/phenolic ablative materials, like the Phenolic Impregnated Carbon
Ablator (PICA) material (density ≈ 280 kg m−3) by NASA (Tran et al. [1997b]) and later on to
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(a) (b)

Figure 1.4: Examples of reusable and ablative thermal protection systems. (a) Illustration of
the ESA IXV atmospheric entry (reusable TPS). (b) MSL heat shield made up of PICA ablative
TPMs. Credit: NASA/JPL-Caltech/Lockheed Martin.

the development of Asterm by Airbus DS for ESA missions (Ritter et al. [2011]). These materials
are typically made up of a carbon fiber matrix in which a resin component is impregnated. The
fibers provide mechanical resistance and the resin absorbs the heat transmitted to the material,
which makes these kind of material a suitable choice for thermal protection systems. Many types
of resins have been studied (see a review in Sharpe and Wright [2009]), and phenolic resins, used
for instance in the PICA material, are widely used. Under the increasing heat encountered during
the reentry, decomposition of this reinforced fiber/resin composite materials occurs mainly in
two steps (Duffa [2013]). First, the resin is progressively pyrolyzed, producing pyrolysis gases
that percolate through the material and leave a carbonaceous residue on the fibers, the char.
These pyrolysis gases add a blockage effect on the boundary layer gases reducing further the
overall heating of the material by acting as a barrier against the incoming flow. Then, the
charred material is ablated simultaneously by heterogeneous chemical reactions, sublimation,
and spallation. The high porosity of such materials is not only efficient in terms of weight,
but also reduces the effective thermal conductivity of the material and thus helps to keep the
substructure at a relatively low temperature for the payload to be safe.

In order to understand the physical phenomena at stake, experimental tests are necessary.
Studies on ablative materials date back to the 60’s with the development of early material
response codes (Kendall et al. [1968]; Chen and Milos [1999]) based on the experiments of Sykes
[1967] and Goldstein [1969]. Several experiments have been carried out more recently to get
new insight into the pyrolysis of the resin (Trick and Saliba [1995]; Trick et al. [1997]; Wong
et al. [2015b, 2016]; Bessire et al. [2014]; Bessire and Minton [2017]), char ablation (Panerai
et al. [2014, 2016]), or both pyrolysis and ablation of the material such as the experiments
in the von Karman Institute (VKI) Plasmatron facility (Helber et al. [2016b,a]). The Zuram
material (Natali et al. [2016]; Reimer et al. [2018]) is now being tested in order to have open
access materials properties for material simulations. Then, mathematical models are elaborated
and numerical simulations are used to validate them based on the experimental results and to
perform predictions. To predict the material thermal decomposition, current models are still
based on these early experiments, although nowadays numerical solvers allow the use of more
accurate models.

Low-density ablative thermal protection materials have proven to be successful during atmo-
spheric entries of several missions such as Stardust (Willcockson [1999]; Kontinos and Stackpoole
[2008]; Stackpoole et al. [2008]; Trumble et al. [2010]) the Mars Science Laboratory (Wright et al.
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[2011, 2014]), or more recently the SpaceX Dragon capsule (Seedhouse [2016]). Currently, only
ablative materials allow to sustain the high heat fluxes encountered during high-speed entries.
These materials will therefore enable future sample return missions and planetary space explo-
ration programs.

1.2.2 Importance of the coupling between the flow and material abla-
tion

The interactions of the hypersonic flow and the reactions occurring at the surface and within
the heat shield are manifold and there is a need to provide a detailed modeling for a correct
estimations of the heat fluxes transmitted to the spacecraft. Figure 1.5 summarizes the most
dominant physical phenomena.

High heat fluxes are transmitted to the material by convection from the boundary layer and
radiation from the shock layer, heating up the surface, and melting and sublimation of the surface
can be observed. Conduction within the material increases the heat shield temperature. Species
from the chemically-reacting boundary layer can diffuse towards the surface of the TPS and
react, for instance, through oxidation or nitridation (heterogeneous) reactions that lead to the
recession of the surface. Additional material can be removed by mechanical erosion (spallation)
at the surface. For low-density porous fiber/resin materials, species can even diffuse below the
surface, leading to the ablation of the bulk of the material (Lachaud et al. [2010]; Panerai et al.
[2014]; Schrooyen [2015]). The increase of temperature induces the pyrolysis of the resin of the
material, which loses its mass. The gaseous products of ablation and pyrolysis are blown into the
boundary layer where they may react with the boundary layer gases coming from the shock layer.
Species produced in-depth from volume ablation and pyrolysis reactions percolate towards the
surface and add to the mixture. For strong mass blowing rates, the boundary layer can be blown
off of the surface, significantly reducing the thermal gradients at the surface and decreasing the
convective heat flux. Depending on their type and concentration, ablation and pyrolysis gases
may block a significant amount of the incoming radiation as well, through absorption. This
process, known as radiation blockage, is still not fully characterized, due to the complexity of
the phenomena leading to the creation of the ablation and pyrolsyis gases. To further complicate
matters, certain ablation products such as CO, CN, and C3 are known to be strong radiators,
leading to the possibility that ablation may actually increase the radiative flux to the vehicle
through spontaneous emission of these species as they are heated in the boundary layer (Scoggins
[2017]).

Finally, as the flow moves across the surface of the ablator, the boundary layer thickness tends
to grow. For larger vehicles, the laminar boundary layer flow can transition to turbulent, which
may significantly increase the convective heating rate to the surface. Shock and boundary layer
gases are convected towards the after-body of the vehicle (see Fig. 1.2). As the flow wraps around
the leading corner of the vehicle, a significant decompression and separation occurs, generating a
large, turbulent wake and leading to rarefied regions where low-density effects are important. As
the wake cools, previously dissociated atmospheric gases and ablation products may recombine,
adding radiative heat flux to the after-body. Although relatively smaller compared with the fore-
body heating, a significant radiative heat flux can occur on the backshell due to recombination
and exceeds the convective heating. For Martian entries, a significant radiative heat flux can
occur on the backshell of the vehicle due recombination of CO2 which is a strong emitter in the
infrared region (Brandis et al. [2020]). This phenomenon may become increasingly important for
future missions aiming to send increasingly large vehicles to Mars, and for which it is therefore
important to quantify the species that are present in the boundary layer and their associated
uncertainty.
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Figure 1.5: Summary of high temperature gas-surface interactions.

1.3 Uncertainty quantification for TPS modeling

In many engineering domains, the ability to predict the outcome of a physical system is criti-
cal to understand and advance the state of science and technology, and is essential for engineers
throughout any design process. Predictive science is at the confluence of computational, physical,
and mathematical sciences. The field of uncertainty quantification (UQ) has recently emerged
at the intersection of these three pillars and proposes to investigate, based on the probability
theory and the use of statistical tools, the role played by uncertainty in the model and the data
on the behavior of complex science and engineering systems (Le Maître and Knio [2010]; Smith
[2014]; Arnst and Ponthot [2014]; Ghanem et al. [2017]). Due to the interdisciplinary nature of
the field, UQ encompasses a broad range of problems driven by real challenges of practical impor-
tance involving the interplay between physics, modeling, computational hardware, algorithmic
complexity, and decisions.

Computational studies are crucial in many fields that study complex physical systems or
when experimental campaigns are expensive and difficult to perform. Major advancements have
been made in the field of mathematical modeling, scientific computing, and data science that
have progressively improve the reliability of numerical predictions. The goal of uncertainty quan-
tification in numerical analyses is to characterize the impact of all the sources of uncertainty,
that can stem from the model inputs (such as parameter values, or initial and boundary condi-
tions), the difference between the model and the physical system (model discrepancy), numerical
approximations and errors, on the model output, with the ultimate objective to provide more
reliable predictions for practical problems.

We can think of the simulation tool as a black-box model that provides some output values, or
quantity of interests (QoIs), based on some input parameter values for the model, as illustrated in
Fig. 1.6. The first step toward the quantification of uncertainty in the QoIs is the characterization
of input uncertainties by means of probability density functions (PDFs) that rely on experimental
data; these PDFs can then be propagated through the numerical model to obtain the uncertainty
in the QoIs.

In present context of TPS design, the purpose of an uncertainty quantification study is
twofold. Firstly, it can be used to assist the design of TPS by performing predictions on the en-
vironment and the material-response by using computational software and statistical projections
for future mission design. By providing a statistical characterization of the output quantities of
interest, one can rigorously assess uncertainty margins on the predictions. Secondly, post-flight
data acquired from on-board instrumentation during an actual atmospheric entry of a space-
craft can be used for inverse analysis in order to reconstruct unknown quantities that can be
compared to the pre-flight analyses. By comparing the two, one can assess the validity of the
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Figure 1.6: Roadmap to uncertainty quantification and illustration of uncertainty propagation.
In this illustration, the input uncertainty is characterized by samples drawn from the input
probability distribution. The samples are propagated through the computational model by
means repeated simulations of the computational model in order to obtain the distribution of
the values for the quantity of interest. The central picture illustrates the computational model,
which represents the recession of the surface of the MSL heat shield during its atmospheric entry
on Mars (from Meurisse et al. [2018]).

current predictions, which will in turn ultimately enhance the reliability of the prediction and
help reducing the margins for future missions thanks to the reduction of uncertainty.

1.3.1 Assessing uncertainty margins on the predictions
The typical process for designing the thermal protection system is to calculate a nominal thick-
ness by performing numerical simulations using predictive tools, apply mission margins to the
thickness, and verify the results with appropriate experimental tests (Wright et al. [2014]). For
design purposes, numerical tools have been mostly used for simple predictions that are assigned
conservative safety margins. For instance, the nominal prediction for the Stardust1 mission re-
quires a thickness of 4.83 cm (Olynick et al. [1999]), and a safety margins of 20.5% was added,
resulting in a baseline thickness of 5.82 cm (Tran et al. [1997a]). With the constant improve-
ment of computer capabilities, more sophisticated models can be implemented (Bianchi et al.
[2012]; Martin [2013]; Martin et al. [2012]; Bianchi et al. [2013]; Chen and Gökçen [2014]; Mar-
tin and Boyd [2015]; Schrooyen et al. [2016]; Lachaud et al. [2017]) and quantification of the
uncertainties in the model parameters and in the predictions can be performed (Sanson et al.
[2018]; Rivier et al. [2019]). Although baseline predictions can nowadays be performed using
high-fidelity simulation tools, the estimation of their associated uncertainties has received less
attention. Therefore, the specific mission margins remain high.

Predictive tools are developed based on models and calibration parameters that can be ob-
tained from small-scale ground-based experiments in a controlled environment, and from which
the calibration parameter PDFs can be inferred. In this context, the uncertainty represents our
lack of knowledge of the underlying physics of the problem and measurement errors, and results
in a variability on the observed data. This lack of knowledge is due, for instance, to the inherent
variability of real-world manufacturing processes which lead to an unknown variability in the
material properties. Indeed, the preparation of the sample to be tested, or the characteristics
of the material at the microscopic level can be different from one experiment to the other and
lead to variability in experimental results (Panerai et al. [2017]) which will ultimately lead to
uncertainties on the inferred material properties. The experimental device itself can also lead
to observation errors, and the mathematical model used in the simulation tool can have inac-
curacies, that will also impact on the inferred model parameters. All these uncertainties are

1Stardust (1999–2006) was a mission designed to collect extra-terrestrial materials from the coma of the comet
Wild-2.
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difficult to separate, and the approach taken in this work will consist in attributing them to the
material parameter variability such that it can be propagated in numerical solvers. Therefore,
there is a need for a robust characterization of the parameter uncertainty and estimation of the
propagated uncertainty.

1.3.2 Enhancing the reliability of the models
Identifying inaccuracies in models can be tough as the atmospheric reentry is a complex multi-
physics problem that calls for identifying models for, just to name a few, the atmospheric con-
ditions, the chemistry (equilibrium or finite-rate), the radiation, turbulence, or the flow regime
(Navier–Stokes equations in continuum regime or Boltzmann equations in the rarefied regime).
The input model parameters that have an impact on the aerothermodynamics are also various,
such as for instance, the atmospheric density and its variability, or the wind speed (Vasavada
et al. [2012]); flight parameters, such as the vehicle velocity, angle of attack or the reentry path;
or parameters from the models used within the computational fluid dynamics (CFD) codes.
Ground-based experiments are essential for the validation of computer models, but they can-
not substitute for actual flight environment. Results from post-flight analyses are necessary
to assess the impact of extrapolating the models developed from ground-based experiments to
flight. Hence, the comparison of post-flight data with the pre-flight predictions will ultimately
help identifying whether the current models used in the simulations accurately reproduce the
physics.

Post-flight data provide a global response of the real-size TPS and an adequate instrumen-
tation on the heat shield can provide useful measurements about the physical phenomenon
encountered. For instance, the MSL mission flight data consist of pressure and temperature
probes were embedded within the heat shield, hence only allowing an indirect observation of the
conditions at the surface. Such real-world experiments being rather scarce, a rigorous recon-
struction of the environment using material response codes and the available flight data while
taking into account the measurement uncertainty is thus of interest. Post-flight analyses, such as
the reconstructed environment from the measurements of the thermocouple, can be ultimately
compared to the pre-flight analysis and CFD predictions to demonstrate the simulation capabil-
ities (White et al. [2013]) and in order to improve the numerical models and the knowledge of
their parameters and ultimately reducing their uncertainties.

1.4 Towards a robust characterization of uncertainty in
aerothermal flow-material simulations

Thermoanalytical studies involve using experiments to determine the reaction process provided a
given temperature increase and characterize the species that are produced through the reaction.
New experimental studies have recently been reported relevant to the pyrolytic decomposition
of the phenolic resin used in carbon/phenolic composites, namely, in Wong et al. [2016] and
Torres-Herrador et al. [2021], under several isothermal conditions, and in Bessire and Minton
[2017] for linearly increasing temperatures. In these experimental studies, the mass of a sample is
monitored as a function of temperature using thermogravimetric analysis (TGA), and the iden-
tification of the volatile decomposition products are measured by means of a mass spectrometer
(in Wong et al. [2016]) or gas chromatography (in Bessire and Minton [2017] and Torres-Herrador
et al. [2021]).

The class of pyrolysis models adopted represents the decomposition mechanisms in terms of
a system of chemical kinetic equations with reaction rates that obey an Arrhenius-like generic
model. Based on the observations, a mathematical model can be deduced (model inference) and
the parameters of the model can be inferred. Several works already considered the inference of
the kinetic parameters in order to update pyrolysis models based on recent experiments. Most of



12 1.5. Objectives and contributions of the thesis

the inference studies are performed in a deterministic framework, mainly by using optimization
methods to obtain best-fit estimates (Lautenberger and Fernandez-Pello [2011]). In a previous
work by Torres-Herrador et al. [2019b], the new experimental data of Bessire and Minton [2017]
for PICA TPM have already been used to estimate parameters of a pyrolysis model, but the
model identification was formulated as a deterministic inverse problem, and an estimation of
associated uncertainties is thus still required.

There have been several efforts to infer kinetic parameters of Arrhenius-like chemical reaction
models from experimental data with a probabilistic approach, especially for combustion applica-
tions, see, for instance, Najm et al. [2014]; Cheung et al. [2016]; Khalil and Najm [2018]; Urzay
et al. [2012], in which a Bayesian approach (Tarantola [2005]; Stuart [2010]; Kaipio and Somersalo
[2005]) is adopted in order to characterize the model parameter uncertainties. The Bayesian ap-
proach consists in assigning a prior PDF to the parameters by using the current knowledge of the
parameters and to update this probability distribution by incorporating the physical model and
the new information (measurements) with their uncertainty through the likelihood function,
resulting in the so-called posterior PDF (Gelman et al. [2014]; Smith [2014]). Investigations
of pyrolysis experiments by using a Bayesian approach have been performed for high-impact
polystyrene, bisphenol-A polycarbonate, and polyvinyl chloride at two different heating rates
for fire applications in Bruns [2015]. For TPMs decomposition, whereas new experimental data
have already been published and new experimental procedure are still being developed, they are
yet to be exploited for the inversion of physico-chemical models in a probabilistic framework.

In addition, the issue of uncertainty quantification, as required to assess the reliability of the
numerical model and the physico-chemical models, is yet to be addressed. Numerical studies on
thermal protection systems usually assign standard probability distributions to characterize the
input uncertainties (Wright et al. [2007]; Copeland et al. [2012]; Rivier et al. [2019]), either from
expert knowledge or from pre-flight ground-based experiments, which do not take into account
the potential correlations between input parameters. It is therefore desirable to infer the proba-
bility distribution of the inputs from available experimental data in a stochastic framework, then
to propagate the input probability distribution through high-fidelity numerical codes to obtain
a probability distribution for quantities of interest. A correct estimation of those uncertainties
will eventually lead to a robust estimation of errors on numerical simulations for better assessing
safety margins.

1.5 Objectives and contributions of the thesis
The new experimental data that have recently been published for the characterization of the
pyrolysis of carbon/phenolic TPMs are yet to be exploited for the inversion of the physico-
chemical models, and the issue of uncertainty quantification is yet to be addressed. With the
overarching goal of contributing to the development of an uncertainty-quantified numerical model
for ablation of new porous fiber/resin composite materials, this thesis targets the following
objectives:

1. the inference from new experimental data of an uncertainty-quantified pyrolysis model,

2. the uncertainty propagation through high-fidelity numerical models for in-flight predictions
for an atmospheric entry on Mars.

For the first objective, we formulate the problem as a Bayesian probabilistic inverse problem,
in which we use an approximate likelihood function involving a weighted distance between the
model predictions and the experimental data. This formulation provides a probability distribu-
tion over the model parameters, the posterior, which assigns higher probabilities to parameter
values that correspond to predictions that better fit the experimental data. In general, com-
puting the posterior thus obtained from Bayes’ theorem is not feasible and sampling algorithms
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are usually required in order to obtain samples from the probability distribution (as sketched on
the right in Fig. 1.6). To sample from the posterior, we investigate gradient-informed sampling
methods and two improvements are proposed in order to enhance the efficiency of the sam-
pling: a reparameterization of the pyrolysis equations, and an adaptation of the approximation
of the so-called covariance matrix. In order to have a versatile and flexible toolbox for imple-
menting and testing the proposed improvements, we develop a numerical code for performing
Bayesian inference and uncertainty quantification in the Python language, named hereafter Py-
bitup (Chapter 6). Hence, a first contribution of this thesis is to propose a new pyrolysis model
for PICA decomposition with uncertainty-quantified parameters characterized from the samples
drawn from the posterior distribution, which is representative of the experimental observations.
This contribution and the proposed improvements are exposed in the first part of Chapter 7.

For the second objective, we provide probabilistic projections of the recession of the surface
of an ablating TPS, the production of gaseous species at the surface and the temperature. The
new pyrolysis model and the model parameter distribution inferred using the Bayesian approach
are used for the propagation of uncertainty through a high-fidelity code for material-response
modeling. The posterior PDF can be used as input parameter PDF and the samples can be
used for direct propagation. Hence, a second contribution of this thesis is the assessment of the
impact of the uncertainty in pyrolysis model parameters on the response of an ablating TPS
relevant to in-flight performance prediction, and this is exposed in Chapter 9.

In addition to these two objectives and the foregoing contributions, we also contribute to
three supplementary research works that are also presented in this manuscript:

1. The high-fidelity numerical code Argo is being constantly improved by a research team
at Cenaero. The code is able to perform multi-dimensional simulations of complex flow-
material interactions including the ablation of thermal protection materials. In close col-
laboration with Dr. P. Schrooyen and following the work initiated in Schrooyen [2015]
and subsequently in Coheur [2016], we contribute to the implementation within Argo of
a model for the resin pyrolysis and char ablation in a unified flow-material approach. To
illustrate the novel approach for solving aerothermal flows around and through ablative
porous materials, we carried out simulations of a pyrolysis-ablation experiment of a TPM
subjected to a high enthalpy flow, which results are presented in Chapter 4.

2. Within the NASA Supercomputing Division at NASA Ames Research Center, researchers
from the team of Nagi N. Mansour are developing the material-response code PATO to
study the response of ablative thermal protection systems. We contribute to the analysis
of the post-flight entry data of the Mars Science Laboratory in order to improve the
modeling of the thermal protection system using PATO and the Dakota code for performing
uncertainty quantification, which results are presented in Chapter 8.

3. With F. Torres-Herrador from the von Karman Institute and J. Blondeau from the Vrije
Universiteit Brussels, a novel model for PICA decomposition featuring a competitive mech-
anism was introduced and presented in the co-authored work Torres-Herrador et al. [2019a].
The focus of the research is on establishing the relevance of accounting for competitive
mechanisms in a new pyrolysis model for PICA, to which we contribute to the inference
of model parameters in a Bayesian probabilistic framework. These results are presented in
the second part of Chapter 7.

1.6 Overview of the manuscript
The manuscript is divided into five parts with a total of 10 chapters, including this introduction,
and four appendices. The three first parts constitute the main content of the thesis. Part I
(Chapters 2–4) addresses the modeling of atmospheric entry problems and pyrolysis, and presents
deterministic simulations of ablation experiments. Part II (Chapters 5–6) is concerned with the
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review of theory and methods for performing uncertainty quantification and introduces the
toolbox developed in this work for Bayesian inference. Part III (Chapters 7–9) presents the
methodology developed in this work and its application to the quantification of uncertainty in
model parameters, and presents the probabilistic projections for an atmospheric entry problem.
Conclusions are drawn in Part IV (Chapter 10) and the appendices in Part V (Appendices A–D)
provide additional information about this work. In Table 1.1, we summarize the content of the
different chapters and we highlight whether a chapter is a review of the literature or presents
new material.

Chapter 2 presents a review of the physics of atmospheric entry flows and TPM decomposition
(pyrolysis and ablation), and gives an overview on the past and current computational tools used
to simulate the flow-material interaction. We present the governing conservation equations of
mass, momentum and energy and we introduce basic concepts related to high temperature flows.
Then, the volume-averaged Navier–Stokes equations are reviewed, which allow to conciliate the
flow and the material response within a single domain of computation (unified approach) and
are used to simulate the flow within and around porous ablative TPMs.

Chapter 3 focuses on the models that are used to simulate the resin pyrolysis of thermal
protection materials and presents both a review of current modeling and new contributions of
this thesis. Pyrolysis experiments and the recent experiments on PICA are briefly reviewed. To
simulate the resin pyrolysis, two types of model are investigated. Firstly, multi-component (par-
allel) reaction models are presented. For these models, we contribute to derive a semi-analytical
solution that significantly speeds-up the computational time for the simulation of pyrolysis ex-
periments, and we perform a sensitivity analysis of the production rate on the model parameters.
This solution and the results of the sensitivity analysis are presented in the publication Coheur
et al. [2021b]. Secondly, a more detailed modeling for pyrolysis that includes competitive mech-
anisms is presented. Such mechanisms are already widely used for biomass pyrolysis, but were
only introduced recently for TPM pyrolysis. The basics for competitive mechanisms and a py-
rolysis model including a competitive mechanisms for PICA are presented in the co-authored
work Torres-Herrador et al. [2019a].

Chapter 4 presents the use of the volume-averaged Navier–Stokes equations and of the unified
flow-material approach to solve pyrolysis-ablation problems. We first compare with a state-of-
the-art material response code the results of the simulation of a one-dimensional pyrolyzing
material for verification using a multi-component mixture for pyrolysis gas production. We
present an axisymmetric simulation of a material subjected to a high enthalpy flow, that under-
goes pyrolysis and ablation with a six-species mixture with simplified pyrolysis gas production.
The test problems are set up within the multidimensional tool Argo, developed at Cenaero.

Chapter 5 is an introduction to the theory and the methods for uncertainty quantification
in computational models. We present the Bayesian framework that we use to characterize input
parameter distributions, and we describe sampling algorithms that allow us to generate samples
from the posterior distribution. We also discuss more advanced sampling algorithms that use the
gradients of the posterior distribution to improve the convergence of sampling algorithms towards
the right solution. For uncertainty propagation, we present the direct Monte Carlo propagation
method and non-intrusive polynomial chaos methods, which aim at replacing the expensive
computational model by a (cheaper) surrogate model in order to reduce the computational cost
of uncertainty propagation.

Chapter 6 describes Pybitup, a numerical toolbox written in Python for performing Bayesian
inference that was developed during this thesis. It implements the state-of-the-art sampling
algorithms described in Chapter 5 as well as the proposed improvements later described in
Chapter 7. We describe the structure of the code and provide examples. We discuss the future
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developments sought for the code regarding uncertainty propagation, surrogate modeling and
sensitivity analysis.

Chapter 7 focuses on the characterization of input parameter uncertainties, and in particu-
lar the parameters related to the kinetic model for the pyrolysis of the material, for which the
values and related uncertainties are deduced (inferred) from the recent dedicated on-ground ex-
periments within a Bayesian framework using an approximate likelihood function. We describe
a methodology that seeks to improve the convergence of gradient-informed sampling algorithms
by adapting tuning parameters of the algorithms. We demonstrate the application of the un-
certainty quantification methods for parameter inference to the two type of pyrolysis model
described in Chapter 3. First, the algorithms with the adaptation of the tuning parameters are
applied to the parallel pyrolysis models, which are cheaper in terms of computational time. The
methods and these results are presented in the manuscript Coheur et al. [2021a]. Then, we ap-
ply the probabilistic framework with Bayesian methods to the inference of competitive pyrolysis
model parameters, and investigate the influence of the competitive mechanisms applied to PICA
decomposition. This second contribution is presented in the co-authored manuscript Torres-
Herrador et al. [2019a].

Chapter 8 presents the results for the inference of material properties and the reconstruction
of the aerothermal conditions at the surface of the heat shield. The post-flight data of the MSL
mission are used and we apply a Bayesian probabilistic method to the material-response code
PATO to investigate how the uncertainty in the post-flight data affect the reconstructed material
and environment properties. We discuss the comparison of such results with pre-flight analyses.

Chapter 9 addresses the uncertainty quantification of the material response of the heat shield
during a Mars atmospheric entry. We provide probabilistic projections on the heat shield re-
cession, gas composition at the surface and temperature from the uncertainties in the pyrolysis
model parameters.

Chapter 10 gives a summary and draws the general conclusions of the thesis. Directions for
future research in atmospheric entry modeling and uncertainty quantification are also provided.

Keywords Chapter Content
Atmospheric entry / Numerical modeling 2 Review

Pyrolysis / Modeling 3 Review / new
Pyrolysis-ablation / Unified approach 4 New

UQ / MCMC / PCE 5 Review
Numerical toolbox / Sampling / UQ 6 Review / New

Inference / MCMC / Pyrolysis 7 New
Post-flight / Inference / Aeroheating 8 New
Atmospheric entry / Predictions 9 New

Table 1.1: Summary of the content of the thesis and indication of the contributions.
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Chapter 2
Physics of atmospheric entry flows

This chapter is an introduction to the modeling of aerothermal flows and the decomposition
of thermal protection materials. We first discuss the underlying hypotheses of this work and
briefly review the approaches to model atmospheric entry flows and ablative material response
(Section 2.1). We then present some fundamentals of high temperature gas effects, in particular
thermodynamic properties and chemistry (Section 2.2) for flows in thermal equilibrium. Next,
we present the Navier–Stokes equations for compressible, viscous reactive flows that are used
to model the external flow around the spacecraft (Section 2.2.3). Lightweight ablative materials
involve some porosity, and species from the external flowfield can penetrate inside the TPS.
The description of the flowfield within the pores can be required for an accurate modeling of the
ablation of the material. Hence, to model the flow within the porous medium, we present the
volume-average theory (Section 2.3). By spatially smoothing the fluid mechanics equations, valid
in the plain-fluid region, over the whole porous domain, their validity is extended to the whole
domain. The spatially-smoothed version of the Navier–Stokes equations for compressible, viscous
reactive flows, the so-called volume-averaged Navier–Stokes (VANS) equations, are then stated.
With an appropriate treatment of the fluid-material interface, the VANS equations can be used
to simulate in the same computational domain both the external and the internal flows, named
hereafter as the unified approach. The focus is given here on the VANS equations because they are
implemented within the numerical solvers used in this work, namely the code Argo, that features
a unified approach, and the Porous-Material Analysis Toolbox Based on OpenFOAM (PATO)
code, that focuses on the material response.

2.1 Hypotheses for the modeling of aerothermal flows and
ablative porous material response

Atmospheric entry flows are by essence high-temperature flows. The high temperatures affect
the thermodynamic properties of the flow (such as its energy, enthalpy, specific heat), the trans-
port properties (e.g. viscosity, thermal conductivity), promote chemical reactions and lead to
radiation to and from the gas. If the temperature is high enough to cause ionization, the gas
becomes a plasma and electromagnetic forces could be included. As we mainly focus on the part
of the flow that is close to the vehicle, electromagnetic effects will be neglected, but these effects
can be important downstream of the shock layer and significantly influence the flow properties.

We start our discussion on high-temperature flows by discussing the flow regime that permits
the description of the flow as a continuum. Next, the flow-material interactions considered are
briefly described and finally we shortly review strategies used to model atmospheric entry flows
and their interaction with the TPS. The next section (Section 2.2) will delve into the properties
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of the flow and chemical reactions.

2.1.1 Continuum versus rarefied flow regimes
A gas is a collection of particles (molecules, atoms, ions, electrons, etc) that move in a more or
less random motion in a volume V (m3). The gas particles can interact with their neighboring
particles due to intermolecular forces, that are created by the electronic structures of these
particles. A perfect gas is a gas where intermolecular forces can be neglected. For perfect gases,
the pressure p (Pa), temperature T (K) and density ρ = m/V (kg m−3), with m (kg) the mass
of the gas, are related through the perfect gas equation

p = ρRT
M

, (2.1)

where R = 8.314 is the universal gas constant (J g−1 K−1) and M the molar weight of the gas
(kg mol−1). It can be expressed equivalently by

p = nkbT, (2.2)

where n is the number of particles per unit volume, kb is the Boltzmann constant, defined as
the ratio R/NA = 1.38× 10−23 (J K−1), with NA the Avogadro’s number which represents the
number of particles per moles. Except at very high pressures or low temperatures, intermolec-
ular forces can be neglected and in the present context of aerothermal flows, the perfect gas
assumption can be made.

Following its reentry trajectory, a spacecraft will generally encounter different flow regimes
for which the flowfield dynamics need to be properly addressed. At low altitudes, typically below
80 km on Earth, the flow is considered to be in the continuum regime: the collisions among the
particles are important and the flowfield can be described by the Navier–Stokes equations. It is
the flow regime for most of the practical aerodynamic applications. However, at higher altitudes,
the flow starts to be rarefied, the gas density is decreasing and collisions among particles occur
less often. In order to describe the physics happening at those higher altitudes (above 120 km
on Earth), the gas must be considered at the molecular level.

The characterization of the flow as a continuum is based on the assumption that the mean
free path λ, that is, the average distance traveled by a single particle between two collisions, is
small compared to a characteristic length Lc. As a first approximation, the mean free path for
a single-species gas is given by

λ = 1√
2πd2n

, (2.3)

where d is the kinetic diameter of the particle. The quantity πd2 is frequently called the collision
cross section. The ratio 1/πd2n can be seen as the mean free path of a particle without accounting
for the velocity of the other particles, and the factor

√
2 is a correction that accounts for the

relative speeds (Vincenti and Kruger [1965]). Using Eq. (2.2) to estimate the number n of
particles per unit volume, we can see that the mean free path is proportional to the temperature
and inversely proportional to pressure. Then, the validity of the continuum regime can be verified
by computing the Knudsen number, defined as the ratio

Kn = λ

Lc
. (2.4)

For Kn < 0.1, the continuum assumption can be made and the Navier–Stokes equations are
applicable. For 0.1 < Kn < 10, slip effects are important (the traditional no-slip condition used
at the interface between the fluid and a solid surface begins to fail). For Kn > 10, the flow is
considered to be rarefied. When considering rarefied flow regimes, individual impacts on the
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Figure 2.1: Sketch of an atmospheric entry and zoom on the porous region of an ablative TPM.
The illustration of the porous medium is adapted from Schrooyen [2015].

surface are important and the aerodynamics and heat transfer are approached from a statistical
point of view. The Navier–Stokes equations are no longer valid and the Boltzmann equation is
used to described the evolution of the velocity of the particles in the gas, and methods such as
the direct Direct Simulation Monte-Carlo (DSMC) can be used to solve it (Bird [1994]).

During the first part of the reentry, at high altitudes, there are less particles in the gas,
the pressure is low and the mean free path of the particles is usually large. The flow is in the
rarefied regime, but the aerobraking of the spacecraft and the heating of the TPS are lower. In
this work, flight conditions that correspond to later parts of reentry trajectories are considered,
in which continuum equations are valid at the scale of the heat shield (Lc ∼ 1 m) and in which
the ablation of the TPM can be substantial. For example, typical pressure and temperature at
the peak heating trajectory point for the reentry of a spacecraft in the Earth atmosphere are 0.1
atm and 10000 K, respectively, and assuming a kinetic diameter for air equal to 35 × 10−10 m
(oxygen and nitrogen have similar kinetic diameters), this leads to Kn = 2.5× 10−7.

2.1.2 Flow-material interactions
Within the heat shield, the characteristic length is much smaller (Lc ∼ 10−6 m), see Fig. 2.1,
of the order of the length of the fibers that constitute the composite material. Physico-chemical
reactions happen at the microscopic scale within the heat shield, such as pyrolysis reactions,
or oxidation of the carbonaceous char layer. During the atmospheric entry phase, part of the
heat flux is transferred inside the TPS, leading to a gradual increase of the temperature of the
material. With this increase, large temperature gradients are established and the fiber/resin
material is thermally degraded and removed by two physico-chemical phenomena: pyrolysis and
ablation. Four characteristic zones can be identified within the material:

• Virgin zone: region where the material is still in its virgin state and no reaction occurs
yet.

• Pyrolysis zone: region where the pyrolysis reactions and mass loss occur.

• Char zone: region where all the disposable constituents from the resin have already been
consumed. No more pyrolysis reaction can occur.

• Ablation zone: subregion of the char layer in which the ablation of the charred material
is found to occur. Its thickness depends on the Thiele number.
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Figure 2.2: Illustration of the decomposition zones during the ablation of the PICA thermal
protection materials from the virgin zone (bottom) to the ablation zone (top). The images
showed on the left are scanning electron microscope micrographs of PICA (from Lawson et al.
[2010]). On the right, result of a 3D microscopic simulation of the oxidation of PICA (from
Lachaud et al. [2010]). Adapted from Schrooyen [2015].

In the pyrolysis zone, the polymeric resin is thermally degraded and is losing mass while
releasing pyrolysis gases in the form of water, hydrogen and hydrocarbons. This thermal degra-
dation can be separated into three (overlapping) temperature regions characterized by the reac-
tions occurring in each range, which may be described by four dominant heterogeneous reactions
(Trick and Saliba [1995]; Trick et al. [1997]) and the production of pyrolysis gas increases the
internal pressure inside the sample. Lachaud et al. [2015] showed numerically that these pressure
gradients led to a flow that separates into two streams: one going toward the upper surface and
blocking the gases from the boundary layer and one going toward the shoulder of an iso-flux
sample. The process of pyrolysis decomposition will be addressed in more detail in Chapter 3.

In the ablation zone, the ablation of the char is caused by heterogeneous chemical reac-
tions (oxidation, nitridation), phase change (sublimation) and/or mechanical erosion (spalla-
tion). Most of the current ablation models consider that ablation is a surface phenomenon (all
the mass is lost at the surface) (Li et al. [2015]; Lin [2007]). However, for lightweight porous
ablative materials, the decomposition of the resin and the ablation of the fibers should also be
treated within the porous medium, referred to as volume ablation, for accurate predictions of
the heat shield temperature and overall surface recession. Indeed, because of the high porosity
of the material, the reacting gas from the outer flow, mostly oxygen, diffuses inside the layer
and reacts in the volume of the porous material with the carbon fibers. For example, post-flight
analyses of the Stardust mission, for which the TPS was made up of PICA material, show that
the models with surface ablation over-predict the recession of the surface of the TPS and surface
density, while in-depth density profiles are in good agreement with the predictions (Stackpoole
et al. [2008]), suggesting that close to the surface, subsurface oxidation may occur. Experimental
evidence (Panerai et al. [2014]) also shows that for certain pressure and temperature conditions,
flow species can diffuse within the material and react in-depth with the fibers. When such sub-
surface ablation occurs (sublimation, oxidation, erosion), it leaves the carbon fiber under the
surface unprotected, which could ultimately lead to the removal of a more reactive (and fragile)
matrix.

Therefore, for the study of volume ablation, Lachaud et al. [2010, 2011b] suggests to spatially
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average the mass balance equations within the pores of the material (at the microscopic scale)
in order to derive equations at the macroscopic scale of interest, thus allowing subsurface species
diffusion and account for in-depth fiber ablation. Following this approach, Schrooyen [2015]
performed the spatial smoothing of the Navier–Stokes equations, valid in the fluid phase, over
the porous medium to obtain the so-called VANS equations, that are valid everywhere (Whitaker
[1999]). By doing so, information regarding the complex structure of the porous medium is
scaled-up, thus providing a macroscopic view of the local information. The volume-average
framework also allows to implement a unified flow-material approach for aerothermal simulations,
in which both the porous material and the surrounding fluid are simulated within the same
computational domain. As it will be discussed in the next section, the unified approach in turn
avoids the need for deriving boundary conditions at the interface and allows to have a time
accurate flow-material interaction.

Thus, ablation occurs in a region that extends from the surface of the material to the be-
ginning of the char zone. The ablation of the char occurs due to heterogeneous chemical re-
actions (oxidation, nitridation), phase change (sublimation) and/or mechanical erosion (spalla-
tion). Mechanisms of ablation depend on the reentry conditions. For moderate temperature and
pressure, typically for T < 3000 K, p < 55 atm, chemical ablation dominates (Palaninathan and
Bindu [2005]). The key parameter for this in-depth ablation zone is the Thiele number, defined
as the ratio of the reaction rate and the diffusion rate:

Th = Lc√
Deff/Sfkf

, (2.5)

where Deff is the effective diffusion inside the porous medium, Sf the specific surface and kf
is the reaction rate coefficient of the fibers. The characteristic length Lc can be, for instance,
the depth of the char zone. At high Thiele numbers (Th > 50), ablation is mostly a surface
phenomenon because the diffusion process is not fast enough. Conversely, at a low value of
the Thiele number, the diffusion is much faster than the reaction rate and the thickness of the
ablation zone becomes larger and volume ablation is promoted.

The value of the Thiele number depends on the flow conditions. For a typical plasma test
experiment in the VKI Plasmatron (Helber et al. [2016b]), the Thiele number was found to be
higher than 300, indicating a surface limited ablation (Schrooyen et al. [2017]). For an ablation
experiment in a flow tube reactor (Panerai et al. [2014]), performed at a lower pressure, a value
of the Thiele number around 2 was found, indicating a volume ablation regime.

2.1.3 Numerical strategies for flow-material simulations
Because of the complexity of the physical phenomena that need to be accounted for in the model-
ing and the differences in the length scales, most of state-of-the-art codes for the computation of
aerothermal flows and TPM response are often decoupled in the sense that the code used to per-
form CFD simulations for the vehicle aerothermodynamics (the environment) is separated from
the material-response code. The TPS decomposition is then studied by either providing bound-
ary conditions at the fluid-material interface (fully decoupled), or by exchanging the boundary
conditions iteratively between the fluid and the material solvers that run separately (weak cou-
pling). Moreover, mass and heat exchange are usually considered as surface phenomena whereas,
as mentioned previously, in certain flow conditions and/or for highly-porous ablative materials,
the ablation also needs to be considered below the surface (volume ablation).

We distinguish in the common literature three strategies to represent the decomposition of
TPMs, which depend on the type of equations that are solved and the boundary conditions that
are applied at the flow-material interface. The strategy to solve ablation has evolved over time
along with the increase of computational power enabling the use of more detailed models. A
comprehensive literature review of ablative-material response codes can be found in Lachaud
et al. [2011a].
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The first strategy (Strategy I) is concerned with the in-depth response of the material and
the interaction with the flowfield is specified through boundary conditions, and are referred to
as material-response codes. For instance, the CMA program was first developed in the 1960s
and was solving an energy equation within the material, and mass and energy balances at
the surface (Kendall et al. [1968]). Since then, many improvements of such material-response
codes have been performed, for instance with the Fully Implicit Ablation and Thermal Re-
sponse (FIAT) (Chen and Milos [1999]) (fully implicit, thus more stable), TITAN (Chen [2001])
(FIAT’s two-dimensional extension), or PATO (Lachaud and Mansour [2014]; Lachaud et al.
[2015]). For the latter, Lachaud et al. [2010, 2011b] implemented the volume-averaged mass and
energy conservation equations to model pyrolysis-ablation problems within material-response
codes. Using this framework, multi-dimensional effects were shown to be important for ablative
composite materials: Weng and Martin [2014] simulated pyrolysis gas transport inside charring
ablative materials (using the KATS-MR solver). Weng and Martin [2014] and Lachaud et al.
[2015] performed simulations with pyrolysis gas flow within the material and showed the impor-
tance of taking into account of multidimensional effects. Finally Meurisse et al. [2018] performed
a full-scale numerical simulation with PATO.

Strategy II are usually flow solvers that are concerned with the simulation of the flowfield
whereas the ablation of the surface is specified by means of boundary conditions. Those are
generally thermochemical nonequilibrium hypersonic Navier–Stokes solvers like LeMANS (Mar-
tin et al. [2012]), GIANTS (Chen and Milos [2005]), the Data-Parallel Line Relaxation (DPLR)
code (Wright et al. [2009]), or the Langley Aerothermodynamic Upwind Relaxation Algorithm
(LAURA) code (McNeil and Peter [1996]) for atmospheric entry applications. For solid rocket
nozzles applications, see, for instance, Turchi et al. [2013]; Bianchi et al. [2013], in which steady-
state ablation approximation is usually assumed.

Both Strategy I and Strategy II implement the material response or the freestream condi-
tions by means of adequate boundary conditions. In order to improve the fidelity of the model
employed and to better capture the interaction between the flow and the material, in particular
when dealing with transient flows and material response, Strategy I and II are most often coupled
together in an iterative way and the boundary conditions are exchanged dynamically (Milos and
Chen [2010]; Chen and Gökçen [2014]; Martin and Boyd [2015]; Bianchi et al. [2012]; Schrooyen
et al. [2018]).

To understand the complex physics of the interaction of the gas with both the surface and
the inner part of the material, Schrooyen [2015] developed a numerical solver that implements
the VANS equations in order to have equations that are valid both in the fluid and the material.
Thus, this third approach (Strategy III) allows to get rid of the necessity to impose a boundary
condition at the interface between the material and the fluid, and further allows to have a time
accurate flow-material interaction and to consider volume ablation. It considers the flow and
the material in the same domain of computation, and is often referred to as a unified approach,
or unified solver. Conservation laws can be obtained by adjusting continuously the momentum
law to fit Darcy’s law in the porous domain (Weng and Martin [2017]) or can be derived from
the volume-averaged theory (Whitaker [1999]). The derivation of the VANS equations for multi-
component reactive flow in porous media was performed by Schrooyen et al. [2016] and will be
reviewed in Section 2.3. The solid part in the computational domain (the material) is modeled
by means of a variable that tracks the averaged solid density, which continuously decreases
from its maximum value inside the material to zero in the fluid region. The main advantages
of Strategy III are that the flow-material dynamic is time-accurate and there is no need for a
coupling between a CFD solver and a material solver. It therefore provides an accurate way to
analyze the importance of the species transport into the boundary layer due to pyrolysis blowing
and the heat transfer. In Duzel [2020], a similar approach is used in which the VANS equations
are derived and the capabilities of the code are shown on several test cases for ablative materials
decomposition.
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2.2 Fundamentals of aerothermal flows

From the discussions above, many phenomena happen during an hypersonic entry: different flow
regimes are encountered (continuum vs. rarefied flow, or equilibrium vs. nonequilibrium), and
different numerical strategies are used to simulate the flow-material interactions. This section
focuses first on the modeling of the fluid part, and the next section will address the interaction
between the flow and the material using the volume-average theory.

Energy transformation and temperature changes are important for hypersonic flows and some
fundamental thermodynamic concepts are reviewed below. References for high-temperature gas
dynamics are provided in Anderson [2006], see also Bird [1994]; Ferziger and Kaper [1972];
Vincenti and Kruger [1965]. High-temperature gases and their interaction with ablative thermal
protection materials are provided in Duffa [2013].

We focus on flows in chemical nonequilibrium that are in thermal equilibrium, meaning that
excitation/deexcitation processes of the energy level are in equilibrium and the distribution of
the energy levels for a given species follows a Boltzmann distribution. This is the case when the
flow timescale is much larger than the kinetic timescale. For flows in thermal nonequilibrium,
the energy level population depart from the Boltzmann distribution and a description of the
states of the particles needs to be provided. They are not discussed here, but a review can be
found in Scoggins [2017]. We will also focus on flows that are in the continuum regime and for
which the classical Navier–Stokes equations are valid. See for instance Bányai et al. [2013] for
DSMC simulations for atmospheric entry in the rarefied regime or the book of Iain D. Boyd
[2017] for high-temperature nonequilibrium gas in a more general framework.

2.2.1 Thermodynamic properties

Internal energy and enthalpy

Let us consider a pure gas composed of the same particles, or species, S. The particles have
several thermal degrees of freedom (d.o.f) that add up to form the internal energy. For particles
such as molecules, they move through space in a certain random motion because of the transla-
tional kinetic energy, they can vibrate back and forth along the molecular axis, or they can rotate
around an axis. The motion of the electron around the particle defines also its electronic state.
The sum of all the translational, rotational, vibrational and electronic energies forms the internal
energy. Statistical thermodynamics and quantum mechanics allow to compute thermodynamic
properties for systems at equilibrium from the state variables (pressure and temperature). For
instance, the specific internal energy (in J kg−1) for diatomic molecules is given by (Vincenti
and Kruger [1965])

e = 3
2RT︸ ︷︷ ︸

Translational
energy

+ RT︸︷︷︸
Rotational
energy

+ hν/kbT

exp (hν/kbT )− 1RT︸ ︷︷ ︸
Vibrational

energy

+ eel︸︷︷︸
Electronic
energy

, (2.6)

where h = 6.626 × 10−34 (J s) denotes Planck’s constant, ν is the fundamental vibrational
frequency of the molecule (s−1), and R = R/M denotes the specific gas constant. The results
for the translational and rotational energies can be understood from classical mechanics and the
theorem of equipartition of energy, which states that each thermal degree of freedom contributes
RT/2 to the specific energy. The translational motion of a diatomic molecule contributes three
thermal d.o.f and the rotational motion contributes two d.o.f, hence leading to the two first
terms on the right-hand side of Eq. (2.6). The expression for the vibrational and the electronic
energies are obtained from quantum considerations. Note that for monoatomic gases, rotational
and vibrational energies are absent. The internal specific enthalpy (J kg−1) is a quantity related
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to energy that writes

h = e+ p

ρ
, (2.7)

where the second term expresses the work done by the gas to occupy its volume (per unit mass).
Consider now a mixture of perfect gases composed of Ng different species Si, i ≤ 1 ≤ Ng.

Extensive thermodynamic properties, such as the mixture energy and enthalpy, are the sum of
the pure species thermodynamic properties weighted by their mass fractions. Therefore, mixture
energy and enthalpy read as

h =
Ng∑

i=1
Yihi, e =

Ng∑

i=1
Yiei, (2.8)

and hi and ei and obtained from Eq. (2.7) and Eq. (2.6), respectively. Yi is the mass fraction of
species i that expresses as

Yi = mi

m
= ρi

ρ
. (2.9)

The pressure of the gas mixture follows Dalton’s law of partial pressures and reads

p =
Ng∑

i=1
pi, (2.10)

where pi is called the partial pressure of species i, which is the pressure that would exist in the
system if all of the other species were removed at volume V and temperature T constant. For
perfect gases, each of the partial pressure follows Eq. (2.1) individually.

The enthalpy from Eq. (2.8) can be defined either for sensible or absolute enthalpy. The sensi-
ble enthalpy is defined relative to a formation enthalpy ∆href

f , defined at a reference temperature
which can be the absolute zero or the standard temperature (equal to 298.16 K), while the ab-
solute enthalpy contains both sensible and formation enthalpies, i.e. habs = hsens + ∆href

f . In
particular, at equilibrium, sensible enthalpy is obtained from statistical mechanics as in Eq. (2.6),
which can also be defined as

hsens(T1) =
∫ T1

Tref

cp(T )dT (2.11)

where cp is the specific heat at constant pressure. One often finds in the literature the relation
cp = ∂h(T, p = cte)/∂T . Values for ∆href

f can be found in references tables as NASA SP-
3001 (McBride et al. [1963]).

Total (stagnation) conditions

We consider a fluid element passing through a given point at a velocity u where the local pressure
is p. If we were able to decrease isentropically (adiabatic and reversible deceleration) the fluid
velocity to rest, the value of P would change accordingly and this value and is called the total
pressure. The total energy E and the total enthalpy H are defined in the same manner as

E = e+ 1
2u

2, H = h+ 1
2u

2. (2.12)

2.2.2 Homogeneous chemical reactions
The strong shock wave upstream of the vehicle excites the rotational and vibrational states,
induces dissociation and even ionization. Thus, chemical reactions play a significant role on
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the composition of the mixture, that evolves along the body and alters the thermodynamics
properties. Additionally, the absorption and radiation behaviors of mixture component depend
on their chemical composition. Accounting for chemistry therefore plays a major role in the
accurate description of hypersonic flows.

The homogeneous production term for each species i is given by

ω̇hom
i = Mi

Nr∑

k=1
(ν′′ik − ν′ik)


kf,k

Ns∏

j=1
ρ̃
ν′j,k
j − kb,k

Ns∏

j=1
ρ̃
ν′′j,k
j


 , (2.13)

where ρ̃j = ρj/Mj is the molar density, kf,k and kb,k are the forward and backward reaction
rates, νi,k are the stoichiometric coefficients and the superscripts ′ and ′′ represent the reactants
and products, respectively.

The rate constants are usually determined experimentally. Although methods from kinetic
theory exist for their theoretical estimation, they do not provide sufficient accuracy. For most
cases in hypersonic applications, the forward reaction rate coefficients are fitted to a modified
Arrhenius law which reads

kf (T ) = ATm exp
{ −E
RT (t)

}
, (2.14)

where Tm is an additional pre-exponential temperature factor that is used to improve the ac-
curacy of the fitting. The whole pre-exponential factor ATm is interpreted as the frequency of
molecular collisions, which depends on temperature, and E is the energy that must be provided
for the reaction to occur. Thus, the exponential term (called the Boltzmann factor) specifies the
fraction of collisions with energies greater than the activation energy.

The production rates of species depend on the temperature and reaction mechanisms that are
considered in the mixture. For instance, below 9000 K, ionization is likely to be present. Above
9000 K, where ionization of the atoms takes place, reaction mechanisms with electrons and ions
have to be included. Tables for kinetic mechanisms and rate constants for high-temperature air
can be found in Bussing and Eberhardt [1989].

2.2.3 Navier–Stokes equations for multi-component reactive flows
The Navier–Stokes equations are obtained by expressing the conservation of momentum of a
fluid element. Together with the continuity equation (mass conservation of the fluid element)
and the conservation of energy, the resulting system of partial differential equations (PDEs)
is sufficient to describe the behavior of compressible viscous flow. See, for instance, Anderson
[1990] for a description of the equations. When considering further a chemically reacting gas,
one must consider additional mechanisms due to the energy diffusion of chemical species. Below,
we summarize the full set of Navier–Stokes equations in the case of multi-component reactive
flows.

Mass, momentum and total energy conservation equations are written under the general
formulation, in terms of conservative variables U = (ρi, ρu, ρE)T

∂ρi
∂t

+∇ · (ρiu) = −∇ · (Ji) + ω̇i, ∀i ∈ {1, Ns} (2.15)

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ · τ , (2.16)

∂ρE

∂t
+∇ · (ρHu) = −∇ · q +∇ ·

(
τ · u

)
+ ω̇T , (2.17)

where Ng is the number of species in the mixture, ρi is the species density which is related to
mixture density expresses as ρ =

∑Ng
i=1 Yiρ =

∑Ng
i=1 ρi, and u = (u1, u2, u3) is the hydrodynamic
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velocity vector. Ji is the species diffusion flux

Ji = ρYiVi = −ρi
Ng∑

j=1
Dijdj , (2.18)

where Vi is the diffusion velocity of species i, related to the mass motion velocity of species i
through ui = u+ Vi, Dij is the diffusion coefficient.

The viscous stress tensor is a force per unit area that causes the deformation of a fluid element
due to viscous effects and expresses as

τ = µ

((
∇u+ (∇u)T

)
− 2

3 (∇ · u) I
)
, (2.19)

where µ is the dynamic viscosity (kg m−1 s−1) and I is the identity matrix. The off-diagonal
terms of τ are the viscous shear stresses that act tangentially to the surface of a fluid element.
The second term on the right-hand side is the bulk viscosity under the assumption that the bulk
viscosity coefficient is equal to −2/3µ (Stokes hypothesis). The normal viscous stresses (e.g.
τ11) are meaningful if the gradient velocities (e.g. ∂xu1) are very large, such as across a shock
wave, and in which case a viscous-induced force normal to the surface of a fluid element acts to
compress or expand the fluid element, hence the link to the divergence of the velocity ∇ · u of
the bulk viscosity.

The heat flux q for a chemically reacting gas is given by

q = −k∇T +
Ng∑

i=1
ρiVihi + qr, (2.20)

where k is the mixture thermal conductivity (W m−1 K−1). The first term is the energy flux
caused by thermal conduction. The second term is the energy flux caused by the diffusion of all
species, that carry their enthalpy hi. The third term is the energy flux caused by radiation. For
the treatment of the coupling between the flow, ablation, and radiation phenomena, see Scoggins
[2017].

The last term in Eq. (2.17), ω̇T , is the energy production coming from the chemical reactions.
Its presence in the energy equation depends on whether the enthalpy in Eq. (2.8) is expressed
in terms of absolute enthalpy or the sensible enthalpy (see Chapt. 12 of Anderson [2006] for the
mathematical details of the derivation of the energy equation in both case). For the latter, an
additional source term appears in Eq. (2.20) due to the change in the chemical enthalpy of the
species, which is equal to

ω̇T = −
Ng∑

i=1
ω̇i∆h0

f,i. (2.21)

In a compact form, the Navier–Stokes equations can be written as

∂U
∂t

+∇ · Fc = ∇ · Fd + S, (2.22)

where Fc, Fd and S are the convective flux, diffusive flux, and source term, respectively, with

Fc =




ρiu
ρu⊗ u+ pI

ρuH


 , Fd =



−Ji
τ

τ · u− q


 , S =



ω̇i
0
ω̇T


 . (2.23)

Many practical 3D applications can be expressed as 2D axisymmetric problems. For example,
sample tests in the Plasmatron or arc-jet experiments are usually assumed to be axisymmetric.
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In these cases, the flow is usually described in cylindrical coordinates (Magin [2011]; Lani [2008]).
Axisymmetry implies that the derivatives in the azimuthal coordinate θ cancel, i.e. ∂(·)/∂θ = 0,
and azimuthal velocity uθ is also neglected. In Argo, the 2D axisymmetric problem is expressed
similarly to Eq. 2.22 and the source term is adapted in order to account for azimuthal components

∂U
∂t

+
(
∂Fc

x

∂x
+
∂Fc

y

∂y

)
=
(
∂Fd

x

∂x
+
∂Fd

y

∂y

)
+ S + S∗, (2.24)

where x and y stands now respectively for axial and radial directions, and S∗ is an additional
source term that accounts for 3D effects, see Schrooyen [2015] for more details. In PATO, the
system of equations is solved in the full 3D Cartesian coordinates.

Finally, we note that the number of mass conservation equations can be reduced by assuming
local thermodynamic equilibrium (LTE). In this case, it is assumed that the characteristic
time scales of the flow match or fall below the kinetic times, hence collisions and chemical
reactions have the time to go to completion locally and at each location in the flowfield. For a
mixture, the thermodynamic properties are functions of temperature, pressure and the elemental
composition of the gas. Thus, it is possible to consider the continuity equations only for the
elements rather than for all the species, and to compute the local equilibrium gas compositions.
The equilibrium species composition can be computed, for instance, by minimizing the Gibbs
free energy (Scoggins and Magin [2015]). Denoting Ue the set of constitutive element of the gas
mixture, the conservation equations for the element mass fractions Y ei , with ρei = ρY ei , reads as

∂

∂t
(ρei ) +∇ · (ρeiu) = −∇ · Jei , ∀i ∈ Ue. (2.25)

We note that the source term disappears, as a gas species element is conserved through homo-
geneous reactions.

All the thermodynamic properties, chemical reaction rates, as well as equilibrium composition
are implemented and can be computed in the Mutation++ library (Scoggins et al. [2020]). The
LTE assumption is not implemented in Argo and only nonequilibrium chemistry is considered,
but it is implemented in PATO.

2.3 Multi-component reactive flows in porous medium

The previous Navier–Stokes equations describe the evolution of a fluid element within a single
phase. The presence of a solid surface can eventually be imposed through appropriate boundary
conditions. However, it would be impracticable to solve the resulting system of equations within
the porous medium over the whole domain. Instead, equations that are valid at the macroscopic
scale both in the pure fluid and in the porous medium are derived. The methodology is based
on the volume averaging theory applied to the Navier–Stokes equations (Whitaker [1999]). An
important consequence of the spatial smoothing is that the boundary conditions due to the
presence of the solid surface are joined to the governing equations.

The results of this section are based on the volume-averaged equations for multi-component
Navier–Stokes equations derived in Schrooyen [2015] for a unified flow-material approach. The
flow inside the pores is assumed to be in the continuum regime (low Knudsen number) and the
Reynolds number based on the length of a pore is assumed to be small enough for the inertial
term to be negligible. For a treatment of the Knudsen effects in the slip regime and the inertial
effects at the pore-scale, see the recent work of Valdés-Parada and Lasseux [2021]. We recall
here briefly the concept of the averaging operator and we present the full set of VANS equations
derived in Schrooyen [2015].
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Figure 2.3: Porous medium with a single solid phase with cylindrical-shaped fibers.

2.3.1 Volume-averaged Navier–Stokes equations
The volume averaging approach is used to derive continuum equations for multi-phase systems
in the presence of discontinuities between the phases. Each phase is described by field quantities
which are continuous within this specific medium but discontinuous in the whole volume. Solving
the equations for each phase separately requires to account for the microstructure of the porous
medium which can be quite complex and computationally expensive. Using the volume averaging
theory, the equations describing one phase are averaged over a small elementary volume (see
Fig. 2.3) such that the volume-averaged quantities are continuous in space. This results in a
system of equations that are valid in the entire domain, either within the porous medium or in
the plain-fluid region.

Let us consider that the porous medium is made up of a single solid phase, that are the
carbon fibers, as sketched in Fig. 2.3. The intrinsic average of a quantity α on a general phase
γ is defined as

〈α〉γ = 1
dVγ

∫

dVγ

α dV, (2.26)

and has to be distinguished from the superficial average

〈α〉 = εg〈α〉γ = 1
dV

∫

dVγ

α dV, (2.27)

where dV is a small elementary volume and the porosity εg, defined as the ratio of the volume
of fluid phase dVg and the volume dV , can be computed as εg = 1 − εs. The subscript “s” is
used to denote the solid phase and the subscript “g” the fluid (gas) phase.

The volume averaging theory then consists in applying the averaging operator defined in
Eq. (2.27) to the whole set of Navier–Stokes Eqs. (2.15)–(2.17). The application of the volume-
averaging operator to the system of PDEs leads to the calculation of volume-averaged deriva-
tives, that are related to the derivatives of volume-averaged quantities through closure terms.
Analogous to the temporal decomposition used in the study of transport phenomena, closure
terms appeared due to point quantities that are decomposed as the sum of a mean and, here,
a spatial deviation part, the integration of which needs to be modeled. For more details about
the volume-averaging theory, see Whitaker [1999] and for the derivation of the VANS equations
for multi-component reactive flows through porous media, see Schrooyen [2015] and references
therein.

The evolution of the averaged variables describe the evolution of the macroscopic flow through
the porous medium. The conservative variables used to describe an ablative material made of
carbon preform are the averaged mass density of every species i in the mixture (εg〈ρi〉g), the
averaged momentum (〈ρu〉g), the total energy (〈ρEtot〉) and the averaged solid density of the
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fibers (〈ρs〉). The VANS system of equations written in vectorial form is

∂U
∂t

+∇ · Fc = ∇ · Fd + S, (2.28)

with U the vector containing the conservative variables

U =




εg〈ρi〉g
〈ρu〉g
〈ρEtot〉
〈ρs〉


 . (2.29)

The expression for the convective and diffusive fluxes are

Fc =




εg〈ρi〉g〈u〉g
〈ρ〉g〈u〉g〈u〉g + 〈p〉g
εg〈ρ〉g〈u〉g〈H〉g

0


 , and Fd =




−〈Ji〉
〈τ 〉g

〈τ · u〉+Keff∇〈T 〉 −
∑Ns
i=1 hi〈Ji〉

0


 , (2.30)

where the averaged mass diffusive flux is

〈Ji〉 = −εg〈ρi〉g
Di,m
η

Wi

W
∇Xi + εg〈ρi〉g

Ns∑

k=1

Dk,m
η

Wk

W
∇Xk, (2.31)

where Di,m (and Dk,m) is the diffusion coefficient of the i-th species in the mixture. The quantity
η is called the tortuosity which is a geometric factor that characterizes the ratio between the real
distance covered by a particle between two points in the porous medium and a straight line.

The effective conductivity Keff is a second-order tensor (matrix), in which off-diagonal terms
are zero if the material microstructure is aligned with the principal directions of the physical
property described by the tensor (orthotropic material). Anisotropy in the material thermal
conductivity leads to diagonal terms that have different values. For isotropic materials, the
material conductivity can be modeled as a single scalar quantity as

keff = εsks + εgkg, (2.32)

that is, the sum of the intrinsic conductivity of each phase weighted by their respective volume
fraction. Isotropic material properties will be assumed in the following, but for carbon preform
material, it was shown that while transverse effective conductivity was nearly isotropic (x-y
plane), the through thickness (axial) direction was favored (Panerai et al. [2017]).

Finally, the source term in Eq. (2.28) expresses as

S =




〈ω̇het
i (〈T 〉, 〈ρi〉g, 〈ρs〉)〉+ εgω̇

hom
i (〈T 〉, 〈ρi〉g)

Fgs

−∑Ns+1
i=1

(
〈ω̇het
i (〈T 〉, 〈ρi〉g, 〈ρs〉)〉+ εgω̇

hom
i (〈T 〉, 〈ρi〉g)

)
h0

f,i
〈ω̇het
i (〈T 〉, 〈ρi〉g, 〈ρs〉)〉


 , (2.33)

where Fgs is the momentum exchange term between the two phases. It is assumed that the
closure of this term only includes the first order drag force and reads

Fgs = −µε2gκ
−1〈u〉g, (2.34)

where κ is a second-order tensor that represents the permeability of the medium which measures
the ability of a fluid to flow through the porous medium. The homogeneous production term
ω̇hom
i is given by Eq. (2.13) where the molar densities are replaced by the averaged molar densities
〈ρ̃i〉 = 〈ρi〉/Mj



32 2.3. Multi-component reactive flows in porous medium

Assuming LTE, the conservation equations for the element mass fractions Y ei , with 〈ρei 〉g =
〈ρ〉gY ei , read as

∂

∂t
(εg〈ρei 〉g) +∇ · (εg〈ρei 〉g〈u〉g) = −∇ · 〈Jei 〉+ 〈ω̇het,e

i 〉. (2.35)

Again, there is no source term coming from the homogeneous chemical production terms, as a
gas species element is conserved through these reactions. The last terms represent the elemental
production stemming from heterogeneous chemical reactions, that are usually not accounted
for in state-of-the-art material response codes (Milos and Chen [2010]; Lachaud et al. [2015]).
However, if volume ablation is considered, the last term will be non-zero for carbon production.

2.3.2 Heterogeneous chemical reactions
The averaged heterogeneous production rate in Eq. (2.33) for a reacting species is modeled as

〈ω̇het
i 〉 = 1

dV

∮

∂Ωg

−ki,C(s)
f 〈ρi〉gs dS, (2.36)

where ki,C(s)
f denotes the reactivity of the carbon fibers for the reaction with the i-th species,

and 〈ρi〉gs the intrinsic density of a reactant i at the interface. Assuming constant averaged
density and constant reactivity over the interface, one can write

〈ω̇heti 〉 = −Sfki,C(s)
f 〈ρi〉g, (2.37)

where Sf = Aw/dV is the specific surface with Aw the contact surface of the solid with the
fluid. In order to compute the heterogeneous reaction term, a model for Sf needs to be specified,
which depends on the shape of the fibers and the evolution of their microstructure during the
ablation process. Assuming cylindrical-shaped fibers (Fig. 2.3) and a uniform radial recession,
the specific surface can be expressed as

Sf = 2
rf,0

√
εs,0εs, (2.38)

where rf,0 denotes the initial radius of the fibers and εs,0 the initial volume fraction of the solid
phase, which are the fibers. Other models, not investigated here, were studied in Schrooyen
et al. [2016].

It is trivial to observe that if εg → 1 as it is the case in the unified approach when we
progressively go from the porous medium to the plain-fluid region, then εs = 1 − εg → 0,
the heterogeneous source term disappears and the system of equations reduces to the classical
Navier–Stokes equations for multi-species flows.

2.3.3 Momentum equation for material-response codes
When only the porous material is considered within the computational domain, the volume-
averaged momentum equation can be further simplified to simulate the flow within the porous
material. Assuming that the flow is incompressible, stationary, and that the Reynolds number
is low, i.e. Re << 1 (Stokes flow), the VANS equations simplify to the Darcy’s law. Often,
material-response codes consider a corrected version of Darcy’s law

〈u〉 = − 1
εg

(
κ

µ
+ β

〈p〉

)
·∇〈p〉, (2.39)

where the additional term β is the Klinkenberg correction that is used to account for slip effects
when the Knudsen number (at the pore scale) is in the transition regime (Lachaud et al. [2017]).
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In the case where the Reynolds number is high, inertial effects within the pores can be accounted
for by using the Forchheimer correction in Darcy’s law (Martin and Boyd [2010]). Both effects
are neglected in this work, and, at the pore scale, the Knudsen number is assumed to be in the
continuum regime and the Reynolds number to be sufficiently low.

2.3.4 Plain fluid-porous media interface modeling
In the case where only the fluid around the TPS is simulated, there is no need to use the VANS
equations and the full set of Navier–Stokes equations presented in Section 2.2.3 can be used. The
presence of the TPS is communicated by means of specified boundary conditions accounting for
catalytic recombination, convective and radiative heat exchanges, or the injection of ablation
products in the boundary layer, just to name a few.

In a unified approach where the plain fluid and the porous medium are considered in the same
domain of computation, the transition between the two regions requires a special treatment. The
physical variables encounter strong but continuous variations from the plain fluid region to the
porous domain. Discontinuities are smoothed over a transition region by a normalized hyperbolic
tangent

H(φ) = 1
2

(
1 + tanh

(
2πφ
εφ

))
, (2.40)

where φ is the initial distance from the porous medium and εφ is the grid distance on which
the quantity is smoothed, which can be seen as the initial interface thickness. This continuum
description is flexible enough that it can go smoothly from a plain fluid region to a receding porous
medium. The material porosity is itself a variable smoothed on the grid during initialization
and then computed to track the evolution of the reactive porous medium. In order to avoid
spurious oscillations of the physical quantities at the interface, numerical tests have shown that
the smoothing distance has to satisfy the following relation (Pochet et al. [2013]):

εφ > 3h
p
, (2.41)

where h is the mesh size and p is the interpolation order.
In the case where only the material response is computed, the full set of VANS equations or

the corrected Darcy’s law from Eq. (2.39) can be used. In this case, the interface between the
plain fluid and the solid is treated as a boundary condition. For ablative materials, the surface
further recedes and needs to be accounted for. For instance, in the PATO software, the mesh
is moving with the interface as the material is receding. The velocity of the moving interface is
computed from the ablation rate and the density of the material at the surface (Meurisse et al.
[2018]).

2.4 Conclusions
In this chapter, we introduce the modeling of the main physical phenomena during atmospheric
entry that are accounted for in this work. We presented the Navier–Stokes equations and the
volume-averaged theory used to simulate flow within porous media, and we presented the differ-
ent numerical strategies used for simulating such flows. We emphasized the features of the two
codes that will be used in this work, namely Argo and PATO, for which a comparison of the
capabilities can be found in Schrooyen [2015] (in appendix). In Chapter 4, the unified approach
implemented within the Argo code, that simulates both the external aertohermal flow and the
material response, will be used to model the pyrolysis and char decomposition of a TPM. In
Chapter 8 and Chapter 9 the material-response code PATO will be used, thus allowing faster
computations for uncertainty quantification.
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Chapter 3
Pyrolysis models for the decomposition of
thermal protection materials

“Essentially, all models are wrong, but some are useful.”
G. E. P. Box, 1987

After a brief review of experimental techniques for the characterization of pyrolysis decompo-
sition, we describe the multi-component and competitive mechanisms for pyrolysis modeling.
For multi-component models, we derive a computationally efficient semi-analytical solution to a
one-parameter Šesták-Berggren kinetic model and its derivatives. The solution uses exponential-
integral functions to express accurately the solution of the temperature integral both for constant
temperature (isothermal) and for constant heating rate conditions. We show the interest of this
solution on a six-equation model using parameters inferred in Torres-Herrador et al. [2019b]
for the PICA material, and we show the computational gain and accuracy of the implemented
analytical solution with a numerical solution. When more complex mechanisms are present in
the pyrolysis reaction, multi-component models can fail to accurately simulate the material de-
composition. In this case, competitive models are preferred, but for which no analytical solution
was found. The solution to the multi-component models was presented in Coheur et al. [2021b]
and part of the current chapter is based on this manuscript. Competitive reaction mechanisms
applied to TPMs was presented in Torres-Herrador et al. [2019a].

3.1 Introduction

The literature on pyrolysis of organic compounds is vast (Galwey and Brown [1999]; Di Blasi
[2008]; Vyazovkin et al. [2011]), and many different models have been proposed to simulate
this process. A widely used formulation for the pyrolysis of TPMs is the multi-component (or
multi-step) pyrolysis model (Martin and Boyd [2015]; Lachaud et al. [2017]; Schrooyen et al.
[2016]; Coheur et al. [2017]; Torres-Herrador et al. [2019b, 2020]). When the material is heated,
it is decomposed following independent reaction processes that occur in parallel, each of them
representing the decomposition of a sub-phase, or component, in the solid. The use of multi-
component models for pyrolysis is not limited to the application to TPMs. They are also widely
used in fire safety (Rein et al. [2006]; Lautenberger and Fernandez-Pello [2011]; Kolaitis and
Founti [2013]; Nguyen et al. [2016]; Bruns [2015]; Yuen et al. [2018, 2020]; Zhang et al. [2021])
or (less commonly) in biomass (Torres-Herrador et al. [2020]).

The reaction rate characterizing the reaction processes are usually parameterized in terms of

35
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temperature and the extent of conversion (or advancement of reaction factor). The dependence
on temperature, called the rate constant, is typically parameterized through the Arrhenius equa-
tion. The dependence on the extent of conversion is parameterized using a model reaction that
depends on the type of the reaction (Galwey and Brown [1999]). In particular, the majority of
model reactions can be generalized using the Šesták-Berggren equation (Šesták and Berggren
[1971]; Málek and Criado [1992]; Brown et al. [2000]). One of the objectives of kinetic studies is
to determine the kinetic parameters appearing in the parameterization of the rate constant and
the model reaction.

Usually, multi-component parallel models are valid for a restricted range of heating rate con-
ditions around which the models are calibrated. When considering highly different heating rates,
the reaction mechanisms may vary and multi-component models may fail to accurately reproduce
the physics. As the heating rate increases, the decomposition of the material can occur at higher
temperatures due to thermal lag effects, which results in a shift towards higher temperatures of
the mass loss curve and the pyrolysis production peak (Torres-Herrador et al. [2019b]). However,
it was observed that for carbon/phenolic materials, the mass loss curve and the production peak
shift towards lower temperatures (Jackson and Conley [1964]; Stokes [1995]; Bessire and Minton
[2017]). In order to take into account this shift towards lower temperatures, pyrolysis models
that include competitive mechanisms are therefore considered (Miller and Bellan [1997]; Blon-
deau and Jeanmart [2012]; Herrador et al. [2019]). The incorporation of competitive mechanisms
in pyrolysis models allows for an initial solid reactant to decompose into different solid prod-
ucts in proportions that depend on the heating rate. Those solid products may become in turn
reactants, resulting in different reaction paths that are naturally included in a single pyrolysis
model. Competitive models can be seen as a generalization of the multi-component (parallel)
reaction models that take into account competitive mechanisms and the dependence between the
different pyrolyzing components. The use of competitive mechanisms for the pyrolysis of TPMs
was initially proposed in Herrador et al. [2019] based on the work of Blondeau and Jeanmart
[2012] for biomass pyrolysis.

Solving inverse problems to infer parameters of the kinetic model through optimization tech-
niques or Bayesian inference methods for uncertainty quantification may require a large number
of evaluations of the model and its sensitivities (derivatives with respect to parameters). More-
over, in the case of kinetic equations, the Arrhenius parameters can exhibit strong dependence
that can require further model evaluations for an accurate parameter calibration. Therefore, for
multi-component models, we propose a computationally efficient semi-analytical solution to a
one-parameter Šesták-Berggren kinetic model and its derivatives that uses exponential-integral
functions to express the solution of the temperature integral both for constant temperature
(isothermal) and for constant heating rate conditions. The interest of this analytical solution is
to reduce the computational cost while having high accuracy to perform parameter calibration
from experiments and sensitivity analysis. Although competitive models allow to generalize the
previous multi-component models, we do not know an analytical solution in this case.

This chapter is organized as follows. In Section 3.2, we provide an overview of experimental
characterizations of the pyrolysis of low-density carbon/phenolic thermal protection materials.
Then, in Section 3.3, we review the multi-component models and we derive the semi-analytical
solution, while Section 3.4 is dedicated to the description of competitive mechanisms. Finally in
Section 3.5, we provide an example of a general competitive reaction, an example that illustrates
the advantage of the semi-analytical solution using a six-component model for the decomposition
of PICA, and we finally present the two-equation pyrolysis model from Goldstein [1969] that
is implemented in many state-of-the-art numerical codes. We further refer to Chapter 7 for
practical applications of multi-component and competitive models to the pyrolysis of TPMs.
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3.2 Experimental characterization of pyrolysis
We focus on experiments that have been carried out in order to characterize the thermal decom-
position of the resin component of low-density carbon fiber/phenolic resin thermal protection
materials. Phenolic resins are generally formed through a polycondensation reaction between
phenol (C6H5OH) and formaldehyde (CH2O) in the presence of a catalyst. Resin samples are
then typically heated up in a furnace under controlled temperature and pressure environments.
The mass of the sample and the species produced during the resin decomposition are measured
as a function of time. The variation of the mass is usually monitored through TGA and the
composition of the species produced is analyzed through mass spectrometry (MS) or gas chro-
matography (GC). Techniques such as differential thermal analysis (DTA) or differential scan-
ning calorimetry provides information on the type of the pyrolysis reactions, either endothermic
or exothermic, and allow to determine the enthalpy change due to the reactions.

Depending on the measurement techniques and the experimental set-up, the sample is usu-
ally exposed either to an isothermal temperature or to an increasing function of temperature.
The former consists in heating the material up to a target temperature in a very short time and
maintaining this temperature during a given time interval in which pyrolysis reactions are hap-
pening. The latter consists in increasing the temperature as a function of time (usually linearly)
while pyrolysis is occurring until the target temperature is reached.

The actual heating observed during a reentry is neither a constant value nor exactly a lin-
ear function. It is a complex combination of the incoming heat from radiation in the shock
layer, convection from the boundary layer, species recombination at the surface of the material
and conduction within the material. Moreover, the heating rates vary dramatically spatially
across the heat shield, both span-wise and in-depth, and in time during the entry trajectory. In
practice, the exact same heating is never reproduced during ground experiments. Nevertheless,
experiments under a controlled environment already provide an understanding of the reaction
mechanisms occurring during the pyrolysis and the model developed from these experiments can
still be used in numerical solvers.

3.2.1 Isothermal characterization
Sykes [1967] experiments were carried out during a large test campaign at NASA Langley Re-
search center. The objective was to provide a comprehensive analysis of the decomposition
mechanisms of ablative materials. The experimental data provided by Sykes [1967] are still
largely used in the aerospace community for the determination of the pyrolysis gas composition.

In these experiments, a phenolic specimen of 7 mg is heated in the entrance port of a gas
chromatograph that is used to collect the pyrolysis gases produced during a given time interval at
a fixed temperature and to analyze the gas composition1. The test temperature is reached over
a 10-second interval and the pyrolysis of the specimen was conducted from 373.15 to 1273.15 K.

The measured species from the GC are shown in Fig. 3.1. Below 800 K, water is the most
dominant species and is the result of thermal breakdown at the -OH groups attached to the ring
structure of the polymer. The decomposition of the polymer continues up to 1000 K, where the
major product of the reaction is hydrogen. The type of reaction was analyzed by means DTA2

and a measure for the formation enthalpy was also obtained.

In Wong et al. [2015a] and Wong et al. [2015b], the production of pyrolysis gases are quantified
using a GC technique similar to Sykes [1967]. A phenol-formaldehyde resin is heated in a reactor
following a step-wise procedure with a temperature increment of 50 K from 320 K to 1290 K.

1Gas chromatography determines the type of species by measuring its retention time in the chromatograph
which amount is proportional to an electric signal provided by a thermal conductivity detector

2DTA measures the temperature difference between an inert material and the decomposing material under
investigation, which value indicates whether the reaction is endothermic or exothermic
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Figure 3.1: GC analyses from Sykes [1967] experiments. The species are classified in three
families: (a) permanent gases and water; (b) phenol and derivatives and (c) aromatics.

At each step, the reactor is kept at the target temperature for 1 h in order to ensure that
pyrolysis reaction at this temperature is near completion. The amount of pyrolysis gas products
is collected during each interval. This allows the authors to identify the different gas products
and quantify the mass of every species with minimal loss, but leaves time for secondary reactions
to occur in the gas collector. An electronic balance is also used to weigh the reactor at the end
of each temperature increment. The overall experimental procedure was repeated three times
and a mean and a standard deviation for the measured quantities at each temperature were
estimated.

Results of the GC analysis for the pyrolysis gas production are shown in Fig. 3.2(b) for
permanent gases and water, and similar trends as in Sykes [1967] were observed. Finally, the
experiment was also performed using a linear increasing temperature and the sample mass was
recorded using TGA, as shown in Fig. 3.2(a).

Bessire et al. [2014] provided in-situ measurements of PICA pyrolysis product yields using a mass
spectrometer in the range 375.15 to 1223.15 K. A PICA sample is heated in a vacuum chamber
by means of an electrical current that passes through the sample. A target temperature is
reached within a matter of seconds and the temperature is maintained at its value during a
hold time of 15–20 min. To avoid saturation of the mass spectrometer due to the rapid increase
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of pyrolysis gases after a temperature increment, the valve of the mass spectrometer is closed
during the initial moments of each temperature increment. Data for a particular temperature
are then collected during a 2.5 min period in the range between 12–15 min of each temperature
step. Then the material is heated to the next temperature step with an increase of roughly 50 K
until 1223.15 K.

The authors observed that H2O is the most dominant species during a first decomposition
process. Then CO and CH4 species production becomes significant in a second stage and finally
H2 is the most dominant species in the last stage.
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Figure 3.2: Sample mass (a) and mass yields for permanent gases and water (b) as a function
of temperature from the experiments of Wong et al. [2015b] for a phenol-formaldehyde resin
pyrolysis. The markers are the estimated means and the error bars represent the empirical
standard deviations.

3.2.2 Linearly increasing temperature
Goldstein [1969] considered nylon 6-6, phenolic CTL-91LD (a phenolic novolac resin), and their
composite. TGA is used to characterize the weight loss, but does not allow to identify the species
produced. However, the kinetic parameters were obtained from a fitting procedure against the
experimental results at heating rates of 3 and 18 Kmin−1. For the pyrolysis of the phenolic
resin, a two-step reaction mechanisms was found (two maximum reaction peaks were observed).
Although nowadays materials are slightly different from those being used at that time, these
kinetic parameters are still used in numerical models. In particular, charring mass fraction was
observed to be 0.5 but recent experiments on PICA (Wong et al. [2016]; Bessire and Minton
[2017]) show that this fraction could be higher.

Trick and Saliba [1995] identified three mechanisms occurring during the thermal degra-
dation of a commercially available carbon/phenolic by means of Fourier Transform Infrared
Spectroscopy, corresponding to the formation of additional crosslinks, breaking of the crosslinks
and stripping of the aromatic rings. Trick et al. [1997] then proposed a kinetic model using
isoconversional methods on TGA curves that consists in four dominant heterogeneous reactions
occurring in overlapping temperature regions.

Bessire and Minton [2017] performed a second study in which the temperature is a linear
function of time for different heating rates. The pyrolysis of a 0.441 g PICA sample was per-
formed at significantly different heating rate values, namely 186, 366, 762 and 1500 Kmin−1.
In these experiments, the PICA sample is heated from 375 to 1400 K in a vacuum chamber by
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Figure 3.3: Total mass loss of the sample (a) and the 14 mass yields at a heating rate of 366
Kmin−1from the experiments of Bessire and Minton [2017]. The markers are the estimated
means and the error bars represent the empirical standard deviations. The mass yields shown
are for (b) permanent gases and water, (c) phenol and derivatives, and CO2, and (d) alcohol
and aromatics.

means of an electrical current that passes through the sample. Monitoring the temperature using
a thermocouple located in the center of the material and using a control system, the authors
were able to achieve heating rates much higher than those of traditional TGA systems. In-situ
measurements of PICA pyrolysis product yields are performed using mass spectrometry, which
provides the product yields of 14 gaseous species as a function of the material temperature,
shown in Fig. 3.3 at the heating rate of 366 Kmin−1. This included permanent gases, water
and hydrocarbons (up to C8). A TGA-like mass loss versus temperature (or time) curves were
reconstructed by integrating the measured gas production rates.

Torres-Herrador et al. [2020] performed TGA on ZURAM (Rothermel et al. [2014]; Reimer
et al. [2018]), a carbon/phenolic TPM developed at DLR that has similar properties to PICA.
Three different heating rates were considered and a four-step reaction mechanisms was used in
order to numerically reproduce the results. The pyrolysis model was selected to be in agreement
with results from Trick et al. [1997] and the experiments from Bessire and Minton [2017] and
Wong et al. [2015b].
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3.2.3 Pyrolysis of PICA
These previous works have permitted to highlight that the pyrolysis of phenolic resins, like in
PICA, is typically divided into four overlapping stages, which is also in agreement with other
studies on phenolic resins, see for instance Ouchi and Honda [1959]. In the first stage, water ob-
served at low temperatures around 400 K is usually attributed to humidity (outgassing) Bessire
and Minton [2017]. In stage 2, two competing major processes were identified at tempera-
tures in the range 575–785 K: cross-linking reactions releasing H2O while forming ether and
carbon—carbon bonds, and scission of methylene brides releasing phenol and its methylated
derivatives. Stage 3 corresponds to the generation of CO and CH4 due to reactions that, in
the current literature, are not yet clearly understood: Ouchi and Honda [1959] identified, for
instance, a two-step mechanism while Trick and Saliba [1995] identified a one-step mechanism.
Finally, stage 4 occurs at high temperatures (≥ 1000 K), where H2 is the major product due to
the formation of stable char. The CO observed at high temperatures and other remaining gases
still do not have a clear origin.

The two mechanisms in stage 2 are in competition with each other, meaning that the products
resulting from these processes are generated in varying proportions depending on the heating
rate (Torres-Herrador et al. [2019a]). Hence, a pyrolysis model that accounts for competitive
mechanisms should ideally be considered for the decomposition of PICA when the heating rate
value is varied significantly.

3.3 Multi-component pyrolysis models

3.3.1 Single-stage kinetic equation
A pyrolysis reaction occurs when an organic compound is submitted to high temperatures in
the absence of oxygen. This reaction is typically assumed to be a non-reversible process whose
evolution is governed by a reaction rate. In this process, the reactant R gets decomposed into
different gaseous products Sj , with 1 ≤ j ≤ Ng and Ng the total number of species, and a
residual solid known as char of pure carbon,

R(s) k−→ ζCC(s) + ζ1S(g)
1 + ζ2S(g)

2 + · · ·+ ζNgS(g)
Ng
, (3.1)

where the ζj , 1 ≤ j ≤ Ng, are the stoichiometric coefficients and the superscripts denote the
state of matter, either solid (s) or gaseous (g). This elementary process describes in detail
the decomposition of each molecule but they are difficult to resolve with current experimental
methods and global reaction schemes are the most common approach in pyrolysis modeling (Di
Blasi [2008]). Mass coefficients γC and γj , 1 ≤ j ≤ Ng, are therefore introduced

γC = ζCMC∑Ng
j ζjMj + ζCMC

, γj = ζjMj∑Ng
j ζjMj + ζCMC

, (3.2)

and we write the single-stage reaction in terms of mass coefficients as

R(s) k−→ γCC(s) + γ1S(g)
1 + γ2S(g)

2 + · · ·+ γNgS(g)
Ng
. (3.3)

The latter reaction can either refer to elementary processes or to global reactions.
It is common to describe the amount of decomposition which has taken place using the

dimensionless fractional decomposition factor α(t) (or advancement of reaction factor, or extent
of reaction, or extent of conversion) as a function of time. Here, we will take this factor as
varying from 0 for the virgin reactant to 1 signifying the complete decomposition. This factor
is related to the mass m(t) of the solid substance as

α(t) = m0 −m(t)
m0 −m∞

, (3.4)
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where m0 is the initial mass of the solid and m∞ is the mass of the solid residue after complete
decomposition (the char). Assuming that the pyrolysis reaction Eq. (3.3) reaches completion,
we have m∞ = mC = γCm0.

The dependence of the reaction rate on temperature is commonly described by the Arrhenius
equation (White et al. [2011])

k(T (t)) = A exp
{ −E
RT (t)

}
, (3.5)

where k(T (t)) is the constant rate (s−1), R is the universal gas constant (J K−1 mol−1), A is
the pre-exponential factor (s−1) and E is the activation energy (J mol−1). In gas (homogeneous)
reactions, A was interpreted as the frequency of molecular collision and E is the energy that
must be provided for the reaction to occur. The use of the Arrhenius equation for solid-state
reactions and the actual meaning of these kinetic parameters, contrary to gas reactions, is still
subject to debate (White et al. [2011]). A possible interpretation for A is the frequency factor or
specific vibration of the reactant and for E the energy barrier that must be surmounted during
the bond redistribution occurring during the phase change (Galwey and Brown [1999]; L’vov
[2007]).

Temperature is not the only factor influencing the rate of the pyrolysis process: it may
depend on the fractional decomposition factor α and the pressure of volatile products (in case
of gas-solid reaction) pj . This leads to the following more general formulation for the evolution
of the solid

dα

dt
(t) = k (T (t)) f (α(t)) g (pj(t)) . (3.6)

The dependence on the partial pressure is ignored in most kinetic studies (Vyazovkin et al.
[2011]). The dependence on the fractional decomposition (the reaction model) can be generically
formulated as f(α) = αl(1 − α)r [− ln(1− α)]r as proposed by Šesták and Berggren [1971] and
Málek and Criado [1992]. Typical aerospace applications assume a reaction-order model, i.e. l =
0, r = 0, for the dependence on the advancement reaction: f(α) = (1− α)r, with r the order of
reaction. There are two reasons here for considering this particular form for the reaction model.
The first one is because the integration of this single-parameter reaction-order model results in
a closed-form solution. For instance, the reaction model f(α) = αl(1 − α)r, as in Zhang et al.
[2021], would result in a solution that involves the incomplete beta function. The second one
is the long legacy of previous pyrolysis modeling of TPMs that assumed this kinetic model and
which provided satisfactory results.

This finally leads to the following ordinary differential equation (ODE) for pyrolysis with the
one-parameter Šesták-Berggren kinetic model

dα

dt
(t) = A exp

{ −E
RT (t)

}
(1− α(t))r . (3.7)

This ODE represents the advancement of the reaction for a point mass sample, which is a
good approximation for many thermoanalytical experiments (Torres-Herrador et al. [2020]). It
can be extended to more complex cases by considering an energy equation that include the
thermal conductivity within the material or the heat capacity of the material, in which case the
temperature is a function of space and time and the ordinary differential equation is replaced
by a partial differential equation (Blondeau and Jeanmart [2012]; Lachaud et al. [2017]; Coheur
et al. [2017]).

Sometimes, the pre-exponential factor is expressed as A = A0T
m, where A0 denotes a

temperature-independent factor, in order to emphasize a potential dependence on tempera-
ture (Flynn [1997]). Previous work on parameter identification for thermal protection materials
showed that the parameter m tends to zero (Torres-Herrador et al. [2020]), so in the following
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we will set m = 0 and omit Tm for simplicity. Therefore, the kinetic triplet (A, E and r) is
assumed to be independent of temperature and we assume in the following that A > 0, E > 0
and r ≥ 1.

3.3.2 Multi-component kinetic equations
In most cases, solid state reactions are often too complex to be described using a single reac-
tion (Vyazovkin and Wight [1997]; Brown et al. [2000]). It is therefore convenient to define
multiple advancement of reaction factors 0 ≤ αi ≤ 1, where 1 ≤ i ≤ Np indexes independent
pyrolysis reactions occurring in parallel and Np is the number of pyrolysis decomposition pro-
cesses present in the solid resin (or the number of reactants, or the number of steps). Each
step represents a distinct reactant (or sub-phase (Lachaud et al. [2017]), or pseudo-component
(Di Blasi [2008])) in the solid. The corresponding reaction scheme is represented schematically
in Eq. (3.8):

w1R(s)
1

k1−→ w1γ1CC(s) + w1γ11S
(g)
1 + w1γ12S

(g)
2 + · · ·+ w1γ1jS

(g)
j

w2R(s)
2

k2−→ w2γ2CC(s) + w2γ21S
(g)
1 + w2γ22S

(g)
2 + · · ·+ w2γ2jS

(g)
j

wiR(s)
i

ki−→ wiγiCC(s) + wiγi1S
(g)
1 + wiγi2S

(g)
2 + · · ·+ wiγijS

(g)
j

R(s)

..
.

(3.8)

where wi is the relative weight, or mass fraction of compound R(s)
i from the virgin reactant R

and
∑Np
i=1 wi = 1. The evolution of the Np advancement of reaction factors given the reaction

scheme Eq. (3.8) is therefore

dαi
dt

(t) = Ai exp
{ −Ei
RT (t)

}
(1− αi(t))ri , 1 ≤ i ≤ Np. (3.9)

This expression is widely used in the aerospace community to model thermal protection materials
pyrolysis (Goldstein [1969]; Trick et al. [1997]; Torre et al. [1998a,b]; Clayton [2001]; Bhatia and
Roy [2010]; Chen and Milos [2013]; Lachaud and Mansour [2014]; Lachaud et al. [2015]; Coheur
et al. [2017]; Lachaud et al. [2017]; Torres-Herrador et al. [2019b]). We refer to this process
as multi-step, multi-component, or parallel pyrolysis reactions. The advancement of reaction
factors are defined for the compounds R(s)

i of mass mi(t) as

αi(t) = m0,i −mi(t)
m0,i −m∞,i

, 1 ≤ i ≤ Np (3.10)

with m0,i = m0wi and we have α(t) =
∑Np
i=1 wiαi(t). The total mass of the sample can then be

obtained by inserting the latter in Eq. (3.4). The parameters wi are unknown as well as them∞,i
that can also be unknown if the reaction processes did not reach completion at the end of the
temperature program and therefore cannot be measured experimentally. For instance, the weight
in Fig. 3.3(a) suggests that the global reaction has not yet reached completion. Considering that
m∞,i = γC,im0,i, the total mass is finally given by

m(t) = m0


1−

Np∑

i=1
αi(t)wi(1− γC,i)


 . (3.11)

The term wi(1− γC,i) = wi
∑Ng
j γij represents the mass fraction of the solid reactant R(s)

i that
is converted into gas. The mass after completion of the reaction can be retrieved by computing
m∞ = m0(1−∑Np

i=1 wi(1− γC,i)).
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Pyrolysis gas production

The advancement of reaction factors αi cannot be observed directly from experiments; thus,
for calibrating model parameters, we need to provide a mathematical expression for the model
output that can be linked to the experimental observations. The mass of the sample is linked to
the αi through Eq. (3.11), but the pyrolysis species production allows to observe more accurately
the independent reaction steps. Although production rates can also be obtained by differentiating
the TGA curve, the differentiation introduces additional numerical noise in the experimental data
(Conesa et al. [2001]; Torres-Herrador et al. [2020]).

During pyrolysis, part of the solid material is converted into gas and pyrolysis gas production
can be obtained from mass conservation. It is assumed that char and gaseous species are the
only products from pyrolysis. Because the char is non-volatile, mass variation of the sample is
necessarily linked to the pyrolysis gas production and any sample mass decrease implies pyrolysis
gas production. Thus, the pyrolysis gas production rate is given by

π(t) = −dm
dt

(t) =
Np∑

i=1
wi(1− γC,i))

dαi
dt

(t)m0 ··=
Np∑

i=1
πi(t), (3.12)

where πi(t) is the gas production rate coming from the decomposition of the reactant i. Con-
sidering that (1− γC,i) =

∑Ng
j γij , we can write

πi(t) =
Ng∑

j=1
γijwi︸ ︷︷ ︸
Fij

dαi
dt

(t)m0, (3.13)

where Fij ··= γijwi is the fraction of mass from the sample that decomposes into gas species j
due to reaction i. In Eq. (3.13), the summands represent the amount of species j produced by
the reaction i relative to the initial sample mass m0. We finally let

νj(t) ··=
Np∑

i=1
Fij

dαi
dt

(t)m0, (3.14)

or νj(T ) ··=
Np∑

i=1
Fij

dαi
dT

(T )dT
dt
m0. (3.15)

The quantity νj(T )/(dT/dt), measured in g K−1 is the quantity observed experimentally in
Figs. 3.3(b)–3.3(d).

The introduction of the Fij can help reducing the number of parameters to infer, which will
be useful in Chapter 7, providing a few more assumptions that we state now. The value of m∞
can be computed from the Fij using the relation m∞ = m0 −

∑Np
i=1
∑Ng
j=1 Fijm0. To retrieve

wi =
∑Ng
j=1 Fij/(1− γC,i), one needs the value of each γC,i, which are unknown. One possibility

to infer on these values is to assume that each reaction produces char in the same proportions,
i.e. m∞/m0 = γC,i, 1 ≤ i ≤ Np. Hence, wi =

∑Ng
j=1 Fij/(1−m∞/m0) and finally γij = Fij/wi.

Instead of assuming a constant char fraction produced by each reaction, the model imple-
mented in PATO and in the pyrolysis_general code from VKI considers that the char is pro-
duced outside the gasification reactions, i.e. γC,i = 0 for 1 ≤ i ≤ Np,

∑Ng
j=1 γij = 1, and has an

additional non-pyrolyzing compound wcR(s)
c , which is pure carbon, such that

∑Np
i=1 wi +wc = 1.

The char is seen as being present initially in the resin. In this case, we have wc = 1−∑Np
i=1 wi =

1−∑Np
i=1
∑Ng
j=1 Fij and finally wi =

∑Ng
j=1 Fij , γij = Fij/wi.
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3.3.3 Analytical solution of the multi-component model with the one-
parameter Šesták-Berggren equation

An analytical solution does not necessarily exist when the temperature program is an arbi-
trary function of time. However, most experimental studies such as in TGA are carried out by
using either a linearly increasing temperature T = β(t − t0) + T0 with β the heating rate in
Kmin−1 (Bessire and Minton [2017]; Torres-Herrador et al. [2020]), t0 the initial time and T0
the initial temperature, or constant temperature T = const (isothermal conditions) (Wong et al.
[2015b]; Wong et al. [2016]; Hu et al. [2020]). The case of a linearly increasing temperature is
widely used in thermal protection materials decomposition studies Goldstein [1969]; Trick and
Saliba [1995]; Torre et al. [1998a]; Bessire and Minton [2017]; Torres-Herrador et al. [2020]; Ole-
jnik et al. [2020]. For constant temperature, some experimental set-ups use a piecewise constant
temperature program (Wong et al. [2015b]; Wong et al. [2016]), where the isothermal condition
is maintained only during a given time interval. In these settings, the temperature T (t) is main-
tained at a constant value T (k) during a time interval A(k) =

[
t
(k)
0 , t

(k)
f

]
in order to collect and

analyze the species products before increasing the temperature to its next value T (k+1). The
temperature is thus assumed to be the piecewise constant function T (t) = T (k) for all t ∈ A(k)

with 1 ≤ k ≤ nstep and nstep the number of temperature increase.
Therefore, we wish to find the analytical solution to the initial-value problem (IVP)





dαi
dt

(t) = Ai exp
{ Ei
RT (t)

}
(1− αi(t))ri , for t > t0,

αi(t0) = αi,0, i = 1, . . . ,Np

(3.16)

with either

T (t) = const (isothermal) (3.17)

or

T (t) = β(t− t0) + T0 (linearly increasing temperature). (3.18)

The system of equations in (3.16) is a system of independent first-order non-linear ODEs with
constant coefficients in the case of (3.17) and with non-constant coefficients in the case of (3.18).
We start by performing a simple change of variables as follows. Substituting ui(t) = 1 − αi(t)
leads to

dui(t)
dt

= −uri (t)Ai exp
{ −Ei
RT (t)

}
. (3.19)

Dividing both handsides by u−ri (t), assumed nonzero, and integrating both sides of the equation
with respect to time, we have

−
∫ t

t0

u−ri (t̃)dui(t̃)
dt̃

dt̃ =
∫ t

t0

Ai exp
{ −Ei
RT (t̃)

}
dt̃, (3.20)

where the right-hand side is the integral of the Arrhenius equation and is named the temperature
integral

Ii(t) =
∫ t

t0

Ai exp
{ −Ei
RT (t̃)

}
dt̃. (3.21)

The case where ri = 1 is left for the end of the section. Assuming that ri 6= 1, the left-hand side
can be integrated by substitution leading to

−
∫ ui(t)

ui(t0)
ũ−rdũ = − 1

1− ri
(
u1−ri
i (t)− u1−ri

i (t0)
)
. (3.22)
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Inserting this expression in Eq. (3.20) and finally expressing the result with the advancement of
reaction factor, we obtain

ui(t) =
(
u1−ri
i (t0)− Ii(t)(1− ri)

)1/(1−ri)
, (3.23)

αi(t) = 1−
(

(1− αi(t0))1−ri − Ii(t)(1− ri)
)1/(1−ri)

. (3.24)

In this last equation, we still need to provide an expression for the temperature integral Ii(t),
that depends on time through the temperature program.

Case 1: piecewise isothermal

In isothermal pyrolysis experiments, we assume the temperature to be constant on a given time
interval A = [t0, tf]. Thus Ii(t) is easily integrated on the time interval, leading to

Ii(t) = Ai exp
{−Ei
RT

}
(t− t0). (3.25)

For completeness, we consider the more general case of a piecewise constant temperature
as a function of time; this procedure is applied, for instance, in Wong et al. [2015b] and Wong
et al. [2016]. The overall experiment is seen as the succession of nstep smaller experiments with
advancement of reaction factors α(k)

i (t) where the initial condition α(k)
i (t0) depends on the state

of the material at the end of the previous time interval. The temperature T (k) is maintained
constant during the time interval A(k) =

[
t
(k)
0 , t

(k)
f

]
and is equal to T (k+1) in the next interval.

The transient part of temperature increase between each time interval is neglected because of
its short duration compared to the whole process. The solution for the advancement of reaction
factor as a function of time in the k interval is therefore

α
(k)
i (t) = 1−

((
1− α(k)

i (t(k)
0 )
)1−ri

− (1− ri)Ai exp
{ −Ei
RT (k)

}
(t− t(0)

0 )
)1/(1−ri)

, (3.26)

and the solution is αi(t) = α
(k)
i (t) for all A(k). Usually α(0)

i (t(0)
0 ) = 0 in the first time interval,

then the value for α(k)
i (t(k)

0 ) in a given time interval is equal to α(k−1)
i (t(k−1)

f ) from the previous
time interval. This expression simplifies further if we set t(k)

0 = 0 ∀ k. If nstep = 1, then the
solution is for a single isothermal condition.

Case 2: linearly increasing temperature

In this case, the temperature increases linearly with time until the end of the experiment, thus
T = β(t− t0) + T0 and

Ii(t) =
∫ t

t0

Ai exp
{ −Ei
R(β(t̃− t0) + T0)

}
dt̃. (3.27)

For the computation of Ii(t), we apply the following change of variables: vi = −Ei/(R(β(t −
t0) + T0)) thus dt = Ei/(Rβv2

i )dvi. The integral becomes

Ii(t) =
∫ vi

vi,0

Ai
β

Ei
Rṽ2 exp {ṽ} dṽ

= Ai
β

Ei
R

∫ vi

vi,0

exp {ṽ}
ṽ2 dṽ

= Ai
β

Ei
R

([
−exp {ṽ}

ṽ

]vi

vi,0

+
∫ vi

vi,0

exp {ṽ}
ṽ

dṽ

)
, (3.28)
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where the last line results from the integration by parts. The second summand on the right-hand
side is the exponential-integral function (Abramowitz and Stegun [1972])

Ei(v) =
∫ v

−∞

exp(ṽ)
ṽ

dṽ (v > 0). (3.29)

Thus, inserting the exponential-integral function into Eq. (3.28) leads to

Ii(t) = Ai
β

Ei
R

[
−exp {ṽ}

ṽ
+ Ei(ṽ)

]vi(t)

vi,0

= Ai
β

Ei
R

(
−exp {vi(t)}

vi(t)
+ exp {vi,0}

vi,0
+ Ei(vi(t))− Ei(vi,0)

)

= Ai
β

Ei
R

(RT (t)
Ei

exp
{ −Ei
RT (t)

}
− RT0
Ei

exp
{ −Ei
RT0

}
. . .

+ Ei
{ −Ei
RT (t)

}
− Ei

{ −Ei
RT0

})
. (3.30)

This can be inserted into Eq. (3.24) to obtain the final expression of the advancement coefficient
of each reactant i as a function of time.

Usually, the advancements of reaction are plotted against temperature instead of time for
convenience. Gathering the terms that depend on temperature, we can write

αi = 1−
{

(1− ri)
[
−Ai
β
T exp

{−Ei
RT

}
− Ai

β

Ei
R Ei

{−Ei
RT

}
+ Ci

]} 1
1−ri

, (3.31)

Ci = (1− αi(T0))
1− ri

1−ri
+ Ai

β
T0 exp

{ −Ei
RT0

}
+ Ei

{ −Ei
RT0

} AiEi
βR . (3.32)

For the example in Section 3.5.1 we will consider the gas production from Eq. (3.15). Inserting
the analytical solution gives

νj =
Np∑

i=1
m0Fij

({
(1− ri)

[
−Ai
β
T exp

{−Ei
RT

}
. . .

−Ai
β

Ei
R Ei

{ −Ei
RT0

}
+ (1− αi,0)

1− ri

1−ri
+ Ai

β
T0 exp

{ −Ei
RT0

}
. . .

+ Ei
{ −Ei
RT0

} EiAi
β

]} 1
1−ri

)ri
Ai exp

{−Ei
RT

}
. (3.33)

Finally, computation of derivatives with respect to parameters are provided in Appendix A.1.

Particular case: linear Šesták-Berggren model

The case of ri = 1 in Eq. (3.9) results in a linear system of uncoupled ODEs that is now addressed
in this section for the two heating conditions.

We substitute ri = 1 in Eq. (3.20) and the left-hand side leads to

ln(ui,0)− ln(ui(t)) = Ii(t). (3.34)

For the (piecewise) isothermal case, with Ii(t) from Eq. (3.25), this leads to

α
(k)
i (t) = 1− (1− α(k)

i,0 ) exp
(
−Ai exp

{−Ei
RT

}
(t− t(k)

0 )
)
. (3.35)
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For the linearly increasing temperature, we substitute Ii(t) from Eq. (3.30), thus leading to

αi = 1− Ci exp
{
−Ai
β
T exp

{−Ei
RT

}
− Ai

β

Ei
R Ei

{−Ei
RT

}}
, (3.36)

Ci = (1− αi,0) exp
{Ai
β
T0 exp

{ −Ei
RT0

}
+ Ai

β

Ei
R Ei

{ −Ei
RT0

}}
. (3.37)

Matrix formalism

The case of ri = 1 can be written using a matrix formalism thanks to the linearity of the
equations. This particular case of ri = 1 was already considered in the more general framework
of competitive reaction mechanisms in Herrador et al. [2019] where the system of ODEs is no
longer uncoupled.

Using the change of variables ui(t) = 1 − αi(t), the general reaction mechanisms Eq. (3.8)
with Eq. (3.9) governing the evolution of the advancement and ri = 1 can be written as

du

dt
= L(t)u, (3.38)

where L(t) is a square matrix whose coefficients are a linear combination of the reaction rates ki
and depend on time. In the case of a multi-component pyrolysis model such as the one presented
here, the matrix L is diagonal with lii = −ki.

3.4 Competitive pyrolysis reactions
In the previous section, the solid reactants were considered to be independent from each other.
To include competitive reaction mechanisms, we assume that an initial solid reactant decomposes
into pyrolysis gases and other solid products. These products, in turn, may become reactants1
thus following different reaction paths that are in competition. The mathematical description of
a general reaction scheme with competitive reactions applied to TPMs was introduced in Torres-
Herrador et al. [2019a] and part of this section is based on this manuscript.

3.4.1 Simple competitive kinetic scheme

We consider a solid reactant R(s) of mass mR that decomposes into generic products Pj of mass
mPj with 1 ≤ j ≤ Nc and Nc the number of competitive reactions, as sketched in Fig. 3.4.

P1

P2
...

PNc

R(s)

k1

k2
k
N

c

Figure 3.4: Illustration of a competitive mechanism. A solid R(s) reacts producing Nc products.

The evolution of each reaction j is controlled by its kinetic rate kj that is modeled using
the first order Arrhenius equation from Eq. 3.5. The solid reactant will degrade generating the
products at a rate given by

dmPj
dt

(t) = kj(T (t)) (mR(t))rj , 1 ≤ j ≤ Nc (3.39)

1The variable is said to be activated, which is sometimes refer to as a depolimerization step.
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where the exponent rj is the reaction order. Such pyrolysis applications typically assume first
order reactions (rj = 1) (Tanaka [1995]; Galwey and Brown [2002]; Blondeau [2013]) due to
the reduction on the number of parameters to be adjusted in the model and to the numerical
advantages solving the system of equations. In the following, we assume first order reactions,
and the parameter rj will be omitted for simplicity and clarity.

Now, considering the Nc simultaneous reactions that the solid reactant may undergo, the
total decomposition rate of the solid can be expressed as

dmR
dt

(t) = −
Nc∑

j=1

dmPj
dt

(t) = −
Nc∑

i=j
kj(T (t))mR(t). (3.40)

It is worth mentioning that the use of an advancement coefficient as defined in Eq. (3.10)
is not meaningful here as an activated species can be both produced and consumed and would
result in a non-monotonic advancement coefficient. Lautenberger [2007] used the cumulative
production of a solid species in the definition of the advancement coefficient, but this is not
investigated here.

3.4.2 Generalized competitive kinetic model

The generalization of the previous competitive mechanism to multi-component competitive re-
actions is represented in Fig. 3.5. We denote by Si, with 1 ≤ i ≤ N , all the species which
can be either gaseous, with i ∈ Ig, or solid (reactant or product), with i ∈ Is. The number
of species in each set is |Ig| = Ng and |Is| = Ns respectively with the total number of species
N = Ng + Ns. Competitive mechanisms occur on the i-th component with mass mi following
the reaction rate ki,j with 1 ≤ j ≤ Nci the index for its j-th competitive branch and Nci the
number of competitive reactions for the component Si. Each reaction may generate more than
one product species, Sl either solid or gaseous,

Si
ki,j−−→

N∑

l=1
ζi,j,l Sl, 1 ≤ j ≤ Nci, 1 ≤ i ≤ N, (3.41)

where ζi,j,k are the stoichiometric coefficients. Mass coefficients γi,j,k are introduced as

γi,j,k = ζi,j,kMi,j,k∑N
l=1 ζi,j,l Mi,j,l

1 ≤ j ≤ Nci, 1 ≤ i, k ≤ N, (3.42)

For i ∈ Is, the variation the mass of a component Si is given by the balance between the
production and destruction of component Si as

dmi

dt
(t) = −

Nci∑

j=1
ki,jmi(t)

︸ ︷︷ ︸
destruction of Si

+
N∑

j=1

Ncj∑

l=1
kj,l γj,l,imj(t)

︸ ︷︷ ︸
production of Si

. (3.43)

The first term on the right-hand side (RHS) is the destruction of Si, which is the sum over all
reaction branches from the solid component Si towards products. This term is zero for gases since
it is assumed that only solid components pyrolyze while gas phase reactions will be computed
elsewhere, thus ki,j = 0 for i ∈ Ig. The second term represents the production of Si coming from
all other components and their respective competitive reactions, except from j = i for which
γj,l,i = 0 (otherwise, there is no reaction).
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γ1,1,1 S1 + γ1,1,2 S2 + · · · + γ1,1,N SN

γ1,2,1 S1 + γ1,2,2 S2 + · · · + γ1,2,N SN
...

γ1,Nc1,1 S1 + γ1,Nc1,2 S2 + · · · + γ1,Nc1,N SN

S1

k1,1

k1,2k1,N
c1

...
γN,1,1 S1 + γN,1,2 S2 + · · · + γN,1,N SN

γN,2,1 S1 + γN,2,2 S2 + · · · + γN,2,N SN
...

γN,NcN ,1 S1 + γN,NcN ,2 S2 + · · · + γN,NcN ,N SN

SN

kN,1

kN,2k
N

,N
cN

Figure 3.5: Generalized pyrolysis scheme with competitive mechanisms.

Matrix formalism

Eq. (3.43) defines a system of first order Ordinary Differential Equations (ODEs) that can be
written under a matrix formalism as

dm

dt
(t) = L(t)m, (3.44)

wherem is a column vector with all the components mi and L is the matrix of coefficients. The
diagonal terms lii are given by the first term on the RHS of Eq. (3.43) while off-diagonal terms
are given by the second term as γj,l,i = 0 for j = i. The matrix L can be reduced to a full rank
matrix if all the dependent variables are removed, which are all the gaseous products and solid
products that do not further react. In this case, the coefficient matrix is lower triangular due
to the irreversibility of the pyrolysis process (Blondeau [2013]). In general, when considering
multi-step non isotherm reactions, an analytical solution can not be found, see discussion in
Appendix A.2.

In addition, it can be shown that the generalized model degenerates in a parallel model if
the second term on the RHS (Eq. (3.43)) is zero (Herrador et al. [2019]) (see in Appendix A.3).
In that case, the system becomes a diagonal matrix and analytical solutions can be found.

Generating different products from the same reactant provides great flexibility to the com-
petitive reaction mechanisms. This means that different kinetic pathways may become dominant
depending on the heating conditions leading to the possibility of “selecting” the pathway. This
is intensively used in biomass pyrolysis where this selectivity allows to predict which products
(gas, char or tar) will be mostly produced (Blondeau and Jeanmart [2012]).

Due to the nature of competitive schemes, a component Si can be produced and consumed
during the pyrolysis process (non diagonal matrix L). This makes that the advancement of
reaction becomes irrelevant to describe the evolution of a particular reaction. A workaround to
this is to describe the state of the reaction in terms of densities and if required define a global
advancement of reaction from virgin to char (Blondeau [2013]; Lautenberger and Fernandez-Pello
[2011]).

3.5 Examples

3.5.1 Six-equations multi-component model and sensitivity analysis
This example is used to illustrate the efficiency of the analytical solution from Section 3.3.3
by comparing it with a numerical solution of the non-linear system of ODEs. We consider the
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Table 3.1: Parameter values for the six-reaction pyrolysis model from Torres-Herrador et al.
[2019b], with the wi parameters re-scaled in order to consider the pyrolysis of a pure resin.

R wi log(A) (s−1) E (kJ mol−1) n

1 0.0039 6.96 61.3 9.96
2 0.0258 6.59 77.6 5.65
3 0.0873 6.71 95.1 4.23
4 0.0804 6.67 103.0 4.38
5 0.0112 6.58 113.9 6.68
6 0.0254 6.35 175.2 8.85

pyrolysis scheme described in Torres-Herrador et al. [2019b] based on the experiments of Bessire
and Minton [2017] that were described in Section 3.2. We verify the accuracy of the analytical
solution and we show the computational gain achieved by using it in a case involving a linearly
increasing temperature. We finally perform a sensitivity analysis to illustrate the use of the
derivatives with respect to parameters.

Torres-Herrador et al. [2019b] performed a model calibration using a multi-component model
from the results from the experiments of Bessire and Minton [2017] at the heating rate β = 360
Kmin−1. Six components (Np = 6) were identified in the pyrolysis model by visual inspection of
the maximum species production peaks in order to simulate the production of the 14 observed
gas products. A model fitting procedure was then performed using a multi-objective genetic
algorithm (MOGA) and the pyrolysis model was solved using the software PATO (Lachaud
and Mansour [2014]) and integrated in time using a first-order implicit scheme. The 24 kinetic
parameter and mass fraction values resulting from the fitting procedure of the six-reaction model
are summarized in Table 3.1. We note that the relative weights wi had to be rescaled compared
to Torres-Herrador et al. [2019b] because the model for the mass loss and production from
Eq. (3.11) and Eq. (3.15) is relative to the total mass of the sample, while in PATO it is relative
to the mass of the resin. Therefore, we have to divide wi by a factor equal to (1 −mfibers/m0)
which is around 0.43 (PICA contains a 43% of resin in mass). The sample mass and the mass
production rates πi from the decomposition of each component for the calibrated pyrolysis model
are shown in Fig. 3.6. The six-reaction pyrolysis model with the calibrated species mass fractions
is as follows:

R(s)
1

k1−→ 0.62H2O + 0.38CO

R(s)
2

k2−→ 0.69CO2 + 0.21C3H8O,1 + 0.09C3H8O,2

R(s)
3

k3−→ 0.42H2O + 0.06CO2 + 0.15C6H6O + 0.34C7H8O + 0.03C8H10

R(s)
4

k4−→ 0.67CO + 0.27CH4 + 0.03C6H6 + 0.04C7H8

R(s)
5

k5−→ H2

R(s)
6

k4−→ 0.19H2 + 0.81CO

The pyrolysis reaction model from above and the resulting mass production rates πi from
Fig. 3.6b can be related to the stages of pyrolysis described in Section 3.2.3. The production π1
in Fig. 3.6b is related to the outgassing from stage 1, while π3 is related to stage 3 and π4 to
stage 3. Both π5 and π6 are related to the production of H2 at high temperature from stage 4.
The CO observed at high temperatures does not have a clear origin, but it was included in π6.
Remaining gases that do not have a clear reaction were included in a reaction corresponding to
their production peaks, such as CO at low temperature (π1) or xylene (π3), or to a new reaction
(π2), such as for isopropanol.
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Comparison of the analytical solution with a numerical solution

The solutions (both analytical and numerical) to the pyrolysis equations and their derivatives are
implemented in the pyrolysis_general code, an in-house Python code developped at VKI. The
exponential-integral function is computed using the special.expi() function from the scipy
library. Its implementation is based on a fortran implementation of the series expansion of the
exponential-integral Ei(x) (with x > 0) (Abramowitz and Stegun [1972]). For the numerical
solution, the integration of the system of ODEs is performed using the integrate.solve_ivp()
function from the scipy library. In particular, it features an implicit multi-step Runge-Kutta
method of the Radau IIA family of order 5 (Hairer and Wanner [1999]). Indeed, chemical
reactions involving the Arrhenius equation can be stiff, i.e. there can be a rapid variation of the
solution due to a fast degradation of a reactant compared to an other one, and for generality we
decided to use a numerical solver capable of dealing with these different reaction scales (Curtiss
and Hirschfelder [1952]). The varying time step is determined by the solver that keeps a relative
tolerance, which controls the number of correct digits, that we set to 10−8.

The numerical solution, the analytical solution and their derivatives are computed at 101
points in the temperature range with the parameter values from Table 3.1. The comparison of
the analytical solution with the numerical solution is shown in Fig. 3.6. The solution is shown
for the mass loss in Fig. 3.6a and the total gas production in Fig. 3.6b. The quantities on the
y-axis are normalized by the total mass of the composite. Mass loss of the material is computed
from Eq. (3.32) and Eq. (3.31) and the production of pyrolysis gas is computed from Eq. (3.33)
and we can see from Fig. 3.6 that the two solutions match. The relative errors of the analytical
solution compared to the numerical solution are computed as

err(T ) =
∣∣∣∣
yanalytical(T )− ynumerical(T )

ynumerical(T )

∣∣∣∣ . (3.45)

For the mass of the material, we have err(T ) ≤ 2.5 × 10−8 which is of the order of magnitude
of the relative tolerance set to the numerical solver and show that the analytical solution is
computed with high accuracy. For the total gas production, we have err(T ) ≤ 6.2× 10−6, which
is higher than for the mass because the reaction process rate needs to be recomputed from
Eq. (3.16).

In Fig. 3.6b, we also show the production rate πi coming from the decomposition of each
reaction i with π =

∑Np
i=1 πi to identify the different contributions of all reactions to the global

production rate.
Derivatives are computed numerically using a first-order finite-difference formula by perturb-

ing one by one the parameters about their nominal value. Each perturbed solution is computed
using the analytical expressions Eqs. (A.1)–(A.10) (sensitivities of π and ν are the same here
because we considered only one species). Results for the 24 derivatives are shown in Fig. 3.7.
Once again, the two solutions match over the whole temperature range.

Computational gain for parameter inference

In order to illustrate the computational gain of this solution, we compared the execution time
to compute 600 times the solution, which corresponds to the initial sample size for the MOGA
algorithm in Torres-Herrador et al. [2019b]. Thus, the following analysis only characterizes
the computational time for the initialization of the MOGA algorithm, but the total number of
model evaluations is higher. Parameter values are kept constant, but we should keep in mind
that varying them with the iterations could influence the computational time of the numerical
solution. The computations are performed on a single CPU Intel Core i7-6820HQ using a single
thread. The time to compute the 600 solutions numerically took 42.46 s while the analytical
evaluations took 0.29 s, which is almost 150 times faster. Although they are not used in the
MOGA algorithm, we can estimate the time that the derivatives would take to be computed. For
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Figure 3.6: Comparison of the solution obtained from the analytical solution and the numerical
integration for (a) the sample mass and (b) the total production rate.

the numerical computation of the derivatives, we need one additional model evaluation for each
perturbed parameter for the finite difference evaluation that would be approximately 24× 42.46
s (≈ 17 min), while the 600 analytical evaluations of the derivatives is taking approximately 3.35
s, which is approximately 300 times faster.

It is also important to note that the computational time increases proportionally with the
number of equations in the model Np (and so the complexity of the pyrolysis model). This
increase in the computational time is more impacted by the number of equations with the
numerical solution because of the adaptive time-step procedure and the time to compute the
Jacobian matrix (derivative of the right-hand side of Eq. (3.16) with respect to t) needed for the
implicit Radau IIA method, which was evaluated by the solver using finite differences.

Local sensitivity analysis

Finally, we perform a local sensitivity analysis from the graph of the sensitivities in Fig. 3.7.
We can first observe the compensation effect between A and E (for both i) from Fig. 3.7(a)
and 3.7(b): we see from the graphs that they have opposite effects on the solution (because
E appears with a negative sign in the exponential). This means that an increase of A can be
compensated by a decrease of E while keeping the value of the solution π almost constant. This
will result in a wide range of possible values for A and E when calibrating their values from
experiments and explains the hurdle of calibrating them at the same time. We also see that the
sensitivity of π with respect to E is roughly three orders of magnitude higher than with A and
due to the fact that E appeared in the exponential term.

Regarding the order of magnitudes of all the parameters, we see that the wi parameters
have the highest impact on the solution π, followed by ni and finally Ei and Ai. wi has the
biggest impact on the production as it influences directly the production of char and is positive
everywhere. Increasing wFi will always result in an increase of the gas produced from the
pyrolysis reaction and less char left at the end of the process. The shape of the curves for Ei
and ni is almost the same, with a little shift in temperature and with three orders of magnitude
difference. Finally, we note that reaction 1 has a high influence on the production rate despite
its lowest contribution to the total mass (w1 = 0.00039). Comparatively, reaction 5 and 6 have
higher mass fractions, but ∂π/wFi (Fig. 3.7d) is lower than for reaction 1. This is due to the fact
that changes in the mass fraction of the first reaction will impact the subsequent productions
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Figure 3.7: Comparison of the sensitivities computed analytically and using finite differences
(numerical) with respect to the 24 parameters: (a) pre-exponential factors Ai, (b) activation
energies Ei, (c) reaction orders ni and (d) relative weights fractions wi. The continuous and
discontinuous lines are for the analytical solutions and the markers for the numerical solutions.
For the clarity of the images, we displayed only 25 markers instead of the 101 points where the
solution were computed.

rates.
This short analysis is valid locally about the nominal parameter values and provides a good

overview of the relative influence of the parameters. We should also keep in mind that the
analysis might be slightly different with a different combination of the nominal parameters.
Finally, a global sensitivity analysis should be performed to give a more global overview of the
impact of the parameters on the solution.

3.5.2 Model of Goldstein
Because of its common used in state-of-the-art numerical solvers for TPMs decomposition, the
model of Goldstein [1969] is presented in this section. Goldstein [1969] calibrated the following
multi-component parallel pyrolysis model

dmi

dT
(T ) = −m0,i

A′i
β

exp
(−Ei
RT

)(
mi(T )−m∞,i

m0,i

)ri
, 1 ≤ i ≤ Np, (3.46)
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Table 3.2: Kinetic parameters for the pyrolysis model of Goldstein [1969].

A (sec−1) A′ (sec−1) E
R (K) r

m0,i
m0

m∞,i
m0

Reaction I 1.40× 104 1.40× 104 8560 3.0 0.25 0
Reaction II 4.9778× 108 4.48× 109 20450 3.0 0.75 0.5

with Np = 2. The mass mi can be expressed in terms of the extent of reaction αi(t) from
Eq. (3.10) as mi(T ) = m0,i − αi(T )(m0,i −m∞,i) 1 ≤ i ≤ Np in order to retrieve Eq. (3.9) with
Ai = A′i ((m0,i −m∞,i) /m0,i)(ri−1). Parameters values for the model of Goldstein [1969] are
provided in Table 3.2. The wi correspond to m0,i/m0 with

∑Np
i=1 wi = 1. In PATO, we have∑Np

i=1 wi + wc = 1, thus w1 = 0.25, w2 = 0.75− 0.5 = 0.25 and wc = 0.5.

3.6 Summary of the chapter
We reviewed pyrolysis experiments that were performed on carbon/phenolic ablators in order to
provide a better understanding of the chemical reactions occurring during the material decom-
position. Typical models used for the simulation of pyrolysis decomposition were then reviewed.
Multi-component models are widely used in current numerical solvers and are appropriate for
single-step mechanisms without competitive reactions, for instance when considering the decom-
position at a single heating rate. Pyrolysis models with competitive mechanisms can include
multiple reaction paths in the reaction scheme, hence allowing us to extend the applicability of
pyrolysis models to a wider range of heating rate when several reaction paths are present.

For the multi-component pyrolysis models, we derived a general analytical solution featuring
a one-parameter Šesták-Berggren kinetic model. The mathematical derivation of the solution
was performed for two typical heating conditions encountered in pyrolysis experiments, namely
constant temperature and constant heating rate. The sensitivities of the solution with respect
to the different model parameters were also calculated.

The analytical solution was illustrated on a six-reaction pyrolysis model for the linearly in-
creasing temperature case. We showed the high accuracy of the proposed analytical solution
by comparing it with a numerical solution, and we showed that the computational gain was
significant. A local sensitivity analysis highlighted the well-known compensation effect and the
relative importance of the mass fraction over the other parameters. However this analysis is only
reflecting the local behavior about the nominal parameter values. In Chapter 7, this analytical
solution will be useful for building a detailed pyrolysis models with a high number of equa-
tions and applying Bayesian inference algorithms to infer the parameter values for uncertainty
quantification.
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Chapter 4
Numerical simulations of ablation
experiments using a unified flow-material
approach

This chapter presents the simulation results of the pyrolysis and char ablation of thermal pro-
tection materials subjected to high enthalpy flows. The flow in the porous medium is solved by
means of the VANS equations in a unified flow-material approach in order to capture in the same
domain of computation the interaction between of the chemically-reacting boundary layer and the
decomposing porous medium. Multiple solid phases are considered in the porous medium, that
are the fibers, the resin components and the char. The resin decomposition is modeled using a
two-reaction (multi-componenent, single-step parallel) pyrolysis model, and the ablation of the
char is modeled by assuming fibers of increased reactivity. Thermal and transport properties
of the material are assumed to evolve smoothly between the fluid and the solid. The solver is
verified against a one-dimensional test case with a state-of-the-art ablation-pyrolysis code, and
the differences in the heat transfer are analyzed. Then, the pyrolysis and the char ablation of an
iso-Q ablating material subjected to high enthalpy conditions similar to an arc-jet experiment are
simulated. This work was carried out at Cenaero (Gosselies, Charleroi) in close collaboration
with P. Schrooyen and under the direction of K. Hillewaert. Preliminary results were presented
at the 47th AIAA Thermophysics conference and published in Coheur et al. [2017].

4.1 Introduction
The wide variety of physical phenomena occurring during an atmospheric entry requires the need
for developing accurate numerical models that can take these numerous factors into account, both
on the macroscopic and microscopic scales. For instance, the interaction between the boundary
layer and pyrolysis and ablation gases needs to be correctly simulated to predict the blockage
effect, and the decomposition of the porous medium needs to be represented to predict the
gas production, effective material properties variations, or heat and mass transport within the
material.

In an attempt to solve the complex response of an ablative TPM and the flow field through
and around the material, Schrooyen [2015] developed the DGAblation branch of the Argo code,
developed at Cenaero. The Argo code (Hillewaert [2013]; Carton de Wiart [2014]) is a numerical
solver based on a high-order discontinuous Galerkin method (DGM) (Rivière [2008]). The DGM
combines the advantages of finite element and finite volume methods: high-order elements allow
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a better accuracy on both structured and unstructured meshes with a higher computational
efficiency and scalability due to the locality of the data in memory. The DGM also ensures
the local conservation of the physical quantities (the net flux for each cell is in balance, as for
finite volume methods) and achieves a low numerical dissipation and dispersion (Lv and Ihme
[2014]). The DGAblation branch features a unified flow-material approach and solves the VANS
equations, described in Section 2.3, in the whole computational domain, hence allowing to handle
the porous material and the surrounding flow field within the same domain of computation. The
code was shown to be able to simulate the ablation of carbon preform materials (Schrooyen
et al. [2016, 2017]). In Schrooyen et al. [2016], the competition between surface and volume
ablation was shown to be a key parameter for predicting the recession of the surface of porous
rigid carbon fiber ablative materials. The rigid carbon fiber matrix, or carbon preform material,
is the skeleton of carbon/phenolic composite ablative TPMs and has been widely studied in
literature. Replication of Plasmatron experiments on carbon preform materials from Helber
et al. [2016b] was performed and the comparison of the simulation results with the experimental
results demonstrated the validity of the unified approach to simulate ablating materials subjected
to atmospheric entry conditions (Schrooyen et al. [2017]). Finally, the code was further extended
by Coheur [2016] to account for pyrolysis reactions in a porous medium. Pyrolysis reactions were
implemented within DGAblation and the capability of such a pyrolysis model on a simplified case
using a fictitious pyrolysis gas made up of a single species of carbon monoxide with conditions
similar to a Plasmatron experiment on carbon/phenolic materials (Helber et al. [2016b]) were
showed. However, the test case was less than one second of physical time and no char and fiber
ablation was considered.

Therefore, in this chapter, we contribute to the development of the DGAblation branch
of the Argo code in order to simulate the pyrolysis and char ablation of decomposing TPMs
within the same unified flow-material approach. We implement a model for char ablation in the
VANS framework and we perform a numerical simulation from the pyrolysis to char ablation
of a carbon fibers/phenolic resin (CF/PR) TPM. A one-dimensional ablation test case is first
simulated to verify the implementation of the char model. Then, benefiting of the continuous
improvements performed by the Cenaero research team, the simulation of a 40 s pyrolysis and
ablation experiment was made feasible. The results for the one-dimensional test case were
published in Coheur et al. [2017].

This chapter is organized as follows. We first present the pyrolysis and char ablation models
that are implemented within Argo (Section 4.2). Replication of ablation experiments of compos-
ite CF/PR materials are then simulated (Section 4.3). The first test case is a one-dimensional
ablation test case and the results are compared with the state-of-the-art PATO code for verifi-
cation (Section 4.3.1). The second one is a two dimensional axisymmetric test case subjected to
arc-jet conditions (Section 4.3.2).

4.2 Flow in pyrolyzing reactive porous media

The VANS equations for non-charring reactive porous media, such as carbon fiber materials,
were described in Section 2.3. Considering now a pyrolyzing porous medium, the formulation
can be generalized to multiple solid phases inside the porous medium as sketched in Fig. 4.1.
The medium is composed of a fluid phase, denoted by g, that fills the pores and of multiple solid
phases σk. The elementary volume dV can therefore be written as V = Vg +

∑
k Vk and the

volume fraction for each phase is εσk = Vσk/V .
We assumed that the porous medium is made up of three solid phases: the fibers σf, the

pyrolyzing resin σr and the char σc. The averaged density of the overall solid phase is hence
ρs = ρf + ρc + ρr. The fibers and the char follow heterogeneous reactions, which occur between
the solid phase and the gas phase and depend on the average temperature, the local concentra-
tion of volatile reactants and the concentration of the solid reactant. In this case, the model
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Figure 4.1: Porous medium with multiple solid phases σi.

reaction can be linked to the geometry of the solid phase through the specific surface introduced
in Section 2.3.2. The global heterogeneous production of species i, 1 ≤ i ≤ Ng is denoted
〈ω̇heti (〈T 〉, 〈ρi〉g, 〈ρs〉)〉 and will be further described in Section 4.2.2.

The resin is decomposed through pyrolysis reactions, which are a pure thermal process and
depend on the average temperature and the average concentration of solid reactant. In Coheur
[2016], a multi-component single-step pyrolysis reaction was implemented, similar to what was
described in Section 3.3.2. The solid phase of pyrolyzing resin of average density 〈ρr〉 = εσr〈ρr〉σr

can be seen as being composed of several solid resin components (sub-phases) 〈ρr,I〉 with 1 ≤
I ≤ Np. The pyrolyzing polymer thus undergoes Np independent pyrolysis reactions, each
representing the decomposition of a fictitious solid component I composing the resin, pr,I →∑
j γIjSj , 1 ≤ j ≤ Ng, where γ is the mass fraction coefficient of species j produced from the

reaction I and Sj denotes the gaseous species present in the mixture. The average matrix density
can be written as

〈ρr〉 =
Np∑

I=1
〈ρr,I〉. (4.1)

The conservation equation for a single resin component writes

∂〈ρr,I〉
∂t

= 〈ω̇pyro
I 〉, 1 ≤ I ≤ Np. (4.2)

In the VANS equations from Eq. (2.28), the set of conservative variables, for 1 ≤ i ≤ Ng and
1 ≤ I ≤ Np, is given by

U = (εg〈ρi〉g, 〈ρu〉g, 〈ρEtot〉, 〈ρf〉, 〈ρc〉, 〈ρI〉)T
. (4.3)
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The convective and diffusive fluxes express as

Fc =




εg〈ρi〉g〈u〉g

〈ρ〉g〈u〉g〈u〉g + p

εg〈ρ〉g〈u〉g〈H〉g

0

0

0




, Fd =




−〈Ji〉

〈τ 〉g

〈τ · u〉+ λeff∇〈T 〉 −
∑Ng

i=1 hi〈Ji〉

0

0

0




, (4.4)

and finally the source term as

S =




〈ω̇heti (〈T 〉, 〈ρi〉g, 〈ρs〉)〉+ εgω̇i
hom (〈T 〉, 〈ρi〉g) +

∑Np
I=1 γIi〈ω̇pyroI

(
〈T 〉, 〈ρr,I〉

)
〉

Fgs

−
∑Ng

i=1

(
〈ω̇heti (〈T 〉, 〈ρi〉g, 〈ρs〉)〉+ εgω̇homi (〈T 〉, 〈ρi〉g)

)
h0
f,i . . .

−
∑Np

I=1

(
〈ω̇pyroI (〈T 〉, 〈ρI〉)〉h0

f,I +
∑Ns

j=1 mj,I〈ω̇pyroj,I (〈T 〉, 〈ρI〉)〉h0
f,j

)

∑Ng
i=1〈ω̇

het,f
i (〈T 〉, 〈ρi〉g, 〈ρs〉)〉

∑Ng
i=1〈ω̇

het,c
i (〈T 〉, 〈ρi〉g, 〈ρs〉)〉

〈ω̇pyroI (〈T 〉, 〈ρI〉)〉




. (4.5)

When considering the element mass conservation (equilibrium chemistry), the mass continu-
ity equation reads as

∂

∂t
(εg〈ρei 〉g) +∇ · (εg〈ρei 〉g〈u〉g) = −∇ · 〈Jei 〉+ 〈ω̇pyro,e〉. (4.6)

The heterogeneous production term is usually neglected, but carbon production needs to be
accounted for if volume ablation is considered. In Argo, only non-equilibrium chemical reactions
are implemented and the source term from Eq. (4.5) is considered.

In the next sections, the models for the pyrolysis and char ablation are presented and are
linked to the averaged production terms 〈ω̇pyroI (〈T 〉, 〈ρI〉)〉 and 〈ω̇heti (〈T 〉, 〈ρi〉g, 〈ρs〉)〉.

4.2.1 Multi-component single-step pyrolysis model
This section focuses on the presentation of a model for pyrolysis and the expression of the
pyrolysis decomposition rate 〈ω̇pyro〉. The rate of decomposition of each resin compound 1 ≤
I ≤ Np is assumed to follow an irreversible process as described in Eqs. (3.10)–(3.9), here
expressed in terms of average densities

∂〈ρr,I〉
∂t

= − (〈ρr,0,I〉 − 〈ρc,0,I〉) kr,I
( 〈ρr,I〉 − 〈ρc,0,I〉
〈ρr,0,I〉 − 〈ρc,0,I〉

)rI
, (4.7)

where the forward reaction rate kr,I follows an Arrhenius law

kr,I = AI exp
( −EI
R〈T 〉

)
. (4.8)

In Eq. (4.7), 〈ρr,I〉 varies between its virgin density 〈ρr,0,I〉 and its char density 〈ρc,0,I〉. Because
the char matrix is tracked into a distinct density variable, it is more convenient to work with
pyrolysis density variables that vary from their maximum values at the beginning of the pyrolysis
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process to zero at the end. Therefore, we introduce the translated resin density variable 〈ρ′r,I〉 =
〈ρr,I〉 − 〈ρc,0,I〉, hence allowing us to rewrite Eq. (4.7) as

∂〈ρ′r,I〉
∂t

= −〈ρ′r,0,I〉AI exp
( −EI
R〈T 〉

)( 〈ρ′r,I〉
〈ρ′r,0,I〉

)rI
. (4.9)

Following this, the compound-specific and the global pyrolysis advancement of reaction factors
(see Eq. (3.10)) are expressed as

αI =
〈ρ′r,0,I〉 − 〈ρ′r,I〉
〈ρ′r,0,I〉

, and α =
Np∑

I=1
wIαI =

〈ρ′r,0〉 − 〈ρ′r〉
〈ρ′r,0〉

, (4.10)

respectively. The parameters used here are the two-reaction pyrolysis model from Goldstein
[1969] summarized in Table 3.2. In that case, the global volume-averaged solid density can be
expressed as the following sum:

〈ρs〉 = 〈ρI〉+ 〈ρII〉+ 〈ρc〉+ 〈ρf〉. (4.11)

4.2.2 Model for char ablation
When heated, the resin is thermally degraded by pyrolysis and progressively transformed into a
low-density carbon residue, the char. For this charred matrix, Lachaud et al. [2010] proposed to
use an expression similar to the one for fiber ablation, where

〈ω̇het,c
i 〉 = −Sck

i,C(s)
c 〈ρi〉g. (4.12)

As a first approximation, the reactivity of the charred material ki,C(s)
c is assumed to be the same

as the one of the fibers, i.e. k
i,C(s)
c = k

i,C(s)
f . However, it should be kept in mind that the

reactivity of the carbonized matrix is theoretically higher. In fact, the structure of the charred
matrix features many more defects than the carbon fibers, and an estimation of the reactivity
could be for instance ki,C(s)

c = 10ki,C(s)
f (Lachaud et al. [2010]).

Matrix surrounding the fibers

For the modeling of Sc, it is assumed that the matrix is surrounding the fibers (Lachaud et al.
[2010]) and that during the ablation process, the charred matrix shrinks uniformly around the
fibers. The motivation for using this model is because a model of uniform radial recession is
already implemented within Argo for the carbon fibers recession. Hence, the implementation of
such a model for the charred matrix recession only requires to define an equivalent fiber radius
that includes the increase of carbon coming from the char residue. This equivalent fiber radius
is defined as

re = rf,0 + ec, (4.13)

where ec denotes the char thickness. Expressed in terms of solid fraction εs and initial fiber
fraction εf,0, the equivalent fiber radius writes

re = rf,0

√
εs
εf,0

(4.14)

which has exactly the same formulation as the simple non-charring material made up only of
carbon fibers, except that the equivalent radius can have values bigger than the initial fiber
radius rf,0. Indeed, the solid fraction εs can have a value higher than the initial fiber fraction
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εf,0 because of the presence of the char stemming from the resin pyrolysis. Following the same
development as for non-charring materials, the specific surface is defined as

Sc = 2
rf,0

√
εf,0εs (4.15)

which is valid for both the charred and preform materials.
For instance, the char could also be represented as a pore-filling matrix, in which the charred

matrix is considered to fill homogeneously the pores between the fibers with a given poros-
ity (Lachaud et al. [2010]). The matrix is not anymore located around the fibers but is still
filling the void between the fibers as for the resin. The functional relation between the specific
surface and the porosity, that depends on the topology of the medium, is not well known and
experiments on the carbonized matrix would be needed to estimate this dependency.

Therefore, the global heterogeneous production is given by the sum of the production from
the char and the fibers

〈ω̇heti (〈T 〉, 〈ρi〉g, 〈ρs〉)〉 = 〈ω̇heti,f (〈T 〉, 〈ρi〉g, 〈ρs〉)〉+ 〈ω̇heti,c (〈T 〉, 〈ρi〉g, 〈ρs〉)〉. (4.16)

The reason of separating the two is because other model could be implemented, which does not
necessarily have a common expression for the specific surface common to char and fiber ablation
as in Eq. (4.15). However, the implementation and the study of different models for char ablation
is left for future work.

Transition from char to fiber ablation

Heterogeneous reactions start only when pyrolysis is completed or near completion. There is no
oxygen in the pyrolysis gas that is produced, and the pressure is high enough to prevent oxygen
from the boundary layer to diffuse and react with the char and the fibers. However, when the
char and the fibers are no longer protected by the resin, heterogeneous reactions are triggered.
Assuming that the char matrix surrounds the fibers, the char density 〈ρc〉 is the first one to
react. Then, fiber ablation starts when the char is itself ablated or near completion.

In order to decide whether heterogeneous reactions stem from the ablation of the char or from
the ablation of the fibers, the transition between the char and the fiber heterogeneous reactions
is treated smoothly by using an hyperbolic tangent function to prevent the use of “if” statement
in the implementation, hence avoiding any abrupt variation in the source term and facilitating
the analytical derivation of Jacobian matrices. We define the smoothing function as

s−c =
[
0.5
(

1− tanh
(

2π
δρ

(〈ρc〉 − ρc,trig)
))]

, (4.17)

such that the heterogeneous term can be expressed as

〈ω̇het〉 = 〈ω̇hetc 〉+ 〈ω̇hetf 〉s−c . (4.18)

The transition length depends on δρ that should neither be too wide nor too small and is taken
to be equal to 5 × 10−3. The value of ρc,trig determines when the fiber ablation starts with
respect to the char density. A value of ρc,trig = 10−2 is used, thus char and fiber ablation will
be competing as 〈ρc〉 approaches ρc,trig until the char has completely disappeared.

4.2.3 Porous material properties
The numerical simulations presented in this chapter uses the material properties of the Theoret-
ical Ablative Composite for Open Testing (TACOT) material, a fictive and open-source material
of known properties developed for enabling code-to-code comparison (Lachaud et al. [2012]; van
Eekelen et al. [2014]). Some of the properties are coming from PICA, for which the properties
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were calibrated on the FIAT model predictions to experimental arc-jet data (Covington et al.
[2008]). These properties need to be extended in order to be valid with the unified approach.

Regarding the permeability, both the Carman-Kozeny and a linear model are implemented
within Argo (Schrooyen [2015]). While Carman-Kozeny model is based on the definition of a
specific surface area of the solid Sf,0 (Dullien [1991]) which is clearly defined for the fibers and
for the char assuming that it surrounds the fiber, there is no rigorous definition of the specific
surface for the resin matrix. While the permeability of carbon preform was investigated in
Panerai et al. [2016] and Borner et al. [2017], the permeability for CF/PR materials has received
little attention (White et al. [2016]). The solid microsctructure is unknown and the permeability
is therefore assumed to evolve linearly with porosity according to

κ−1 = 1
κ0

(1− εg)
εs,0

, (4.19)

where κ0 = 1.6 × 10−11 m2 is the initial permeability of the virgin matrix and εs,0 the initial
solid fraction with εs,0 = εf,0 + εm,0 + εc,0.

Regarding the tortuosity, an initial value of 1.2 (virgin material) is adopted and evolves
linearly with porosity between the freestream tortuosity (η = 1) and its initial value:

η = 1− η0
1− εg,0

(εg − 1) + 1. (4.20)

Note that using the formulation of Eqs. (4.19)–(4.20), both the char permeability and tortuosity
from TACOT are not exactly retrieved within the material, with κc,TACOT = 2× 10−11 m2 and
ηc,TACOT = 1.1 respectively.

The effective thermal conductivity appearing in Eq. (4.4) also evolves with porosity to go
continuously from the pure fluid conductivity where the solid fraction is zero to its effective
conductivity in the porous medium:

λeff = εgλg + εsλs. (4.21)

The solid thermal conductivity λs is an average between its different constituents, which are in
this case the fibers, the resin and the char. In practice however, only the thermal conductivity
of the global virgin and char states together with the fibers is measured and instead, we consider
the solid thermal conductivity to vary with the advancement of pyrolysis reaction

λs = (1− α)λvirgin + αλchar. (4.22)

Because TACOT provides the effective thermal conductivity for the virgin and char states
and not the intrinsic conductivity, one must consider λvirgin = λTACOT,virgin/εs,0 and λc =
λTACOT,char/εs,c; yet it still includes the gas thermal conductivity. Nevertheless, we still use
λvirgin and λc, and by substituting Eq. (4.22) into Eq. (4.21), it is expected that the influence
of the average gas conductivity εgλg will have little influence, as the average solid conductivity
is almost one order of magnitude higher than the gas average conductivity. Ideally, virgin and
char thermal conductivities in the void should be provided for the present unified approach.

Finally, regarding the internal energy and enthalpy of the resin, modified properties of
TACOT were obtained in Coheur [2016] by substracting from the properties of the fibers the
virgin and char properties.

4.3 Results and discussion
We assume finite-rate ablation-pyrolysis chemistry, the flow field is assumed to be in thermo-
chemical equilibrium, and we consider multicomponent diffusion and transient simulations.
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Figure 4.2: Sketch of the domain and boundary conditions for the Ablation Workshop test case
with no recession. Slip adiabatic walls are imposed on the sides to simulate a 1D domain within
Argo.

4.3.1 Verification: Ablation Workshop test case

In this section, a code-to-code comparison with the Ablation Workshop test case #1 (Lachaud
et al. [2011c]) is performed. The objective of this section is to show that the complete set of
VANS equations together with the pyrolysis model lead to the same results as with state-of-the-
art pyrolysis-ablation material codes.

The computational domain for the first test case is sketched in Fig. 4.2. It consists in a
5-cm high one-dimensional sample for which no recession of top surface is assumed (no fiber
ablation). We choose to reproduce a test case with no recession because the ablating boundary
conditions implemented in standard material-response codes can hardly be reproduced within
this framework, as we will see in the next section. As the sample will be heated, the resin matrix
will decompose because of the pyrolysis reactions occurring within the sample. The sample is
at an initial temperature of 298 K and a pressure of 1 atm and is filled with a pure gas of CO.
The sample is then heated from the top during 60 s, where the temperature is first increased
gradually from 298 K to 1644 K during 0.1 s and secondly keeps its maximum value of 1644 K
during the remaining 59.9 s, as sketched on the right in Fig. 4.2. The bottom wall is adiabatic
with zero momentum (stick wall) and the side walls are also adiabatic with no velocity gradient
towards the sides (slip wall). The pressure at the top is fixed at 1 atm with the same species
mass fraction as the initial sample composition. We assume a simplified mixture of pyrolysis
gas products composed of seven species from the finite-rate chemistry model of Sykes [1967] and
the mass fractions are summarized in Table 4.1. Multicomponent diffusion within the mixture
could be considered, but the collision integrals for most of the species of the pyrolysis gas are
not yet computed. We therefore use a constant Lewis number equal to one to be as closed as
possible to the test case conditions described in Lachaud et al. [2011c]. Furthermore, we do not
consider the species to react with each other neither to dissociate and the mixture is considered
to be frozen. Note that for this case where there is no pure fluid region, one can consider
directly λeff = λTACOT. The computational domain is made up of 201 quadrilateral elements
with increasing size from the surface towards the bottom wall with the smallest cell size equal
to 1.02× 10−2 cm and the largest to 4.98× 10−2 cm.
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Table 4.1: Species mass fractions for the pyrolysis gas (Sykes [1967]).

Gas species CO2 CO C6H6 C6H5OH CH4 H2O H2

Initial mass 0.0001 0.9994 0.0001 0.0001 0.0001 0.0001 0.0001fraction
Pyrolysis gas 0.03766 0.0882 0.04396 0.4581 0.08748 0.23 0.0546mass fraction
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Figure 4.3: Comparison of the results of PATO (continuous lines) and Argo (lines with markers).
(a) The temperature inside the sample as a function of time is shown at several thermocouple
locations: surface (•), 1 mm (�), 2 mm (×), 4 mm (N), 8 mm (+), 16 mm (�), 50 mm (H). (b)
The 98% virgin (•) and 2% char (�) fronts, and mass blowing (×) rate are shown as a function
of time.

Results

Temperature measurements at the thermocouple locations are plotted against the results ob-
tained from PATO (Lachaud et al. [2015]) in Fig. 4.3(a). The results shown are in good agree-
ment for all thermocouples, except for slight differences that can be observed after the initial
temperature increase, notably at 1 mm, 4 mm and 8 mm. This difference is attributed to the
different law for momentum conservation that is implemented in the two codes.

The mass blowing flux through the top surface is computed and compared to the results
obtained with PATO. In this simple 1D case, the mass blowing flux through the surface is given
by the density of the gas times the velocity through the surface. The blowing rate is shown
in Fig. 4.3(b) and the results are again in close agreement, except that a higher value for the
blowing is observed with Argo. This is explained by the higher molar density of the mixture of
pyrolysis gas that is used in Argo, for which the molar density at 1 atm and 1644 K is equal
19.35 kg kmol−1, computed using the Mutation++ library (Scoggins et al. [2020]), compared
to the molar density of TACOT equal to 11.38 kg kmol−1, read from tables within PATO.
Therefore, there is slightly more mass that is ejected through the surface.

The position of the virgin and the char zones within the material are also compared in
Fig. 4.3(b). The front zones are defined using a threshold value for the resin and charred
densities given by

〈ρv,t〉 = (〈ρc,0〉+ 〈ρf,0〉) + 0.98 (〈ρs,0〉 − (〈ρc,0〉+ 〈ρf,0〉)) , (4.23)
〈ρc,t〉 = (〈ρc,0〉+ 〈ρf,0〉) + 0.02 (〈ρs,0〉 − (〈ρc,0〉+ 〈ρf,0〉)) , (4.24)
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Figure 4.4: Species partial pressures for the Ablation Workshop test case at (a) t = 0 s, (b)
t = 1.0 s, (c) t = 30 s, and (d) t = 60 s.

where “t” stands for threshold value. Results appear to be again in good agreement with PATO.
A discrepancy of less than 5% is observed for the 98% virgin which is attributed again to the
difference in gas density and momentum law.

Finally, the species partial pressures in the material are shown in Fig. 4.4. Because of the
finite-rate chemistry model of Argo, each species is tracked individually by the solver. The
production of pyrolysis gas can be clearly observed from the graph. Initially, only CO is present,
which is our initial assumption. Then, very rapidly after the increase of surface temperature,
species are produced close to the surface (Fig. 4.4(a)). The partial pressure of CO decreases and
pyrolysis gases are produced abundantly, with H2, H2O and CH4 the most dominant species.
Partial pressure for heavier species (C6H5OH and C6H6) are smaller and only a little amount of
CO2 is observed. From Fig. 4.4(c) and Fig. 4.4(d), we see that the production peak shifts as the
pyrolysis front is moving, which is in agreement with what was already observed in Fig. 4.3(b).
The peaks progressively spread as the species diffuse toward the top surface and the bottom wall
of the material.

However, it is important to mention that the Dirichlet condition on the gas composition
assumed at the surface may be questionable physically as the surface species composition should
evolve according to the external flow and the species production coming from the in-depth
material pyrolysis. A better assumption could be to consider a Neumann condition on the
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species mass fractions, although in this case, we did not achieve to obtain a solution. Hence,
discrepancies in the results could also stem from the differences in the top boundary condition
applied.

4.3.2 Pyrolyzing material subjected to arc-jet conditions
In this section we perform a two-dimensional axisymmetric simulation of the ablation of a ma-
terial subjected to aerothermal conditions close to arc-jet experiments. Boundary conditions are
applied at the inlet and the outlet of a channel in which the sample is located, as showed in
Fig. 4.5, and the comparison with material response code is not feasible. Within the unified ap-
proach, it is more difficult to control the heat flux at the surface of the material, which depends
on the enthalpy of the flow provided at the inlet, whereas in material-response codes the heat
flux can be directly provided at the surface of the material. The purpose of the test case of this
section is therefore not to provide a code-to-code comparison but rather to show the capability
of the code to simulate an ablation problem with pyrolysis and ablation of the material.

The computational domain and the mesh is represented in Fig. 4.5 and was generated using
the software Gmsh (Geuzaine and Remacle [2009]). The sample considered in this section is
described in van Eekelen et al. [2014]. It is designed to have minimal shape changes when the
material is receding and is such that it features almost iso-flux contours, and is thus referred
to as iso-Q. The sample is cylindrical with an elliptic front surface that minimizes the increase
of heat flux at the shoulder compared to classical sphere-cylinder shaped samples used in arc-
jet experiments (Milos and Chen [2010]). The shape of the initial geometry of the sample is
sketched in Fig. 4.6(a), and is similar to the geometry used in Weng and Martin [2014] and
Lachaud et al. [2015] to perform numerical simulations of a pyrolysis gas flow within a porous
material. As seen in Fig. 4.6(b), the mesh at the surface of the material is refined in order to
track the recession, and a high species production is expected to occur close to the surface due to
pyrolysis and ablation. The hybrid mesh from Fig. 4.5 is composed of 2781 triangular elements
and 396 quadrangles. The quadrangles are located around the surface (Fig. 4.6(b)) and follow
the surface curvature. The height of the quadrangles progressively decreases toward the initial
position of the surface. With a minimum cell width of 2.7 × 10−5 m at the interface and a
second-order interpolation, we fix the value of the numerical interface thickness εφ to 5 × 10−4

m, such that it is not too large compared to the size of the sample, and such that it respects the
empirical condition from Eq. (2.41) at the initial time and after the surface has moved (where
the mesh size is larger). The influence of εφ was investigated in Schrooyen [2015] and is not
studied here.

Boundary and initial conditions

The boundary conditions applied, sketched in Fig. 4.5, are the ones typically encountered in an
arc-jet testing (Milos and Chen [2009]) and which correspond to the thermal transfer encountered
during a hypersonic reentry, that are the post-shock conditions, i.e., a high enthalpy condition
at the inlet. The contact between the support (holder) and the sample is assumed to be perfect.

The initial freestream temperature is equal to 3000 K and inside the material, it is equal to
298 K. Because of the increase in computational time, only a mixture of air with five species
plus carbon monoxide for pyrolysis and ablation product is assumed, instead of including the
simplified phenol mixture for the pyrolysis gas as in the previous section. The initial gas com-
position is the equilibrium composition at the initial temperature, hence, within the material,
there is neither carbon monoxide nor dissociated species. For the heterogeneous reactions, the
following oxidation reactions are considered:

O + C(s)→ CO (4.25)
O2 + 2C(s)→ 2CO (4.26)
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Figure 4.5: Full computational domain and mesh for the iso-Q test case and boundary conditions.

Table 4.2: Arrhenius coefficients for oxidation reactions.

Reacting species
O O2

A0 3.22 5.73
E/R 0 9.65e3
m 0.5 0.5

for which reverse reactions do not need to be considered as the equilibrium constant is very
small (Park et al. [2001]). The presence of CN was also observed experimentally (Helber [2016]),
however reactions with atomic nitrogen are not taken into account. The forward reactions rates
k
i,C(s)
f for the two previous reactions follow an Arrhenius law with a temperature-dependent

pre-exponential factor

k
i,C(s)
f = A0T

m exp
( −E
R〈T 〉

)
, (4.27)

where i denotes the limiting species and the Arrhenius coefficients are taken from Park et al.
[2001] and given in Table 4.2. No catalytic recombination at the surface of the material is
considered. The heat flux coming from the radiation of the gas particles (see Eq. (2.20)) is
neglected.

Results

In Fig. 4.7 the averaged solid densities within the sample are analyzed. The solid densities along
the stagnation line are shown in Fig. 4.7(a) for the total density (which represents the sum of
the fibers, the char, and the two resin components) and the resin density (which represents the
sum of the two resin components). The recession of the surface can be computed from the char
front line and is equal to 770 µm, which leads to an average recession rate of 19.25 µm s−1.
The resin content after simulating 40 s of the experiment is shown in Fig. 4.7(b) for the whole
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Figure 4.6: (a) Dimensions of the iso-Q elliptic sample. (b) Zoom on the hybrid mesh of the
sample. Quadrilateral elements are used in a thin layer below the surface.

sample. The recession is almost uniform on the part of the sample that faces the flow field.
The recession is the highest at the shoulder and then decreases progressively toward the holder.
Close to the holder, we can observe that the resin has not decomposed because of the cold wall
condition imposed at the holder.

In Fig. 4.7(b), we also represented the pyrolyzing front (dotted line) in the case where the
holder is considered to be adiabatic. This impacts mainly the resin content close to the inter-
section between the material, the holder and the fluid where the temperature increases. Resin
is not attached anymore to the holder at the corner because it has pyrolyzed. One can observe
a bump, which is due to the injection of gas species in the boundary layer. The recession is
therefore higher at the corner: the fluid exits at a higher velocity than close to the wall, thus the
boundary layer is thicker and the blockage effect more important, thus reducing the temperature
at that location and less resin is decomposed.

The temperature field is showed in Fig. 4.9. The temperature increases almost uniformly
below the surface of the material at the front. The temperature is also higher at the shoulder,
which corroborates the higher recession around this position. On the side, toward the holder,
lower temperatures are observed and is even transported outside the surface of the material. In
Coheur [2016], it was observed that mass was ejected on the sides of the sample. Those gases
from the inner part of the material can carry flow at a lower enthalpy than the boundary layer
gases, and is ejected toward the boundary layer, hence reducing the temperature.

Fig. 4.10 shows the pressure distribution. High pressures (1.062×104 Pa) are observed close to
the pyrolyzing surface and in particular close to the shoulder region, whereas lower pressures are
observed at the side of the sample. The partial pressure of the gas species along the stagnation
line are also showed in Fig. 4.8 at four different time instants. In Fig. 4.8(a), pyrolysis and
ablation reactions occur at the surface and the production of CO is important. One can note the
presence of CO within the material, which is due to the initial presence of O and O2 that comes
from the oxidation reaction of the char during the first steps of the simulation, but the amount of
carbon removed is negligible. Then, CO progressively diffuses below the surface (Fig. 4.8(b) and
Fig. 4.8(c)) increasing its partial pressure. The partial pressures of the other species decrease
abruptly, but one can still observe a large amount of N2 and a few traces of NO. Thus, it seems
that the initial amount of N2 is trapped inside the material due to the surrounding pyrolyzing
front. As it will be seen in the next paragraph, the flow below the pyrolyzing front is slowly
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Figure 4.7: (a) Comparison of the initial averaged densities and the averaged densities after 40 s
for the total solid and resin matrix densities, and (b) illustration of the overall shape change for
the iso-Q sample. In (b) the grey zone represents the char zone and the yellow zone represents
the virgin zone. The dotted line represents the pyrolyzing front when the holder is assumed to
be adiabatic.

moving and therefore species convection may be weak. Finally, at t = 40 s, the partial pressures
are almost constant within the material. One can also observe the shift of the production front
with time. The higher partial pressure of O close to the surface compared to O2, whereas the
temperature decreases and should lead to a higher partial pressure of O2, is attributed to the
oxidation reaction that is slower for O than for O2, for which reaction the activation energy is
equal to zero.

Streamlines are shown in Fig. 4.11 within and around the sample at t = 40 s. Particle
trajectories are computed during 10 s using the velocity field at t = 40 s using Gmsh on a
20× 50 uniform grid representing the particles located around and within the porous material.
One can first observe the recirculation region on the top of the material, in which the particles
ejected from the side of the material are trapped. On the other side, the particles that are ejected
at the front and at the shoulder pass above the recirculation region and are convected toward
the outlet. Second, one can observe that the pyrolysis reactions eject the species towards the
surface of the material but also inside the material. This pyrolyzing front is characterized by the
absence of streamlines below the surface and follows the curvature of the surface and the high
pressure distribution at the front of the material (Fig. 4.10). Deeper below the surface, we can
note that the particles do not exit the material after the 10 s during which the flow trajectory
was simulated for the computation of the streamlines, showing that the particles are moving
slowly within the material.

4.4 Conclusion
The unified approach with the VANS equations for solving pyrolysis-ablation problems was
verified against a state-of-the-art material response code for the temperature, virgin and char
fronts, and mass blowing. The finite-rate chemistry implemented in Argo allows us to track
individually the pyrolysis species produced, which was assumed to be a simplified pyrolysis gas
made up of seven species. However, a Dirichlet condition was imposed on the species mass
fraction at the surface, and more physical boundary conditions should be investigated.

We performed a numerical simulation of an iso-Q sample subjected to high enthalpy condi-
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Figure 4.8: Partial pressures for the six-species mixture along the stagnation line at (a) t = 0.01 s,
(b) t = 10 s, (c) t = 20 s, and (d) t = 40 s.

tions. We showed the recession of the resin and the ablation of the fibers and the char, and a
surface recession of 770 µm was observed. Close to the surface of the sample, gas species are
blown off and are injected into the boundary layer. Below the surface, a stagnation line is ob-
served where the pyrolyzing front is located, and below the pyrolyzing front, the flow is creeping
inside the porous material, and the species present within the materials are trapped. Close to
the holder, we observed a re-circulation region on the side of the material due to the ejection of
ablation material, and where pressure and temperature are lower.

As a future work, a more sophisticated pyrolysis gas than the single CO species should be
considered for the iso-Q test case. However, a finite-rate chemistry model as the one imple-
mented within Argo requires to track all the species present in the mixture, hence increasing
the computational cost of the simulations. Next, it would be valuable to perform a code-to-code
comparison for the iso-Q test case, first in order to corroborate the observations that are made
in the present work, and second to emphasize the advantages and disadvantages of the unified
approach compared to material-response codes. In order to do that, the heat flux at the surface
of the sample have to be similar and, for instance, the surface heat flux could be extracted from
Argo and imposed as a boundary condition to material-response codes.
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Figure 4.9: Temperature field (K) of the iso-Q test case after 40 s. The temperature ranges from
300 K within the sample to 3000 K at the inlet and in most of the flow field environment. The
solid line represents the initial surface of the material.
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Figure 4.10: Pressure field (Pa) of the iso-Q test case after 40 s. The solid line represents the
initial surface of the material.
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Figure 4.11: Streamlines around and within the material.
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Chapter 5
Uncertainty quantification methods for
computational models

This chapter is an introduction to the basic concepts and mathematical tools used for uncertainty
quantification in computational models. We first provide notions of probability theory and set the
mathematical framework for studying the forward and inverse problems in a stochastic framework.
Next, we focus on inverse problems and in particular on the Bayesian approach for inverse
problems that allows a probability density function for the input parameters to be obtained by
means of Bayes’ theorem. We introduce an important class of methods based on the sampling
of the probability density function, the so-called called Markov chain Monte Carlo (MCMC)
methods. Then, we present methods for uncertainty propagation for computational models with
a focus on non-intrusive methods. We present the Monte Carlo sampling method and finally
the method of polynomial chaos, which allows a computationally expensive model involved in a
stochastic forward problem to be replaced with a cheaper surrogate model.

5.1 Introduction
Predictions are usually subject to numerous sources of uncertainty. These uncertainties are di-
verse and can be due to the presence of variability in the parameters of the model (parameter
uncertainty) either stemming from inherent variability of the system or resulting from a lim-
ited accuracy on experimental data, or inaccuracies in the mathematical model (model structure
error) that is used to represent the physical process; see for instance Smith [2014], Kennedy
and O’Hagan [2001] or Soize [2017] for a comprehensive discussion on the classification of un-
certainties. These uncertainties in turn introduce uncertainty in the predictions, which needs
to be quantified in order to yield useful and reliable information regarding the physical system.
The field of uncertainty quantification (UQ) proposes a theoretical framework for studying the
uncertainty in a given problem, algorithms to solve these problems and methods to quantify the
predicted outcome uncertainty.

There are two categories of problems that can be identified for uncertainty quantification.
The first category is related to the propagation of uncertainty in forward problems. The forward
problem concerns the prediction of the outcome of a physical system described by a mathematical
model given the value of its parameters, possibly by means of a computer simulation. The role
of uncertainty quantification in forward problems then consists in characterizing in a statistical
framework the uncertainty in the output of the model based on the input uncertainties.

The second category of problem investigates the quantification of uncertainty in inverse
problems. The inverse problem consists in inferring, or deducing, the model that represents

77
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the physical system and the value of its parameters based on the outcome of measurements, or
observations, of the physical system that are the results of noise and randomness in the physical
process. Inverse problems have long been studied in both the deterministic framework, that is
without providing an uncertainty quantified model, and in the stochastic framework. In the de-
terministic framework, the objective is to find the model and the value of the model parameters
that best describe the observations, and to do so, one generally seeks to minimize a misfit func-
tion between the predicted outputs and the observations by means of optimization algorithms.
However, it is well-known that inferring parameters from indirect and noisy measurements can
lead to ill-posed problems, for which regularization techniques are usually applied to approxi-
mate the ill-posed problem by a well-posed problem (Engl et al. [1996]). Moreover, deterministic
inverse problems usually do not account for the various uncertainties in the parameters stemming
from measurement errors, model inadequacy, or parameter variability.

In the stochastic framework, the plausibility of the resulting model and parameter values is
represented by means of probability distributions. In particular, the Bayesian approach (see for
instance Tarantola [2005]; Stuart [2010]) allows Bayes’ theorem to be used to account for param-
eter uncertainties and attributes a PDF to the parameter estimates resulting from the inference.
The Bayesian approach consists in assigning a prior PDF to the parameters by using the current
knowledge of the parameters and to update this PDF by incorporating the physical model and
the new information (observations) with their uncertainty through a likelihood function. The
resulting PDF is the so-called posterior PDF. An introduction to the Bayesian approach applied
to engineering problems can be found in Smith [2014] or Kaipio and Somersalo [2005].

To sample from the posterior, the MCMC method is widely used (Gilks et al. [1996]; Robert
and Casella [1999]; Smith [2014]; Brooks et al. [2011]). It is a general sampling method that
aims at generating random samples from a target probability distribution which, in the context
of Bayesian inverse problems, is the Bayesian posterior distribution. For instance, the random-
walk Metropolis–Hastings (RWMH) algorithm generates samples from the target distribution by
proposing a sample that is drawn from a simpler distribution, called the proposal distribution
(generally a Gaussian distribution), based on the value of the previous iteration, hence the term
random-walk, which is then accepted or rejected. The closer this proposal distribution is to the
target distribution, the faster the algorithm will generate samples that are actually from the
target distribution.

An appropriate choice of the proposal distribution is crucial to achieve an efficient sampling
of the target distribution. Finding an optimal or even a suitable proposal distribution might be
tedious, in particular when the problem is high dimensional and when trial-and-error tuning of
the hyperparameters of the proposal distribution becomes unfeasible. Moreover, a proper choice
of the proposal distribution is essential to obtain samples from the posterior distribution in a
reasonable amount of time and a limited number of function evaluations. Hence, several im-
provements of the RWMH exist such as the adaptive random-walk Metropolis–Hastings (AMH)
sampling algorithm that adapts the covariance of the Gaussian proposal based on previous it-
erations to improve the efficiency of the RWMH algorithm (Haario et al. [2001]). However, a
complex dependence structure that results in a target distribution that is far from the Gaussian
distribution can make the random walk inefficient, especially when the dimension increases. This
leads to the use of sampling algorithms for which the choice of the proposal distribution is not
based on the Gaussian distribution, as for instance algorithms that use the gradient of the target
distribution to propose the new sample values (Neal [2010]; Roberts [2002]; Soize [2008]). The
evaluations of the gradients increase the computational time compared to other methods, but it
can counterbalance the slow exploration of the posterior, or it can converge when other methods
fail. However, even for gradient-informed algorithms, they still require some tuning that can be
challenging depending on the structure of the target distribution and the number of parameters
to be inferred (Girolami and Calderhead [2011]).

The objective of this chapter is to review essential tools for uncertainty characterization and



Chapter 5. Uncertainty quantification methods for computational models 79

propagation in engineering problems. For uncertainty characterization, we focus on Bayesian
inference methods and we present general Metropolis–Hastings algorithms as well as advanced
sampling algorithms that can be used to solve Bayesian inverse problems. We address the
propagation of uncertainty through computational models by means of non-intrusive methods,
which require no modification of the computer code, and we describe the Monte Carlo and the
polynomial chaos methods.

This chapter is organized as follows. First, in Section 5.2, we start with a brief review of
the probability theory. Then in Section 5.3, we introduce the forward and inverse problems.
We describe inverse problems in both the deterministic and the stochastic framework, and for
the latter, we focus on the Bayesian approach. Section 5.4 is concerned with the description
of MCMC methods that are used to generate samples from a probability distribution and we
present several algorithms. In Section 5.4.1, the general class of Metropolis–Hastings algorithms
is presented and the two subsequent sections are dedicated to the description of the RWMH and
the AMH. We then focus on two gradient-informed sampling methods, namely the Hamiltonian
Monte Carlo method (Section 5.4.4) and a method based on the solution of an Itô stochastic
differential equation (Section 5.4.5). Finally, the propagation of uncertainty in forward problems
is described in Section 5.5, with a focus on non-intrusive methods for uncertainty propagation,
and in particular the polynomial chaos method.

5.2 Fundamentals of probability theory and statistics

In this section, we summarize concepts from probability theory and statistics. Further details
can be found in many statistical textbooks, see for instance Billingsley [2012] or Hogg et al. [2005]
for mathematical aspects and a general description of probability theory. For an introduction in
the context of uncertainty quantification, see for instance Smith [2014], or Arnst and Ponthot
[2014] for a condensed overview. For the concepts related to stochastic processes and stochastic
differential equations, see Soize [2017].

5.2.1 Probability space
In order to have a sensible measure of the probability of a real-world situation, or outcome of a
random experiment, a probability space needs to be provided. It is defined by the probability
triplet (Ω,B,P). In this triplet, Ω represents the sample space or outcome space, that is the
totality of the possible outcomes ω of the experiment. Second, B is called the event space and
contains subsets of the sample space (all the outcomes of the experiment that we would like to
consider). An element B of B is called an event. The event space B is defined as a σ-field, or
σ-algebra, that satisfies the following conditions:

1. ∅ ∈ B, (B is not empty).
2. If B ∈ B, then Bc ∈ B, (B is closed under complements).
3. If the sequence of sets {Bn, 1 ≤ n ≤ ν} is in B, then

⋃ν
n=1Bi ∈ B, (B is closed under

countable unions).

From conditions 1 and 2, we see that ∅c = Ω ∈ B and the σ-field always contains ∅ and Ω.
Third, P(·) is the probability measure, that is a real-valued function defined on (Ω,B) which
satisfies the following three conditions:

1. P(B) ≥ 0, for all B ∈ B.
2. P(Ω) = 1.
3. If {Bn, 1 ≤ n ≤ ν} is a sequence of sets in B and Bm ∩ Bn = ∅ for all m 6= n, then

P (
⋃ν
n=1Bn) =

∑ν
n=1 P (Bn).
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The probability measure tells us how the probability is distributed over the event space B and in
this sense we speak of a probability distribution. From the three conditions above, the following
noticeable properties can be demonstrated. For each event B1, B2 ∈ B,

P(B1 ∪B2) = P(B1) + P(B2)− P(B1 ∩B2), (5.1)
P(B1) = 1− P(Bc

1), P(∅) = 0, 0 ≤ P(B1) ≤ 1. (5.2)

5.2.2 Conditional probability and Bayes’ theorem
Conditional probability

Let P be the probability measure on (Ω,B) and let consider that an event B1 ∈ B has occurred
with P(B1) > 0. A new probability measure on the sample space B1 can be expressed for the
probability that an event B2 ∈ B given the event B1 occurs, defined as

P (B2|B1) = P (B1 ∩B2)
P (B1) , (5.3)

where B1 ∩ B2 denotes the elements of B2 that are also elements of B1. Such a probability
measure is called the conditional probability function and is denoted by P(·|B1).

Bayes’ theorem

Let B ∈ B and suppose that P(B) > 0. Consider further a partition of B, that is, a set of k
mutually exclusive and exhaustive events B1, . . . , Bk such that P (Bi) > 0, i = 1, · · · , k. It can
be demonstrated that

P (B) =
k∑

i=1
P (Bi)P (B|Bi) , (5.4)

which is known as the law of total probability. From the definition of conditional probability and
using the law of total probability, we have

P (Bj |B) = P (B ∩Bj)
P(B) = P(Bj)P(B|Bj)∑k

i=1 P(Bi)P(B|Bi)
. (5.5)

which is the so-called Bayes’ theorem. It allows us to calculate the conditional probability of
Bj given B from the probabilities of the Bi’s and the conditional probabilities of B given Bi,
i = 1, . . . , k.

5.2.3 Random vectors and multivariate distributions
Random variables

The sample space Ω is an abstract space for which it may be tedious to describe all the outcomes
ω; instead it is desirable to represent the elements of Ω by real numbers. For a given probability
space (Ω,B,P), an R-valued random variableX is a measurable function from Ω into R. Thus, X
is a mapping from (Ω,B) onto (R,D) where the sample space of X is the set of real numbers and
D is a σ-field on R and is such that ∀D ∈ D, X−1(D) ∈ B. The probability distribution PX of
X is defined such that for any element D ∈ D, PX(D) = P(X−1(D)) = P ({ω ∈ Ω : X(ω) ∈ D}),
which satisfies the probability measure conditions mentioned previously.

A random variable can be discrete or continuous, depending on whether it takes values from
a finite or countable infinite subset of R or takes values continuously in R. In the latter, the
probability distribution PX(·) admits a probability density function, that is a function πX from
R into R+ = [0,∞[ such that PX(D) =

∫
D
πX(x)dx for any element D of D.
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Various statistical descriptors can be computed from the probability density function πX .
The mean value, or expectation, of X is defined as

E [X] =
∫

Ω
X(ω)P(dω)

=
∫

R
xPX(dx)

=
∫

R
xπX(x)dx ≡ µX , (5.6)

and the variance of X is defined as

V [X] =
∫

Ω
(X(ω)− µX)2 P (dω) (5.7)

=
∫

R
(x− µX)2 PX(dx) (5.8)

=
∫

R
(x− µX)2πX(x)dx ≡ σ2

X , (5.9)

assuming that these integrals are bounded. The quantity σX is called the standard deviation of
X.

Random vectors

An Rd-valued random vector defined on a probability space (Ω,B,P) is the measurable mapping
ω →X(ω) = X from (Ω,B) into (Rd,D) where D is a σ-field on Rd. Its probability distribution
is denoted by PX . A continuous random vector admits a joint probability density function πX

such that PX(D) =
∫
D
πX(x)dx for any meaningful subset D of D. In the following, we will

denote a random vector using the notation X = (X1, . . . , Xd).
Provided the probability distribution PX(·), statistical descriptors for a random vector can

be computed. The mean value of X is defined as

E [X] = (E [X1] ,E [X2] , . . .E [Xd]) ≡ µX . (5.10)

The marginal distributions of the random variables Xi, i = 1, . . . , d can be computed from the
knowledge of the joint probability distribution. The marginal PDF of the random variable Xi

is defined by the (d− 1)-fold integral

πXi(xi) =
∫

R
· · ·
∫

R
πX1,...,Xd(x1, . . . , xd)dx1 . . . dxi−1dxi+1 . . . dxd. (5.11)

Consider the matrix (X − µX)T (X − µX) whose elements are random variables. The math-
ematical expectation E

[
(X − µX) (X − µX)T

]
≡ ΣX is called the covariance matrix whose

elements are computed, for i 6= j, as

(ΣX)ij = E
[(
Xi − µXi

) (
Xj − µXj

)]

=
∫

R

(
xi − µXi

) (
xj − µXj

)
πXi,Xj (xi, xj)dxidxj (5.12)

assuming that these integrals are bounded and where πXi,Xj is the bivariate probability distri-
bution defined by the (d− 2)-fold integral of the joint PDF over all variables except Xi and Xj .
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The element ij of the covariance matrix is called the covariance of Xi and Xj and the scaled
quantity

ρXiXj =
E
[(
Xi − µXi

) (
Xj − µXj

)]

σXiσXj
(5.13)

is the correlation coefficient. The diagonal elements of the covariance matrix ΣX are the variances
of Xi (Eq. (5.9)). Finally, we note that the covariance matrix is a symmetric positive semi-
definite (PSD) matrix, that is, aΣXa

T ≥ 0 for all vectors a ∈ Rd.
The joint conditional PDF of the random vector (X1, . . . , Xi−1, Xi+1, . . . Xd) given Xi is

defined as

πX1,...,Xi−1,Xi+1,...Xd|Xi(x1, . . . , xi−1, xi+1, . . . xd|xi) = πX1,...,Xd(x1, . . . , xd)
πXi(xi)

. (5.14)

provided that πXi(xi) > 0. The joint conditional PDF of an (d − 1)-dimensional random vec-
tor is easily extended to the joint conditional PDF of an (d − k)-dimensional random vector.
Let X be an Rk-valued random vector and Y an R(d−k)-valued random vector defined on the
same probability space (Ω,B,P) that admit the joint PDF πX,Y . Suppose that the marginal
distribution πY (y) > 0. The joint conditional distribution of X given Y can be obtained from

πX|Y (x|y) = πX,Y (x,y)
πY (y) . (5.15)

5.2.4 Stochastic processes
A stochastic process, or random process, defined on a probability space (Ω,B,P) indexed by an
infinite subset T of R is a uncountable family

X = {X(t), t ∈ T} =
{
Xt, t ∈ T

}
(5.16)

of Rd-valued random vectorsX(t) defined on a probability space (Ω,B,P). Taking T an interval
of real numbers yields a continuous process, whereas taking T a subset of integers yields a discrete
random process.

The realization x(t) = Xt(ω) = X(t, ω) is a function of t that is called the sample path or
trajectory associated with the outcome ω ∈ Ω.

5.2.5 Markov chains
An Rd-valued Markov chain is a discrete random process, that is an ordered set {Xn, n ∈ N} of
random vectorsX0,X1,X2, · · · defined on (Ω,B,P) with values in Rd which satisfies the Markov
property. Denoting xn the current realization of the random variable Xn at the iteration, or
time, n, and xn+1 the next state, the Markov property reads as:

PX(Xn+1 ∈ D|X0 = x0, . . . ,Xn = xn) = PX(Xn+1 ∈ D|Xn = xn). (5.17)

that is, every new sample Xn+1 is drawn from a probability distribution that depends only on
the current stateXn and not on the previous statesXn−1, . . . ,X0. The probability PX(Xn+1 ∈
D|Xn = xn) of going from one state to the other is called the transition probability, or theMarkov
kernel. Thus, if the initial state is known, the construction of the Markov chain {Xn, n ∈ N}
depends only on the transition probability. A Markov chain is said to be homogeneous if the
transition probability is homogeneous, which is written, for xj , for D ∈ D, and for 0 ≤ j ≤ n,
as

PX(Xn+1 ∈ D|Xj = xj) = PX(Xn+1−j ∈ D|Xj = xj). (5.18)
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The conditional density of the transition, the so-called the transition kernel, K reads as

PX(Xn+1 ∈ D|Xn = xn) =
∫

D

K(xn,x′)dx′ (5.19)

and is such that ∀x ∈ Rd, K(x, ·) is a probability measure, and ∀D ∈ D, K(·, D) is measur-
able from Rd into [0, 1]. An invariant distribution for the transition kernel K is a probability
distribution π that satisfies

πX(D) =
∫

Rd
K(x,D)πX(dx), ∀D ∈ D (5.20)

For homogeneous Markov chains, the invariant distribution is also referred to as stationary, since
Xn ∼ πX implies that Xn+1 ∼ πX . The existence and uniqueness of a stationary distribution
will be particularly interesting for MCMC algorithms. A sufficient condition for π to be the
stationary distribution associated with the transition kernelK is if it satisfies the detailed balance
condition:

K(y, x)πX(y) = K(x, y)πX(x), (5.21)

for every (x, y). Furthermore, for MCMC algorithms, the convergence in distribution of the
Markov chain towards the stationary distribution πX will be of interest, and this usually requires
for the chain to be irreducible (all states “communicate”) and aperiodic (there is no cycle in the
chain). Hence, it can be proven that ultimately, samples will forget their initial state X0 and
will eventually converge to the unique stationary distribution. Some of the transition kernels for
MCMC algorithms will be presented in Section 5.4.1. For a more comprehensive discussion on
Markov chains, see Gilks et al. [1996] or Robert and Casella [2004].

5.2.6 Distinction between random and stochastic differential equations
Random differential equation

Random differential equations are differential equations in which the random effects are man-
ifested in parameters, initial or boundary conditions, or forcing conditions that are regular
(e.g. continuous) with respect to space and time. As an example, let us consider the following
one-dimensional ordinary differential equation (ODE) that describes the evolution of a random
process X defined on a probability space (Ω,B,P):

dx

dt
(t) = a1x(t) + a2(t), (5.22)

with the initial condition x(0) = X0 = X(0, ω), where a1 = A1(ω) is the realization of a random
variable A1 and a2(t) = A2(t, ω) is the realization of a random process B for an outcome ω ∈ Ω.
Hence, for a given realization of ω, the random differential equation can be analyzed and solved
by means of standard resolution techniques if A2(t, ω) is taken to be smooth.

For instance, considering the Arrhenius parameters to be random variables, the pyrolysis
equations described in Section 3.3.2 are random differential equations. For a given realization of
the random parameters, they can be solved by means of numerical integration techniques or by
computing the solution presented in Section 3.3.3.

Stochastic differential equation and Itô stochastic differential equation

As opposed to random differential equations, stochastic differential equations (SDEs) describe
phenomena that are forced by an irregular process. For instance, the random motion of a
particle in a liquid (Brownian motion) can be described by the so-called Wiener process, a con-
tinuous stochastic process representing the random effect of thermal fluctuations of the liquid
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molecules on the particle. An SDE of particular interest is the Itô stochastic differential equa-
tion (ISDE), which solution can be used for defining a transition kernel in MCMC algorithms
(see Section 5.4.5). It is defined as the following SDE:

dX(t) = b(X(t), t)dt+ a(X(t), t)dW (t), t ∈ ]0, t1], (5.23)

with the initial condition X(0) = X0, in which {X(t), t ∈ T} is a stochastic process indexed by
T = [0, t1]. The function (x, t)→ b(x, t) is a function from Rd × T into Rd and (x, t)→ a(x, t)
is a function from Rd × T into Rd×d. The Rd-valued stochastic process {W (t), t ∈ R+}, with
W (0) = 0, is the so-called Wiener process, that is, a process such that for all 0 ≤ s < t < u < v,
the increments W (t) −W (s) and W (v) −W (u) are statistically independent; and for all 0 ≤
s < t < +∞, the increment ∆Wst = W (t) −W (s) is a Rd-valued Gaussian random variable
with mean zero and covariance matrix C∆Wst

= (t − s)Id. Hence, the irregular nature of X(t)
are due to the fluctuations of the Wiener process W .

The solution of the ISDE can be written as

X(t) =
∫ t

0
b(X(t), t)dt+

∫ t

0
a(X(t), t)dW (t), (5.24)

where the second integral on the right-hand side is not interpreted in terms of a classical integral
but as an Itô stochastic integral. Because of the nature of the Wiener process, W is nowhere
differentiable and the continuous trajectories ofW are not of bounded variation on any bounded
interval (Soize [2017]). The Itô stochastic integral allows to extend the definition of integrals
in the case where the integrand and the integrator are stochastic processes. More details on
stochastic calculus and ISDE can be found in Soize [2017].

5.3 Forward and inverse problems

5.3.1 Forward problem
The forward problem consists in predicting the solution of a physical system given a computa-
tional model, which describes the system, and its parameters.

In this work, we will mainly consider systems that can be described by PDEs defined in a
spatial domain D ⊂ Rl, l = 0, 1, 2, 3, and a time domain [0, T ] with T ≥ 0, as follows:





∂u

∂t
(x, t,m) = L(u), D × ]0, T ]× Rnu ,

B(u) = 0, ∂D × [0, T ]× Rnu ,

u = u0, D × {t = 0} × Rnu ,

(5.25)

where L is a (nonlinear) differential operator, B(u) represents the values of u at the boundaries
∂D of the domain D, u0 the initial condition andm the inputs, or the parameters, of the system.
The solution is the quantity u(x, t,m) : D̄ × [0, T ]× Rnu → Rnd , where nd is the dimension of
u.

It happens that the solution to the governing PDEs for u cannot be observed directly through
the experiment, for instance when the parameters are tuning parameters of the model, or when
direct observation is not feasible. Observations of the physical process, denoted by y, are linked
to the state of the system u through the relation

y = η(x, t,m) = L2 (u(x, t,m),m) , (5.26)

where L2 is a (nonlinear) observation operator that may also depend on the parameters. The
function η represents the computer model, that is, all the algorithms and the equations used to
represent the observations.
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When it comes to comparing the predicted outcome of the computer model with real-world
experiments, there are inherent deviations from the physical process due to the inadequacy of
the model and observation errors from the measurement instruments. Hence, a more reliable
description of a real-world experiment can be represented by the relation (Kennedy and O’Hagan
[2001])

yobsi = ζ(xi) + εi = ρη(xi,m) + δ(xi) + εi, (5.27)

where yobsi denotes the observed data, ζ(·) denotes the true process, εi denotes the observation
error for the i-th observation, and δ(·) is the model inadequacy (or the model structure error)
that is independent of the computer model output η(xi,m) that depends on the parameters and
the variables inputs, denoted by x = (x, t).

Assuming that there is no model error (δ = 0), the observed data are obtained from the
computer model and the observation errors as

yobsi = η(xi,m) + εi. (5.28)

Assuming further that there are no observation errors, the model would correctly replicate the
experimental data. In practice however, observation errors are inherent to the measurement
process and a mismatch between the model output and the data is generally observed.

5.3.2 Inverse problem
There are two distinct groups of inputs in the computer model η. The xi are called the variable
inputs whose value might change during the calibration process and that we assume here to
be known. The quantity m represents the calibration parameters, the ones that we wish to
learn about. Finding the value of the calibration parameters m in the absence of model error
(Eq. (5.28)) is sometimes referred to as the classical inverse problem. The designation “classical”
inverse problem is used to differentiate with the “extended” inverse problem (Sun and Sun
[2015]). In the extended inverse problem, the purpose is to find the model and its parameters
that replicate the data in the case where the model itself is unknown and there exist several
plausible alternative models. More details about the extended inverse problem can be found in
Burnham and Anderson [2002]; MacKay [2003] or Sun and Sun [2015].

When the objective is to quantify the model error δ separately from the observation error ε,
the statistical model from Eq. (5.27) can be used. However, in practice, the modeling and the
measurement errors can be collectively quantified by the quantity εi along with the use of the
statistical model in Eq. (5.28) (Smith [2014]). Including the modeling errors in the term εi will
be discussed further in Chapter 7.

Inverse problems can be studied both in the deterministic and the Bayesian frameworks.
In the deterministic framework, the theory is concerned with how to define and find the best
approximate solution, and make sure that this solution is unique and stable. The principal
limitation of this approach is that it only identifies a single “best” model and yields point
estimates of the underlying parameter values, without providing a meaningful description of the
uncertainty among competing models and their parameters (Galagali and Marzouk [2015]).

In the Bayesian framework, the parameters to estimate are regarded rather as a random vector
M with realization m = M(ω) and associated probability density function. The experimental
observations are merely the consequence of a particular realization of the random vector. The
theory of Bayesian inverse problems uses the solution of the computer model, the experimental
observations and the a priori knowledge of the model parameters in order to obtain the the
probability distribution of the random vector representing the parameters

Deterministic inverse problem

In the deterministic approach, one assumes that the parameters are fixed but unknown. There
exists a parameter value m0 which is a deterministic quantity that describes best the experi-
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mental data, thus η(xi,m0) is also deterministic. However, because of the observations errors,
one can only have an estimation of the best-fit parameter value. Indeed, considering that the
measurement errors εi are the realizations of the random vector E → E(ω), the observations are
also random variables Y obs → Y obs(ω), ω ∈ Ω, that are related through the statistical model

Y obs
i = η(xi,m0) + Ei. (5.29)

Deterministic inverse problems usually seek to minimize a misfit function and optimization
algorithms are used to find the solution that best reproduces the data (Nocedal and Wright
[1999]). The misfit function is a measure of the mismatch between the model data and the
observed data. Denoting η(m) = (η(x1,m), . . . , η(xn,m)) an Rn-valued vector that represents
the output of the computer model for a given value of the parameters, the misfit function can
be written as

S(m) = ‖η(m)− yobs‖2, (5.30)

where the operator ‖ · ‖ denotes a given norm. The deterministic inverse problem consists in
finding the best solution that minimizes this misfit function:

m̂ = arg min
m∈Pad

S(m), (5.31)

where m̂ is the parameter values for which the model should fit the observed data as close as
possible. For instance, the ordinary least-squares (OLS) estimate uses the Euclidean norm (or
L2 norm)

m̂OLS = arg min
m∈Pad

n∑

i=1

(
η(xi,m)− yobsi

)2
, (5.32)

which minimizes the distance between all the data and the computer model outputs with equal
importance.

Because Y obs is a random vector, the value of m̂OLS obtained from Eq. (5.32) may be
different for each repetition of the experiment. The OLS estimate from Eq. (5.32) is a particular
realization of the OLS estimatorMOLS, which is a random vector. Providing a large number N
of realizations of the experiments and corresponding estimates m̂OLS,k, 1 ≤ k ≤ N , one could
be able to compute the error-free best-fit parameter from

E [MOLS] = m0 ≈
1
N

N∑

k=1
m̂OLS,k, (5.33)

which comes from the law of large numbers (LLN). This interpretation of the optimal parameter
in terms of frequency of occurrence is what is referred to as the frequentist perspective. Thus, the
computation of the mean and the variance ofMOLS, or computing confidence intervals, provide
information on the true parameter. From a frequentist perspective, a (1−α)×100 % confidence
intervals has the following interpretation: in repeated procedures, (1 − α) × 100 % of realized
intervals would include the optimal parameter. For linear computer models with statistically
independent Gaussian errors, the best-fit parameter actually corresponds to the expectation of
MOLS.

Another estimator is the maximum likelihood estimator, that is the value that maximizes
the likelihood function L(m|yobs). The likelihood function is denoted in a similar way to as a
conditional probability but is not, as m is not a random vector. Then, the optimal parameter
can be estimated by the maximum likelihood estimate (MLE)

m̂MLE = arg max
m∈Pad

L(m|yobs), (5.34)
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in which case the optimal parameter value is interpreted as the parameter value that makes the
observed output the most likelily.

Because parameters are fixed, but unknown, results of the deterministic inverse problem can-
not be directly applied to obtain parameter PDFs that can be propagated through models to
quantify uncertainty. In the Bayesian framework, parameters are considered to be random vari-
ables with associated densities, thus lending themselves naturally to uncertainty quantification.

Bayesian inverse problem

Whereas the deterministic inverse problem is concerned with finding a single value of the param-
eters that best fits the observations, the perspective in the Bayesian inverse problem is rather
to figure out what is the state of information about the parameters.

In the Bayesian approach, what differs significantly from the frequentist perspective is that
the parameters are also considered to be a random vector. Therefore, from a Bayesian per-
spective, there is no fundamental distinction between the observables and the parameters of
a statistical model: all are considered as random quantities. Let M = (M1, . . . ,Mnu) be the
random vector of parameters with values in Rnu and Y obs = (Y obs

1 , . . . , Y obs
nobs) the random vector

with values in Rnobs defined on the same probability space (Ω,B,P). In the context of parame-
ter inference, the Bayesian approach is based on Bayes’ theorem Eq. (5.5) and using conditional
distribution yields the following relation:

πM |Y obs(m|yobs) =
πY obs|M (yobs|m)π0

M (m)∫
Rnu πY obs|M (yobs|m)π0

M (x)dx , (5.35)

where π0
M (m) is the prior probability density function, πM |Y obs(m|yobs) is the posterior prob-

ability density function, and πY obs|M (yobs|m) is the likelihood function. The denominator
represents the marginal distribution for the observations and is a normalizing constant. In the
following, the subscript Y obs and M will be dropped off for the sake of clarity.

Tarantola [2005] derives the relation from Eq. (5.35) by using the general notion of the
“combination of states of information” rather than using conditional densities. The likelihood
represents the information on the physical correlations between yobs and m, as obtained from
the physical law. It gives a measure of how good the model with parameters m is in explaining
the observations yobs. The prior probability density represents both information obtained on
the data and on the model parameters. These two states of information combine to produce the
a posteriori state of information.

The prior density should compile all the information we know about the parameters before
any computation. It can stem from physical consideration (e.g., a mass can not be negative), or
from expert knowledge about the parameters. When only little or no information is available a
priori, it is possible to specify noninformative priors with the desire that they play a minimal
role on the resulting posterior. Reference Gelman et al. [2014] defines weakly informative priors
that are allowed to contain enough information to keep the posterior within reasonable bounds
while still playing a minimal role in the inference process and being proper, in the sense that
they integrate to one. A posterior built with an improper prior can still be proper and have a
finite integral, which could be the case for instance when the likelihood function dominates the
prior (Gelman et al. [2014]). For instance, we can express that the variable must be positive
or not exceed a given limit by providing an equiprobable density function whose support is the
parameter set. It is improper in the sense that its value does not integrate to 1 and this will
require to check numerically that the resulting posterior has a finite integral.

The posterior density is what we know about the parameters after observing the data and
is what we want to know. The solution of the inverse problem is the posterior probability
distribution function π(m|yobs) and this principle makes the Bayesian approach quite different
from the deterministic approach.
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The most general solution of the Bayesian inverse problem provides a probability density over
the model parameter set, and its computation requires the evaluation of a multidimensional
integral. It is only when the probability density is very simple (for instance, when it has only
one maximum) and very low dimensional that analytical techniques can be used to characterize
it. For more general probability densities, one needs to perform an extensive exploration of the
parameter set. This can be performed numerically by means of quadrature rules or random
(stochastic) explorations. However, when the dimension increases, quadrature rules suffer from
the curse of dimensionality and the number of model evaluations becomes intractable. Therefore,
random explorations are needed, which also offer two additional advantages: first, they provide
samples directly drawn from the posterior distribution that can be used to estimate statistics of
the posterior distribution (by Monte Carlo integration), and second, these samples can be used
for propagation through numerical solvers for uncertainty quantification. Random explorations
can solve many complex problems and a type of methods that explore efficiently the posterior
distribution are the MCMC methods. The problem of exploring the posterior PDF by means of
MCMC methods is the topic of the next section.

5.4 Markov chain Monte Carlo methods
The principle underlying the MCMC methods is the construction of a Markov chain whose
stationary distribution is the probability distribution we wish to sample from. In the context
of Bayesian inverse problems, this probability distribution will be the posterior distribution
π(m|yobs). Implementing MCMC algorithms is the subject of many textbooks (Gilks et al.
[1996]; Brooks et al. [2011]; Smith [2014]; Gelman et al. [2014]) and we review here the general
Metropolis–Hastings algorithm but also advanced versions of sampling algorithms. The algo-
rithms are described in the case where the distribution is the Bayesian posterior π(m|yobs) but
they can be applied to other probability distribution in non-Bayesian frameworks.

5.4.1 The Metropolis–Hastings algorithm
LetM = {Mn, n ∈ N} be a Markov chain with realizations denoted bymn = Mn(ω) for ω ∈ Ω
defined on a probability space (Ω,B,P) and with values in Rnu . The principle for constructing
a Markov chain whose stationary distribution is the distribution of interest (e.g., the posterior
distribution in the Bayesian framework) is relatively simple. The concept was first proposed
by Metropolis et al. [1953] and later generalized by Hastings [1970]. The Metropolis–Hastings
algorithm consists in sampling a candidate valuem∗ from a simpler distribution J(·|mn) called
the proposal distribution that may depend on the current statemn, with n the current iteration.
The candidate value is accepted with probability α = min(1, r) where r is the acceptance ratio

r =
π
(
m∗|yobs

)
J (m∗|mn)

π (mn|yobs) J (mn|m∗) . (5.36)

If the candidate point is accepted, the new state ismn+1 = m∗, and if it is rejected, the state of
the chain remains at the same value, i.e. mn+1 = mn. The transition kernel hence obtained from
the Metropolis–Hastings algorithm satisfies the detailed balance equation from Eq. (5.21) with
π the stationary distribution, and the chain is ergodic, aperiodic and irreducible (see details
in Robert and Casella [2004]). Therefore, once a sample from the stationary distribution is
obtained, the next samples will also be from the stationary distribution and the chain is said to
have converged. The collected samples {mn} fully characterize the posterior distribution. The
Metropolis–Hasting algorithm for the sampling of a multivariate distribution is summarized in
Algorithm 1.

In Eq. (5.36), the posterior density can be replaced by the product of the likelihood with the
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prior distribution from Eq. (5.35),

r = π(yobs|m∗)π0(m∗)J(m∗|mn)
π(yobs|mn)π0(mn)J(mn|m∗) . (5.37)

By forming the ratio of the posterior densities, the evaluation of the normalization constant is
thus avoided.

Algorithm 1: Metropolis–Hastings algorithm.
Result: Parameter values mn ∀ n ∈ [0, niterations] sampled from the posterior π(·|yobs).
Initialise m0;
while n < niterations do

Draw new sample m∗ ∼ J(m∗|mn);
Compute acceptance probability α = min(1, r) with r from Eq. (5.36) and sample
u ∼ U(0, 1);
if u ≤ α then

mn+1 = m∗;
else

mn+1 = mn;
end

end

5.4.2 Random-walk Metropolis–Hastings algorithm
In the Metropolis algorithm, the proposal distribution is taken to be symmetric, i.e., J(mn|m∗) =
J(m∗|mn). When the proposal distribution is of the form J(m∗|mn) = J(|m∗ −mn|), the al-
gorithm is called the random-walk Metropolis–Hastings (RWMH). A popular choice for the
proposal distribution is the multivariate Gaussian distribution centered on mn with covariance
matrix Σ of dimensions nu × nu, thus,

J(m∗|mn) = 1√
(2π)nudet(Σ)

exp
(
−1

2 (m∗ −mn)T Σ−1 (m∗ −mn)
)
, (5.38)

with Σ =




σ2
1 ρ12σ1σ2 · · · ρ1nuσ1σnu

ρ21σ2σ1 σ2
2 ρ2nuσ2σnu

...
... . . . ...

ρnu1σnuσ1 ρnu2σnuσ2 · · · σ2
nu


 , (5.39)

where σ is the standard deviation of the i-th variable and ρij the correlation coefficient between
the i-th and the j-th variables. It is worth noting that in the case where we assume a uniform
prior distribution, the acceptance ratio further simplifies into

r = π(yobs|m∗)
π(yobs|mn) , (5.40)

and we only need to sample from J for determining the proposed value of the sample m∗ and
compute the value of the posterior PDF at m∗ to obtain r.

The choice of the proposal distribution J strongly influences the rate of convergence of the
Markov chain towards the posterior distribution. The probability of having large jumps decreases
with the distance to the current state and depends on the proposal covariance matrix, which
must be chosen carefully. On the one hand, a covariance matrix that is too large, in the sense
that the principal dimensions (eigenvectors) have a large magnitude (eigenvalues), will result in
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an acceptance ratio that is low and the proposed samples will be mainly rejected. On the other
hand, a small covariance matrix will result in small jumps between the successive sample values
and a high acceptance rate; thus a very slow exploration of the posterior distribution will be
observed, that we refer to as a slow mixing of the Markov chain. In both cases, this results in
successive samples that are highly correlated, which is not desirable for Monte Carlo estimations.

There are many other simulation algorithms that are based on the generic Metropolis–
Hastings algorithm, such as the slice sampler, the Gibbs sampler, that are not reviewed here.
See Gilks et al. [1996] or Robert and Casella [1999] for a general overview of simulation methods
based on Markov chains.

5.4.3 Adaptive Metropolis–Hastings algorithm
In order to avoid trial-and-error tuning of the covariance matrix (Eq. (5.39)) and improve the
mixing of the Markov chain, methods that learn from past sample values have been proposed
and are referred to as adaptive algorithms. As a consequence of being dependent on previous
iterates, adaptive algorithms are by essence non-Markovian and the challenge in developing
such algorithms requires to show that the chain has the correct ergodic properties (converges
toward the right distribution and is stationary). For the adaptive random-walk Metropolis–
Hastings (AMH) algorithm, Haario et al. [2001] showed that by ensuring that the target density is
bounded from above and has a bounded support, the AMH process does indeed have the correct
ergodicity properties. The latter assumption was further relaxed by Atchadé and Rosenthal
[2005] and Andrieu and Moulines [2006]. Atchadé and Rosenthal [2005] showed that adaptive
algorithms achieve the same mixing time as an optimally scaled algorithm without requiring all
the preliminary efforts to manually tune the scaling parameter of the proposal. This feature
is important when little prior information is available about the scales and correlations of the
parameters. A slightly different version is proposed by Roberts and Rosenthal [2009] where
the proposal is a mixture distribution. Rosenthal [2010] has summarized the most important
advancements in AMH and Andrieu and Thoms [2008] have reviewed several AMH algorithms
with examples.

We summarize below the adaptive procedure initially proposed by Haario et al. [2001] for the
random-walk Metropolis–Hastings algorithm. Starting from the RWMH, the AMH algorithm
consists in taking the proposal covariance matrix as the (scaled) covariance matrix of the pre-
vious samples. Let denote by Ĉ0 the initial covariance matrix of the Gaussian proposal, n0 the
iteration at which the adaptive procedure starts and ∆nadapt the adaptation period at which
the covariance matrix is updated. The first adaptation is based on the covariance estimation
from the n0 first iterations. Then, the covariance matrix is computed using a recursive formula
at each iteration in order to avoid saving all the sample values. Considering that a new value
mn+1 has just been sampled from the posterior distribution from, using the Gaussian proposal
distribution with current covariance matrix Ĉn, the new covariance matrix estimate Ĉn+1 is
computed using the new sample and the previous estimates as follows1:

Ĉ ′n+1 = n+ 1
n+ 2 Ĉ

′
n + 1

n+ 2
(
(n+ 1)m̄nm̄

T
n − (n+ 2)m̄n+1m̄

T
n+1 +mn+1m

T
n+1
)
, (5.41)

m̄n+1 = 1
n+ 2

(
(n+ 1)m̄n +mn+1) , (5.42)

Ĉn+1 = sdĈ
′
n+1 + sdεInu , (5.43)

where sd is an additional scaling parameter that depends only on the dimension nu of the
parameter space, ε > 0 is a correcting parameter and Inu is the nu-dimensional identity matrix.
The parameter sd is used to improve the acceptance rate and Gelman et al. [1996] showed that the

1Haario et al. [2001] use n to index the current sample value while we use the index n+ 1, resulting in slight
differences in Eqs. 5.41–5.43 with no influence.
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optimal scaling for a Gaussian distribution using a random-walk algorithm was sd = 2.382/nu.
The correcting parameter ε > 0 is used to ensure that the covariance estimate will not become
singular and that the algorithm has the correct ergodic properties in theory, but can be set to
zero in practice.

The AMH algorithm above has a proposal distribution that is Gaussian and the sampling
of the target distribution can be slow when the latter has a complex dependence structure
or is far from Gaussian. For instance, the covariance matrix can fail to adapt to the global
scales of the distribution as the scales can be dependent of the current state. Therefore, several
other improvements of the random-walk Metropolis–Hastings algorithms have been proposed in
the literature, such as the delayed rejection Metropolis–Hastings, which scales the covariance
matrix by a given factor in the case of rejections in order to increase the acceptance rate, its
adaptive version the delayed-rejection adaptive Metropolis–Hastings, and many others that can
be found, for instance, in Gilks et al. [1996]; Smith [2014]; Robert and Casella [2004]. However,
will see in the two next sections methods that seek to improve the mixing of the Markov chain
by constructing proposal functions that take advantage of the local gradients of the target
distribution and for which the proposal distribution is not Gaussian.

5.4.4 Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo (HMC) method uses the solution of Hamilton’s equations as new
states in the Markov chain Monte Carlo algorithm (Duane et al. [1987]; Neal [2010]; Gelman et al.
[2014]). The classical Hamiltonian dynamics characterizes the evolution of a system described
by its position q and momentum p whose total energy corresponds to the Hamiltonian H(q,p).
The time evolution of the system is uniquely defined by Hamilton’s equations

dqi
dt

= ∂H(q,p)
∂pi

, (5.44)

dpi
dt

= −∂H(q,p)
∂qi

. (5.45)

The Hamiltonian is usually defined as the sum of a potential energy and the total kinetic
energy of the system H(q,p) = U(q) +K(p). The potential energy function U(q) in the Hamil-
tonian can be related to the probability distribution we wish to sample from. In the Bayesian
framework, this will be minus the log of the posterior and the position variable q becomes the
variable of interestm. The momentum variable p is used for the Hamiltonian dynamics to work.
The potential and kinetic energies of the Hamiltonian thus write

U(m) = − log(π(m|yobs)), (5.46)

K(p) = 1
2p

TM−1p. (5.47)

whereM is a symmetric, positive-definite matrix (or “mass matrix”‘). Using this, the derivatives
in Eq. (5.44) are ∂K(p)

∂p = M−1p, and the derivatives of the potential energy must be computed
either numerically or analytically.

The Hamiltonian dynamics possesses several interesting properties that are necessary for
constructing MCMC updates, namely reversibility and symplecticness1. The numerical solution
of Hamilton’s equations is therefore best carried out using a discretization scheme that respects
those properties. The most common scheme is the leapfrog method which leads to the following

1In particular, a consequence of the symplectic property is that the volume in the momentum-position phase
space is preserved.
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system of equations:

pi

(
t+ τ

2

)
= pi(t)−

τ

2
∂U(q(t))
∂qi

, (5.48)

qi(t+ τ) = qi(t) + τ
∂K
(
p
(
t+ τ

2
))

∂pi
, (5.49)

pi(t+ τ) = pi

(
t+ τ

2

)
− τ

2
∂U (q (t+ τ))

∂qi
, (5.50)

where τ is the time step. The first equation is a half Euler step for the momentum, then one full
step using the already computed momentum, then finally an other half step for the momentum
with the already computed position. The integration is then performed for L leapfrog steps to
reduce correlation between successive samples.

As the conservation of the Hamiltonian can only be approximated, the numerical scheme
from Eqs. (5.48)–(5.50) introduces an error in the solution. Thanks to the reversibility of the
Hamiltonian system, the resulting values for m and p can be inserted in a Metropolis–Hastings
accept-reject step to correct the error in the solution introduced by the numerical integration.
The acceptance ratio at iteration n writes:

r = exp(−U(m∗) + U(mn)−K(p∗) +K(pn)). (5.51)

By following trajectories of constant Hamiltonian values, the Hamiltonian Monte Carlo algorithm
allows the new state to be quite distant from the current state, while nevertheless keeping a high
acceptance ratio. This property is particularly advantageous to address the issue of the slow
exploration of the posterior distribution that can be encountered when using a Gaussian pro-
posal distribution from the random-walk dynamics. The different Hamiltonian values are finally
explored by randomly drawing p at the beginning of each new MCMC iteration from a centered
multivariate Gaussian distribution with covariance M . The HMC algorithm is summarized in
Algorithm 2.
Algorithm 2: Hamiltonian Monte Carlo algorithm (adapted from Neal [2010]).
Set τ , L;
Initialize m0;
while n < niterations do

Sample p∗ ∼ N (0,M);
pn = p∗;
p∗ ← p∗ − τ

2
∂U
∂m (mn);

while j ≤ L do
m∗ ←m∗ + τM−1p∗;
if j 6= L then

p∗ ← p∗ − τ ∂U∂m (m∗) ;
end

end
p∗ ← p∗ − τ

2
∂U
∂m (m∗) ;

Compute acceptance probability α = min(1, r) with r from Eq. (5.51) and sample
u ∼ U(0, 1);
if u ≤ α then

mn+1 = m∗;
else

mn+1 = mn;
end

end
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Figure 5.1: Sampling from a two-dimensional Gaussian distribution with standard deviation of
0.98 using (a) the random-walk Metropolis–Hastings algorithm and (b) the Hamiltonian Monte
Carlo algorithm. The starting iteration at (0,0) is marked with an asterisk and the circles
represent lines of equal probability density.

To avoid the parameter values to go out of the support of the posterior, we exploit the
rejection mechanism and we automatically reject such parameter values.

Illustration

The following example is reproduced from Neal [2010]. We sample from a two-dimensional
Gaussian distribution with unit standard deviation and correlation equal to 0.98. For the kinetic
energy, we take M = I. The Hamiltonian is therefore defined as

H(m,p) = mTΣ−1m

2 + pTp

2 with Σ =
[

1 0.98
0.98 1

]
. (5.52)

Thanks to the accept-reject step in the Metropolis–Hastings algorithm, the constant in the
Gaussian potential function can be dropped.

The comparison of the sampling of the two-dimensional Gaussian distribution using the
RWMH and HMC (implemented in pybitup) is shown in Fig. 5.1. In the HMC algorithm, the
time step used is τ = 0.18 with L = 20 leapfrog steps resulting in a total of 20 effective iterations.
More than one leapfrog step is generally used to reduce the correlation between the samples.
For the comparison with the RWMH to be fair, we performed 400 iterations and show every 20
iterations. We can observe from Fig. 5.1 that the HMC algorithm explores the support of the
distribution more efficiently than the RWMH, which remains during a few iterations in the same
region of low probability density.

5.4.5 Algorithm based on an Itô stochastic differential equation
The second gradient-informed MCMC algorithm described is based on the use of an ISDE (Soize
[2008, 2015, 2017]) associated with a dissipative Hamiltonian and a stochastic forcing term.
Soize [2015]; Arnst et al. [2017] and Arnst and Soize [2019] applied a generalized version of the
ISDE that takes into account the scales and correlations between the different parameters. We
denote by {Q(t), t ≥ 0} and {P (t), t ≥ 0} two Rnu-valued stochastic processes indexed by R+

and {W (t), t ≥ 0} the Rnu-valued normalized Wiener process whose increment ∆Wst = W (t)−
W (s) is an Rnu-valued centered Gaussian random vector with covariance matrix (t − s)Inu .
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The following stochastic differential equation describes a second-order system damped with a
stochastic excitation:

dQ = M−1P dt, (5.53)

dP = −∇qU(Q)dt− 1
2f0P dt+

√
f0LMdW , (5.54)

whereM = LML
T
M is a symmetric, positive-definite matrix with LM the lower triangular matrix

resulting from the Cholesky decomposition, f0 is a free parameter (Arnst and Soize [2019]) that
controls the amplitude of the deterministic damping and the stochastic forcing. In the limit
of zero damping, the system is similar to the (deterministic) conservative Hamiltonian system
describes in Section 5.4.4.

Soize [2008] showed that under some regularity conditions regarding the potential function
U , the stationary density of (Q,P ) is independent of the damping parameter and is given by

π(q,p) ∝ exp
(
−U(q)− p

TM−1p

2

)
. (5.55)

Once again, by letting the position variable q be the variable of interest m and choosing a
potential function that corresponds to U = − log(π(m)), the marginal stationary density for Q
will be exactly the distribution we wish to sample from (e.g., the Bayesian posterior π(m|yobs)).

To solve the stochastic irreversible system, symplectic integrators also show a favorable long-
time behavior (Hairer et al. [2006]). They will have the advantage of being able to solve the
system in the long-term behavior even for low damping values and the same leapfrog discretiza-
tion as for the Hamiltonian system is applicable. In Soize and Ghanem [2016]; Guilleminot
and Soize [2014] and Arnst and Soize [2019], the leapfrog discretization is used with the slight
modification of Mannella [2006], which allows to have an error in the variance of the momentum
variable that is independent of the damping parameter (Burrage et al. [2007]), that is referred
subsequently to as the Störmer-Verlet method. The numerical solution of the stochastic irre-
versible (non-Hamiltonian) system is performed by applying the Störmer-Verlet scheme (Soize
[2017]):

Q(n+ 1
2 ) = Q(n) + τ

2M
−1P (n), (5.56)

P (n+1) = 1− b
1 + b

P (n) − τ

1 + b
∇QU

(
Q(n+ 1

2 )
)

+
√
f0

1 + b
LM∆W (n+1), (5.57)

Q(n+1) = Q(n+ 1
2 ) + τ

2M
−1P (n+1), (5.58)

where b = f0τ/4. The dynamics of the ISDE is not reversible due to the dissipative behavior
of the system, as opposed to the Hamiltonian dynamics, and the accept-reject step from the
Metropolis–Hastings cannot be applied. In order to limit the drift induced by the numerical
discretization, the time step τ will have to be chosen carefully.

The implementation of the ISDE algorithm assumes that the support of the target PDF is
the entire space Rnu . It is not directly applicable in the case of a bounded or semi-bounded
parameter set as the algorithm may reach parameter values where the potential is not defined.
To avoid this, Soize [2017] has proposed to use regularization or rejection techniques. An other
possibility is to use a change of variables, as in Arnst et al. [2017], that will map the original
variables into a transformed parameter space where the ISDE algorithm is applicable, which is
discussed in the next section.

Illustration

In Fig. 5.2, we compare the sampling strategy of the ISDE algorithm with the HMC algorithm
for a one-dimensional Gaussian distribution, thus allowing us to represent the phase space for the
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Figure 5.2: Sampling from a one-dimensional standard Gaussian distribution using (a) the Hamil-
tonian Monte Carlo algorithm and (b) the algorithm based on an Itô stochastic differential
equation. The starting iteration at (0,0) is marked with an asterisk.

position and momentum. For the HMC algorithm (Fig. 5.2(a)), the time step used is τ = 0.18
with L = 10 leapfrog steps. For the ISDE (Fig. 5.2(b)), the time step is set to τ = 0.5 and
f0 = 4.0. In Fig. 5.2(a), we can clearly observe the trajectory of the samples that follows the line
of equal Hamiltonian values. At each new iteration, the value for the momentum p is re-sampled,
resulting in the straight lines on the graph. The samples selected are the values at the end of
each trajectory along a constant Hamiltonian line.

Compared to the HMC algorithm, the ISDE has the advantage of controlling the stochastic
perturbation through the damping coefficient f0, while the Hamiltonian is based on a conservative
system to which the stochasticity is added through the resampling of the momentum at each
new iteration. Both methods have the advantage of avoiding the need to introduce a proposal
distribution and thus avoiding the random-walk.

5.4.6 Change of variables based on the support of the posterior
A change of variables can accelerate convergence because it can simplify the structure of the
posterior or it can help to decorrelate random variables. When applying a change of variables,
the Jacobian rule for the transformation of the PDF under a differentiable bijection requires
the multiplication of the image of the posterior PDF for the original variables by the inverse of
the determinant of the Jacobian. See, for instance, in Appendix B for the computation of the
acceptance ratio in the case of a change of variables for the Metropolis–Hastings algorithms.

The use of gradient-informed sampling algorithms requires the computation of the gradient
of the logarithm of the posterior distribution and in turn of the gradient of the logarithm of the
prior and the likelihood distributions. The use of distributions that are not C1 (continuously
differentiable) such as uniform priors might therefore be troublesome. When the support of
the variable is a subset S ⊂ R, we therefore need to apply a change of variables from S to
the real line R. Exception can be made for the class of Metropolis–Hastings algorithms, as the
Hamiltonian Monte Carlo, which are rejection methods. The gradient of the uniform prior is
set to a constant value everywhere, and the accept-reject step will automatically reject the new
value if it is outside of the bounds of the prior distribution. For the ISDE algorithm, a change
of variable is applied as there is no rejection step, and we make the ISDE feasible by mapping
the initial parameter set into a transformed unbounded parameter set.

Thus, we introduce a general change of variables that is based on the structure of the poste-
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rior. We distinguish two cases. First, the case where S is bounded from above and below with
S = [Lb, Ub], we choose a change of variables of the following form:

m̃i = tan
{(

mi − Lb
Ub − Lb

− 1
2

)
π

}
, (5.59)

dm̃i

dmi
=
[
1 + tan2

{(
mi − Lb
Ub − Lb

− 1
2

)
π

}]
π

Ub − Lb
. (5.60)

Second, in the case where the support S is semi-infinite, i.e. mi is in R+
0 (or R−0 ), we apply a

logarithmic change of measure mi 7→ log(mi) (or log(−mi)) from R+
0 (or R−0 ) into R.

5.4.7 Checking and monitoring convergence
We address here the two questions of how long the MCMC chain should be run and how we
can diagnose a slow or a lack of convergence. Mixing and stationarity of a Markov chain are
two important properties that need to verified when deciding whether the Markov chain has
converged or not. The first concept refers to the samples of the chain that must have covered
all the support of the distribution. The second one refers to the case where two chains have
mixed and cover the same distribution, but that neither sequence appears stable in which case
the chains are not stationary (see, for instance, in Raftery and Lewis [1996] for an example).
A first indicator of a good convergence is therefore to compare two chains that were simulated
independently with possibly different starting values. After discarding an initial burn-in phase,
the juxtaposition of the two chains should be indistinguishable at convergence.

Mixing can be checked by looking at moments of the distribution and comparing their values.
For instance, in order to diagnose a slow mixing of the chains, between-sequence and within-
sequence variances can be computed (Gelman et al. [2014]). First, after discarding the initial
burn-in samples, each chain is split in half and the mixing is checked for the resulting half-
sequences. Let denote by nc the number of chains ran in parallel, hence the total number of
sequences is 2nc, and by nh = nit/2 the length of the half-sequence chains. Let denote by m(ij)

k

the i-th iteration from chain j of the k-th component of the vector of parameters m. To assess
the mixing, the between-sequence B and within-sequenceW variances are computed as (Gelman
et al. [2014])

Bk = nh
2nc − 1

2nc∑

j=1

(
m̄

(.j)
k − m̄(..)

k

)2
, (5.61)

where m̄
(.j)
k = 1

nh

nh∑

i=1
m

(ij)
k , m̄

(..)
k = 1

2nc

2nc∑

j=1
m̄

(.j)
k , (5.62)

Wk = 1
2nc

2nc∑

j=1

(
s

(j)
k

)2
, where

(
s

(j)
k

)2
= 1
nh − 1

nh∑

i=1

(
m

(ij)
k − m̄(.j)

k

)2
(5.63)

Marginal posterior variances can be estimated as

v̂ar(k),+(m(k)|yobs) = nh − 1
nh

W (k) + 1
nh
B(k), (5.64)

and convergence of the chain is monitored through the potential scale reduction factor

R̂ =

√
v̂ar(k),+(m(k)|yobs)

W (k) (5.65)

which declines to 1 as nh →∞.



Chapter 5. Uncertainty quantification methods for computational models 97

5.5 Propagation of uncertainties
Having defined the computational model and the characterization of the input uncertainty, we
now address the problem of how this uncertainty propagates through the computational model
to the quantity of interest. We formulate the problem as follows: we have an Rn-valued random
vector X for which we know the probability distribution and we are interested in the R-valued
random variable Y which is some transformation of X through the computational model as
follows:

Y = η (X) , (5.66)
and we want to know the probability distribution of Y . The probability distribution PY of Y is
such that for any meaningful event DY ∈ DY , PY (DY ) = PX ({x ∈ Rn : η(x) ∈ DY }). Thus, to
obtain PY (DY ) one need to obtain the probability PX of corresponding values of x ∈ Rn that the
computational models maps into values in DY , which subset is written as {x ∈ Rn : η(x) ∈ DY }.
In the cases where the transformation η(·) is a one-to-one mapping, the characterization of PY
can be performed analytically (see for instance in Hogg et al. [2005]). However, this case is seldom
in real-world applications and the propagation of uncertainties is most often solved numerically.

Numerical methods for uncertainty propagation are often divided into two main categories,
namely intrusive and non-intrusive methods. On the one hand, intrusive methods require the
modification of the computer code. On the other hand, non-intrusive methods require little or
no modification of the code and the model can be seen as a black-box. There are polynomial
chaos methods that consist in replacing the existing computational model by using a simpler
representation of the mapping between the uncertain input parameters and the quantity of
interest (called the surrogate) when the mapping can be truncated at a sufficiently low order.
This solution to the computer code is approximated by means of an orthogonal polynomials
basis with unknown coefficients that must be estimated (Xiu and Karniadakis [2002]). See in Le
Maître and Knio [2010] or Xiu [2010] for an overview of intrusive and non-intrusive methods for
uncertainty propagation.

In this section, we focus on two non-intrusive methods for uncertainty propagation. First,
the most intuitive and straightforward approach to uncertainty propagation using non-intrusive
methods is the direct Monte Carlo sampling method. It has the advantage of being applicable
to problems of any stochastic dimension and is suitable when we have a set of samples drawn
from an unknown PDF, which can have correlation between its variables. Second, we focus on
the non-intrusive polynomial chaos method which is widely used in uncertainty quantification
studies.

5.5.1 Monte Carlo sampling method
The Monte Carlo approach involves repeated simulations with random sampling from the space
of the random vector X = (X1, . . . , Xn) with values in Rn. An ensemble of independent
and identically distributed (i.i.d.) samples

{
x(k), 1 ≤ k ≤ ν

}
are generated from the proba-

bility distribution PX . Then, the solution of the computational model is generated for each
of the samples to obtain the corresponding ensemble of i.i.d. samples from PY written as{
y(k) = η(x(k)), 1 ≤ k ≤ ν

}
.

The statistical descriptors for a random variable introduced in Eq. (5.6) and Eq. (5.9) can
then be estimated from the i.i.d. samples y(k) as

µY ≈ µνY = 1
ν

ν∑

k=1
y(k), (5.67)

σ2
Y ≈ (σνY )2 = 1

ν

ν∑

k=1

(
y(k) − µνY

)2
. (5.68)
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where the superscript ν is used to indicate that the quantity of interest y is estimated from the ν
i.i.d. samples. The law of large number ensures that the approximation µνY converges toward µY
when the sample size ν increases and the accuracy is proportional to 1/

√
ν (Robert and Casella

[2004]). Hence, the convergence of the Monte Carlo method is independent of the dimensionality
of the random vector, which is advantageous for problems involving a large number of random
input variables.

5.5.2 Polynomial chaos method
Polynomial chaos was originally described in the work of Wiener [1938], and was later used by
Ghanem and Spanos [1991] to model uncertainty in mechanical engineering problems. Since then,
it has been the subject of many investigations. Xiu and Karniadakis [2002] extended the classical
polynomial chaos for Gaussian processes using Hermite polynomial (Wiener-Hermite chaos) to
a general set of polynomials provided by the so-called Askey scheme of polynomials (Askey and
Wilson [1985]). Generalized polynomial chaos (gPC) are summarized in this chapter.

Let X be a Rd-valued random vector that admits the probability density πX . Let us assume
a random scalar output quantity Y is the transformation η of the random vector X, that is the
mapping Y : X ∈ Rd → η(X) ∈ R. Let i = (i1, . . . , in) ∈ Nn0 be a multi-index of modulus
|i| = i1 + · · · + in. Then the polynomial chaos method consists in representing the model η by
a spectral expansion using a predefined basis of orthonormal polynomials {ψi(X), i ∈ Nn0} from
Rd into R (the polynomial chaos) such that

Y = η(X) =
∞∑

|i|=0

yiψi(X). (5.69)

Equation (5.69) is the polynomial chaos expansion (PCE) of the output quantity and the coeffi-
cients yi are unknown. In practice, the series from Eq. (5.69) is truncated and the model η(X)
is approximated by the truncated sum

η(X) ≈ sp(X) =
p∑

|i|=0

yiψi(X). (5.70)

There are two common approaches to compute the expansion coefficients: the spectral pro-
jection and regression. In regression methods, the problem of finding the coefficients of the PCE
is cast under the form of a weighted least-squares problem. The model function is replaced by
its truncated PCE approximation and the expansion coefficients are obtained as the solution of
the minimization problem of the residual

arg min
{yi,0≤|i|≤p}

m∑

j=1


η(xj)−

p∑

|i|=0

yiψi(xj)




2

, (5.71)

which requires the computation of the forward model at m minimization points which need to
be selected carefully. See Le Maître and Knio [2010] for a more comprehensive discussion on the
least-squares fit approach for the computation of the expansion coefficients.

Spectral projection methods take into account the orthonormality condition of the basis with
respect to the probability distribution PX , which implies that

E [ψiψj] =
∫

Ξ
ψi(x)ψj(x)πX(x)dx = δij, ∀i, j ∈ Nn0 , (5.72)

where δij = 1 for i = j and 0 otherwise, such that the polynomial chaos coordinates write as

yi = E [ψiY ] =
∫

Ξ
ψi(x)η (x)πX(x)dx, i ∈ Nn0 . (5.73)
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The evaluation of the coefficients amounts to the computation of a multidimensional integral.
This integral is usually obtained numerically and several approximation methods have been
proposed to estimate its value. These techniques are classified into simulations approaches, that
use Monte Carlo sampling or improved sampling strategies in a similar manner as discussed in
Section 5.5.1, and cubature approaches, that consist in approximating the integral by a discrete
sum. Only the latter is discussed below. The PCE expansion that uses numerical integration to
compute the value of its coefficient is sometimes referred to as “pseudo-spectral” (Xiu [2007]).

Cubature rules for multidimensional integration

Multidimensional cubature rules are generally constructed on the basis of 1D integration rules,
or quadradures. The univariate integral I of a function fwith respect to the measure PX is
approximated by a weighted sum of function evaluations at specified points within the domain
of integration

I =
∫

R
f(x)πX(x)dx ≈

Nl∑

i=1
f (xi)wi. (5.74)

where the xi are the quadrature points or nodes and the wi the quadrature weights.
Gauss integration formulas consist in finding the nodes xi of the quadrature rules from the

zeros of the Nl-th order orthogonal polynomials with regard to the measure PX . Gauss quadra-
tures yield an optimal degree of exactness for polynomial functions f of degree ≤ 2Nl−1. Hence,
given that the model solution η is polynomial and for a given degree of the polynomial ψi, one
can deduce the number of nodes that are needed to yield the exact integration of the polynomial
function η(x)ψi(x). For labeled distributions, the orthogonal polynomials are known and efficient
formulas for computing the values of the nodes and the weights are available (Abramowitz and
Stegun [1972]). For instance, in the case of a uniform measure on the interval [−1, 1], the associ-
ated orthogonal polynomials are from the Gauss–Legendre family, or for the standard Gaussian
measure the associated orthogonal polynomials are the Gauss–Hermite family. Xiu and Karni-
adakis [2002] established the numerical rate of convergence for a set of labeled distribution with
their corresponding polynomials from the Askey scheme family of orthogonal polynomials and
showed that the error exhibits an exponential convergence rate.

In general, the model solution η is rarely polynomial and the exact integration can not be
achieved. Moreover, Gauss integration formulas have the drawback of having a node distribution
that depends on the degree of the polynomial assumed. If one wishes to improve the accuracy
of the PCE approximation by increasing the number of nodes, one cannot re-use the nodes
computed at a lower degree. Instead, efficient quadrature points seek to reduce the number
of model evaluations. Nested quadratures are interesting in the sense that they can re-use the
nodes computed at a level l for the next level l + 1, although the convergence rate might be
slower than using the quadrature rule that corresponds to the probability measure. Examples
of nested quadrature rule are the Clenshaw–Curtis and Fejèr rules, or Gauss-Patterson rule.

One-dimensional quadrature rules are easily extended to n-dimensional cubature rules via
tensor product construction. Considering that the parameters are independent, with possibly
different distributions, one can apply the individual quadrature rules along the different integra-
tion directions. However, tensor product construction suffers from the curse of dimensionality,
as the total number of cubature points resulting from the tensor product formula increases ex-
ponentially as the dimension increases. Sparse tensorization quadrature formulas, or sparse-grid
quadrature rules, have been proposed and offer an appreciable reduction of the number of cu-
bature nodes for a given degree of exactness, and most of the applications rely on the Smolyak
sparse grid algorithm (Smolyak [1963]). In practice, using sparse-grid quadrature rules can re-
sult in errors on the coefficients associated with high-order basis polynomials. In the application
of Chapter 8, we will use a slightly different method to construct the sparse-grid quadrature
rules, the so-called sparse pseudo-spectral approximation method (Constantine et al. [2012]),
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implemented in the Dakota (Adams et al. [2018]) software, which attempts to reduce the error
on the coefficients associated to the high-order polynomials.

5.6 Summary
In this chapter, we discussed the theory for the analysis of computational models, from the
characterization of the uncertainty in the input parameters to the propagation of uncertainty
through the computational model and how to quantify it.

For the characterization of input uncertainty, we focused on the Bayesian approach in which
input prior knowledge is updated through the likelihood function to provide the posterior prob-
ability distribution. Then, we have reported several algorithms to sample from a probability
distribution, including the random-walk Metropolis–Hastings methods and its adaptive version,
as well as gradient-informed sampling algorithms, namely the Hamiltonian Monte Carlo and the
method based on an Itô stochastic differential equation. For the propagation of uncertainty, we
discussed the Monte Carlo method, which can be applied to problems with an arbitrary num-
ber of input parameters but which features a low convergence rate, and the polynomial chaos
methods.

These methods will be of interest for the quantification of uncertainty in the characterization
of thermal protection material properties and the propagation of uncertainty through numerical
codes for computing the material response during an atmospheric reentry.



Chapter 6
Development of a numerical toolbox for
Bayesian inference and uncertainty
propagation

This chapter provides an introduction to the software Pybitup developed during this thesis. The
Python Bayesian inference toolbox for uncertainty propagation (Pybitup) proposes an integrated
tool for performing uncertainty quantification, from Bayesian calibration to uncertainty prop-
agation. The code is written in Python such that is allows to easily implement new methods
and to test them directly on external or built-in applications, and intends to cover a wide range
of engineering problems. After a quick review of existing software and discussing the objectives
of the present software, we describe the main features of the code. It was initially tailored to
the calibration of time-dependent processes defined by a mathematical model that represents the
physics with unknown parameters using MCMC methods. Several sampling algorithms are im-
plemented, including Metropolis–Hastings algorithms and gradient-informed (HMC and ISDE)
algorithms. For the propagation of uncertainty, the sample values characterizing the probability
density function resulting from the parameter calibration can be used and propagated through
built-in or third party numerical models. Polynomial chaos methods were further implemented
for uncertainty propagation. We finally provide a short example that illustrates the workflow for
model parameter calibration. The new software does not intend to compete with current “indus-
trial level” toolboxes for uncertainty quantification but is intended to be a research code in which
state-of-the-art algorithms can be implemented in Python.

6.1 Brief review of existing software

There exists many computational libraries for Bayesian inference and uncertainty propagation.
For Bayesian inference, the BUGS (Bayesian inference Using Gibbs Sampling) program was first
developed in the early 1980s (Lunn et al. [2009]) with the aim of providing a statistical toolbox
for sampling from the posterior distribution using a convenient programming language. A re-
lated package of BUGS is JAGS (Just Another Gibbs Sampling) which is more UNIX-oriented.
More recently, the software Stan (Carpenter et al. [2017]) written in C++, implements efficient
sampling algorithms for high dimensions and has a good computational efficiency. The main
simulation algorithm is the Hamiltonian Monte Carlo that features several advanced improve-
ments. OpenTURNS is a general C++ library designed to perform uncertainty quantification and
reliability analysis (Baudin et al. [2015]), and implements the Metropolis–Hastings algorithm for
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Bayesian calibration. Dakota (Adams et al. [2018]) is an open-source C++ software developed by
Sandia National Laboratories. It was initially designed for optimization but was then extended
to uncertainty propagation, and more recently to Bayesian calibration with the use of the Queso
library. The latter library is a collection of algorithms aimed for the solution of statistical in-
verse problems (among others), and other functionalities for uncertainty propagation (Prudencio
and Schulz [2012]). Similarly, the UQToolkit (Debusschere et al. [2017]), written in C++, pro-
poses a collection of tools for uncertainty quantification, ranging from forward propagation of
uncertainty to inverse problems and sensitivity analysis. In Matlab, UQLab (Marelli and Sudret
[2014]) has become a reference software for uncertainty quantification. Its proposes a set of
tools for uncertainty propagation, sensitivity analysis, or Bayesian inference for inversion and
model calibration. For Bayesian calibration, MCMC methods are implemented among which
are the RWMH, AMH and HMC. The MIT Uncertainty Quantification Library (MUQ) (Parno
et al. [2014]) is a C++/Python library that allows sampling by means of MCMC techniques,
among which are the RWMH, AMH, and Metropolis-adjusted Langevin (MALA), and forward
uncertainty propagation using PCE methods. The description of other software for uncertainty
quantification and more details about some of the software mentioned above can be found in
Ghanem et al. [2017].

In the recent years, the use of Python as programming language has seen a growing interest.
The development by researchers and programmers of pieces of codes tailored to their problem
has become popular, and to which the development of new libraries for UQ has followed. For
instance, the toolbox PyMC (Patil et al. [2010]) was developed for Bayesian statistical modeling.
It implements Metropolis–Hastings algorithms and the Hamiltonian Monte Carlo and several
versions of slice samplers. More advanced methods are made available in PyMC3 (Salvatier
et al. [2016]), which has also several interesting features for probabilistic machine learning. The
Python package hIPPYlib (Villa et al. [2021]) features, for instance, the MALA algorithm for
sampling from the posterior and uses Hessian information.

6.2 Purpose of the present code

The result of a Bayesian parameter calibration is not always reused for uncertainty propagation.
Because of the complexity of nowadays computational models, uncertainty propagation is usu-
ally performed assuming standard distributions (e.g., uniform, Gaussian, gamma) for the input
parameters and for which it is convenient to build a surrogate model. However, this input un-
certainty is not necessarily representative of the parameter distribution obtained, for instance,
from the calibration with ground-test experiments. Building surrogate models for computa-
tional models with non-standard or unknown input distribution (e.g., a posterior distribution
from which we have MCMC samples) is still an active research domain (Jakeman et al. [2019]).

The main purpose of Pybitup is to implement a toolbox for uncertainty quantification from
the calibration of model parameters to uncertainty propagation, whereby the use of the samples
resulting from the Bayesian calibration can directly be used for uncertainty propagation through
a computational model (not necessarily the model used for the calibration). The code is im-
plemented in a versatile way such that the software is readily usable and is suitable to general
engineering problems, and allow external users to apply the toolbox without the need to care
about the algorithmic details. With the growing interest of using Python as a coding language,
the development of the toolbox in Python was found to be convenient, and further allows more
advanced users to have the flexibility to implement easily state-of-the-art algorithms for research
purposes. The problems that are sought are the calibration of time-dependent observations to a
computational model representing the complex physics of the process and the propagation of the
calibrated parameters. Hence besides the application to the pyrolysis problems from Chapter 7,
several applications were investigated, that are the inference of parameters for a heat capacity
model and a thermal conductivity model, or the inference of parameters for models relevant to
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sloshing problems and contact angle determination (Dania [2021]).

6.3 Implementation

6.3.1 Dependencies

As Python loops are inherently slower than their low-level counterpart, the library mainly relies
on the Numpy and Scipy packages integrating C and Fortran parallel codes for efficient matrix
operations. The pandas library provides the data manipulation tools, such as reading and
writing “.csv” files for input and output fluxes and the pickle library provides packages for
manipulating large data sets efficiently. The json and jsmin libraries are used for the input file
management and to have a structured input file. Finally, matplotlib and seaborn libraries are
used for post-processing the results and producing graphs.

6.3.2 Input/output

Every case must define a run file, which contains the different tasks that the code will perform,
and an input file, which contains the corresponding inputs of the tasks. For instance, for Bayesian
inference, we will specify that we want to sample from the posterior, and one needs to specify
what are the experimental data, the model used with its parameters and the method for the
inference.

The run file is a Python script (identified by the .py extension) that specifies the path to the
input file, defines the physical model (except in the case of sampling from a known distribution)
and lists the different tasks to perform. To define the tasks, we need to access the Python object
in Pybitup that contains the method for reading the input file and depends on the problem.
It is kept as simple as possible, and usually the method parameters are defined in the input
file described below. Most of the tasks are defined in the solve_problem.py file. For instance,
to perform a sampling task, a generic run file is as follows: post_dist = pybitup.solve_-
problem.Sampling(input_file_name).

The input file is based on the Python JSON (JavaScript Object Notation) syntax that makes
the file easy to read and write for the user. The Python JSON syntax is similar to a dictio-
nary in Python with the keys that are quoted-strings. The value of these keys can be any
primitive type in Python, for instance a string, a number or an array. Because pybitup can per-
form sampling, propagation, sensitivity analysis and data post-processing, the most basic JSON
file looks as follows: { “Sampling”: {}, “Propagation”: {}, “SensitivityAnalysis”:
{}, “PostProcess”: {} }. An minimal syntax of the structure of the input for the sampling
from a Bayesian posterior is sketched below:

" Sampling " : {
" Bayes i anPos te r i o r " : {

"Data " : [ ] ,
"Model " : [ ] ,
" Pr io r " : {} ,
" L ike l i hood " : {}

} ,
" Algorithm " : {}

} ,

The BayesianPosterior keywords means that we will sample from a posterior distribution com-
puted from Bayes’ formula. The Algorithm section will define the algorithm and the parameters
used to sample from it.
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6.3.3 The model class

Except in the case of sampling from a known PDF, a numerical model will have to be evaluated
for the sampling from the Bayesian posterior or for propagating uncertainty. There are no pre-
implemented models within Pybitup and the model must be specified in a separated Python file
following the Model class structure. The Model class contains the information about the physical
model (and not the statistical model) and the class defines the structure that a model defined
in Pybitup needs to provide. The simplest structure of the Model class is as follows:

import numpy as np
from pybitup import bayes ian_in f e r ence as b i

class Model :
" " " Class d e f i n i n g the model f unc t i on . " " "
def __init__( s e l f , x= [ ] , param=[ ] , name=" " ) :

def fun_x ( s e l f ) :
# Return the func t i on e va l ua t i on

The fun_x method is mandatory and specifies the function that returns the solution of the model
given the parameter values set in param and the abscissa x. This function can be defined directly
within the Python file or can be provided from an other program (either a Python module or
an external solver written in another language) in which case the fun_x method needs to point
towards the execution of that program. A name can be used to identify the model, that is used
for instance when several models are provided.

Several algorithms use a change of variables (reparameterization) (e.g., the ISDE algorithm),
or one can simply wish to reparameterize the model to simplify it, in which cases the Jacobian of
the transformation needs to be defined. Several algorithms also use the gradients of the model.
The Model class can incorporate such changes of variables or the gradients of the model, and are
optional (default is p = p̃). The additional methods that need to be defined when a change of
variables or the computation of gradients are required are the following, with the default values
provided below:

def d_fx_dparam( s e l f , ∗ ext_parameters ) :
return 1

def parametr izat ion_forward ( s e l f , X=1, P=1) :
Y = X
return Y

def parametrization_backward ( s e l f , Y=1, P=1) :
X = Y
return X

def parametr izat ion_det_jac ( s e l f , X=1) :
det_jac = 1
return det_jac

def parametr izat ion_inv_jac ( s e l f , X=1) :
inv_jac = X
return inv_jac
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6.4 Sampling
One of the main features of Pybitup is the sampling from a probability distribution function.
The code is based on the definition of a ProbabilityDistribution class. For known distribu-
tions, it is defined by a PDF and its value at a given sample m can be accessed by calling the
compute_value method. For Bayesian posteriors, the definition of the likelihood and the prior
distributions need to be first specified. In this case the compute_value method returns directly
the product of the likelihood times the prior distribution.

6.4.1 Sampling from a Bayesian posterior
When sampling from a Bayesian posterior, a dataset and a physical model need to be provided,
for which two Python classes are dedicated, the Data class and the Model class (described
previously), respectively. The Data class contains the abscissa and ordinates (the observations)
of the problem. The data are specified in a list and several data set can be specified, e.g, Data
: [dataSet1, dataSet2, etc]. The different data sets are then concatenated in a single one
dimensional numpy array in memory. In that case, there must be as much Model delimiters in
the input file as data sets, even if the model is the same to represent all data sets. In the case
where the program is external, the model will write at every iteration a temporary input file
(write_tmp_input_file) that automatically updates the inputs of the model according to the
Markov chain.

The Sampler class takes as arguments a ProbabilityDistribution and a set of inputs that
identifies the sampling method to use. The different sampling methods are based on the generic
MetropolisHastings class. The ProbabilityDistribution can be any “labeled” distribution
that is implemented, or can be a BayesianPosterior class.

6.4.2 MetropolisHastings class
The Metropolis–Hastings algorithms introduced in Chapter 5 are implemented and based on the
general MetropolisHastings class:

class Metropo l i sHast ings :
def __init__( s e l f , IO_util , n I t e r a t i on s , param_init , V,

prob_distr , opt_arg ) :

def run_algorithm ( s e l f ) :

def compute_new_val ( s e l f ) :

def compute_acceptance_ratio ( s e l f ) :

def accept_re j e c t ( s e l f ) :

def compute_multivariate_normal ( s e l f ) :

The MetropolisHastings class is based on three main methods that are: compute_new_val,
compute_acceptance_ratio and accept_reject. They appear sequentially in the
run_algorithm, which is the main function to call when using the Metropolis–Hastings algo-
rithm. The run_algorithm method of MetropolisHastings class above is the random-walk
Metropolis–Hastings loop.

More advanced Metropolis–Hastings algorithms are implemented, that are: the adaptive
Metropolis–Hastings, the delayed-rejection Metropolis–Hastings, and the delayed-rejection adap-
tive Metropolis–Hastings. In these cases, the run_algorithm method is overwritten in order
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to include the additional steps of the methods, compared to the RWMH. For the adaptive
Metropolis–Hastings, a fourth method adapt_covariance is defined, while for the delayed-
rejection Metropolis–Hastings, the accept_reject step is redefined by adding the extra delayed-
rejection step. The delayed-rejection adaptive algorithm is just a combination of the two previous
ones.

Note on the compute_acceptance_ratio step

The value of the likelihood function can decrease rapidly when moving away from its maximum,
leading to values in the acceptance ratio that can be order of magnitudes different. The logarithm
of the probability density is usually computed in the acceptance ratio, leading to

log(r) = log(π(m∗|yobs)) + log(J(m∗|mn))− log(π(mn|yobs))− log(J(mn|m∗)) (6.1)

or, when the target distribution is the Bayesian posterior

log(r) = log(π(yobs|m∗)) + log(π0(m∗)) + log(J(m∗|mn))
− log(π(yobs|mn))− log(π0(mn))− log(J(mn|m∗)) (6.2)

Thus, the log value of a distribution is usually implemented within every ProbabilityDistri-
bution class and can be accessed through the compute_log_value method. The value of the
acceptance ratio is finally computed by taking the exponential of Eq. (6.2) or Eq. (6.1).

6.4.3 GradientBasedMCMC

The implemented gradient-informed algorithms are the Hamiltonian Monte Carlo and the algo-
rithm based on an ISDE. They are defined based on the GradientBasedMCMC class, that inherits
from the MetropolisHastings class and defines two new attributes.
class GradientBasedMCMC( Metropo l i sHast ings ) :

def __init__( s e l f , IO_fileID , n I t e r a t i on s , param_init , V,
prob_distr , C_matrix , grad ient , opt_arg ) :

The C_matrix attribute contains the options for the covariance matrix, and the gradient at-
tribute specifies the method for computing the gradients (either analytical or numerical). The
C_matrix attribute corresponds to the covariance keywords, under the Algorithm key, from
the input file, and has the following options:
" Algorithm " : {

" covar iance " : {
" va lue " : " Hessian_diag " ,
" s t a r t i n g_ i t " : 1e1 ,
" update_it " : 1e2 ,
" end_it " : 1 e3

}
}
The keyword value refers to the initial value of the covariance matrix, that can be Hessian
(we take the inverse of the Hessian matrix, computed by means of a finite difference formula),
Hessian_diag (idem, but we only use the main diagonal), Idendity (we take the identity matrix)
or from_file (in which case the covariance must be provided in a “cov_init.csv” file within the
working directory). The keywords starting_it, update_it, and end_it are options related to
the adaptation of the covariance matrix, and refer to the initial iteration for adaptation, the
period of adaption and the final iteration at which the covariance is adapted, respectively. If the
value of starting_it is greater than the value of end_it, then no adaptation of the covariance
matrix is performed. It is not implemented currently, but we note that the C_matrix attribute
could be a common feature shared by all MCMC algorithms.
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6.4.4 Gradient of the log-likelihood
For gradient-informed algorithms, the gradient of the logarithm of the posterior distribution (or
more generally the potential function) will be required and usually, variables will be expressed
in a transformed space following a change of variables. We denote the forward and inverse
mappings by m → f(m) and m̃ → g(m̃) such that m̃ = f(m) and m = g(m̃), respectively.
Denoting φ the log-likelihood function, we have

∇m̃φ(y(g(m̃))) = ∇xφ(x)
∣∣∣
x=y(g(m̃))

∇z(y(z))
∣∣∣
z=g(m̃)

∇m̃(g(m̃))

= ∇xφ(x)|x=y(g(m̃))︸ ︷︷ ︸
log-like gradient

∇z(y(z))|z=g(m̃)︸ ︷︷ ︸
model gradient

w.r.t. parameters

(∇m(f(m)))−1
∣∣∣
m=g(m̃)︸ ︷︷ ︸

inv jac.

. (6.3)

When computing gradient numerically (e.g., with finite differences), one can directly compute
∇m̃φ(y(g(m̃))). When analytical gradients of the model are available, the formula above will
be preferred for saving computational time and for scalability with the number of parameters.

As an illustration, we consider the Gaussian likelihood function for which the potential φ
expresses as

φ(y(m)) = −1
2(yobs − y(m))Σ−1(yobs − y(m)) (6.4)

and its gradient

∇xφ(x)
∣∣∣
x=y(m)

= (yobs − y(m))Σ−1. (6.5)

Thus, from Eq. (6.3), gradient-informed MCMC methods require the computation of the
derivatives of the model with respect to its parameters. This function can either be provided
in the model file if the gradients are available analytically, or computed numerically. In the
latter case, only finite differences are implemented, which may lead to significant approximation
errors and may be computationally expensive, in particular in high dimensions or when the
model is itself expensive. Future work could investigate the implementation of methods that
aim at improving gradient computation, such as adjoint-based methods (Cao et al. [2003]; Bosco
[2019]), automatic differentiation methods (Griewank and Walther [2008]), or other estimation
methods (Jasra et al. [2021]).

6.5 Illustration: spring model
We consider the example of the spring model described in Smith [2014]. The displacement z
(adimensional) as a function of time of the spring without any external excitation is provided
by the equations

{
z̈ + Cż +Kz = 0
z(0) = 2, ż = −C (6.6)

with C = c/m, K = k/m, m ≥ 0 (kg) is the mass, c ≥ 0 (N s m−1) is the damping coefficient
and k ≥ 0 (N m−1) is the stiffness coefficient. For C2 − 4K < 0, the solution is

z(t) = 2 exp
(
−Ct2

)
cos
(
t

√
K − C2

4

)
(6.7)

For this problem, synthetic data zi are generated for 0 ≤ i ≤ n with n = 51 the number of
points in the time interval [0, 5] sec from a random Gaussian distribution εi ∼ N(0, σ2

0) with
zi = z(ti, p0) + εi where m0 = (K0, C0) the nominal parameter values with K0 = 20.5, C0 = 1.5
and σ0 = 0.1.
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6.5.1 Model file
The model, the parameters and its solution are specified in the spring_model.py file that we
describe below.

import numpy as np
from pybitup import bayes ian_in f e r ence as b i

class SpringModel ( b i . Model ) :
" " " Class f o r the spr ing model " " "

def __init__( s e l f , x= [ ] , param=[ ] , name=" " ) :
# I n i t i a l i z e parent o b j e c t ModelInference
bi . Model . __init__( s e l f , name=name)

def set_param_values ( s e l f ) :
# Parameters
s e l f .C = s e l f . param [ 0 ]
s e l f .K = s e l f . param [ 1 ]

# Variab l e
s e l f . time = s e l f . x

def fun_x ( s e l f ) :
# Get the parameters
s e l f . set_param_values ( )

# Return the func t i on e va l ua t i on
return 2 ∗ np . exp(− s e l f .C ∗ s e l f . time / 2) ∗ np . cos (np . s q r t (

s e l f .K − s e l f .C∗∗2 / 4) ∗ s e l f . time )

Exponential, cosine and square root functions are imported from the numpy package. The
bayesian_inference.py file, where the Model class is defined, needs to be imported from Py-
bitup. Our model for the spring that we call here SpringModel is based on the general Model
class and inherit from two (aside from __init__) essential methods, namely set_param_val-
ues() and fun_x(). On the last line is the solution from Eq. 6.7 of the spring model. The
parameters C and K are assigned in the method set_param_values(). Because the values of
C and K will change during the calibration as we will see later, this method is run every time
the model is evaluated.

6.5.2 Input files
Now let’s have a look at the general input file, that can be identified by the .json extension.
We first have a look at the first keyword Sampling which contains the inputs for the sampling
part. In this case, we want to sample from a distribution computed from Bayes’ formula and is
identified by the BayesianPosterior keyword. Mandatory keywords for BayesianPosterior
are Data, Model, Prior and Likelihood. The experimental data are first defined under the
Data keyword:

"Data " : [
{

"Type " : " ReadFromFile " , // ReadFromFile , GenerateSynthet ic
" FileName " : " spring_model_data " ,
" xFie ld " : [ " time " ] ,
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" yFie ld " : [ " d " ] ,
" s igmaFie ld " : [ " std_d " ] ,
" n_runs " : 1

}
] ,

The data are read from files with general name spring_model_data. The n_runs keyword
denotes the number of experimental data files that we have, which is only one here. Thus, the
input file is named spring_model_data_0.csv and must appear in the case directory. Below is
the structure of the dataset of the spring_model_data_0.csv file and for compactness, we only
show here only the 10 first lines.

, time , d , std_d
0 ,0 .0 , 1 . 9320285551921579 ,0 .1
1 ,0 . 1 , 1 . 7158980306494984 ,0 .1
2 ,0 . 2 , 1 . 0116134181643508 ,0 .1
3 ,0 .30000000000000004 ,0 .43030863754766857 ,0 .1
4 ,0 .4 , −0.1967505502959701 ,0 .1
5 ,0 .5 , −0.8165563476714192 ,0 .1
6 ,0 .6000000000000001 , −1.179212035121202 ,0 .1
7 ,0 .7000000000000001 , −1.1151949721017202 ,0 .1
8 ,0 .8 , −0.9116380936755248 ,0 .1

The first column is the indices of the data. Following columns are the fields whose names appear
in the input file, namely the time, the displacement of the spring d and the experimental standard
deviation on d, std_d. The entries inside the input file and the data file must correspond. For
this illustration, the data encoded in the .csv file are generated synthetically.

Going back to the input file, the Model keyword specifies all the parameters of the model,
their nominal values and if the model will be parameterized during the calibration, which is not
the case here.

"Model " : [
{

" param_names " : [ "C" , "K" ] ,
" param_values " : [ 1 . 5 , 2 0 . 5 ] ,
" parametr i za t i on " : " no "

}
] ,

There are only two parameters here that are C and K. The nominal values of the model
parameters will be replaced if those parameters are considered to be unknown in the calibration
process.

Next, Prior defines the prior distribution.

" Pr io r " : {
" D i s t r i bu t i on " : " Mixture " ,
"Param" : {

"C" : { " i n i t i a l _ v a l " : 1 . 5 , " prior_name " : " Uniform " , "
prior_param " : [ 0 . 0 , 100 ]} ,

"K" : { " i n i t i a l _ v a l " : 20 . 5 , " prior_name " : " Uniform " , "
prior_param " : [ 0 . 0 , 100 ]}

}
} ,

The parameters that are unknown in the calibration process appear under the Param keyword.
We consider the two unknown parameters to be m = (C,K), for which an initial value must
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be specified to start the calibration process. The Mixture distribution means that we consider
the tensor product distribution of the two marginal distributions, assumed to be independent.
Here, the marginal distributions are supposed to be uniform PDF in the domain [0, 100].

The Likelihood keywords defines the likelihood function.

" L ike l i hood " : {
" func t i on " : " Gaussian " ,
" d i s t anc e " : "L2 " ,
" theta " : 1

}

It is assumed to be a Gaussian function with the weighted L2 distance between the model
and the data in the argument of the exponential term. The keyword theta is an additional
free parameter that appears in the argument of the likelihood, which will be described later in
Chapter 7. So far, it is assumed to be equal to one and it does not influence the posterior.

The Bayesian posterior distribution will be sampled using the AMH that is specified under
the Algorithm keyword.

" Algorithm " : {
"name" : "AMH" ,
"AMH" : {

" s t a r t i n g_ i t " : 1e2 ,
" updating_it " : 1e1 ,
" eps_v " : 0 . 0

} ,
" n_ i t e r a t i on s " : 1e4 ,
" proposa l " : {

"name" : " Gaussian " ,
" covar iance " : {

" type " : " d iag " ,
" va lue " : [ 0 . 0 3 45 , 0 . 7 071 ]

}
}

}

The AMH adapts the covariance matrix of the proposal during the iterations. It requires addi-
tional options specified under the AMH keyword, namely the number of iterations at which the
adaptation starts (starting_it), the frequency at which we update the covariance (updating_-
it) and a last parameter that controls the covariance adaptation (eps_v) which is set here to
zero. (n_iterations) specifies the number of iterations (samples) that the algorithm will gener-
ate, which is here equal to 104. For Metropolis–Hastings class algorithms, we need to defined the
proposal covariance matrix. Here, it is a Gaussian function with a diagonal covariance matrix
with values [0.0345, 0.7071] on the main diagonal. The covariance matrix is a tuning param-
eter that is not known a priori and may require several trial-and-error tests before finding an
adequate guess. Here, we choose it to be diagonal for convenience. However, thanks to the
AMH algorithm, this covariance matrix will be adapted with the iterations and will improve the
sampling efficiency.

6.5.3 Run file
The file that needs to be run by Python to perform the calibration is named run.py. It gathers
the information from the input file, the model and it is where we select what function from
Pybitup we want to run. In this case, we want to sample from the posterior distribution and
post process the results. First, we to import the spring_model file as well as Pybitup.
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import spring_model
import pybitup

case_name = " spring_model "
input_file_name = " {} . j son " . format ( case_name )

# Define the model
my_spring_model = {}
my_spring_model [ case_name ] = spring_model . SpringModel (name=case_name )

# Sample
post_dist = pybitup . solve_problem . Sampling ( input_file_name )
post_dist . sample (my_spring_model )
post_dist .__del__( )

# Post proces s
pybitup . post_process . post_process_data ( input_file_name )

The model in Pybitup is specified in a list where the models are provided. The only model
here is the SpringModel from the spring_model.py file.

All the main capabilities of Pybitup (sampling, propagation, sensitivity analysis) are pro-
vided in the solve_problem file. We thus create an object post_dist for the sampling and we
provide as input the .json file. Next, we use the method .sample to which we provide the model
list my_spring_model. At the end of the sampling, the output file are written in an /output
folder and we delete the object post_dist. The last line is for the post process that will be
described later.

6.6 Uncertainty propagation
The main goal of the propagation capability in Pybitup is to use the samples from the Bayesian
calibration and propagate them through built-in or external computer codes. The direct Monte
Carlo can be easily performed in any computing languages and the results analysis only requires
efficient post-processing tools. However, when the computational models implemented in the
computer codes are expensive, methods that seek the construction of surrogate models are
generally required. A PCE library was therefore implemented in Pybitup, with the goal of using
the samples from the Bayesian posterior, for which the distribution can be non-standard with
correlated variables. Nevertheless, it was implemented such that it can be used independently
of the sampling module of Pybitup, and standard distributions can be assumed. Therefore, the
calibration and the propagation can be performed separately.

The PCE library of Pybitup was developed in Lacroix [2020] and the capabilities were showed
on an uncertainty propagation problem following from the calibration of a simplified pyrolysis
model. The main features are discussed below.

The computation of the Vandermonde matrix and the basis by a Gram-Schmidt orthogonal-
ization, which are central elements in most of data-driven PCE related algorithms, is straight-
forward. For computing a quadrature rule, the code takes advantage of several Numpy and
Scipy functions. A method to extract a sparse embedded quadrature rule from the MCMC sam-
ples is implemented. Once computed, the polynomials and the PCE coefficients are stored in
a compact homogeneous block representation within two classes, one containing the orthogonal
polynomial basis and the other containing the surrogate model. The compact homogeneous block
representation allows a memory efficient storage as well as the use of simple matrix operations
to manipulate the polynomials. It is important to note that Polynomial_basis and Expansion
share the same exponent table and dimension, but store a different coefficient matrix.
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6.7 Future developments
Although the ISDE method it is not a Metropolis–Hastings-type algorithm, it inherits from the
general class MetropolisHastings but does not need to compute the acceptance ratio and the
accept-reject step. Future implementation should consider a more general class (e.g. Itera-
tiveAlgorithms class) that does not have the accept-reject step, on which MetropolisHast-
ings and ISDE could be based. Also, all adaptive MCMC methods should share the C_matrix
attribute, including the AMH, and should be implemented in the future.

While uncertainty propagation is needed to assess the reliability of the predictions, sensitivity
analysis is essential to identify key parameters that influence the quantities of interest. As
for uncertainty propagation, performing sensitivity analysis when two or more variables are
dependent can be challenging, and future work should investigate methods for sensitivity analysis
using the samples from the posterior.

The hIPPYlib (Villa et al. [2021]) shares similar sampling capabilities compared to Pybitup,
and has also several complementary features that would be valuable to benefit from. It has
large scale optimization algorithms, that are still lacking in Pybitup and which could help for
obtaining the initial guess for MCMC chains, or it can perform the linearization of the Bayesian
posterior, which information can be used to improve sampling efficiency. As several modules are
written in Python, the hIPPYlib could be directly used in Pybitup.

The post-processing tools of Pybitup are limited and future developments should include
more efficient methods for posterior analysis, for plotting functionality and methods for MCMC
chain convergence diagnostics. Several functions are available in the Arviz (Kumar et al. [2019])
Python package, that could be used in Pybitup.
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Chapter 7
Bayesian identification of pyrolysis model
parameters for thermal protection
materials

Carbon/phenolic composite materials have gained renewed interest to serve as ablative TPMs and
new experimental data relevant to the pyrolytic decomposition of the phenolic resin of lightweight
carbon/phenolic TPMs have recently been published in the literature. In this chapter, we in-
fer from these new experimental data uncertainty-quantified pyrolysis models using a Bayesian
probabilistic approach to account for uncertainties in the model identification. We use an ap-
proximate likelihood function involving a weighted distance between the model predictions and the
time-dependent experimental data. In a first step, we assume multi-component pyrolysis reac-
tions and we infer a pyrolysis model for PICA at 366 K min−1. To sample from the posterior,
we investigate two gradient-informed MCMC methods, namely the HMC and the method based
on an ISDE and we compare the sampling efficiency when we perform a reparameterization of
the pyrolysis equations and an adaptation of the covariance matrix approximation. We first show
on a two-parameter case that the covariance adaptation improves significantly the exploration of
the posterior. To select the decomposition mechanisms to be represented in the pyrolysis model,
we proceed by progressively increasing the complexity of the pyrolysis model until a satisfactory
fit to the data is ultimately obtained. The pyrolysis model thus obtained involves six reactions
and has 48 parameters. In a second step, a pyrolysis model including competitive mechanisms
is assumed in order to be able to represent the data at two distinct heating rates. Because of
the increased complexity of the model and the absence of a fast computational solution, gradient-
informed algorithms are computationally expensive and the pyrolysis model parameters are thus
inferred using the RWMH algorithm. We study the correlation between the parameters and we
finally assess the predictive capabilities of such pyrolysis model at other heating rates. The pre-
liminary results from Section 7.4 were published in the proceedings of the annual VKI Symposium
(Coheur et al. [2018, 2019]). Preliminary results on the ISDE algorithm applied to a simple py-
rolysis model were presented at the UNCECOMP conference (June 2019) , and results on the
covariance matrix adaptive procedure for gradient-informed sampling algorithms were provided in
Coheur et al. [2020]. The results for the competitive pyrolysis reaction for PICA were published
in Torres-Herrador et al. [2019a].
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“If you do not make runs like that [millions or billions of iterations], you are
simply not serious about MCMC.”

Charles J. Geyer.

7.1 Introduction
Several factors make it challenging to formulate in a probabilistic setting the identification of a
pyrolysis model with Arrhenius-like reaction rates from the new experimental data. Notably, the
experimental data are subject to measurement uncertainty and sample variability, and experi-
mentalists can usually provide only a limited characterization of these sources of uncertainty:
they repeat their experimental study a small number of times under nominally identical con-
ditions and then use the differences in the observed species productions between the repeated
experimental runs to deduce error bars for the experimental data. In addition, for the pyrolysis
of the TPMs considered, significant modeling errors can be expected to be present: significant
physical mechanisms responsible for species production in the experiment can be expected to
be either unmodeled or represented imperfectly, for instance in the multi-component single-step
model, or with Arrhenius-like reaction rates. For example, in the initial stage of the experi-
ment, physical mechanisms other than pyrolysis, such as outgassing of gases like water that had
been absorbed by the sample, may cause significant species production, or considering distinct
heating rates may cause pyrolysis reaction curves to shift which cannot be accounted for by
multi-component models. Furthermore, expressing the reaction rates with Arrhenius laws may
imperfectly represent the physical behavior. Because of the lack of knowledge of the measure-
ment uncertainty and sample variability and because of the likely presence of significant modeling
errors, the model identification cannot be readily formulated as a standard problem of Bayesian
statistical inference of a deterministic model augmented with a stochastic representation of ex-
perimental noise.

To account for modeling errors in model identification, there exist approaches that seek to
incorporate a representation of the model discrepancy explicitly into the model, such as by
incorporating additional stochastic terms into the governing equations (Beck and Katafygiotis
[1998]; Kennedy and O’Hagan [2001]). However, such approaches significantly modify the model:
they convert a model in the form of a system of differential equations into a stochastic model
in the form of a system of stochastic differential equations. It is then this stochastic model
that is identified from the data. In the application that we study, the purpose of the identified
pyrolysis model is to serve in material response codes for numerical simulations of heat shield
decomposition during atmospheric entries. Such approaches would thus require the identified
stochastic pyrolysis model, with the additional stochastic terms inherent to it, to be implemented
within such numerical tools, thus turning these numerical simulations themselves into stochastic
simulations.

In this work, we adopt an alternative approach whereby we keep the structure of the pyrol-
ysis model unchanged (we do not introduce additional stochastic terms) and we seek instead to
incorporate a representation of the uncertainties into the model parameters. We formulate the
model identification as a Bayesian probabilistic inverse problem, in which we use an approxi-
mate likelihood function involving a weighted distance between the model predictions and the
experimental data. This formulation provides a probability distribution over the model param-
eters, the posterior, which assigns higher probabilities to parameter values that correspond to
predictions that better fit the experimental data. We introduce a free parameter in this approxi-
mate likelihood function that allows us to control how significantly the probability of parameter
values is penalized in proportion to the misfit between the corresponding predictions and the
experimental data. This approach allows the free parameter to be tuned to seek to introduce
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into the model parameters an amount of uncertainty that can serve as an overall representation
of the impact of various sources of uncertainty, including measurement uncertainty, sample vari-
ability, and modeling errors. In this work, we rely on an ad hoc, visual, criterion to tune the
free parameter.

The number of model parameters of the pyrolysis model is high, and the posterior exhibits
strong dependencies, so that sampling from the posterior is challenging. Notably, pre-exponential
factors and activation energies involved in Arrhenius laws exhibit significant dependencies be-
cause of their complementary role in the expression of Arrhenius law. This high correlation is
called the kinetic compensation effect (Koga [1994]; Galwey and Brown [1999]) and has already
been observed in numerous deterministic kinetics studies, as in Rodionova and Pomerantsev
[2005]; Pomerantsev et al. [2017] or Torres-Herrador et al. [2019a], as well as in probabilistic
inference studies, see for instance in Najm et al. [2014] and Bruns [2015]. Najm et al. [2014]
and Bruns [2015] applied adaptive random-walk Metropolis–Hastings algorithms, with a repa-
rameterization (change of variables) of the pre-exponential factor using a logarithmic change
of variables, to sample efficiently from posteriors over parameters of Arrhenius laws. We thus
investigate a similar reparametrization of the pyrolysis equations in order to simplify the struc-
ture of the posterior distribution we sample from. However, our reparameterization introduces
additional scaling factors that need to be provided and which are unknown. Therefore, we
also investigate two gradient-informed methods, namely the Hamiltonian Monte Carlo (HMC)
method (Neal [2010]; Gelman et al. [2014]) and a method based on an Itô stochastic differential
equation (ISDE) (Soize [2008, 2015, 2017]). These methods, at least in the variants used in
this chapter, require an estimate of the covariance matrix of the posterior, which we propose to
learn adaptively from previous samples in the chain, similarly to adaptive Metropolis–Hastings
algorithms.

To simulate the pyrolysis of TPMs, two types of model are used. The first one is a multi-
component model that is built using the experimental data of PICA decomposition at 366 K min−1.
For multi-component models, a semi-analytical expression was derived in Section 3.3, which is
computationally cheap, and millions of MCMC iterations can be performed to ensure that all
the support of the posterior is sampled. This allows to study the efficiency of the proposed im-
provements using the change of variable and the sampling strategies. Multi-component models
may lack of generality when used at significantly different heating rates, and therefore a second
model that features a competitive mechanism is investigated. It allows to account for the de-
composition of the PICA material at two distinct heating rates (10 K min−1 and 366 K min−1),
and we present a probabilistic inference of the model parameters. The main focus is to establish
the relevance of accounting for competitive mechanisms in the pyrolysis model in order to reduce
the model error structure when distinct heating rates are considered. Because the model with
competitive mechanisms does not have an analytical solution, the system of ODEs is solved by
means of numerical methods, which increases the computational time of the Bayesian inference.
Only the RWMH MCMC method is applied, but the convergence of the algorithm is enhanced
by providing the initial guess from a genetic algorithm estimation, thus allowing to run a low
number of MCMC samples.

The chapter is organized as follows. In Section 7.2, the Bayesian probabilistic formulation, the
expression for the distance in the approximate likelihood function, the choice of the weights and
the change of variables are described. The methods for approximating the covariance matrix and
the adaptive procedure are then presented in Section 7.3. Next in Section 7.4, numerical results
are provided, including a study of computational aspects and efficiency of the employed adaptive
sampling algorithms. Using the experimental data from Bessire and Minton [2017], the case for
the production of a single species, namely, CH4 is first considered in Section 7.4.1 in order to
have a simple application for which we can show the proposed improvements and for which
the posterior PDF shows a complex structure (correlated and non-Gaussian). In Section 7.4.2,
the proposed methodology is applied to the pyrolysis of PICA at high heating rates using the
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whole experimental data set, and the uncertainties on the kinetic parameters and the species
production for the PICA material are quantified. Finally, in Section 7.5, the results are shown
and analyzed for the pyrolysis scheme including the competitive mechanisms.

7.2 Bayesian approach to inverse problem for parameter
calibration

Let η(·,m) : R+ → Rnobs be the time-dependent solution to the computational model represent-
ing the dynamic physical process, with the vector of model outputs η(·,m) = (η1(·,m), η2(·,m),
. . . , ηnobs(·,m)) with values in Rnobs , provided the model parameters m ∈ Rnu . The value pre-
dicted by the model for a given observable indexed by i, 1 ≤ i ≤ nobs, at time t = tj , 1 ≤ j ≤ nt,
is denoted by

yij = ηij(m) = ηi(tj ,m). (7.1)

The different observables can be the different species produced by the pyrolysis reaction, e.g.
nobs = Ng. We refer, for instance, to Bruns [2015] for an example where the observable is the
mass loss. In Section 7.4, we will use the individual species production because we expect that
it provides more information on the different reaction steps and the reaction mechanisms. In
Section 7.5, we will use both the mass loss and the derivative of the mass loss, depending on the
experimental data sets considered.

We formalize the results of the experiments (described in Section 3.2.2) as follows. We
denote by nr the number of repetitions of the experiment. The data are acquired at given time
values that depend on the acquisition frequency, which is fixed by the experimental device, and
results in nt data points for each observation (for instance, at β = 366 Kmin−1, nt = 69, see
Fig. 3.3). The different experimental observations (species, mass loss) as a function of time,
or temperature, with nobs the total number of experimental observations, can be specified in a
third-order tensor of observations Yobs of dimensions nobs × nt × nr. The corresponding k-th
matrix of observations is thus denoted

Y obs
::k =




yobs11k yobs12k · · · yobs1ntk

yobs21k yobs22k · · · yobs2ntk...
... . . . ...

yobsnobs1k yobsnobs2k · · · yobsnobsntk


 , (7.2)

with 1 ≤ k ≤ nr. In particular, in Bessire and Minton [2017], the experiments were repeated
three times (nr = 3) and a mean and a standard deviation as a function of temperature were
estimated for each observation (see Fig. 3.3):

yobsij = 1
nr

nr∑

k=1
yobsijk , (7.3)

s2
ij = 1

nr − 1

nr∑

k=1
(yobsijk − yobsij )2. (7.4)

with Y obs the matrix of mean observations and S the matrix of the variances of the observations.
We adopt a Bayesian approach to inverse problems in which the solution to the inverse

problem is the probability distribution of the unknown parameters m given the value of the
experimental observations Yobs with the following density:

π(m|Yobs) ∝ exp
(
−Φ

(
Yobs,η(m)

))
π0(m), (7.5)
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where the symbol ∝ is interpreted as to mean “proportional up to a normalization factor inde-
pendent of m”. The exponential factor is an approximate likelihood function and depends on
a potential function Φ, or misfit function, that seeks to gauge the goodness of fit between the
actual observations and the model output. The second factor π0 : Rnu → R+ is the prior and
acts as a regularization that can incorporate any prior knowledge about the parameters m.

7.2.1 Prior density function
The only prior knowledge we have about the parameters is that Ai, Ei and ri are positive and
the mass fractions Fij are bounded between 0 and 1. We choose the following prior:

π0(m) =
Np∏

i=1
1R+(Ai)1[LEi ,UEi ](Ei)1]1,10](ri)

∏

j∈Ig

1[0,1](Fij), (7.6)

where 1S is the indicator function of S ⊆ R. The activation energy is strictly positive, but in
cases where several pyrolysis reactions are considered, the values of Ei are further limited to the
bounded domain [LEi , UEi ] in order to avoid the different pyrolysis reactions to mix together,
which would make the potential function more complex to explore. For multi-component parallel
models, the maximum values for ri are limited to 10, as higher values were not found in previous
similar pyrolysis models (Torres-Herrador et al. [2019b]), and first-order reactions (ri = 1), for
which the analytical solution is different, are not considered here (Coheur et al. [2021b]). When
competitive schemes are included, we fix ri = 1, 1 ≤ i ≤ Np, which is considered to be known.

7.2.2 Choice of the approximate likelihood function
In Eq. (7.5), the goodness of fit is assessed through the approximate likelihood function
exp

(
−Φ

(
Yobs,η(m)

))
. We define the potential function using the sum over all the obser-

vations of the squares of the weighted norms of the differences between the model output and
the observations, similarly to a weighted least-squares formulation in optimization,

Φ(Yobs,η(m)) = 1
2

nobs∑

i=1
φi
(
yobsi: ,ηi:(m)

)
= 1

2

nobs∑

i=1
‖yobsi: − ηi:(m)‖2W::i , (7.7)

where ‖x‖W = x>Wx denotes the weighted norm of a vector x ∈ Rnt and W::i is the Rnt×nt

symmetric positive definite matrix of weights, formed from the i-th subarray of the third-order
tensor of weights W . If we assume further that the weighting matrices W::i are diagonal, i.e.
wkji = 0, ∀k 6= j, 1 ≤ k ≤ nt, 1 ≤ j ≤ nt, then we arrive at the following function for the
likelihood

exp
(
−Φ

(
Yobs,η(m)

))
= exp


−1

2

nobs∑

i=1

nt∑

j=1
wjji

(
yobsij − ηij(m)

)2

 , (7.8)

where yobsij is computed from Eq. (7.3).
In classical optimization problems, the weights wjji can be used to rescale the different

physical quantities, or they can be used to give more weight to certain data rather than other.
Equal importance is specified with wjji = 1, ∀ i, j. In the Bayesian approach, larger values of
the weights result in a posterior that is more concentrated around the best-fit parameter values.

To choose the values of the wjji, we will introduce two normalizations. The first normalization
takes into account the observed dispersion (the sij in Eq. (7.4)) by choosing the weights wjji
inversely proportional to sij . The second normalization takes into account the number of data
acquired in the time series nt and is chosen proportional to (∆tj/tf), where tf is the total time
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span of the experiment and ∆tj are the data acquisition time, and, for a constant acquisition
time, the ratio ∆tj/tf = n−1

t . This second normalization prevents the sum in the exponential
from becoming very high if the number of data acquired is high, as in this case ∆tj tends to 0.
The presence of this factor proportional to the number of terms in the sum yields a posterior that
is less dependent on the data acquisition frequency. These normalizations are further discussed
in Appendix C.1.

We set wij = ϑs−2
ij (∆tj/tf ) with sij computed from Eq. (7.4) and ϑ a free (tuning) parameter

that must be chosen. This choice finally leads to the following expression for the likelihood
function:

exp
(
−Φ

(
Yobs,η(m)

))
= exp


−1

2

nobs∑

i=1

nt∑

j=1
ϑ

∆tj
tf

(
yobsij − ηij(m)

sij

)2

 . (7.9)

The free parameter ϑ controls all the weights at the same time and will influence the width
of the resulting posterior. Later in this work, we will rely on an ad hoc, visual, criterion to tune
the free parameter, so that we introduce in the model parameters an amount of uncertainty
that represents an overall impact of measurement uncertainty, sample variability, and modeling
errors.

7.2.3 Change of variables
In Section 5.4.6, we discussed the advantage of using a change of variables on the convergence and
mixing of Markov chains. We presented a first change of variables that transforms the problem
based on the support of the posterior and was used to make the ISDE feasible by mapping the
initial parameter set into a transformed unbounded parameter space.

We propose a second change of variables that is based on the structure of the pyrolysis equa-
tions (3.9)–(3.15), that seeks to decouple the strong kinetic compensation effect characteristic
of the Arrhenius equations. A proposed change of variables based on the structure of the pyrol-
ysis model was introduced in Coheur et al. [2019]. It is following the reparametrization for Ai
and Ei proposed in Rodionova and Pomerantsev [2005] and Pomerantsev et al. [2017] that was
applied for deterministic parameter estimation and that we extend to the pyrolysis of TPMs by
introducing two additional scaling factors for ri and Fij . The transformation is such that

Ãi = ln
(
Aiti

)
− Ei/(RT i), (7.10)

Ẽi = Ei/E i, r̃i = ri/r̄i, F̃ij = Fi/F ij , (7.11)

where we introduced the scaling factors m =
{
ti, E i, ri, F ij

}
and the reference temperature T i.

Considering this change of variables, reaction rates are now expressed as

ki = 1
ti

exp
(
Ãi + ẼiT̃i(t)

)
, (7.12)

where T̃i = E i/R(1/T + 1/T i) is called the local reciprocal temperature (Pomerantsev et al.
[2017]). Another normalization common in combustion literature was also discussed by Urzay
et al. [2012] for its use in uncertainty quantification, but this normalization does not consider
the logarithmic dependence of the pair Ai and Ei, or the translation used in Eq. (7.10).

The effect of the reparameterization in Eqs. (7.10)–(7.11) on the sampling of the posterior was
investigated in Coheur et al. [2019]. On the right-hand side of Eq. (7.10), the logarithm in the
first term log(Aiti) seeks to suppress the non-linear dependence between Ai and Ei. The second
term on the right-hand side then attempts to remove the linear dependence between log(Aiti)
and Ei that remains. Because most of the dependence between Ai and Ei has thus been removed
and Ai and Ei are now of comparable orders of magnitude, the jumps in the MCMC algorithms
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will be more efficient, in particular for RWMH-type algorithms in which the proposal covariance
matrix will be easier to tune.

An appropriate choice of the scaling factors m is important and we strive to tune the
reparametrization so that it has the desired effect of rescaling the posterior density around
parameters with unit values. We will show in Section 7.4.1 on a single pyrolysis process that this
reparametrization improves significantly the convergence and mixing of the Markov chain for
the RWMH and HMC algorithms and facilitates the process of estimating the covariance matrix
for the proposal function with very limited tuning. However when the dimension increases, the
interactions between the parameters and the number of scaling factors to tune make it difficult
to find their appropriate value.

7.3 Adaptive-gradient informed sampling algorithms

The covariance matrix can be seen as a representation of the scales and correlations of the
problem. The physical parameters have their own scale where they can take their values and
can differ significantly one from another, such as for instance Ai or Ei compared to Fij or ri, for
which the reparameterization can already help to reduce scales and correlations. Moreover, the
experimental data can also provide more information on some parameters than others, resulting
in more uncertainty and thus more variability in those parameters that will differ in scale. It is
crucial for the mixing and convergence of the Markov chain toward the posterior distribution to
have a good estimation of the covariance matrix.

How the approximation of the covariance matrix can help in the mixing of the MCMC
chains depends on the type of algorithm considered. For the RWMH, the covariance matrix
appears in the proposal distribution from Eq. (5.38) and is sought to enable an efficient sampling
from the posterior distribution. The covariance of the proposal affects directly the size of the
parameter jumps between two states in the Markov chains that we want to be large (low) for
the parameters with high (low) uncertainty and large (low) scales while keeping a reasonable
acceptance probability. A similar behavior is of interest for gradient-informed algorithms such as
the HMC and the ISDE. From Eq. (5.47) and Eq. (5.55), the momentum variable is a Gaussian
random vector whose covariance matrix is the symmetric positive-definite matrix M ; thus, the
linear transformation dQ/dt = M−1P is a Gaussian random vector with covariance matrix
M−1MM−T = M−T = M−1. Hence, the matrix M−1 can also be interpreted in terms of
the scales and correlations between two jumps in the position variable. For both the ISDE and
HMC, we will relate the mass matrix to the symmetric positive-definite matrix C = M−1 for
which an efficient tuning can also be desirable to improve the sampling efficiency.

For the tuning of the proposal in Metropolis–Hastings algorithms, Girolami and Calderhead
[2011] use a mechanism that learns the local structure of the log-posterior distribution at the
current state of the Markov chain for the Metropolis-adjusted Langevin and the HMC algorithms.
Law [2014] uses proposals that include a local estimation of the value of the Hessian of the sign-
reversed logarithm of the posterior, which is representative of the local scales and correlations.
However, this position-dependent approach requires modifications to the differential equations
of the dynamical system of the proposal mechanism (Girolami and Calderhead [2011]; Arnst
et al. [2017]). For the ISDE algorithm, Arnst et al. [2017] and Arnst and Soize [2019] use a fixed
covariance approximation Ĉ based on the value of the Hessian of the sign-reversed logarithm of
the posterior at the maximum likelihood estimate. This estimate of the covariance matrix can
sometimes lack accuracy, for instance, if the Hessian is estimated at a parameter value that is
far from the maximum likelihood value (because, for instance, we do not know it) and where the
approximation of the covariance may result in a matrix that is not positive-definite. To avoid
this, the value of Ĉ can be set to the identity matrix, Ĉ = I (we do not provide any information
about scales and correlations), or we can also use the diagonal of the Hessian estimate that can be
easily made positive-definite by taking the absolute value of the diagonal elements (it represents
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only the local scales and not the correlations). Depending on the choice of the covariance matrix
estimation, the value for the timestep τ will have to be chosen carefully.

The tuning of the covariance matrix is not the only way to improve the sampling efficiency.
The adaptation of the parameters of the discretization scheme can also be performed (Hoffman
and Gelman [2014]; Marshall and Roberts [2011]), as it is done for instance with the no-U-turn
sampler (Hoffman and Gelman [2014]) for the HMC algorithm that refines the step size τ and
the number of leapfrog steps L at each iteration, or both the timestep and the covariance matrix
for the Metropolis-adjusted Langevin algorithm in Marshall and Roberts [2011], but this is not
investigated here.

7.3.1 Adaptive procedure for the estimation of the covariance matrix
In order to have a more global estimation of the scales and correlations, which is also robust
independently of the covariance matrix estimate, we propose to use an adaptive procedure in
order to refine the initial covariance estimation. Adaptation of the covariance matrix for gradient-
informed algorithms was already used in Atchadé [2006] and Marshall and Roberts [2011] for the
Metropolis-adjusted Langevin algorithm. Their adaptation consists in a normalized truncated
covariance estimation multiplied by a scaling factor that is monitored using a criterion based
on the acceptance probability. Similarly, we use here an adaptive procedure for the covariance
matrix that we apply to the ISDE and HMC algorithms. The covariance matrix is estimated
from past sampled values, as in the adaptive Metropolis–Hastings from Haario et al. [2001];
Atchadé and Rosenthal [2005]; Andrieu and Thoms [2008]; Roberts and Rosenthal [2009] and
Rosenthal [2010]. The adaptation starts after an initial burn-in phase and the whole sample
history is used in the covariance computation. The adaptation updates the proposal covariance
matrix based on previous iterates at given increments ∆n. The covariance matrix is set initially
to Ĉ0 during the first n0 iterations before being updated. We denote by n0 the iteration at
which we start the adaptive procedure and by ∆nadapt the period at which the covariance is
adapted. The first adaptation is based on the covariance estimation of the n0 iterations. Then
we apply a recursive formula for estimating the covariance as a function of each iteration to
avoid saving all the sample values (Haario et al. [2001]). Considering that we have just sampled
a new valuemn+1 from the posterior distribution with the covariance estimate Ĉn, we compute
the new covariance matrix estimate Ĉn+1 using the (n+ 2) from Eqs. (5.41)–(5.43), where sd is
an additional scaling parameter that depends only on the dimension nu of the parameter space,
ε > 0 is a correcting parameter and Inu is the nu-dimensional identity matrix. The parameter
sd is used to improve the acceptance rate in Metropolis–Hastings algorithms and it was showed
in Gelman et al. [1996] that the optimal scaling for a Gaussian distribution was sd = 2.382/nu.
We also keep this parameter as it was also observed that the posterior distribution was sampled
more efficiently using it. The correcting parameter ε > 0 is used to ensure that the covariance
matrix estimate will not become singular, but it can be set to zero in practice (Haario et al.
[2001]).

Since the update of the covariance matrix depends on previous iterations, adaptive algo-
rithms are by essence non-Markovian and the challenge in developing such algorithms requires
to show that the chain has the correct ergodic properties, i.e. that it converges toward the right
distribution and is stationary (Haario et al. [2001]; Atchadé and Rosenthal [2005]; Andrieu and
Moulines [2006]). Such a proof for the HMC and the ISDE is left as an interesting direction for
future work1.

Instead, we discard the samples drawn during the adaptation phase. Once the adaptation
phase has provided a satisfactory estimation of the covariance matrix, we keep the latter fixed and
the subsequent iterations will be used for posterior estimations. The adaptive phase can be more

1This would require the diminishing adaptation and the bounded convergence conditions to be demonstrated,
see examples in Roberts and Rosenthal [2009], and in Marshall and Roberts [2011] for an application to a
gradient-informed algorithm, namely the Metropolis-adjusted Langevin algorithm.
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or less long, depending on the initial approximation of the covariance matrix, the parameters of
the algorithms and the time for the MCMC chain to learn from the whole posterior density. We
denote by nf the last iteration at which the covariance matrix is updated and before which the
samples are discarded for posterior estimations. The ISDE algorithm with an initial adaptive
phase is presented in Algorithm 3 and it would be similar for the HMC algorithm. The adaptive
version of the gradient-informed sampling algorithms are implemented within pybitup.
Algorithm 3: ISDE algorithm with an initial adaptive phase of the covariance matrix.
Set τ , f0;
Initialize m0, Ĉ = Ĉ0;
while n < niterations do

Sample ∆W (n+1) ∼ N (0, τ);
Solve Eqs. (5.56)–(5.58) for Q(n+1), P (n+1);
m(n+1) = Q(n+1);
Update covariance estimate from Eqs. (5.41)–(5.43);
if n ≥ n0 and n ≤ nf and mod(n,∆nadapt) = 0 then

Update Ĉ = Ĉn+1;
end

end

7.4 Application: parameter inference of multi-component
pyrolysis models

In this first application section, the probabilistic setting is used for the identification of a multi-
component pyrolysis model using experimental data at a single heating rate (366 K min−1). We
investigate the effects of the proposed improvements on the calibration of the pyrolysis model
parameters and we study the influence of the parameter ϑ. First, in Section 7.4.1, the change
of variables, the change of scales and correlations, the different sampling algorithms as well as
the adaptive phase are applied to a two-parameter pyrolysis model in order to compare their
efficiency, along with a discussion of the challenge of incorporating modeling errors. Then, in
Section 7.4.2 we perform the parameter calibration and uncertainty quantification on a pyrolysis
model based on the experiments of Bessire and Minton [2017] and we will discuss the challenge
in the selection of the pyrolysis model.

7.4.1 Uncertainty analysis for the production of CH4

We analyze the production of gaseous CH4 that can be mainly characterized by a single peak in
the production curve (Fig. 3.3 top-right). In order to feature the strong kinetic compensation
effect that results in a posterior distribution with large scales and correlations and a complex
dependence structure, we consider two uncertain parameters that are the pre-exponential factor
and the activation energy, denoted by A and E , respectively. Furthermore, this two-parameter
model allows for the comparison of the results of the sampling methods with the direct evaluation
of the posterior distribution from formula Eq. (7.5) with prior from Eq. (7.6) and likelihood
function from Eq. (7.9).

Prior to the analysis, we perform a regularization of the initial estimation of the standard
deviations sj with 1 ≤ j ≤ nt (to simplify the notation, we omit the single i index because we
consider only CH4) which appear in the weights w−1

j . Some values of the standard deviations
obtained from the experiments, denoted by s(e)

j , have a zero value where the production rate
is zero, for instance, at the beginning or at the end of the pyrolysis process, and the resulting
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Figure 7.1: Influence of the weights on the calibration of the production rate of CH4 for the
one-equation model with uncertain parameters A and E . The shaded areas represent the region
where 95% of the model evaluations lie and the error bars represent the values of the inverse
of the weights. If no relaxation of the weights is included (a), we need to increase the number
of equations in the model to better capture the maximum production peak. With the weights
relaxed (b), a one-equation model is enough.

weights are not defined properly. We thus apply the following regularization:

sj =
{
smin if s(e)

j = 0,
s

(e)
j else,

with 1 ≤ j ≤ nt, (7.13)

where smin = minj s(e)
j for 1 ≤ j ≤ nt with strictly positive values of s(e)

j .

Further modifications of the weights

We assume first that the production rate for CH4 can be reasonably reproduced using a one-
equation model that simulates the single production peak. The initial parameter guess is ob-
tained by manually tuning the parameters and visual inspection of the simulated production
rate. The two other parameters of the pyrolysis model, namely γ and r, are kept fixed to 0.0011
and 4.96, respectively. From the experiments, we have ∆t/tf = n−1

t , and we set ϑ = nt. The
calibration is then performed using 104 iterations with the ISDE algorithm.

The evaluations of the one-equation model at the MCMC sample values are shown in Fig. 7.1(a).
At every temperature, the 2.5–97.5 percentile range (shaded area in Fig. 7.1(a)) is computed
using all the model evaluations. It can be seen that the resulting range misses the maximum of
production rate and favors a good fitting of the extremities of the curve, which is to us unwanted.
This is due to a local maximum in the parameter posterior density that has a higher density
than the one at the parameter values that provide the good fitting around the maximum pro-
duction peak. The presence of this spurious local maximum in the posterior appears because of
the high values of the weights at the extremities of the curves (even if those values were already
regularized in Eq. (7.13), the values of the sj are still low). Any discrepancy of the simulated
curve compared to the experimental data at these locations will have a significant influence on
the posterior compared to the other data close to the peak, to which lower values of weights are
assigned.
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Table 7.1: Nominal parameter values for the three-equation pyrolysis model for the production
of CH4. The two uncertain parameters are the ones for which the values are inferred.

R F log(A) (s−1) E (kJ mol−1) n

1 0.000369 27.83 164.55 14.37
2 0.003789 Uncertain Uncertain 3.34
3 0.003593 27.83 284.722 67.37

In order to suppress this undesirable outcome, a first possibility is to relax the weights at
the extremities of the curves, that is, at low and high temperatures. Let smax = maxj s(e)

j for
1 ≤ j ≤ nt. In order to reduce the influence of the small values of the weights that are away
from the peak of maximum production, we assign

sj =
{
csmax if j s.t. s(e)

j ≤ csmax,

s
(e)
j else,

(7.14)

where c is a constant that needs to be fixed. The constant c is a trade-off between providing
flexibility to the model by increasing the model error where it is expected to be present, and
constraining the model to fit these values. The experimental data with the relaxed weights with
c = 0.2 and the resulting model evaluations for the 104 samples using the ISDE algorithm are
shown in Fig. 7.1(b). The higher values of the σ(e)

j can be observed at both extremities of the
curve. As expected, the maximum production peak is now captured by the one-equation model.

A second possibility is to improve the overall fitting by using a more flexible model for the
production of CH4. From Fig. 7.1(a), a first increase in the production rate of CH4 can be
observed around 575 K and a residual production can be observed above 1000 K. Thus, two
pyrolyis equations are added to the previous one-equation model to improve the fitting in these
temperature ranges. A manual tuning and a few pre-simulations are performed in order to find
the additional parameters introduced by the three-equation model, which are then fixed to the
values that are summarized in Table 7.1. The two parameters A2 and E2 (we will drop the
indexes in the following) control the kinetics of the second equation that is mainly responsible
for the maximum production peak and are therefore considered to be uncertain. Finally, the
ISDE algorithm is run for 104 iterations in order to infer A and E and the resulting evaluations
of the three-equation model are shown in Fig. 7.1(a). It can be seen that the three-equation
model fits reasonably the production of CH4 over the whole temperature range, which allows us
to use the initial weights from Fig. 7.1(a).

The choice of the model and the value of the weights have thus an important influence on the
result of the calibration of the model parameters. Because we mainly want to capture the main
production peak, we will both favor the choice of relaxing the weights and providing flexibility
to the model, as it will be done in the example of Section 7.4.2, where the model will feature
more parameters.

Influence of ϑ as a parameter for controlling the posterior uncertainty

Let now consider the three-equation pyrolysis model with the two uncertain parameters A and
E . The result of the propagated samples obtained with ϑ = nt was shown in Fig. 7.1(a) and
the corresponding computation of the posterior distribution is shown in Fig. 7.2. The posterior
from Eq. (7.6) is evaluated on a uniform 200 × 200 logarithmic grid in order to improve the
accuracy in the region of high probability density in the original parameter set. As expected,
we can observe a strong correlation between A and E emphasized by the large values they take
and a non-Gaussian shape of the posterior. Because of the difficulty of visualizing the whole
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Figure 7.2: Bivariate posterior densities for the parameters A and E in the original parameter
space (left) and logarithmic scales (right). Fourteen density contours are shown with intensity
represented on the colorbars on the right of each plot.

posterior in the original parameter set (Fig. 7.2(a)), the posterior is also shown on a log-log scale
in Fig. 7.2(b).

The results for ϑ = 2nt, ϑ = nt and ϑ = 0.8nt are shown in Fig. 7.3. As it can be seen
on Fig. 7.3(b), the decrease of ϑ results in a posterior that is wider and thus results in more
uncertainty in the parameter values and reduces the kinetic compensation effect between A and
E . The 95% ranges for the model evaluations are therefore larger as seen in Fig. 7.3(a) when ϑ
decreases. The increase in the uncertainty when θ decreases is due to the fact that ϑ appears in
the numerator of the exponential term of the posterior.

It is worth mentioning that decreasing too much the value of ϑ may trigger solutions in the
posterior that were previously far from the current maximum density, and render the sampling
of this part of the posterior possible. If unwanted, such solutions can be removed, for instance,
by incorporating more restrictive bounds on the parameters defined in the prior.

Comparison of the sampling strategies

The two gradient-informed algorithms, namely ISDE and HMC, are compared with ϑ = nt and
again the three-equation pyrolysis model with the same two uncertain parameters A and E . For
the sake of the comparison, we also perform the inference using the RWMH and with the change
of variables. For the reproducibility of the path of the Markov chains, we control the initial state
of the random generator by setting the seed equal to zero.

Regarding the sampling methods using the change of variables based on the structure of the
pyrolysis equations (CVR), the challenge is to find the adequate scaling factors as their value will
strongly influence the mixing of the resulting chain. The scaling factors appearing in Eqs. (7.10)–
(7.11) are t = 1 s and E = 1.9406 × 105 J mol−1 and the reference temperature is T = 725 K.
The reference time t is used to have the logarithm of a dimensionless quantity, the reference
activation energy is obtained from the estimation of the maximum likelihood, and the reference
temperature is obtained as the argument of the maximum yield of CH4. The free parameters in
the HMC and ISDE also need to be set. The time step τ should neither be too small, in which
case the sampling is inefficient, nor too large in which case the numerical scheme is not stable.
They are chosen by a few trial-and-error simulations. For both HMC and ISDE algorithms, the
time step is set to τ = 0.1 s. For HMC, the leapfrog step L = 20, and the damping parameter
in the ISDE is set to f0 = 4. Similarly, the covariance matrices for HMC and RWMH with
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Figure 7.3: Influence of the parameter ϑ on the result of the inference for the three-equation
model with two uncertain parameters A and E . The production rate of CH4 (a) and the 95%
posterior density probability (b) for three different values of ϑ are shown. In (a), the shaded
areas represent regions where 95% of the model evaluations lie and the error bars represent the
values of the inverse of the weights. In (b), the inner part of the curves represents a region of
parameter values within which 95% of the probability density lies.

the CVR are set by a few trial-and-error steps. For HMC with CVR, the covariance matrix is
the identity matrix, and for the RWMH it is a diagonal matrix with diagonal elements equal to
10−3. The sampling algorithms are run for 1.1× 105 iterations.

In order to assess the efficiency of the different algorithms, the ergodic mean and variance
for the marginal posterior distributions as a function of the number of iterations n are computed
for A and E as

µi(n) = 1
n

n∑

k=1
mk
i , (7.15)

vari(n) = 1
n

n∑

k=1

(
mk
i − µi(n)

)2
. (7.16)

The translated mean and normalized variance can be computed as µ̃i(n) = µi(n) − µ̄i and
ṽari(n) = vari(n)/vari such that their values tend to zero and one, respectively. Good approx-
imations of the reference mean µ̄i and reference variance vari can be obtained from the direct
evaluation of the posterior distribution, which in the case shown in Fig. 7.2 are equal to (for A
and E in logarithmic values) µ̄A = 28.53 , varA = 12.22, µ̄E = 3.74 and varE = 0.0032.

The comparisons of µ̃i and ṽari are shown in Fig. 7.4 for log (A). The graphs for the parameter
E are almost identical due to the correlation between the two parameters and are shown in
Appendix C.3. On the x-axis, we represented the number of times the model is evaluated
instead of the number of MCMC iterations n. Both are the same for RWMH and ISDE, but the
HMC algorithm performs L leapfrog steps before selecting the new sample, and thus L times
more model evaluations are performed. The number of MCMC iterations for the HMC algorithm
is therefore equal to 5 × 103 and the estimated mean and variance is constant during L model
evaluations following each new MCMC iteration. We discarded the 104 samples from the burn-in
phase (500 for HMC-type algorithms), which corresponds to the adaptive phase in the ISDE-DA
and HMC-DA.
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Figure 7.4: Convergence of the mean (a) and variance (b) for A (in log) as a function of the
number of function evaluations (after the burn-in phase). Random-Walk Metropolis–Hastings
(RWMH); RWMH with the change of variables based on the structure of the pyrolysis equations
(RWMH-CVR); ISDE with the covariance matrix estimated from the diagonal of the inverse of
the Hessian and change of variables based on the support of the posterior (ISDE-D); ISDE-D
with the covariance matrix resulting from the adaptation process (ISDE-CA); HMC with with
the change of variables based on the structure of the pyrolysis equations (HMC-CVR); HMC
with the covariance matrix estimated from the diagonal of the inverse of the Hessian and change
of variables based on the support of the posterior (HMC-D); HMC-D with the covariance matrix
resulting from the adaptation process (HMW-CA).

First, from Fig. 7.4, it can be noted that the change of variables from Eqs. (7.10)–(7.11),
the one that is well-suited for the pyrolysis model, applied to the random-walk Metropolis–
Hastings (RWMH-CVR) shows a good convergence for the mean and the variance. These good
convergence properties were not observed for the classical RWMH without change of variables,
even with a careful tuning of the covariance proposal. The change of variables is also applied to
the HMC algorithm (HMC-CVR) which also shows very good convergence properties.

When the change of variables based on the support of the posterior is applied using the
diagonal covariance matrix estimation, both ISDE (ISDE-D) and HMC (HMC-D) are far from
convergence. However, they both show good performances when the covariance matrix estima-
tion results from the adaptation phase (ISDE-CA and HMC-CA), which is performed during
the initial burn-in phase. During this initial phase, the algorithm is run for 103 iterations (50
for HMC) before the covariance matrix starts to update using the recurrence formulas from
Eqs. (5.41)–(5.43). The covariance is then updated every 100 (5 for HMC) iterations until the
104-th (500-th for HMC) iteration, which corresponds to the end of the burn-in phase. This
shows that the adaptive HMC and ISDE are robust even if the estimation for the initial covari-
ance matrix was representative of the local scales and not the correlation. Adaptation may also
succeed with a less informative covariance matrix, e.g. the identity matrix, but a larger adaptive
phase would be required.

The 2 × 104 first sample values from the MCMC chain for E using the ISDE algorithm are
shown in Fig. 7.5, where the effect of the adaptation phase on the mixing of the chain can be
observed. Similar graphs are obtained for A and using HMC. The first part on the left are the
samples obtained during the 103 first iterations of the ISDE using the fixed diagonal covariance
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Figure 7.5: Iterations of the Markov chain for E (shown every 10 iterations for clarity) obtained
using the ISDE algorithm. The first (green) dotted vertical line represents the iteration at
which the adaptation starts. The second (red) dotted line represents the last iteration of the
adaptation. Above 104 iterations, the covariance is fixed to the estimated value and the MCMC
chain continues.

matrix, obtained from the diagonal of the inverse of the Hessian computed at the initial parameter
values. From iterations 103 to 104, the covariance is estimated from the recurrence formula and
updated in the algorithm every 102 iterations. The effect of the adaptation is clearly observed
when compared to the first part of the chain. After 104, the covariance matrix is kept fixed and
the chain is run for 104 more iterations.

In Fig. 7.6, we compare the effect of the number of iterations during which the adaptation
is performed on the convergence of the mean and variance. The total number of iterations
performed is 1.1 × 105 (5.5 × 103 for HMC) for all cases. Figure 7.6 shows the results when
the adaptation is stopped after the first 5 × 103 (2.5 × 102 for HMC), 1 × 104 (5 × 102) and
2× 104 (1× 103) iterations. Once again, the mean and variance are estimated after discarding
the samples from these adaptation phases. Figure 7.6 also shows the result when the adaptation
is not stopped and is run during all the 1.1× 105 (5.5× 103 for HMC) iterations, in which case
we use all the sample history to compute the mean and variance.

It can be observed that the results converge toward zero for the mean and one for the variance
in all cases. For HMC, no significant difference can be noticed, except a slight difference when
the adaptation is performed until the end (nend = 5.5 × 103). For ISDE, the best result is for
nend = 104, which motivates our choice in the previous section for stopping the adaptation at
this value. The result when the adaptation is performed during all the iterations shows that the
algorithm may also work with a continuous adaptation of the covariance matrix, although we
do not have the theoretical support.

Similarly, the effect of the period at which the covariance matrix is updated in the algorithm
(∆nadapt) on the convergence rate of the mean and variance is also be investigated. When
the covariance matrix is effectively updated in the algorithm, it requires the computation of its
inverse for computing LM in Eq. (5.54) for the ISDE algorithm, or for sampling p from the
multivariate normal in HMC. This may take some time when the dimensionality increases if the
covariance matrix is adapted at every iteration. Conversely, a long adaptation period ∆nadapt
may require a longer adaptive phase for having the benefit of adapting the covariance matrix
from samples. Results were obtained for ∆nadapt = 10, ∆nadapt = 100 and ∆nadapt = 1000 and
showed that ∆nadapt = 100 was a good compromise between the accuracy of the estimation of
the mean and variance and the computational time. Having a short adaptation period did not
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Figure 7.6: Convergence of the mean (a) and variance (b) for log (A) as a function of the number
of function evaluations. The number of iterations in the adaptation phase (nend) is compared
for the HMC and ISDE algorithms.

show a significant improvement in the convergence rate, and a long adaptation period did not
provide bad convergence results either.

Parametric study of f0

Finally, we provide a numerical analysis for the influence of the damping factor f0 on the conver-
gence of the mean and variance for the parameter A. The parameter f0 introduces dissipation
in the stochastic equation and will influence the convergence speed for the estimation of the
mean and variance. We consider again the case with parameters from Table 7.1 with ϑ = nt,
the covariance matrix results from the adaptation of the first 104 iterations and is fixed for the
105 iterations.

Results for the estimation of the mean and variance of A are shown in Fig. 7.7. For low
values of f0 (f0 = 0.01 and f0 = 0.1) we observe an erratic convergence, in particular for the
variance. In this case, because the stochastic term is proportional to the square root of f0,
it is predominant compared to the damping term. The system is closer to an Hamiltonian
system and the algorithm generates highly correlated samples with rapid local variations that
can be observed on the curves. For values of the order of unity (from f0 = 0.5 to f0 = 10)
the convergence is faster, with the closest results to zero mean and unit variance achieved for
f0 = 0.5 and f0 = 1.5. For larger values of f0 (f0 = 50), the damping factor is predominant and
the convergence is again slower, but the local oscillations are not observed. Therefore, it seems
that values of f0 ranging from 0.5 to 10 can all achieve a good result for the convergence of the
mean and variance, while values outside of this range should be avoided.

7.4.2 Bayesian parameter inference for PICA devolatilization at a high
heating rate

In this last section, we consider the whole experimental data set of Bessire and Minton [2017]
at the heating rate β = 360 Kmin−1for the pyrolysis of PICA (Fig. 3.3) and we perform
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Figure 7.7: Convergence of the mean (a) and variance (b) for log (A) using the ISDE algorithm
as a function of the number of function evaluations with different values for the damping factor
f0.

the Bayesian calibration of the parameters. The data for the 1-propanol and 2-propanol are
discarded, as they are scarce and might be subjected to high experimental errors, and therefore
nobs = 12.

Iterative procedure for the construction of the pyrolysis model

There are two main issues that need to be solved: the first issue is that the structure of the
pyrolysis model is unknown; the second issue is that we do not have an initial estimate of the
parameters for a pyrolysis model once its structure is given.

In Torres-Herrador et al. [2019b], a six-equation (Np = 6) pyrolysis model was identified
by visual inspection of the number of maximum species production peaks. A model fitting
procedure was then performed using a multi-objective genetic algorithm to infer the values of
the 35 parameters. However, by performing the Bayesian parameter inference from the model
structure identified in Torres-Herrador et al. [2019b], similar observations as the ones from
Fig. 7.1(a) were obtained, that is, some production peaks were not appropriately simulated due
to the influence of the weights. It does not mean that the model is wrong, but that some
misfits in the model that are not accounted for in the weights degrade the overall fitting of the
production peaks.

Because of the complexity of the pyrolysis model structure, identifying which values of the
weights are degrading the goodness of fit is not obvious. This leads us to the need of rebuilding
the pyrolysis model structure in an iterative procedure, in which models of increasing complexity
are successively inferred. We start by inferring a one-equation model using a single experimental
curve, as it was done for CH4 in Section 7.4.1. Calibrating this model is simpler as it is defined
by fewer parameters and the initial guess can be easily obtained, for instance, by running the
sampling algorithms for a few iterations to converge toward the region of higher probability. Once
we have a satisfactory solution for the parameters A1, E1, m1 and γ11, we add one experimental
curve in the set of calibration data (we add one species j). If a new reaction maximum is observed
in the additional curve, we increase the number of equations by one and we need to calibrate
the new set of parameters A2, E2, m2 and γ2j together with the previous set of parameters for
which we have an initial guess. If a reaction already exists at the new peak, then we just need
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to calibrate the new mass fractions γ2j . This procedure is repeated until the model includes all
the species from the data set. As already mentioned in Section 7.4.1, issues may arise when the
inverses of the weights approach zero where the production rate is zero. Therefore, we apply
once again the regularization of the weights from Eq. (7.13) and the relaxation of the weights
at the extremities from Eq. (7.14) with c = 0.6. The following six-equation pyrolysis model is
found:

w0R(s)
0

k0−→F02CO + F03CO2 + F05H2O, (7.17)

w1R(s)
1

k1−→F11CH4 + F12CO + F15H2O + F16Xylene + F110Benzene
+ F111Toluene, (7.18)

w2R(s)
2

k2−→F21CH4 + F22CO + F23CO2 + F24Phenol + F25H2O + F26Xylene
+ F27Cresol + F282−methyl + F293−methyl + F211Toluene, (7.19)

w3R(s)
3

k3−→F30H2, (7.20)

w4R(s)
4

k4−→F43CO2 + F44Phenol + F45H2O + F47Cresol + F48Dimethyl
+ F49Trimethyl, (7.21)

w5R(s)
5

k5−→F50H2 + F52CO + F53CO2 + F55H2O. (7.22)

Posterior analysis

Using the model from Eqs. (7.17)–(7.22), the number of parameters to infer is equal to 48.
The prior is the product distribution from the marginal priors. The marginal priors for pre-
exponential factors Ai are semi-infinite uniform priors. The activation energies Ei are bounded
in given ranges in order to separate the different peaks of production. Evidence from some of
our previous simulations shows that the solution can converge slowly or can sample unwanted
regions in the posterior if the activation energies are not limited within a given range. The values
of the reaction orders are also limited in the range ]1, 10] and all mass fractions range between
0 and 1.

The ISDE algorithm is run for 106 iterations with τ = 0.002 s and f0 = 4.0. The initial
covariance matrix is estimated using the diagonal matrix of the inverse of the Hessian computed
at the initial guess value. Then, the covariance is updated every 100 iterations from n0 = 104 to
nf = 105. Due to the higher dimensionality, the algorithm needs more iterations to learn the local
scales and correlations and the adaptation phase is therefore longer. The solution to the pyrolysis
model and its derivatives with respect to the parameters are all computed analytically (Coheur
et al. [2021b]).

The results for ϑ = nt are shown in Figs. 7.8–7.10. In Fig. 7.8, the Markov chains are provided
for the kinetic parameters of the reaction R1 and the corresponding mass fraction of CH4. The
105 first iterations from the adaptation phase are discarded. The other chains representing the
samples drawn from the 48-dimensional posterior feature similar behavior of mixing but are not
shown here.

In Fig. 7.9 the bivariate and marginal posteriors for the reaction R1 are shown. In the
bivariate posterior for A1 (in log) and E1, the correlation between the two parameters can be
observed. This correlation is reduced compared to the previous section because of the restricted
range on E , which is necessary to limit the potential interactions between the different reactions.
The region where A varies is therefore reduced. Regarding the marginal parameter distributions,
they feature a single mode distribution.

The production rate curves at the sample values are shown in Fig. 7.10. We represent the
regions where 95 % of the model evaluations lie with the mean value in between. From this
figure, we can directly assess the goodness of fit of the model, and we can conclude that the
model structure chosen provides an overall fit that is good. One can notice that this model
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underestimates a bit the production of trimethyl phenol, xylene and toluene and overestimates
slightly the maximum of CO2. In general, the model represents well the observations within the
range [500, 1000] K. Above 1000 K, the production almost reaches a plateau for CO, CO2, H2O,
and H2, which is difficult to account for using the multi-component approach from Eq. (3.9).

Discussion of the choice of the value of ϑ

Selecting the value of ϑ based on the overall goodness of fit not obvious as there is significant
model inadequacy at low and high temperatures. However, we can compare the fitting by visual
inspection based on the results in the range from [500, 1000] K, which is fairly good, and we can
compare the overlap of the computed intervals with the experimental intervals. From that point
of view, the computed intervals from Fig. 7.10 might still be underestimating the uncertainty
ranges and the posterior distribution be over-confident.

In order to increase the uncertainty in the simulated curves and be more in agreement with
the experimental ranges, the inference is also performed with ϑ = 0.7nt. This value was obtained
after a few trials, and the resulting simulated curves are shown in Fig. 7.11. The increase in the
uncertainty range can be clearly noticed, which is due to the posterior distribution that is less
concentrated, showing that the parameter ϑ allows to control the overall uncertainty range on
the predictions. The maximum a posteriori values for the whole set of parameters are provided
in Table C.1 in the Supplementary Material.

Yet, some observations are still outside of the computed uncertainty ranges, particularly
below 500 K and above 1000 K. This issue highlights limitations of the approach of seeking to
incorporate the effect of modeling errors as an uncertainty in the model parameters. If unmodeled
or poorly represented physical behavior results in model predictions that are not sufficiently close
to the experimental data, then such model inadequacy cannot be compensated by introducing
uncertainty in the model parameters.

7.5 Application: parameter inference of competitive py-
rolysis models

In this second application section, we consider a competitive pyrolysis model for the PICA TPM
that allows us to simulate the decomposition of the material at two distinct heating rates, namely
10 K min −1 and 366 K min−1 using the results from two experimental data set taken from Wong
et al. [2016] and Bessire and Minton [2017], respectively (see Section 3.2). Competitive pyrolysis
models were described in Section 3.4 and their introduction was motivated by the observation
that the mass loss curve and the pyrolysis production peak shift towards lower temperatures as
the heating rate increases, which cannot be accounted for by using multi-component models.

We perform the Bayesian parameter inference and the results are presented, and the interac-
tion between the parameters of the different branches of the competitive mechanism are analyzed.
The extrapolation capability of the calibrated model is assessed by propagating and comparing
with experimental results at other heating rates. Results from this section were published in the
co-authored manuscript presented in Torres-Herrador et al. [2019a].

7.5.1 Competitive reaction scheme for PICA
The observation that at high heating rates the decomposition curve shifts towards lower tem-
peratures suggests to isolate into two different pathways the contribution of the low heating
and the high heating rates. A kinetic model for PICA consistent with this observation and the
experimental data at 10 and 366 K min−1 is shown in Fig. 7.12 (Torres-Herrador et al. [2019a]).
The superscripts (g) and (s) are used to clarify which components are gaseous or solids, respec-
tively. In addition, the superscript “∗” highlights intermediate solids that are produced without
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Figure 7.9: Marginal and bivariate posterior distributions for selected parameters. A1 is repre-
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Figure 7.10: Mass yields as a function of temperature for each species obtained after the prop-
agation of the MCMC samples with ϑ = nt. The symbols with the error bars represent the
experimental results from Bessire and Minton [2017]. The continuous lines are the results of the
propagation for the maximum likelihood estimate and the shaded areas represent all the possible
outcomes of the propagation using every samples from the posterior distribution.
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Figure 7.11: Mass yields as a function of temperature for each species obtained after the prop-
agation of the MCMC samples with ϑ = 0.7nt. The symbols with the error bars represent the
experimental results from Bessire and Minton [2017]. The continuous lines are the results of the
propagation for the maximum likelihood estimate and the shaded areas represent all the possible
outcomes of the propagation using every samples from the posterior distribution.
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release of pyrolysis gases in a depolymerization process (Miller and Bellan [1997]). Thus, the
initial reactant ρ(s)

1 decomposes into two different branches: a slow process for low heating rates
with reaction rate k1,1 and a fast one for high heating rates with reaction rate k1,2. The slow
branch progressively depletes the reactant starting at lower temperatures (E1,1 < E1,2) and re-
quires time to be completed. Therefore, at low heating rates, the decomposition is dominated
by this slow process that produces the intermediate solid ρ(s)∗

2 . At high heating rates, the fast
process becomes active and dominant. This process decomposes most of ρ(s)

1 , producing the
intermediate solid ρ(s)∗

3 , while impeding the production of ρ(s)∗
2 . Each intermediate solid (ρ(s)∗

2
and ρ(s)∗

3 ) further reacts (at rates k2,1 and k3,1) and decomposes into a charred solid (ρ(s)
4 and

ρ
(s)
6 ), and releases pyrolysis gases (ρ(g)

5 and ρ(g)
7 ).

ρ
(s)∗
2

ρ
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Figure 7.12: Proposed competitive pyrolysis model for the thermal degradation of PICA at 10
and 366 K min−1.

As described in Section 3.4.2 and from Eq. (3.44), the reaction scheme depicted in Fig. 7.12
can be written as a system of ODEs as follows:

d

dt




ρ
(s)
1
ρ

(s)∗
2
ρ
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4
ρ

(g)
5
ρ
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6
ρ

(g)
7




=




−(k1,1 + k1,2) 0 0 0 . . . 0
k1,1 −k2,1 0 0 . . . 0
k1,2 0 −k3,1 0 . . . 0
0 γ2,1,4k2,1 0 0 . . . 0
0 γ2,1,5k2,1 0 0 . . . 0
0 0 γ3,1,6k3,1 0 . . . 0
0 0 γ3,1,7k3,1 0 . . . 0







ρ
(s)
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ρ

(s)∗
2
ρ

(s)∗
3
ρ

(s)
4
ρ

(g)
5
ρ

(s)
6
ρ

(g)
7




. (7.23)

This system of ODEs can be simplified by removing the dependent variables ρ(s)
4 , ρ(g)

5 , ρ(s)
6

and ρ(g)
7 such that L is a (3×3) matrix of full rank. In addition, the mass conservation constraint

γi,j,l+1 = (1−γi,j,l) allows us to remove the two unknown mass coefficients for the pyrolysis gases.
In total, considering the four reaction rates ki,j , each of them having two unknown parameters,
the four mass coefficients and the two consistency relations, the total number of parameters to
be calibrated is equal to 10.

More complex models that still provide a good fit to the experimental data were investigated.
However, increasing the model complexity by adding more reactions did not improve significantly
the cost function minimization. Therefore, it was decided to favor simplicity and computational
cost over a slight improvement on the cost function (MacKay [2003]). Further iterations on this
first scheme are foreseen when more experimental data become available.

The pyrolysis model parameters were first calibrated in Torres-Herrador et al. [2019a] using a
shuffled complex evolutionary algorithm, which is a global optimization algorithm similar to
a genetic optimization with a local search (Duan et al. [1993]). The graphical results of the
calibrated model are shown in Fig. 7.13 and the nominal value of the parameters resulting from
the optimization process are provided in Table 7.2. It can be seen from Fig. 7.13 that the
calibrated model can reproduce the experimental data at both heating rates, and the density as
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Figure 7.13: Comparison between the experiments and the calibrated model for the nominal
parameter values for the two different heating rate scenarios. On the left (a) are the curves for
the normalized sample density and on the right (b) the normalized production rate curves as
a function of temperature. The experimental data from Wong et al. [2016] (10 K min−1) and
from Bessire and Minton [2017] (366 K min−1) are represented by circular markers with their
errorbars when available.

Parameter Value Parameter Value
log10(A1,1) 2.019 E1,1 32618.482
log10(A1,2) 14.292 E1,2 143273.910
log10(A2,1) 0.442 E2,1 51783.980
log10(A3,1) 0.993 E3,1 31087.851
γ2,1,5 0.163 γ3,1,7 0.244

Table 7.2: Values for the calibrated parameters obtained from the deterministic optimization.

a function of time and its derivative are well reproduced by the proposed model. The shift in
the production peak towards lower temperatures with increasing heating rate is also captured.
This is in contrast with kinetic mechanisms based solely on multi-component parallel reactions
that would not achieve to reproduce the experimental curves at both heating rates.

Consistently with the proposed model, the activation energy E1,1 is lower than E1,2 (Ta-
ble 7.2), indicating that the conversion towards ρ(s)∗

2 starts earlier than the conversion towards
ρ

(s)∗
3 . The pre-exponential factor A1,1 is lower than A1,2 which indicates that the production of
ρ

(s)∗
2 is slower than that of ρ(s)∗

3 . In summary, the calibrated kinetic parameters are all coherent
with the underlying hypotheses of the model.

7.5.2 Bayesian parameter inference for the competitive pyrolysis model
The likelihood function is built from Eq. (7.9) and the two observations are the mass loss and the
production rate (nobs = 2). The value of the free-parameter ϑ was not further studied here and
we set ϑ = nt. As in Section 7.4 the weights were further relaxed at the extremities of the curves
to avoid the calibrated parameter to be sensitive to modeling errors at these locations. The
Markov chain is initiated using the results from the deterministic optimization from Table 7.2.
The RWMH is used, the pre-exponential factors Ai are taken in logarithmic values and the
covariance matrix for the Gaussian proposal function was obtained after a few trial runs. Owing
to the relatively short burn-in enabled by using the previous optimization result, we run the
chain for 105 iterations.
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Figure 7.14: (a) Mass loss curve at a heating rate of 10 K min−1 and (b) production rate curve at
heating rate 366 K min−1 and their uncertainty ranges. The continuous lines are the computed
mean at each temperature. The shaded areas represent the 2.5–97.5 % probability regions. The
markers represent the experimental data with their respective error bars.

Parameter Mean Std CV Parameter Mean Std CV
log10(A1,1) 2.4768 0.3027 0.0.1222 E1,1 26811.37 893.61 0.0333
log10(A1,2) 23.4935 1.1618 0.0494 E1,2 183938.42 2369.64 0.0129
log10(A2,1) 0.2219 0.1238 0.5579 E2,1 48796.41 1723.16 0.03531
log10(A3,1) 1.1969 0.0821 0.0686 E3,1 33566.43 976.07 0.0291
γ2,1,5 0.1648 0.0038 0.0234 γ3,1,7 0.3190 0.0703 0.2202

Table 7.3: Values for the mean, standard deviation (std) and coefficient of variation (CV) for
the calibrated parameters obtained from the Bayesian inference.

Fig. 7.14 presents the simulated data obtained from the model evaluations at the sample
values and compare them to the experimental data in order to assess the validity of the model.
We represented the mean value (solid line) and the 2.5–97.5 % probability region (shaded areas).
The model features an overall good agreement with the experimental data but some discrepancies
as in Fig. 7.13 are again observed at high temperatures for 10 K min−1 and at low temperatures
for 366 K min−1. These discrepancies are not captured by the uncertainties on the parameters
and this suggests that further complexities could be captured by improving models that will
help reducing the overall model error.

Second, in Table 7.3, the values obtained for the mean, standard deviation and coefficient
of variation (CV) are summarized for the marginal distributions directly estimated from the
Markov chains. The CV provides a measure of the relative dispersion of the parameter values
with respect to the mean. The mean values may be different from the previous deterministic
values used to initiate the Markov chains because of the differences in the weights used in the
genetic optimization and the Bayesian inference. The mean value for γ2,1,5 is very close to its
deterministic value because this parameter is found to be the less correlated with all the other
ones. The higher values of the CVs for the reaction branch (2,1) for both A2,1 and E2,1 suggest
that these two parameters are more difficult to identify and are more uncertain, although this
reaction produces the component ρ(s)

4 at the two heating rates (see later in Fig. 7.16) and thus
more information is provided from the experimental data. This higher uncertainty is attributed
to the slower process of the reaction (2,1) characterized by the low value of A2,1.

A graphical representation of the full correlation matrix is provided in Fig. 7.15. The cor-
relation matrix is obtained from the estimated covariance matrix normalized by the standard
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deviations of the random parameters, such that diagonal terms of the correlation matrix are
equal to one and off-diagonal terms range between -1 and 1. We note that the Arrhenius param-
eters A and E for the reactions (2,1) and (3,1) are found to be highly correlated with a value for
the correlation coefficient that is close to 1. This results in a wide range of values for the pre-
exponential factor A and the activation energy E that can give satisfactory fits to the data, the
so-called kinetic compensation effect, that was also observed in the previous section. However,
the pair of parameters A and E for reactions (1,1) and (1,2) that are related to the production
of the intermediate components are found to be less correlated and less sensitive to the kinetic
compensation effect. Besides the kinetic compensation effect for A and E , additional compensa-
tion mechanisms characterized by a high value for the correlation coefficient are observed: this
is the case, for example, for the pair of parameters A1,1 with γ3,1,7 or A2,1 with γ3,1,7. There is
only limited correlation with parameter γ2,1,5 and results in the marginal distribution for which
sampling has well converged (the closer to a Gaussian distribution). However, we note the high
positive correlation value for the pair or parameters A1,1 with A1,2.

Finally, Fig. 7.16 represents the evolution of the densities as a function of the temperature
with uncertainty intervals. For the nominal pathways, it is observed that at low heating rate
(Fig. 7.16(a)), the initial solid is mostly converted into ρ(s)∗

2 , while the opposite occurs at high
heating rates (Fig. 7.16(b)). These intermediate steps further react at higher temperatures
generating the char yield. It is observed in Fig. 7.16(b) that when both mechanisms are in com-
petition, it is more uncertain to know what goes into which branch, leading to larger intervals
and which also manifests itself in the high positive correlation between A1,1 with A1,2. This
strong interaction between A1,1 with A1,2 is intrinsic to the competitive mechanisms: the un-
certainties in these two parameters combine themselves and result in large uncertainty intervals
in the densities when there is competition between the two reactions. On the other hand, for
the pyrolysis at 10 K min−1 where the competition between the two reactions is less balanced,
uncertainty ranges in the densities are tighter because the reaction is characterized mainly by the
first branch of the mechanisms and is less influenced by the second one, as it can be corroborated
on Fig. 7.16(a).

The results of this section show that a pyrolysis reaction scheme including a competitive
mechanism can be used to represent the decomposition of the phenolic resin of PICA at two
different heating rates. We were able to obtain samples from the posterior distribution using
Markov chains and compare the model evaluations with the experimental data, thus taking into
account the correlations between the input parameters. Not taking into account the correlation
between the input parameters may lead to wrong results for the propagation and samples drawn
directly from the Markov chain should be used for the uncertainty analysis. It was found that
due to the nature of the competitive scheme and because a component can be both produced
and consumed, there are additional kinetic compensation effects beyond the pair of parameters
A and E , thus making the inference process even more complex.

7.5.3 Extrapolation to other heating rates
The proposed competitive model is compared to additional experimental results in order to assess
the extrapolation capabilities of the model. Besides the 366 K min−1 used for the calibration,
three other heating rates for the decomposition of PICA are available from the work of Bessire
and Minton [2017], namely, at 186, 762 and 1500 K min−1. We take advantage of those additional
experimental results that were not used to calibrate the model in order to compare and assess its
validity when extrapolated to those heating rates. From the 105 samples of the Markov chain, we
select evenly 103 samples that are propagated through the pyrolysis model at the given heating
rate. The propagation of the uncertain parameters allow us to establish whether parameter
uncertainties may explain the observed discrepancies or if there is modeling error.

The comparison is presented in Fig. 7.17. For 186 K min−1 (Fig. 7.17(a)), small discrepancies
are observed below 800 K and above 1200 K that may be due to modeling error. However, there
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Figure 7.15: Graphical representation of the correlation matrix. The size of the squares is pro-
portional to the magnitude of the elements of the matrix. On the colored graph, blue squares
represent a positive correlation while red squares represent a negative correlation and the mag-
nitude of the coefficient is represented on the side bar. The diagonal is characterized by the
value of the correlation equal to 1 and off-diagonal terms vary between -1 (negative correlation)
and 1 (positive correlation).

is a clear discrepancy between 800 K and 1300 K due to the model and in particular due to the
second branch that is being activated and is delaying the decomposition at high temperatures.
At 762 K min−1 (Fig. 7.17(c)) there is a clear model error at low temperatures between 600 K
and 800 K, but the model seems to be reproducing the mass loss within good ranges at higher
temperatures. At the highest heating rate (1500 K min−1, Fig. 7.17(d)), it shows substantial
discrepancies, particularly below 800 K, and applying the current calibrated model to this heating
rate is obviously wrong, but the total mass loss seems to be well reproduced.

To sum up, the model performs well within the calibrated range of heating rates, that is
[10, 366] K min−1, but may fail to reproduce the mass loss of the sample outside of this range,
in particular at high temperatures for low heating rates and low temperatures for high heating
rates. It performs well within the calibration domain as the proposed model possesses all the
features related to the mechanisms observed in this range, but it is not the case for the higher
heating rates and it seems that other unknown mechanisms are presents. More complex model
with potentially other competitive branches could be developed in order to capture these other
features of the decomposition mechanism.

These results emphasize that care must be taken when extrapolating the pyrolysis model
outside of the calibrated range of heating rates, as unknown mechanisms may be present. There-
fore, the model should be refined by adding more articulated branching evolution of the present
scheme in order to model these discrepancies and calibrate it with these curves. The new cali-
brated results would then look probably closer to the exact experimental results. Discrepancies
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Figure 7.16: Evolution of the different solid densities for the calibrated model with their uncer-
tainty intervals at (a) a heating rate of 10 K min−1 and (b) at a heating rate 366 K min−1. It
can be observed how the dominant pathway changes as the heating rate increases.

could also come from other mechanisms than competitive reactions and we should account for
interactions between the gaseous products and the carbonaceous char, for instance, which are
unaccounted for in the present model. We refer the reader to the experimental paper for a
detailed discussion of the complexities that characterize the charring process of PICA (Bessire
and Minton [2017]). Developing a dedicated finite rate kinetic model for the pyrolysis of PICA
that fits the experimental results at all heating rates was beyond the scope of this study, but is
the next necessary step towards the development of comprehensive predictive material response
models.

7.6 Conclusions

In this chapter, we presented the inference of the parameters of a multi-component model that
accurately reproduces the resin decomposition the production of gaseous species of PICA at 366
K min−1. To explore efficiently the whole posterior, gradient-informed sampling algorithms are
used, and a method for the adaptation of covariance matrix and a reparameterization of the
equations are applied. The results on the sampling of the posterior show that a reparameteriza-
tion based on the structure of the equations is an efficient method to improve the convergence
of the RWMH algorithm. However, this reparameterization is particular to the present pyrolysis
equations and requires the tuning of scaling factors, which can be challenging in high dimensions
where the number of scaling factors increases. Therefore, gradient-informed sampling algorithms
are used and it is showed that the adaptation of the covariance matrix based on the previous
sample history improves by far their convergence rate, and can even fail if not performed. The
adaptation of the covariance matrix only for a few iterations already improves significantly the
convergence rate of both the HMC and ISDE, with similar performances for the two methods.
Note that in the case of the HMC algorithm, the reparameterization can be chosen freely, while
the ISDE is constrained to have an unbounded parameter set. In the case where the HMC algo-
rithm is used with the reparameterization based on the pyrolysis equations, it shows very good
convergence properties. A six-equation pyrolysis model is used to reproduce the production of
gaseous species observed experimentally and the resulting 48-parameters posterior is sampled ef-
ficiently using the adaptive version of the ISDE algorithm. The resulting uncertainty-quantified
model allows us to reproduce the data set together with the estimated observed uncertainty
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Figure 7.17: Comparison of the calibrated competitive pyrolysis model with the experimen-
tal results from Bessire and Minton [2017] at different heating rates: (a) 186 K min−1; (b)
366 K min−1 (at which the model was calibrated); (c) 762 K min−1; (d) 1500 K min−1.

ranges, although with some exceptions at low and high temperatures where model inadequacy is
too significant due to limitations in the ability of the model to represent the physics. Results are
shown for two values of the free parameter ϑ, that is introduced in the approximate likelihood
to control the concentration of the posterior distribution. The choice of a value of ϑ = 0.7nt is
motivated by the quality of the overlapping of the uncertainty intervals and the observations.

Secondly, the Bayesian approach for parameter inference is applied to a more complex py-
rolysis model that includes a competitive mechanism and is used to simulate the experimental
data at two distinct heating rates. Some discrepancies are observed between the physical model
and the experiments and it is due to the choice of the physical model that might not be per-
fect. It was observed that the Markov chains for several parameters were slow to converge,
even for the relatively simple model with few parameters considered here. Larger uncertainty
intervals are observed when the two competitive branches are active during the reaction process
and additional interaction effects between parameters. Finally, we have shown the limitation of
devolatilization models to predict the degradation of PICA at other heating rates.

Hence, as a future work, more complex competitive models could be developed that would
allow to capture the high temperature mechanisms at low heating rate and the low temperature
mechanisms at high heating rate, that were not yet accurately reproduced by the proposed
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model. To improve the sampling efficiency, the use of gradient-informed algorithms with possible
covariance matrix adaptation could also be investigated. Preliminary results, not presented
here, showed that gradient-informed algorithms were longer to run and the time step difficult to
calibrate. Indeed, a high value of the time step may provide large numerical errors due to model
and gradients computation, and a low value leads to slow mixing of the MCMC chain that was
prohibitive in terms of computational time.

Independently of the type of modeling for pyrolysis used, there are several interesting directions
for future work that we identified. Firstly, the initial mass of the sample, used for the inference
of the materials properties from the experiments of Bessire and Minton [2017], could also have an
influence on the uncertainty in the inferred parameters. This initial mass was not communicated
in Bessire and Minton [2017] and one had to deduce its value from the nominal experimental
production curves.

Secondly, the influence of the free parameter ϑ was observed, but no clear indication for the
choice of its value other than the visual inspection of the calibration curves was provided and
should be further investigated.

Thirdly, in order for the iterations in the adaptive phase of the Markov chains to be used
in the posterior distribution, the ergodicity of the chains generated by the gradient-informed
algorithms with the adaptive procedure should be demonstrated. Numerical evidences in this
work showed encouraging results in this direction.

Finally, the evaluations of the model and its gradients (there is no analytical solution for
the competitive mechanisms) are not always available analytically and may be computationally
expensive, in particular in high dimensions. Surrogate models could be constructed to speed-
up the parameter inference process, such as polynomial chaos expansions (Le Maître and Knio
[2010]; Xiu and Karniadakis [2002]) for low dimensional stochastic inputs. Efficient gradient
computations could be made, for instance, by using automatic differentiation (Griewank and
Walther [2008]) or adjoint-based methods (Cao et al. [2003]; Bosco [2019]). Moreover, the
numerical resolution of the system of ODEs introduced numerical errors. Methods that account
for the discretization errors, such as the multilevel Monte Carlo method, could be considered for
the estimation of the model (Dodwell et al. [2015]; Beskos et al. [2017]; Heng et al. [2021]) and
its gradients (Jasra et al. [2021]).
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Chapter 8
Bayesian inverse analysis of the Mars
Science Laboratory atmospheric entry
data for aeroheating and material
response estimation

In this chapter, we infer the environment conditions at the surface of the MSL heat shield using
the flight data acquired during its entry into Mars’ atmosphere. The flight data considered
contain in-depth temperature measurements and the reconstruction of the surface conditions
is formulated as an inverse problem. We adopt a Bayesian probabilistic approach to account
for measurement uncertainties and the PATO software is used along with a polynomial chaos
expansion to approximate the computational model. In order to limit the error due to the in-depth
material response, PICA material properties are first calibrated using the data from the shallowest
thermocouple as boundary condition. Then, together with the calibrated material properties,
the environment conditions at the surface of the heat shield are reconstructed. This chapter
summarizes the work carried out at NASA Ames Research Center in 2019.

8.1 Introduction
Thermal protection system (TPS) thickness is typically determined by computing a nominal
thickness based on the predictions from numerical simulations of the aerothermal flow around
the spacecraft during the atmospheric entry and the response of the TPM exposed to the flow,
then mission margins are added to this thickness (Wright et al. [2014]). Accurately predicting
the aerothermal environment is of utmost importance as it strongly influences the final design
of the TPS, but it is a challenging task that is still an active research domain.

The predictions are subjected to large uncertainties due to inaccuracies in the models used
to represent the physics and their parameters, whose uncertainties impact the mission margins
as they reflect some engineer’s confidence in the simulations. For instance, for the Mars Science
Laboratory (MSL) TPS recession, a design margin of 150 % was applied (Bose et al. [2014]).
Ground test experiments are essential to asses the reliability of the TPS design and to improve our
confidence in the models used, but the actual flight environment may not be exactly reproduced
in ground facilities. Therefore, another way to improve our confidence in the models used in
the numerical simulations is to compare the predictions with post-flight data, when available.
This will ultimately allow to reduce the uncertainty in the predictions and TPS design for future
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(a) (b)

Figure 8.1: (a) Completed MSL heat shield and (b) MEDLI sensor locations (Cozmuta et al.
[2011]).

missions (Gazarik et al. [2008]).

On 5 August 2012, the Mars Science Laboratory (MSL) entered the atmosphere of Mars and
safely dropped off the 900 kg Curiosity rover on the surface of the planet. One of the key
component of the success of the mission is the TPS that was implemented on MSL (Edquist
et al. [2014]), shown in Fig. 8.1(a). The MSL heat shield was designed to withstand the high
heat load of the reentry and in particular the fully turbulent boundary layer transition (BLT)
that was expected to occur, which was unprecedented for past Mars missions. This led to
the use of the PICA material, developed by NASA, that already proved its efficiency for high
speed entries such as for the Stardust mission (Stackpoole et al. [2008]; Kontinos and Stackpoole
[2008]).

The scientific objectives of MSL are multiple, among which is the measurement of the
aerothermal environment and subsurface heating. To this end, the MSL heat shield was equipped
with numerous instrumentation devices. The Mars Science Laboratory Entry, Descent and
Landing Instrumentation (MEDLI), which was integrated inside the heat shield of the space-
craft, consists in pressure transducers (Mars Entry Atmospheric Data System (MEADS)), and
thermocouples for temperature measurement and isotherm sensors for recession measurements
(MEDLI Integrated Sensor Plug (MISP)). For MISP, the temperature data were successfully
delivered, but the recession measurements did not behave as expected (Mahzari et al. [2013]).

The MISP sensors consist in circular plugs formed from the heat shield TPS that are inte-
grated at seven locations of interests, as shown in Fig. 8.1(b). They were arranged in such a
way that they would allow to detect the boundary-layer transition and to measure the in-depth
temperature, thereby providing the measurements for enabling the reconstruction of the surface
heating (Edquist et al. [2014]). Each MISP itself contains four in-depth thermocouples (TCs)
embedded at increasing depths below the heat shield surface, which are numbered from TC1
at the top to TC4 at the bottom, with respective depths of 0.254 cm, 0.508 cm, 1.143 cm and
1.778 cm from the surface (Cozmuta et al. [2011]). The temperature measurements of each TC
were recorded during the entry phase. As an illustration, we provide in Fig. 8.2 the temperature
measurements of TC1 and the in-depth temperature measurements at the MISP3 position.

From Fig. 8.2(b), it can be seen that the boundary-layer transition occurs at five of the seven
measurement locations. At MISP1 and MISP4 locations, which are the closest to the stagnation
line, the transition was not observed. The time at which the transition occurs is around 65 s,
except for MISP5 which is around 71.5 s. For the latter, the bump that characterizes the
transition is barely noticeable and it is not certain that turbulent transition occurred.
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Figure 8.2: (a) Temperature data for the thermocouples closest to the surface (TC1) at every
plug (MISP) locations. MISP2 and MISP4 were removed from the graph for clarity, which data
are very closed to MISP3 and MISP1, respectively. (b) Zoom on the 60–90 s time frame where
turbulent transition is observed. (c) The four thermocouple temperature data (TC1 to TC4) at
the MISP3 location.

The overall objectives of the on-board instrumentation system is to better understand the surface
environment and the material response during the atmospheric entry. Analyzing the post-flight
data of the entry phase of the MSL will help to refine the models for both the entry environment
and the material response. For MSL, the thermocouples that provide the temperature measure-
ments are embedded within the heat shield, hence only allowing an indirect observation of the
conditions at the surface. Thus, the problem of reconstructing the surface conditions must be
formulated as an inverse problem.

There are a few studies that performed an inverse analysis for the reconstruction of the surface
environment conditions and material properties from the post-flight analysis of the MEDLI data
(Bose et al. [2014]; Mahzari et al. [2015]). Mahzari et al. [2015] perform an inverse parameter
estimation by using a numerical optimizer that features a least-square minimization algorithm
solved by the Levenberg-Marquartd method (Mahzari et al. [2011]). Optimization methods are
powerful techniques to find the best parameter values that fits the post-flight data. However,
they do not allow to account for the uncertainty from the measurement errors or from model
inadequacy. Mahzari et al. [2015] also performed sensitivity of material properties and showed
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that the heat capacity and thermal conductivity are driving parameters with a strong correlation,
henceforth making their simultaneous calibration difficult.

In this chapter, we propose to build-up on the previous study of Mahzari et al. [2015] and
address the inverse analysis of the MISP flight temperature measurements for the reconstruction
of material properties and environment conditions in a probabilistic framework. In order to
consider the uncertainties associated with the observations, a Bayesian approach is adopted.
The model parameters are considered to be random variables and the parameter distribution
is obtain by means of Bayes’ formula. The collected flight data are used to update the prior
parameter probability distribution and the measurement uncertainty is accounted through the
likelihood function. The material response is computed using the PATO software. The posterior
PDF can then be used for uncertainty propagation (Fig. 8.3), or for the comparison with CFD
simulations to assess the reliability of the models. In order to reduce the influence of the
in-depth material response on the reconstruction of the surface environment conditions, we
first calibrate the material properties that will provide best-fit parameter values but also the
probability distribution for quantifying their uncertainty. In the present work, the heat capacity
is fixed and the variability in the measurement errors is captured only through the thermal
conductivity parametric uncertainty. The material thermal conductivity is inferred by using the
top thermocouple data as boundary condition, referred to as the TC driver approach (Mahzari
et al. [2015]), such that this calibration does not depend on the surface environment. Then, we
reconstruct the environment using the data from the two first thermocouple measurements using
the calibrated material properties.

This chapter is organized as follows. We first start with a description of the methodology,
that is the material-response code PATO, the Bayesian approach and the polynomial chaos
approximation (Section 8.2). Then, we present the results for the calibration of the material
thermal conductivity (Section 8.3), and finally the results for the reconstruction of the environ-
ment conditions (Section 8.4).

8.2 Methodology for model parameter calibration and re-
building of surface conditions from flight data

For the design of TPSs and the analysis of material response, studies are usually performed in a
one-dimensional framework, where only the heat transfer towards the subsurface is considered.
We perform a similar one-dimensional analysis at each MISP location. The general methodology
used in this chapter for the inference of the material properties and the reconstruction of the
surface conditions is depicted in Fig. 8.3.

8.2.1 Calibration and propagation
First, a surrogate model, or emulator, for the material-response solver PATO is built. Although
a single computation of the one-dimensional model is relatively cheap, running thousands of
them for the Bayesian calibration could become rapidly unfeasible. Therefore, we apply the
PCE method, which was described in Section 5.5.2, to build a surrogate (cheaper) model that
will be used for the Bayesian calibration. The support for the surrogate is the support of the
joint prior probability distribution function, which is a uniform distribution. The joint prior
PDF is obtained from the tensor product of marginal uniform distributions assumed to be the
prior functions for the unknown variables. The PCE expansion described in Eq. (5.70) is for a
single scalar output, but can be easily extended to multidimensional outputs by collecting the
model response as a function of time Y = (η(t1, ξ), η(t2, ξ), . . . , η(tf, ξ)), where Y is a random
vector with values in Rf , for which a PCE is built at every time steps and the coefficients are
thus varying as a function of time.
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Figure 8.3: Schematic illustration of a one-dimensional parameter inference and uncertainty
propagation. A surrogate model is first built as a function of time from selected design points
from the prior distribution using Dakota. Posterior distribution is then inferred using Bayesian
inference (Quantification of Uncertainty for Estimation, Simulation, and Optimization (Queso)
package) and finally is propagated through the same surrogate model to obtain the quantity of
interest.

Next, the posterior distribution is computed by means of Bayes’ formula and the MCMC
method is used to draw samples from it. The samples drawn from the posterior can be propa-
gated through the surrogate model and used to characterize the quantities of interest (posterior
predictive checks), such as the thermocouple data, or used to compute the surface conditions.
The characterization and the propagation of uncertainty is performed using the numerical tool-
box Design Analysis Kit for Optimization and Terascale Applications (Dakota), developed at
Sandia National Laboratories (Adams et al. [2018]).

8.2.2 Material-response solver

The model used to simulate the material response is the PATO solver, developed at NASA
Ames Research Center (Lachaud and Mansour [2014]; Lachaud et al. [2017]). PATO implements
the volume-averaged Navier–Stokes equations (in the following, we will drop the symbol for the
averaging operator 〈·〉 for clarity) and therefore solves a momentum equation inside the material
(Darcy’s law), that was not allowed with previous material solver such as the FIAT solver (Chen
and Milos [1999]).
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Energy equation

The volume-averaged energy conservation equation implemented within PATO reads, in terms
of temperature, as (Lachaud et al. [2017]):

Nφ∑

i=1
[εiρicp,i∂tT ]− ∂x · (Keff · ∂xT ) = −

Nφ∑

i=1
[hi∂t(εiρi)]− ∂t(εgρghg − εgp) + ∂x · (εgρghgvg),

(8.1)

where Nφ denotes the number of phase in the material, that are the fibers and the pyrolyzing
phases. The second-order tensor Keff is the effective thermal conductivity. Quantities cp,i are
the specific heat capacities at constant pressure (J kg−1 K−1), hg is the specific enthalpy of the
gas mixture (J kg−1), εi are the volume fractions, in particular εg is the porosity, p is the pressure
(Pa) and vg is the gas velocity (m s−1). The quantities ρi denote the intrinsic densities, hence
the products εiρi represent the averaged densities. The energy dissipated due to the viscous
interaction between the solid phases with the fluid, and the species diffusion are neglected in
Eq. (8.1) (Lachaud et al. [2017]; Meurisse et al. [2018]).

Model for the effective thermal conductivity

The effective thermal conductivity Keff depends on the temperature and the state of decompo-
sition of the material. The effective thermal conductivity is assumed to be a linear function of
the advancement of the reaction and the values of the effective thermal conductivities for the
virgin and char materials are interpolated as

Keff(T, α) = Keff,v(T ) (1− α) +Keff,c(T ) α, (8.2)

where α is the global advancement coefficient of the pyrolysis reactions occurring within the
material and varies from 0 in its virgin state to 1 in its charred state. The advancement coefficient
is a function of the densities of the pyrolyzing sub-phases that are described by the system of
ODEs introduced in Section 3.3.2.

The effective thermal conductivity should account for conduction in the solid, conduction in
the gas, and the effective radiative heat transfer, which includes for instance the radiative heat
exchange between the fibers through the porous media. The values for the virgin and charred
effective thermal conductivities Keff,v and Keff,c are usually tabulated as a function of tem-
perature (Covington et al. [2008]). However, in order to perform model parameter calibration,
we need to provide a parameterized function for both Keff,v and Keff,c. For the present one-
dimensional analysis, assuming homogeneous and isotropic material properties, the second order
tensor Keff is a scalar, denoted by k (we drop the eff subscript for clarity), and the following
third order polynomial is assumed for both the virgin and char states:

ks = kcond,s + krad,s

(
T

Tref

)3
, (8.3)

where the index s stands either for the virgin state (s = v) or the char state (s = c) and Tref is
a reference temperature for normalization equal to 273.15 K.

Eq. (8.3), kcond,s encompasses a contribution from the conduction in the solid and within the
gas phase, although the latter is expected to be small as the pressure is relatively low. The term
krad,s encompasses the contribution coming from the radiation between solid phases within the
material separated by the gas phase. At low temperatures, radiation will be small and the main
contribution to the effective thermal conductivity is due to conduction. At higher temperatures,
the radiation is the dominant mode.



Chapter 8. Bayesian inverse analysis of the Mars Science Laboratory atmospheric entry data
for aeroheating and material response estimation 153

Porous domain
filled with resin

Slip adiabatic
walls

Adiabatic wall

29.21 mm

TC driver (TC1)
TC2

TC3

TC4

(a) p, he, ρeueCH

Porous domain
filled with resin

Slip adiabatic
walls

Adiabatic wall

31.75 mm

TC1
TC2

TC3

TC4

(b)

Figure 8.4: (a) One-dimensional computational domain with TC1 as boundary condition, used
for the calibration of material thermal properties. The part of the material above TC1 is not
simulated in the TC driver approach. (b) One-dimensional computational domain with the
heating on top of the material for the calibration of the environmental conditions.

8.2.3 Computational domain
Depending on either we consider the calibration of the material properties or the reconstruction
of the environment conditions, the computational domain and the boundary condition will be
slightly be different. The one-dimensional computational domains for the two cases are shown
in Fig. 8.4. For the calibration of material properties (Fig. 8.4(a)), that uses the TC driver ap-
proach, the temperature at the TC1 location (the shallowest thermocouple) is enforced from the
measured temperature as a function of time, and thereby constitute the top boundary condition.
The domain above TC1 is not simulated in this case and the total length of the sample is thus
equal to 29.21 mm. The mesh is fixed as there is no surface recession.

The computational domain for the calibration of the environmental conditions is shown in
Fig. 8.4(b). The top boundary conditions are imposed from the environmental conditions that
are the wall ressure p, the boundary layer edge enthalpy he and the heat transfer coefficient
ρeueCH . In this case, the surface is receding and the moving mesh is updated based on the
recession rate to account for the ablating surface. The total length of the sample is the total
PICA thickness, which is equal to 31.75 mm.

In both cases, the mesh is composed of 36 cells in depth with the minimum cell size at the
top and a cell width expansion ratio equal to 0.1. The bottom wall is assumed to be adiabatic
and the sides of the domain, that are used to replicate a one-dimensional domain, are slip walls
with adiabatic conditions. The pyrolysis considered is the model of Goldstein [1969] described
in Section 3.5.2. Properties of the pyrolysis gas were pre-computed assuming a gas at chemical
equilibrium and were tabulated as a function of pressure and temperature and provided as input
to PATO.

8.3 Results for the calibration and propagation of material
thermal property uncertainty

The estimation of the effective properties of a pyrolyzing material is not trivial. The properties
vary with the temperature but also with the advancement of the pyrolysis reactions that defines
the state of decomposition of the material (from virgin to char), which itself depends on the
heating conditions. It is usual to infer material properties from ground test experiments, yet
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they might be representative only of the heating conditions applied during the experiments and
for which the properties are calibrated. Their extension to flight conditions, which are not
exactly the same as the experimental conditions, might not be straightforward, such that the
properties estimated from ground tests are left with large uncertainties. Therefore, prior to
the reconstruction of the environment conditions, it is necessary to calibrate first the material
properties using the actual flight data.

8.3.1 Calibration of material thermal properties
Letm be a realization of the random vector of model parametersM with values in Rnu defined
on a probability space (Ω,B,P). For the calibration of the parameters of the effective thermal
conductivity from Eq. (8.3), we have nu = 4 with m = (kcond,v, krad,v, kcond,c, krad,c). We select
a uniform prior probability density π0 that reflects the lack of knowledge in the parameter values
and for which the support needs to be selected carefully. On the one hand, a support for the
prior that is too large will result in a polynomial chaos approximation that lacks accuracy. On
the other hand, a support that is too small may influence the posterior distribution. Based on
previous simulation results with varying prior supports, the following joint uniform distribution
is finally chosen:

π0 (m) =
{

1.33× 1020 if m ∈ [0; 0.5]×
[
0; 10−10]× [0; 0.5]× [0; 3e− 10] ,

0 else.
(8.4)

The likelihood function currently used in Dakota is a Gaussian likelihood, which is similar
to Eq. (7.8), and reads

π(Yobs|m) = 1√
(2π)nu Πnobs

i=1 Πnt
j=1σ

2
ij

exp


−1

2

nobs∑

i=1

nt∑

j=1
σ−2
ij

(
yobsij − gij(m)

)2

 , (8.5)

where nobs represents all the TCs measurements for MISP1, MISP2, MISP3, MISP4 and MISP6,
except from TC1 which is the boundary condition. Data for TC3 and TC4 at MISP5 and MISP7
were not recorded because of data channel limitations (Mahzari et al. [2013]) and were therefore
not included in the likelihood function.

Model error is not accounted and the weights represent the standard deviations on the data,
denoted by σij . The values for the σij need to be estimated from the raw measurements in order
to compute the likelihood function. However, the raw measurements were not provided and the
standard deviations on the measurements were not communicated, and therefore we assumed
a constant value of 10 K on all data. This value is based on the MSL project science (PS)
requirement that specifies the objectives and the desired accuracy of the measurements to be
made using the MISP system (Cozmuta et al. [2011]). In particular, the PS-368 requirement
states that the measured subsurface material temperature response should lie within ±12 %, as
a function of time in absolute value. Assuming that it represents the region of the distribution
encompassed by 2σ around the mean, which represents 95.5 % of the probability for a Gaussian
distribution and is therefore assumed to be equal to 20 K, our assumption slightly exceeds the
12 % at low temperatures, but is much more restrictive at high temperatures and is thus a good
compromise. We note that the choice for the standard deviations is important as their value di-
rectly affects the resulting posterior distribution on the parameters, and other assumptions could
be considered or if available, directly estimated from the raw measurements. The measurements
data and the standard deviations are plotted in Fig. 8.7.

The calibration is performed using Dakota (Adams et al. [2018]) with the Queso package for
the Bayesian calibration. First, an emulator is built by means of a polynomial chaos expansion
for the probability density π0 for each ηij , 1 ≤ i ≤ nobs, 1 ≤ j ≤ nt. The PCE coefficients are
computed using a nested sparse grid quadrature with a second-order sparse grid level quadrature
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rule computed using the isotropic Smolyak formula. For a uniform distribution, it corresponds
to the Gauss-Patterson quadrature rule. Then, the Bayesian calibration is run using a delayed-
rejection random-walk Metropolis–Hastings algorithm. The initial point for the Markov chain
is obtained by approximating the maximum a posteriori (MAP) point from the emulator using
a full Newton optimization algorithm, allowing us to start the chain from a region of high
probability and resulting in a short burn-in phase in the MCMC chain. The proposal covariance
is initialized by computing the inverse of the local Hessian, which is corrected in case where it
is indefinite. The chain is run for 104 iterations and the firsts 200 samples are discarded. The
9800 remaining samples are used to compute the statistics of interests, such as the credible and
prediction intervals. The results for the MCMC chain are shown in Fig. 8.5. The diagnostic of
the mixing of the chains is performed visually by assessing the marginal paths of the samples,
which seems to have appropriately explored the posterior distribution. As shown in Fig. 8.6, the
marginal posterior distributions estimated from the marginal paths are similar to a Gaussian
function.
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Figure 8.5: MCMC chains for the parameters of the effective thermal conductivity model. The
samples are shown after the burn-in phase.

In Fig. 8.6, the bivariate posterior distributions are also Gaussian-shaped with almost no
correlation. However, it is observed from the pairwise joint samples plots that krad,v and kcond,v
are clearly correlated, as well as krad,c and kcond,c. Hence, the virgin and the char effective
thermal conductivities do not depend on each other, while the conductive and radiative effects
covary. It is therefore difficult to infer directly on their value based on the mere knowledge of the
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temperature from thermocouple measurements. The coupling between radiation and conduction
will be the most visible in the intermediate range temperature, where both conduction and
radiation effects are of a similar order of magnitude.

In order to isolate the different contributions from conduction and radiation, one should use
an additional output signal to the temperature measurements. In Eq. (8.3), we assumed that
the conductivity term was a constant function of temperature. Based on this assumption, we
could for instance infer on the virgin and char values based on pure conduction experiments on
the char and virgin materials.
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Figure 8.6: Marginal and bivariate posterior distributions for the effective thermal conductivities
model parameters. Units are in W m−1 K−1 for the effective thermal conductivity parameters
and the probability densities have the inverse units of their variable(s).
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8.3.2 Posterior predictive checks
The samples drawn from the posterior PDF obtained after the Bayesian calibration are propa-
gated using Monte Carlo through the surrogate model build from the PC expansion. The results
for the thermocouple measurements at each MISP location are shown in Fig. 8.7. The intervals
represent the 95 % probability region using the samples from the MCMC chain and considering
the experimental uncertainties assigned (prediction intervals). It can be observed that all the
simulated temperatures are in good agreement with the experimental measurements and the
simulated uncertainty ranges fall reasonably well within the post-flight data uncertainty ranges.
On the contrary, the uncertainty ranges resulting only from the parameter uncertainty (credible
intervals) are an order of magnitude smaller and not visible on the graphs. This small parame-
ter uncertainty results from the fact that the data present low variability and the uncertainty is
mostly accounted for by the measurement noise. However, care must be taken as the the actual
post-processing of the data was not communicated and any prior filtering of the data could have
reduced the inferred parameter uncertainty.

Concerning the reliability of the model to represent the data, we can observe that most of the
mean values fall within the experimental uncertainty ranges, except for the maximum tempera-
ture that is underestimated by the model for MISP4 at TC2 (blue curve) and overestimated for
MISP6 at TC3 (orange curve), and a general trend to overstimate the temperature for t > 200 s
at TC for all plugs. Also, one can notice the small bump around 100 s at TC4 that is visible
at almost all MISPs locations, and to a lesser extent at TC3 around 75 s, in which cases the
simulated temperature are outside the flight data range that, showing that the model is not able
to capture this feature. This bump can be attributed to the release of water vapor that is not
accounted for in the model. This model error that is not accounted in the present analysis may
have an effect on the resulting posterior by shrinking the distribution.

Finally, the graph in Fig. 8.8 analyzes the effective virgin and char thermal conductivities with
their uncertainty ranges as a function of temperature and compares them to the values proposed
in Covington et al. [2008] for PICA, which were obtained by matching FIAT model predictions
to experimental arc-jet data, to the values from the TACOT material (Lachaud et al. [2011c]),
which has similar properties to PICA, and to the values for the Zuram material. The results
of the present calibration lie between the thermal conductivites for PICA and TACOT. It is
interesting to observe that in the present analysis, the virgin and char conductivities does not
have the same value, whereas it was the case for the properties of the other material, except for
T > 1100 K for Zuram. Here, the thermal conductivity of the virgin material is lower than the
char, then the two curves cross each other at 1035 K and finally the trend reverses afterwards.
It that sense, it is closer to the Zuram values, where the virgin conductivity is first higher than
the char conductivity. However for the Zuram, the two values collapse after 1110 K, because at
higher temperature there is almost no resin left. Assessing and measuring the conductivity of the
material during pyrolysis is not trivial and is an on-going research area. Notably, the assumption
of a virgin thermal conductivity at high temperatures is questionable: at those temperatures,
the resin has already reached an advanced state of decomposition. Thus, the relation used from
Eq. (8.3) is purely empirical and the calibrated parameters only correspond to the present flight
conditions.
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Figure 8.7: Propagation of material property uncertainty characterized by the MCMC samples
shown for the simulated thermocouples data as a function of temperature for (a) MISP1, (b)
MISP2, (c) MISP3, (d) MISP4, and (e) MISP6. The continuous lines represent the means and
the thin shaded areas around the means are the 95 % prediction intervals. On each plot, the
curves represent the measurements for TC2, TC3 and TC4 from top to bottom, respectively.
The actual post-flight data are depicted by dots with error bars that represent two times the
standard deviation.
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Figure 8.8: Comparison of the calibrated thermal conductivities as a function of temperature
with the values from Covington et al. [2008] (triangle up markers), values from TACOT (triangle
down), Zuram database (circles). The continuous lines (blue) are the virgin conductivities and
the discontinuous lines are (orange) are the char conductivities. The shaded areas represent the
total probability interval.
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8.4 Rebuilding of the environment conditions
In this section, we address the reconstruction of the environment from the thermocouple mea-
surements and their uncertainty. The methodology is similar to as in the previous section, except
that now the computational domain (Fig. 8.4(b)) represents the whole thermal protection ma-
terial thickness and the top boundary condition is the aerothermal environment. We also note
that, while in the previous section a common value for the thermal conductivity at all MISPs
was used thanks to the assumption of the homogeneity of the material properties, this can no
longer be the case for the surface environment conditions which evolve along the heat shield
surface. Thus the reconstruction of the environment conditions has to be performed separately
at each MISP position. There are two additional challenges that need to be addressed, related to
the selection of the prior domain and to the turbulent transition at the surface of the material.

Challenge in selecting the prior domain for the PCE construction

Because the boundary conditions are unknown, there might be an issue in building the surrogate
model due to the divergence in the material response solutions at a given depth within the
material, in particular for the thermocouple closest to the surface (TC1). A small variation
in the boundary conditions may ultimately lead to a recession of the surface that reaches the
thermocouple position and results in its destruction (burn out). For instance, a combination of
a high boundary layer enthalpy and a high heat transfer rate may lead to a situation where the
surface of the material actually reaches TC1. When such a condition occurs, PATO automatically
sets the thermocouple value to zero, as illustrated in Fig. 8.9, thereby degrading the quality of
the fit of the polynomial chaos expansion when incorporating such a solution in the model
approximation.

Figure 8.9: Illustration of the case of a higher surface heating that leads to a recession of
the surface below the location of TC1 and before TC2. The numerical solver PATO sets the
temperature numerically to zero, which value should not be used in the PCE construction.

Anticipating a priori which conditions will lead to the burn out of the thermocouple is not
obvious. Fortunately, the burn out of thermocouples was not observed during the atmospheric
entry of MSL and the prior domain, that defines the bounds of the initial parameter support,
must be selected carefully in such a way that no burn out is observed. In practice, the prior
domain is obtained by trial-and-error: when the parameter values at the extremities of the
prior distribution lead to a surface recession that ultimately reaches the thermocouple, the prior
domain is slightly reduced until no burn out of the top thermocouple is observed.
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Challenge with turbulent transition

Pre- and post-flight analyses demonstrated that turbulent transition was present at most MISP
locations before peak heating. BLT and transition times can be observed (with some delay) on
top thermocouple (TC1) temperature data for which a sudden change can be observed in the
temperature curve, as seen in Fig. 8.2(b). BLT is still visible on deeper TCs but its impact is
milder. Because of the transition to turbulence, the functional assumed for the transfer coefficient
can vary from one location to the other.

We assume the heat transfer coefficient to be a sum of NM Gaussian-shaped functions pa-
rameterized as:

ρeueCH =
NM∑

i=1
CaH,i exp

(
− (t− tµ,i)2

t2σ,i

)
, (8.6)

where CaH is a constant that has the units of ρeue (kg m−2 s−1), tµ (s) denotes the mean
of the Gaussian, which controls its position, and tσ (s) denotes the standard deviation of the
Gaussian and controls its width. While the assumption of a single Gaussian-shaped function
seems reasonable at the MISP locations where no transition occurs, it may not be able to
represent the heat transfer coefficient where transition occurs. Indeed, the transition induces
a change in the curve for the heat transfer coefficient that can not be captured by a single
Gaussian function. By having a sum of Gaussian functions, one can represent rapid changes in
the heat transfer coefficient, for instance, by tuning the value of the standard deviation tσ of the
individual functions: a low value will result in a sharp increase of the heat transfer coefficient,
hence allowing to represent the transition to turbulence, and a high value will represent a slower
increase. In practice, we will not use more than two components in the sum from Eq. (8.6),
where the second function is narrower and will help to capture the a rapid change in the curve.

The BL edge enthalpy does not depend on whether the BLT occurs or not, and is parame-
terized by the following third order polynomial:

he = he,0 + he,1

(
t

t0

)
+ he,2

(
t

t0

)2
+ he,3

(
t

t0

)3
, (8.7)

where t0 is a reference time for normalization taken to be equal to 1 s. We assume the pressure
to be known (which in practice has little uncertainty), whereas the parameters for modeling the
heat transfer coefficient and the enthalpy are considered to be uncertain.

8.4.1 Results of the calibration and posterior predictive checks
In the following, the environment conditions are calibrated at MISP3 and MISP4 positions. The
material conductivity is fixed at the MAP value obtained in the previous section.

At MISP3, the transition to turbulence occurs and a two-component Gaussian mixture is
assumed for the heat transfer coefficient, which results in 6 parameters to be calibrated. For the
enthalpy, only the leading coefficient he,0 is assumed to be unknown for simplicity. Thus, we
have nu = 7 with m =

(
CaH,1, tµ,1, tσ,1, C

a
H,2, tµ,2, tσ,2, he,0

)
. The support S of the uniform prior

PDF is given in Table 8.1 which provides the lower (Lb) and upper (Ub) bounds of the support
in each dimension. The prior expresses as

π0 (m) =





1
Ub,i − Lb,i

if m ∈ S,

0 else.
(8.8)

The MCMC chains are shown for CaH,1, tµ,1, tσ,1 and he,0 in Fig. 8.10. A total of 104 MCMC
iterations are run and the 200 first iterations are discarded. All the parameters seem to have
converged with a good mixing (also for the CaH,2, tµ,2, tσ,2 that are not showed). The estimated
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Figure 8.10: MCMC chains for selected parameters for the heat transfer coefficient and the BL
edge enthalpy at MISP3.

marginal and bivariate posterior probability densities for the same parameters are shown in
Fig. 8.11. We can observe a negative correlation between he,0 and the three parameters from
the Gaussian function. This behavior is expected, as an increase in the boundary layer edge
enthalpy value must result in a decrease in the heat transfer coefficient value in order to keep
the overall heat transfer constant.

The simulated temperatures for TC1 and TC2 at MISP3 obtained at the sample values are
shown in Fig. 8.15(a) and are compared to the actual flight data (dotted lines). The propagated
temperatures are in good agreement with the thermocouple temperature data. Some discrep-
ancies are observed at TC1, which is the closest to the surface, but it is almost in a perfect
agreement at TC2. Indeed, the effects of the surface conditions are less visible on deeper ther-
mocouples. The transition to turbulence is also well captured by the two-component Gaussian
function for the heat transfer coefficient, with once again a better agreement for TC2, and the
computed uncertainty ranges reproduce the data well.

The propagation of the MCMC samples through Eq. (8.6) and Eq. (8.7) are shown in Fig. 8.12
and compared to the values provided from CFD simulations. In this case, the comparison of
the calibrated environment with the CFD does not provide a satisfactory agreement, except for
t < 48 s and t > 110 s for the heat transfer coefficient. The curves provided from the CFD
simulations feature discontinuities whereas the calibrated curves are smooth.

Therefore, whereas the reconstructed environment seems to be in good agreement with the
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Table 8.1: Values of the bounds of the prior support for MISP3.

CaH,1 tµ,1 tσ,1 CaH,2 tµ,2 tσ,2 he,0
(kg m−2 s−1) (s) (s) (kg m−2 s−1) (s) (s) (J kg−1)

Lb 0.005 50 5 0.035 50 5 0.7e7
Ub 0.03 100 35 0.052 100 20 2e7

calibration data from TC1 and TC2 and allows to simulate with a good accuracy the temperature
profiles, it seems that it is not in agreement with the CFD results. Moreover, the measurement
errors only result in small uncertainty on the parameter and can not explain the observed
differences.
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Figure 8.11: Selected marginal and bivariate posterior probability densities for the parameters
of the heat transfer coefficient and BL edge enthalpy at the surface of MISP3. The probability
densities have the inverse units of their variable(s).
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Figure 8.12: Comparison of CFD (red line with markers) and reconstructed environment using
Bayesian calibration at MISP3 for (a) heat transfer coefficient (b) BL edge enthalpy. The
continuous lines (in blue) are the median values and the shaded areas are the total (100 %)
probability interval that represent the uncertainty due to the overall model parameter variability.

At MISP4, where no transition to turbulence is observed, a single Gaussian function for ρeueCH
(in the following, we drop the index i = 1) is used for the heat transfer coefficient. Only two
parameters are assumed to be uncertain, namely CaH and tµ, whereas tσ is fixed to 27.88 s.
The burn-out of TC1 was observed when considering the latter to be unknown. Again, for the
enthalpy only the leading coefficient he,0 is assumed to be unknown. Hence, nu = 3, m =
(CaH , tµ, he,0) and π0 (m) is the uniform distribution from Eq. (8.8) with support [0.01; 0.04] ×
[50; 100]× [0.7e7; 2e7]. The delayed-rejection Metropolis–Hastings algorithm is run for 104 itera-
tions and the MCMC chains for the three parameters are shown in Fig. 8.13. The chains are well
mixed for the three parameters. Bivariate and marginal posteriors are shown in Fig. 8.14. As for
MISP3, we can observe a negative correlation between he,0 and the two other parameter, which
is even more pronounced in the case of the he,0 and CaH parameter pair. This high correlation
suggests that one cannot simultaneously identify the value of these two parameters using only
the current thermocouple observations, and results in an increase in the parameter uncertainty.

From the result in Fig. 8.15(b), the single Guassian function seems to be in agreement with
the general trend of the temperature curve, except for a shift in TC1 that is observed around
the maximum temperature and the temperature that is slightly overestimated for TC2 around
50 s.

Both for MISP3 and MISP4, one can note that the computed probability intervals are larger
than the ones computed for the calibration of the material properties from Fig. 8.7. Compared
to Fig. 8.7 less temperature data are used in the likelihood function. Indeed, only the two top
TC data are used at a single MISP, while in Fig. 8.7 all the MISPs and the three bottom TC
data are included. In agreement with the Bayesian tenets, this results in less confidence on the
calibrated parameters and propagated probability intervals that are smaller.

8.5 Summary and perspectives for future work

In the first part of this chapter, we addressed the inference of material thermal conductivity in
a Bayesian framework. We observed correlations between the virgin radiative and conductive
coefficients, and between the char radiative and conductive coefficients, showing that the radia-
tive and conductive contributions could not be separated. However, no correlation between the
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Figure 8.13: MCMC chains for the parameters for the heat transfer coefficient and the BL edge
enthalpy at MISP4.

virgin and the char coefficients was observed, showing that the virgin and char contributions can
be isolated (at the temperatures considered).

We were able to simulate the thermocouple data and their uncertainty with good accuracy.
The PDFs on the calibrated parameters showed little uncertainty on the parameter values, which
can be understood from the relatively high number of data used for the inference. Hence, we
could highlight model error, such as the release of water vapor that was not accounted by the
material response model, which could in turn have an effect on the posterior distribution. This
model error could be included in the uncertainty analysis by incorporating an additional term
in the statistical model (Kennedy and O’Hagan [2001]), or by providing more flexibility in the
likelihood function by introducing an additional free parameter as discussed in Chapter 7.

In the second part of this chapter, we presented the results for the reconstruction of the environ-
ment (convection at the wall and BL enthalpy) using data from the two shallowest thermocouples.
We emphasized the issue in the assessment of the prior distribution for the construction of the
PCE due to the high sensitivity of the material recession on environment conditions and the pos-
sible burn out of TCs, and the issue of turbulent transition on the assumed boundary condition
functional. We showed that the environmental conditions could be reconstructed from the TC
measurements using a one or two-component Gaussian function for the heat transfer, depending
on whether turbulent transition occurs or not, and a polynomial function for the boundary layer
edge enthalpy. Again, the Bayesian inverse procedure allowed us to simulate with good agree-
ment the flight thermocouple temperature data and their uncertainty. However, the comparison
with the surface conditions provided from CFD results did not show to be in agreement with
the reconstructed curves. Discrepancies between the predicted and reconstructed environments
could be due to physical phenomena that are not accounted in the CFD model, but it would
be first needed to investigate other methods for the reconstruction of the environment. Future
studies could investigate different functions for the heat transfer coefficient and the BL edge en-
thalpy, or, for the latter, include more uncertain parameters. We further note that the rebuilding
was performed using MAP value for the material parameter conductivity, and its uncertainty
should also be included in the analysis, for instance, by inferred all parameters at the same time.
We also observed a correlation between the parameter from the BL enthalpy and the parameters
from the heat transfer coefficient, which could indicate that one cannot simultaneously identify
their values based only thermocouple data, and that other measurements should be used, such
as the surface recession, which was not usable in the case of MSL.

The comparison with CFD results was performed only at MISP3, but it should also be done
at other locations. For the comparison, it would also be valuable to compute the uncertainty in
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Figure 8.14: Marginal and bivariate posterior distributions for model parameters of the envi-
ronment conditions at the surface of MISP4. The probability densities have the inverse units of
their variable(s).
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Figure 8.15: Comparison of the calibration data and the posterior predictions. TC1 (blue) and
TC2 (orange) measurements with data (dotted line with standard deviation), PATO results
(continuous line) for (a) MISP3 and (b) MISP4.

the surface condition by propagating the uncertainty in the post-flight parameters measurements
(e.g. angle of attack or vehicle velocity) directly using the CFD solvers (e.g. LAURA (McNeil
and Peter [1996]) or DPLR (Wright et al. [2009])), see for instance Hosder and Bettis [2012], for
which the methodology could be used to obtain input heat flux uncertainty.

Finally, for both the calibration of the material properties and environment conditions, a
constant value of 10 K was assumed for the standard deviations on the measured temperatures.
It could be interesting to investigate the effect on the resulting posterior distribution when this
value varies as a function of temperature (e.g. by considering a ±12 % value as a function of
time). If the raw flight data can be provided, an estimation of the standard deviation could be
computed, or it could be included as a hyperparameter and inferred together with the material
parameters. Obviously, larger standard deviations on the temperatures would results in a wider
uncertainty on the parameters and the propagated quantities of interest.
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Chapter 9
Propagation of uncertainty in pyrolysis
model parameters for a Martian
atmospheric reentry

This last chapter is concerned with the propagation of uncertainty in the pyrolysis kinetic pa-
rameters and mass coefficients to study the uncertainty in the heat shield recession, temperature
and gas production. We demonstrate the use of the identified six-reaction pyrolysis model in a
3D numerical simulation of heat shield decomposition during a Martian entry. The pyrolysis
model parameters are considered as uncertain input parameters and the posterior probability dis-
tribution resulting from the Bayesian approach to parameter inference is fully characterized by
the samples from the Markov chain. The samples are propagated through the high-fidelity PATO
numerical solver using the Monte Carlo approach. I would like to acknowledge J. Meurisse for
the discussions and for generating the meshes for the MSL simulations.

“Prediction is very difficult, especially if it’s about the future.”
Niels Bohr

9.1 Introduction
For the assessment of TPS margins, there is a need to predict the contribution of the uncertain
parameters on the surface recession and heat shield temperature, which drive the design of the
TPS and for which the predictions are still largely uncertain. Among all the input parameters,
pyrolysis model parameters are expected to play a significant role (Rivier et al. [2019]). Indeed,
the effective material properties are directly influenced by the resin decomposition rate through
the advancement coefficient, which in turn influence recession and sub-surface temperature. The
species production, which is proportional to the mass fractions, is also expected to have a large
impact on the boundary layer gas composition which may encompass species that can further
radiate and increase the overall heat shield temperature. Predicting the boundary layer gas com-
position is crucial to understand the contribution of the radiative heat flux to the heat shield,
which can constitute an important part of the total heat flux. For instance, recent measurements
from the Schiaparelli lander highlighted the important contribution of the radiative heat flux on
the back cover of the heat shield (Gülhan et al. [2019]). A maximum radiative contribution of
61 % of the total heat flux towards the back cover was measured at 115 s after the beginning of

169
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the atmospheric entry. Therefore, accurately predicting the boundary layer gas composition will
allow to better characterize species radiation. Hence, in this chapter, we seek to propagate the
uncertainty in pyrolysis model parameters, characterized by PDFs on the input model param-
eters, through numerical solvers in order to assess the output PDFs on recession, temperature,
as well as on the species production at the surface of the heat shield.

Several studies already considered the propagation of input PDFs for quantifying the un-
certainty in the modeling of TPS for atmospheric entry. Copeland et al. [2012] used the direct
Monte Carlo method to perform uncertainty quantification in one-dimensional material response
simulations using the FIAT code. The input PDFs considered were the material density, specific
heat and thermal conductivity (both char and virgin), which were characterized by means of
normal distributions with hyperparameters estimated from available experimental data. They
compared the Pearson correlation coefficients and Sobol indices for global sensitivity analysis
and showed that a nonlinear analysis of the uncertainty is necessary. In order to determine the
distribution of the quantity of interest with a good accuracy, a large number of Monte Carlo
simulations may be required which can be computationally expensive. In order to reduce the
computational time of the Monte Carlo method, Anzalone et al. [2016] applied the Quadradure
Methods of Moments, in which moments of the input distributions are propagated to obtain
moments on the quantity of interest, and they studied the influence of material parameters
on the surface recession rate using a one-dimensional ablation code. Frequently, the numerical
model considered is also computationally expensive, and methods that seek to approximate the
computationally expensive model by a (cheaper) surrogate model are preferred. Polynomial
chaos methods have received a lot of attention in the past years, as for instance in Hosder and
Bettis [2012] who performed uncertainty propagation and sensitivity analysis for non-ablating
TPMs using a non-intrusive polynomial chaos method. They studied the uncertainty in the
heat flux at the surface of the material due to uncertainties in the freestream, the recombination
efficiency due to wall catalysis and binary-collisions integral using CFD simulations (using the
DPLR code). Turchi et al. [2017b,a] used polynomial chaos for uncertainty propagation and
apply an anchored analysis of variance (ANOVA) (Tang et al. [2015]) method for sensitivity
analysis to study the influence on surface mass blowing and surface temperature using the VKI
Stagnation Line code. Rivier et al. [2019] also used the polynomial chaos and anchored-ANOVA
methods using PATO for the PICA ablative TPM. Independent uniform input probability dis-
tributions were assumed and it was shown that parameters from pyrolysis reactions, such the
activation energies, the pre-exponential factors or the pyrolysis gas composition, contribute to
the uncertainty on the material recession, char and virgin fronts and surface temperature.

Past studies usually consider standard distributions as input PDFs and neglect potential cor-
relations between the parameters. In Section 7.4, we inferred the uncertainty in pyrolysis model
parameters in a Bayesian framework and probability distributions were directly obtained from
experimental data. We did not introduce additional stochastic terms in the pyrolysis model in
order to allow the identified pyrolysis model to be used in material response codes for numerical
simulations of heat shield decomposition in atmospheric entries without requiring stochasticity
to be implemented explicitly inside these codes. Notably, our approach allows the uncertainties
associated with the identified pyrolysis model to be propagated through such a numerical simula-
tion in an atmospheric entry by using a Monte Carlo approach implemented as a wrapper around
the code. The probability distribution on the pyrolysis model parameters can be non-standard
with correlated variables, of high dimension and the samples drawn through MCMC methods
can be correlated. The Monte Carlo approach for uncertainty propagation has the additional
advantage of being insensitive to the curse of dimensionality and of being applicable to any type
of distribution provided that we can draw samples from it. The deterministic pyrolysis model
is thereby provided to the material-response code PATO, which is then run for multiple values
of the model parameters drawn from the posterior. In this chapter, we demonstrate such a use
of the identified pyrolysis model in a numerical simulation of heat shield decomposition during
a Martian entry.
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This chapter is organized as follows. In Section 9.2, we describe the numerical set-up con-
sidered for the simulations of the Martian atmospheric entry and we compare the result for the
nominal parameter values using the six-reaction pyrolysis model and the two-reaction pyrolysis
model from Goldstein [1969]. In Section 9.3, we present the results of the uncertainty propa-
gation on the heat shield recession, the surface and in-depth temperatures, and the surface gas
composition. Finally, the conclusions are presented in Section 9.4.

9.2 Numerical model

We consider a reentry in the atmosphere of Mars and a thermal protection system similar to
the MSL heat shield. Deterministic simulations of an atmospheric entry on Mars using PATO
were already performed in Meurisse et al. [2018] and we consider a similar numerical set-up. The
MSL heat shield is a rigid 4.5 m diameter spherically-blunted half-angle cone made up of 113
PICA tiles that are assembled together with a silicone elastomer bonding (Edquist et al. [2009];
White et al. [2013]), see Fig. 8.1(a). A uniform PICA thickness of 31.75 mm was established to
be sufficient to withstand the reentry at an acceptable risk (Wright et al. [2014]).

The PATO software (Lachaud and Mansour [2014]), developed at NASA Ames Research
Center, is used to perform 3D simulations of the full heat shield during an atmospheric entry.
PATO solves the conservation equations of solid mass, gas mass, gas momentum and total energy
for a porous reactive material using the volume-averaged formulation, which was described in
Section 2.3. Assuming local thermal equilibrium at the pore scales, material pyrolysis decompo-
sition, production of gases from the pyrolysis reactions and ablation, and homogeneous chemical
reactions in the gas phase are modeled. The heterogeneous chemical reactions (gas-surface inter-
actions) are represented using equilibrium chemistry models that are preferred for design due to
the lack of reliability of available finite-rate chemistry models and data (Meurisse et al. [2018]).

9.2.1 Pyrolysis model in PATO
The parameters of a six-reaction pyrolysis model were inferred in Section 7.4. However, because
of the difference between the pyrolysis model implemented in PATO (see Lachaud et al. [2017])
and the model described in Eqs. (3.11)–(3.13), the values for the mass fractions F, for which the
MAP values are summarized in Table C.1, need to be slightly adapted.

The pyrolysis model implemented in PATO is a general model that consider 1 ≤ i ≤ Nφ
decomposing phases, each of which has different sub-phases to model its 1 ≤ j ≤ Np degra-
dation mechanisms (that are the fictitious pyrolyzing components of the resin, as described in
Section 3.3.2). The total production rate (kg m−3 s−1) of species (or element) 1 ≤ k ≤ Ng in
the gas mixture is expressed in terms of density variables and writes as

πk(t) =
Nφ∑

i=1

Np∑

j=1
γijkεi,0ρi,0wij

dαij
dt

(t), (9.1)

where αij denotes the advancement coefficient of the reaction, εi,0ρi,0 the initial averaged density
and γijk the mass coefficient of species k for the phase i and sub-phase j.

The model from Eqs. (3.11)–(3.13) is expressed as a function of the total initial mass of the
sample m0, or dividing by the volume, the total solid density ε0ρ0, and not in terms of the single
initial resin content (i = 1) ε1,0ρ1,0 for carbon/phenolic TPM. The calibrated parameters need
to be corrected in order to be compatible with the model implemented in PATO. The total solid
density is the sum of the fiber and resin densities, ε0ρ0 = εf,0ρf,0 + ε1,0ρ1,0

1, hence, Eq. (9.1) for

1For the PICA TPM, the averaged densities are εfρf = 160 kg m−3 and ε0ρ0 = 280 kg m−3.
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Table 9.1: Nominal value for the elemental mass fractions of the pyrolysis gas produced by the
six-reaction pyrolysis model.

C H O
R1 0.243 0.034 0.723
R2 0.524 0.063 0.413
R2 0.664 0.075 0.261
R4 0 1 0
R5 0.714 0.073 0.213
R6 0.323 0.039 0.638

the single phenolic pyrolyzing phase (Nφ = 1 and we drop the index i), can be written as

πk(t) =
Np∑

j=1
γjkε0ρ0

(
1− εf,0ρf,0

ε0ρ0

)
wj
dαj
dt

(t), 1 ≤ k ≤ Ng. (9.2)

By equating Eq. (3.13) (divided by the volume) and Eq. (9.2), the mass fractions Fij calibrated
in the previous chapter can be expressed as

Fij = γijwi

(
1− εf,0ρf,0

ε0ρ0

)
, 1 ≤ i ≤ Np, 1 ≤ j ≤ Ng. (9.3)

The inputs for the pyrolysis model in PATO are the γij and the wi. One can compute their
value by summing over the species

Ng∑

j=1
Fij =

(
1− εf,0ρf,0

ε0ρ0

)
wi

Ng∑

j=1
γij

︸ ︷︷ ︸
=1

, (9.4)

and the relative weights wi can be computed from

wi =
∑Ng
j=1 Fij(

1− εf,0ρf,0
ε0ρ0

) . (9.5)

Therefore, each Fij is divided by a factor equal to approximately 0.43 which represents the ratio
of the mass (density) of the initial resin with the total mass (density) of the sample, and the γij
can readily be retrieved through Eq. (9.3).

9.2.2 Pyrolysis gas chemistry
The chemistry of the gas phase is assumed to be at equilibrium, and only the mass fractions of the
elements produced by the pyrolysis have to be provided, which are carbon, hydrogen and oxygen.
The equilibrium chemistry assumption allows to reduce the number of independent variables that
are solved by the numerical solver compared to a finite-rate chemistry model and reduces the
computational time of the simulations. The open source library Mutation++ (Scoggins et al.
[2020]), developed at the von Karman Institute for Fluid Dynamics, is used to compute thermo-
dynamic and transport properties of the equilibrium gas from the local pressure, temperature
and elemental composition.

In the mass conservation Eq. (2.35), the element production resulting from the pyrolysis
decomposition appears as a source term. Often, material codes assign to each pyrolysis reaction



Chapter 9. Propagation of uncertainty in pyrolysis model parameters for a Martian
atmospheric reentry 173

a constant pyrolysis gas composition with elemental mass fractions equal to 0.51, 0.14 and 0.36
for carbon, hydrogen and oxygen, respectively, resulting in a 50 % char residue after completion
of the pyrolysis reactions (Sykes [1967]). In Section 7.4 we inferred on the species production
and the elemental composition can be retrieved for each of the pyrolysis reaction, knowing the
mass fractions and the composition of the pyrolysis gas from the reaction scheme in Eqs. (7.17)–
(7.22). Indexing the elements by k = 1, 2, 3 for carbon, hydrogen and oxygen, respectively, the
mass fraction for the production of the element 1 ≤ k ≤ Ng from the i-th pyrolysis reaction,
1 ≤ i ≤ Np, writes as

zik =
∑Ng
j=1 γijZk(Sj)Mk

∑Ng
j=1 γijZC(Sj)MC + ZH(Sj)MH + ZO(Sj)MO

, (9.6)

where Zk(Sj) is the number of atoms of the element k in the species Sj . The values that
correspond to the MAP, further referred to as the nominal values, for the elemental pyrolysis gas
composition produced by each of the pyrolysis reaction computed from Eq. (9.6) is summarized
in Table 9.1. The input PDF for the elemental pyrolysis gas composition for each reaction is
obtained by computing Eq. (9.6) for each of the sample drawn from the input PDF.

In the case of the six-reaction pyrolysis model, inferred from the experiments of Bessire
and Minton [2017], the elemental compositions of the gas produced by each pyrolysis reaction
(Table 9.1) are different. Comparatively, the global elemental composition of the overall pyrolysis
reaction is equal here to 0.61, 0.07 and 0.34 for carbon, hydrogen and oxygen, respectively, hence,
more hydrogen and less oxygen are produced by the six-reaction model. The char residue left
from the pyrolyzing resin is equal to 40 %, which is less than what is assumed in current state-
of-the-art models.

9.2.3 Mesh and issues regarding the in-depth resolution
The mesh, shown in Fig. 9.1, is a monolithic simplification of the tiled configuration of the
manufactured heat shield. A comparison of a 3D tiled with a 3D monolithic heatshield model is
performed in Meurisse et al. [2018], and showed differences for the in-depth temperature but the
two model yielded very closed results for the surface temperature. The physical time interval
takes place between 50 s and 100 s along the reentry path, during which the pressure peak and
the peak heating on the heat shield occur. The aerothermal boundary conditions are provided
from hypersonic CFD simulations, which are considered to be deterministic (Meurisse et al.
[2018]).

Meshes with 26k cells (15 cells in depth), 64k (37) and 103k (60) were investigated. Issues
were observed for the six-reaction pyrolysis model for the 26k and 64k cells, as illustrated in
Fig. 9.2, which shows the surface pyrolysis flux at the nose and the lee side. As it will be
showed in the next section, the pyrolysis flux that is produced with the six-reaction pyrolysis
model increases faster than with previous pyrolysis models, such as the two-equation model from
Goldstein [1969]. During the first 5 s of the simulation, the pyrolysis production rises quickly
and intensively, and the mesh with 26k and 64k cells does not provide a satisfactory solution,
and refining the mesh allows to better capture these high fluxes. The mesh with 103k cells was
found to provide sufficient accuracy, for which neither oscillations (as in Fig. 9.2(a)) nor rapid
increases (as in Fig. 9.2(b)) in the fluxes were observed for the nominal (MAP) solution.

9.2.4 Comparison with a two-equation pyrolysis model
The comparison between the nominal temperature obtained with the six-reaction model and the
two-reaction model from Goldstein [1969] (see Section 3.5.2) is shown in Fig. 9.3. The surface
temperature at the nose and in-depth temperatures at the nose and the wind sides, whose
positions are summarized in Table 9.2, are represented on the graph.
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(a) (b)

Figure 9.1: Illustration of the mesh for the MSL heat shield. View from the front (a) and the
side (b).
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Figure 9.2: Total pyrolysis production rate with the six-reaction model for increasing in-depth
mesh cells. (a) Nose, and (b) lee side.

Discrepancies between the results obtained with the two-reaction model and the six-reaction
model can be observed. At the surface and for the two shallowest probes (probe 1 and probe
5), between 52 s and 64 s, the predicted temperature is higher with the two-reaction model, and
between 64 s and 74 s it is lower than the temperature predicted with the six-reaction model.
Deeper below the surface, the two-reaction model is predicting a higher temperature than the
six-reaction model over the whole time domain.

In Fig. 9.4, we compare the nominal solutions for the pyrolysis production rate. At all
probes, it is observed that the six-reaction model is producing pyrolysis gas much faster and
more acutely than the two-reaction model. Pyrolysis reactions are endothermic, hence they
absorb the heat and the temperature of the material increases more slowly than if there was no
reaction. Therefore, because the pyrolysis reactions are slower with the two-reaction model than
with the six-reaction model, the temperature reaches first higher values with the two-reaction
model, as it was observed in Fig. 9.3. Then, close to the surface, the pyrolysis reactions reach
completion, and the temperature increases faster with the six-reaction model, whereas they are
just triggered with the two-reaction model, thus attenuating the increase in the temperature
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Table 9.2: Heat shield embedded probe positions. Probes 1–4 are below the heat shield “nose”
position and probes 5–8 are below the “wind side” (see later in Table 9.3).

Position x (m) y (m) z (m)

Probe 1 0.00254 0.0 0.0
Probe 2 0.00508 0.0 0.0
Probe 3 0.01143 0.0 0.0
Probe 4 0.01778 0.0 0.0
Probe 5 0.726 -0.0025 -2.184
Probe 6 0.728 -0.0025 -2.183
Probe 7 0.734 -0.0025 -2.181
Probe 8 0.74 -0.0025 -2.179

curves.
Deeper below the surface, the heating rate is lower and the pyrolysis reactions are slower,

characterized by production peaks that are wider and less intense. The temperature predicted
by the two-reaction model is globally higher than with the six-reaction model, as seen in Fig. 9.3
at probes 2 and 6, and probes 3 and 7.

At probes 4 and 8, the two deepest, the temperature remains relatively low and the pyrolyis
reactions has almost not started yet. The lower temperature observed with the six-reaction model
here is due to the lower temperature that is conducted in-depth as a consequence from the above
pyrolysis reactions. Hence, the six-reaction model predicts a lower subsurface temperature, with
a relative temperature difference between the two models of (568 − 536)/536 × 100 ≈ 6% and
(580− 552)/552× 100 ≈ 5 % at probe 4 and probe 8, respectively, at t = 100 s.

To sum up, it seems that for the probes close to the surface, the temperature are approaching
the same value at t = 100 s, no matter the pyrolysis model assumed. However, deeper below the
surface, the pyrolysis reaction scheme can influence the sub-surface temperature.

9.3 Results of the propagation of uncertainty
From the Markov chains computed in Section 7.4.2 for each case of the free parameter ϑ, we
select 500 evenly spaced samples to be propagated. Selecting all the samples would not be
realistic in terms of computational time and would result in a poor convergence of the statistics
of interests due to the correlation between the samples, inherent to the MCMC procedure. It
is possible to compute an effective number of sample draws, see Gelman et al. [2014] p. 286 as
discussed in Section 5.4.7, and it could be done with the results from the ISDE simulation.

To represent the uncertainty on the quantity of interest, 95 % probability regions (2.5 and
97.5 percentiles) are computed using the results of the 500 Monte Carlo samples. It is important
to mention that for ϑ = 0.7nt, 14 samples out of the 500 led to a solution that features a similar
issue as discussed in Section 9.2.3, and were not used for the estimation of the uncertainty ranges.
These samples were identified based on the value of the advective pyrolysis heat flux that reach
unacceptable values in such a case.

9.3.1 Temperature and gas elemental composition
For the results in the following section, the mesh with 103k cells is used. Each single PATO
simulation runs on 34 cores from the NIC5 cluster1 from the University of Liège, which features
AMD EPYC Rome 7524 32-Core CPUs (2.9 GHz), and each simulation lasts around 1h20.

1Provided by the Consortium des Équipements de Calcul Intensif (CÉCI).
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Figure 9.3: Heat shield nose surface and in-depth temperature probes. Nominal solution for
the six-equation pyrolysis model (continuous lines) compared to the model of Goldstein [1969]
implemented in PATO (discontinuous lines). The surface probes at the nose are the top two
lines with no markers.

Allocating more than 34 cores does not further improve significantly the computational time. In
total, 1000 simulations are run in parallel on the cluster2 (500 simulations for each value of the
free parameter ϑ).

From the temperature plot in Fig. 9.5, the maximum of uncertainty is reached at the surface
and near the peak heating (Fig. 9.5(a)). The uncertainty decreases just just below the surface
but then increases again with depth. For these in-depth temperatures, maximum uncertainty is
also reached near the peak heating conditions for the shallowest probes (Fig. 9.5(b)), whereas
the maximum uncertainty is reached at t = 100 s for the deepest probes (Fig. 9.5(c)). This was
already observed in Chapter 8 and in Copeland et al. [2012].

Hence, the pyrolysis parameters have a relatively low impact on temperature, and the max-
imum is around 1 % at the surface. We noted little influence on the in-depth probes, with the
maximum uncertainty at the peak temperature when it is reached, or at the end of the simu-
lation for the deepest probes. However, one has to note the important effect of going from the
two-reaction pyrolysis model to the six-reaction pyrolysis model as it was observed from Fig. 9.3,
showing that the structure of the pyrolysis model can have a larger impact on temperature than
the model parameter uncertainty.

Fig. 9.6 shows the elemental gas composition at the surface of the heat shield. The results of the
simulations are probed at the four locations on the heat shield given in Table 9.3. Uncertainty
ranges are shown for the two values of ϑ: the inner (darker) shaded areas are for ϑ = nt and
the outer (brighter) shaded areas are for ϑ = 0.7nt. A rapid change of the composition at the
beginning can be observed, where the pyrolysis production is at his highest value and the most
severe (see Fig. 9.4) at the beginning of the heating. After 85 s, where the heating and the

2As a comparison, these 1000 simulations would represent more than 5 years of computational time on a
single CPU.
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Figure 9.4: Heat shield nose surface and in-depth probes for the total pyrolysis production rate.
The nominal solution for the six-equation pyrolysis model (continuous lines) is compared to the
model of Goldstein [1969] implemented in PATO (discontinuous lines). The surface probes at
the nose are the top two lines with no markers.

Table 9.3: Heat shield surface probe position.

Position x (m) y (m) z (m)

Nose 0.0 0.0 0.0
Wind side 0.72346 -0.0025 -2.184
Lee side 0.72346 0.0025 2.184
Middle side 0.72346 2.184 0.0

pressure start to decrease, the oxygen concentration increases, and the hydrogen and carbon
concentration decreases. The uncertainty ranges also increase, except at the nose which remains
almost constant.

The numeric values for the median and the uncertainty ranges for the elemental composition
at the nose are summarized in Table 9.4. Regarding the uncertainty ranges, we can see that there
is a maximum of uncertainty around 50.4 s, very rapidly after the heating starts where intense
gas production occurs. At this maximum, the ratio of the thickness of the 95 % probability region
and the median value is around 63.25 %, 96.86 % and 33.37 % for carbon, hydrogen and oxygen,
respectively. Around the peak heat, at t = 75 s, these values are around 4.88 %, 9.03 % and
7.86 %, respectively. The numeric values for ϑ = 0.7nt are also shown, and it can be seen that it
affects significantly the relative thickness of the probability ranges, as it ranges up to 78.19 %,
125.57 % and 41.06 % at 50.4 %. Tables for the uncertainty ranges at the wind side, lee side and
middle side, where the pressure and heating are lower, are provided in Appendix D. At these
other locations, the observations around the maximum uncertainty region and the peak heating
are similar than at the nose. One can note further from the graph from Fig. 9.6 the uncertainty
regions are however wider at t = 100 s, and the increase/decrease of the elemental composition
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Figure 9.5: Heat shield embedded temperature probes with uncertainty ranges. (a) two shal-
lowest probes at the nose and wind side, and (b) the two deepest probes at the nose and wind
side.

after 85 s is less marked: median value remains almost constant, but some simulation results
also predict the same behavior as at the nose, thus the larger uncertainty ranges.

9.3.2 Recession and pyrolysis production

The recession of the surface of the heat shield as a function of time at the probe locations is
shown in Fig. 9.7. For ϑ = 0.7nt (Fig. 9.7(a)), it shows an increase of the uncertainty as time
increases. At 100 s after the beginning of the reentry, the median recession is around 0.922 mm
at the nose region, 0.961 mm at the wind side, 0.531 mm at the middle side, and 0.195 mm at
the lee side, and the results for the median are similar for ϑ = nt (not showed on the graph
for clarity). In Fig. 9.7(b), we provide the estimation of the probability density functions at
t = 100 s using a Gaussian kernel-density estimation method for the two values of ϑ. The PDFs
feature one mode and are almost centered around the median. For ϑ = 0.7nt, the supports of
the PDFs are slightly wider, showing that the uncertainty is larger. Indeed, the thickness of
the 95 % probability regions are around 0.038 mm (the ratio of this thickness and the median
is equal to 4.14 %) and 0.034 mm (3.58 %) at the nose and the wind side, respectively, while
for ϑ = nt these values are equal to 0.03 mm (3.27 %) and 0.026 mm (2.7 %), respectively. At
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Figure 9.6: Results of the propagation of uncertainty for the gas elemental composition at the
surface at the (a) nose, (b)middle side, (c) wind side (d) lee side. The continuous, discontinuous
and dotted lines are the results of the simulation at the MAP for C, H and O, respectively, and
the shaded areas represent the total uncertainty (95 % probability region) estimated from the
Monte Carlo samples for the two values of ϑ.

the lee side, the uncertainty is relatively higher for both values of ϑ, which is around 0.019 mm
(9.70 %) and 0.023 mm (11.86 %) for ϑ = nt and ϑ = 0.7nt, respectively.

These results show that the value of the free parameter ϑ does not affect significantly the
median and the mean of the recession of the surface of the heat shield. However, as expected,
decreasing the value of ϑ increases the resulting uncertainty on the recession. In general, we
note that the level of uncertainty on the recession due to pyrolysis model parameters is relatively
low. Recession is related to the pyrolysis model parameters only through the effective material
properties, themselves related to the reaction rates through the porosity of the material. Hence,
other parameters like the intrinsic material thermal conductivity, the heat capacity, or the initial
porosity, are foreseen to increase further the general uncertainty level on the recession.

The impact of pyrolysis model parameters can also be observed on other quantities. The
results for the advective pyrolysis heat flux and the total pyrolysis flux at the surface of the
heat shield are shown in Fig. 9.8. Advective pyrolysis heat flux is maximum at the nose and
wind side, and the corresponding uncertainty is also maximum at those two locations before the
peak heating (Fig. 9.8(a)). It is the opposite in Fig. 9.8(b) for the total pyrolysis production,
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ϑ = nt
50.4 s 75 s

C 0.273 [0.228;0.401] (63.25 %) 0.546 [0.530;0.557] (4.88 %)
H 0.065 [0.048;0.111] (96.86 %) 0.099 [0.094;0.103] (9.03 %)
O 0.665 [0.489;0.711] (33.37 %) 0.355 [0.343;0.371] (7.86 %)

ϑ = 0.7nt
50.4 s 75 s

C 0.275 [0.215;0.430] (78.19 %) 0.550 [0.530;0.566] (6.44 %)
H 0.063 [0.040;0.119] (125.57 %) 0.099 [0.092;0.105] (13.19 %)
O 0.667 [0.451;0.725] (41.06 %) 0.352 [0.335;0.373] (10.63 %)

Table 9.4: Probabilistic predictions for the gas elemental composition at the surface of the heat
shield (nose) for the two values of ϑ at t = 50.4 s (maximum uncertainty) and t = 75 s (around
peak heating). The values are the median predictions with their 2.5–97.5 % probability intervals
between squared brackets, and the ratio of the thickness of the probability interval and the
median between parentheses.

for which the uncertainty ranges are the largest at the lee side and middle side, while they are
thinner at the nose and wind side.

9.4 Conclusion and future work

In this chapter, we assessed the impact of the uncertainty in the pyrolysis model parameters,
characterized by input PDFs inferred from ground-experiments, on the temperature, gas ele-
mental composition and surface recession of an ablating TPS for a Mars atmospheric entry.

The surface gas elemental composition has the largest uncertainty. We noted the relatively
low impact of pyrolysis model parameter uncertainty on temperature, with a maximum of 1 %
variation at the surface, but we emphasized a more significant impact when going from the
two-reaction pyrolysis model to the six-reaction pyrolysis model, with a relative temperature
difference up to 5 %. Hence, the structure of the pyrolysis model can have a larger impact on
temperature than the model parameter uncertainty.

The propagated uncertainty (2σ) on the recession is equal to 0.922± 0.019 mm (with 4.14 %
the ratio of the thickness of the 95% probability interval and the median) at the nose and up
to 11.85 %, 0.195 ± 0.023 mm, at the lee side, with the resulting distributions that are almost
Gaussian. The comparison of the values obtained using either ϑ = nt or ϑ = 0.7nt shows that the
resulting uncertainty range is about 1 % higher for the latter, thus providing more conservative
margins on the recession.

It is a first step towards uncertainty quantified simulations for atmospheric entry. As only
the parameters from the pyrolysis model were considered, the uncertainty provided represent a
lower estimate of the uncertainty bounds, and should therefore be applied with care. As future
work, more uncertain parameters, such as the material thermal conductivity, the heat capacity,
or the porosity of the material, should be included in the analysis. It would also be desirable to
perform a sensitivity analysis of the pyrolysis model parameters on the quantity of interest, in
order to identify the most influential parameters and eventually reduce the number of uncertain
input parameters for future predictions.

It is important to mention that the current pyrolysis model was calibrated at a single heating
rate (366 K min−1) and that more complex models could be developed in order to account for
the various heating rates encountered over the heat shield (Torres-Herrador et al. [2019a]). The
model error on the pyrolysis model at 366 K min−1 was partly included in the input parameters
by relaxing the weights in the likelihood function, but the error due to the extrapolation of this
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Figure 9.7: Results of the propagation of uncertainty in pyrolysis model parameters on the
recession of the material at four different locations on the heat shield. (a) Recession as a function
of time shown for ϑ = 0.7nt, and (b) estimation of the probability density functions at t = 100 s
for the nose region (continuous line) and wind side (dashed line) for ϑ = nt (no markers) and
ϑ = 0.7nt (circle markers).

model to other heating rates was not accounted for, which could also have an influence on the
uncertainty on recession.
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Figure 9.8: (ab) Advective pyrolysis heat flux and and (b) total pyrolysis production rate with
uncertainty ranges for the two values of ϑ.
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Chapter 10
Conclusions and perspectives

10.1 Summary and conclusions
This thesis contributed to the development of an uncertainty-quantified model for pyrolysis-
ablation of porous fiber/resin ablative materials. We presented the characterization of input
parameter uncertainty using recent experimental data on the pyrolysis of thermal protection
materials. We also presented the propagation of the uncertainty for an atmospheric entry prob-
lem by showing the response of a thermal protection system during a Mars entry and clarified
the role played by the uncertainties.

The work was divided into three main parts, in which we contributed to the development
of a high-fidelity deterministic numerical model for pyrolysis-ablation, reviewed methods for
uncertainty quantification and developed a python code for performing Bayesian inference, and
finally applied methods from uncertainty quantification to practical applications relevant to
TPMs decomposition and atmospheric entry.

In Part I (Chapters 2–4), the modeling of atmospheric entry flows and pyrolysis-ablation was re-
viewed. In Chapter 2, we reviewed the VANS equations that can be used to simulate aerothermal
flows through and around porous ablative TPMs.

In Chapter 3, we reviewed two important models for representing the resin pyrolysis of
TPMs, namely the multi-component and competitive models. For multi-component models, we
contributed to the derivation of an analytical solution which allowed us to save computational
time for the calibration of pyrolysis experiments and to build a new detailed pyrolysis model.

In Chapter 4, the framework of the VANS equations within a unified flow-material approach
was applied to simulate an ablation-pyrolysis experiment of a material subjected to a high-
enthalpy flow. This method provides a high-order solution of the flow around and within the
material, as well as a detailed description of the flow-material interaction at the interface. Yet
being still computationally expensive, it is a very promising approach to study with a high
fidelity the decomposition of ablative porous TPMs.

Part II (Chapters 5–6) was concerned with the theory of uncertainty quantification and its
implementation in numerical codes. In Chapter 5, we reviewed the theory and methods for
uncertainty quantification, with a particular focus on methods for Bayesian inference. We re-
viewed state-of-the-art MCMC algorithms, such as gradient-informed sampling algorithms, and
their implementation.

In Chapter 6, we introduced a new software for performing Bayesian inference, and described
the structure of the code, and showed its use with an example of parameter inference. This code
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was developed for research purposes and for having a versatile toolbox in which new methods
can be easily implemented thanks to the ease of use of the Python coding language.

Finally, Part III (Chapters 7–9) was concerned with the application of the uncertainty quan-
tification methods to problems relevant to TPMs decomposition and atmospheric entry, and
answered the key objectives of the thesis stated in the introduction (Section 1.5).

First, in Chapter 7, a Bayesian approach involving an approximate likelihood function was
applied to infer the model parameters of chemical reactions relevant to pyrolysis using multi-
component and competitive models. For multi-component models, we proposed to use gradient-
informed sampling algorithms, along with a method for the adaptation of the covariance matrix
and a reparameterization of the pyrolysis equations, in order to sample efficiently from the
posterior distribution. The results showed that the adaptation of the covariance matrix based
on the previous sample history improves the convergence rate of the sampling algorithms, even
with a few samples, as compared to when there is no adaptation. A six-equation pyrolysis model
was found by iteratively increasing the number of equations in the model until the experimental
data were sufficiently accurately reproduced. The resulting uncertainty-quantified model allowed
us to reproduce the data set together with the estimated observed uncertainty ranges and we
showed that we were able to control the concentration of the posterior distribution by using an
additional parameter introduced in the approximate likelihood. For the competitive models, we
showed that this kind of model was able to simulate pyrolysis at two distinct heating rates and
the model parameter uncertainty was also obtained. Yet, even with the competitive models, we
showed that model errors were still present when extrapolating to other heating rates.

Then, in Chapter 8, we investigated the use of Bayesian methods for the analysis of the post-
flight data of the MSL mission. Thermocouple data within the heat shield were simulated with
a good accuracy and we were able to reconstruct the environment conditions at the surface. The
results for the thermocouple highlighted a model discrepancy at moderately low temperature,
that could be due to water vapor release. The comparison of the present results of the post-
flight analysis and the results from CFD showed discrepancies between the predicted and the
reconstructed environment, which could be due to non-predicted physical behaviors. However,
the comparison with more CFD results at other MISP locations should be performed.

Finally, in Chapter 9 we assessed the impact of the uncertainty in the pyrolysis model param-
eters on the recession of the surface of an ablating TPS for a Mars atmospheric entry with the
configuration of the Mars Science Laboratory mission heat shield. We showed that the surface
gas elemental composition has the largest uncertainty. We compared the results for two values
of the additional parameter in the approximate likelihood and we showed that more conservative
margins could be assessed on the recession by providing a smaller value of the parameter. We also
emphasized that the pyrolysis model structure could have a large impact on the temperature,
whereas pyrolysis model parameters had a relatively low impact on the temperature.

10.2 Suggestions and perspectives for future work
This work is a first step towards uncertainty-quantified simulations for atmospheric entry. Through-
out this manuscript, we discussed several improvements and directions for future research. Some
of them are summarized and further discussed below, and we provide a more holistic viewpoint.

10.2.1 Pyrolysis model inference
In Chapter 7, we used a formulation of the likelihood function that involves a weighted distance,
but which led to the introduction of a regularization of the weights at low and high tempera-
tures. Alternative formulations of the likelihood function could be sought, such as formulations
that use data transformation or that take into account the time-dependent nature of the data
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by evaluating how well the model reproduces the observations at each individual step, see for
instance in Bennett et al. [2013] for a review of different metrics.

We adopted an approach whereby we kept the structure of the pyrolysis model unchanged
(we do not introduce additional stochastic terms) and we sought to incorporate a representation
of the uncertainties into the model parameters. However, this approach of encapsulating all the
uncertainties in the model parameters has its limitations. Indeed, the reference deterministic
model needs to be close enough to the observations, otherwise the model discrepancy cannot
be represented only by accommodating uncertainty in the model parameters and additional
terms should be included in the statistical model (Kennedy and O’Hagan [2001]). Alternatively,
pyrolysis models can still be improved. The use of competitive mechanisms in the pyrolysis
scheme was already a first step towards a more accurate modeling, however, other unmodeled
physical phenomena, such as outgassing at low temperatures or the plateau in the production
curves, are not yet represented.

We presented the results for parameter inference for two different pyrolysis models. Building
a suitable pyrolysis model (both for multi-component and competitive pyrolysis models) and
obtaining an initial guess was found to be particularly difficult, and the automatization of this
procedure would be valuable. For instance, for multi-component pyrolysis models, we empha-
sized the difficulty of finding an appropriate reaction pattern when accounting for the species
production, due to the high numbers of different models that were providing satisfactory fitting
to the data, hence justifying the need for an iterative procedure. In order to go towards a more
automated procedure, different models could be evaluated from a set of plausible models while
running, for instance, a genetic optimization (as in Torres-Herrador et al. [2019b]) for finding
the best initial guess. The selection of the model could then be performed using methods for
model comparison and model selection, for instance, using Akaike’s criterion for statistical model
inference (Burnham and Anderson [2002]) or in a Bayesian framework, e.g., see in Burnham
and Anderson [2002]; MacKay [2003]; Link and Barker [2006], or in Strong and Oakley [2014].

Generalization to other heating rates

The heating rates encountered during an actual atmospheric entry largely vary within the heat
shield and the impact of using multi-component models at these multiple heating rates is not
known. Implementing competitive pyrolysis models in high-fidelity numerical solvers would be a
first step towards a more accurate modeling of resin decomposition at the heating rates encoun-
tered during an atmospheric entry. The samples inferred in this work using Bayesian inference
for the competitive pyrolysis model could be readily propagated and the results compared with
the current state-of-the-art models as well as with the results of Chapter 9.

Yet, we emphasized that extrapolating the models at heating rates outside of the calibration
range could still display significant model errors. Thus, more elaborated competitive models
valid in a wider heating rate range should also be investigated.

10.2.2 Inferring the input parameter distributions
During pre-flight analyses, there is a need to characterize the model parameter distributions. In
this work, we focused mostly on the characterization of uncertainty from pyrolysis model param-
eters. However, more uncertain parameters, such as the material thermal conductivity, the heat
capacity, or the porosity of the material, should be included in the analysis, as they can also have
a non-negligible impact on the quantities of interest (Rivier et al. [2019]). They can be inferred
from ground-based experiments either by direct measurements, or indirect measurements. For
the latter, a similar Bayesian probabilistic inverse analysis as the one applied in this work could
be performed.

Material properties are not the only source of uncertainties, and uncertainties related to the
atmospheric entry environment or the flight parameters should also be characterized. These
parameters affect the whole external aerothermal flow conditions and a coupled flow-material



188 10.2. Suggestions and perspectives for future work

approach or a unified approach would be required in order to study the material response.
When simulating the external flow, the computational cost can become expensive and methods
to reduce the cost of uncertainty quantification analyses will be needed, or by reducing the
number of uncertain parameters. This is discussed below.

10.2.3 Directions in uncertainty propagation

In Chapter 9, the direct Monte Carlo method was applied, thanks to the model in PATO that
was relatively fast to compute (≈ 1h20min). For finer meshes, or when the evaluations of the
computational model are time consuming, such as for instance in Argo, the convergence rate of
the statistical descriptors may be too slow and become prohibitive, and more efficient methods
for uncertainty propagation should be investigated. In order to reduce the computational cost
and improve the accuracy of the estimation of the statistical descriptors, improvements of the
standard Monte Carlo method or surrogate-based methods could be sought.

Advanced sampling methods can be used to reduce the computational cost of the standard
Monte Carlo method by carefully selecting the samples to be propagated such that it improves
the accuracy of estimated statistical descriptors. These methods are for instance the quasi-Monte
Carlo method (Dick et al. [2013]) which is based on deterministic sequences of numbers rather
than (pseudo-)random sequences of numbers, or the Latin hypercube sampling (Loh [1996]).

Multilevel Monte Carlo methods (see a review in Giles [2015]) are a more recent extension
of the Monte Carlo methods that are used when the solution of the numerical model can be
computed on different level of accuracy. It can offer improved computational efficiency by smartly
computing the solution at sample values on different resolutions, such as for instance when a
hierarchy of computational grids are available. Most simulations are performed at a low accuracy
with a lower computational cost and only a few simulations are performed at a high accuracy
and a high cost. See for instance in Mishra et al. [2012] or Pisaroni et al. [2017] for recent
advances and applications to CFD problems.

Surrogate-based propagation methods, such as the PCE methods, can be used to replace
the expensive computational model, but they suffer from the curse of dimensionality and find-
ing quadrature rules for general probability distribution is not trivial. Firstly, to mitigate the
curse of dimensionality, the dimension of the input probability distribution could be reduced
by identifying non-influential parameters of the distribution by performing a sensitivity analysis
of the pyrolysis model parameters on the quantity of interest. Secondly, concerning the PCE
methods, they are well-suited for standard distributions with independent variables, such that
the polynomial bases that are optimal for multivariate distributions can be built as the tensor
product of univariate orthogonal polynomials that are optimal for the corresponding univariate
standard distributions (Xiu and Karniadakis [2002]). When considering non-standard distribu-
tions with potentially dependent stochastic variables, one can still use polynomial bases that
are optimal for the standard distributions, but the accuracy of the statistical descriptors can
be degraded (Jakeman et al. [2019]). In order to build polynomials that are optimal for non-
standard distributions, one possibility is to use the arbitrary polynomial chaos (aPC), also called
data-driven polynomial chaos, which is an extension of PCE to correlated random variables with
non-standard distributions or unknown distributions, as for instance when the samples are pro-
vided from a Bayesian inference analysis (Witteveen and Bijl [2006]). In the aPC approach, the
expansion is not built using conventional polynomials obtained from the Askey scheme but are
constructed numerically. The aPC method is used in Jakeman et al. [2019] in a non-intrusive
way, and in Paulson et al. [2017] using a stochastic Galerkin projection. It was investigated
in Lacroix [2020] for a probability distribution for pyrolysis model parameters obtained from
Bayesian inference with moderately low dimensions, and encouraging results in this direction
were showed.



Chapter 10. Conclusions and perspectives 189

10.2.4 Validation of the models
The comparison of the numerical predictions with the experimental observations will clarify
the extent to which high-fidelity numerical simulations of TPS ablation are able to reproduce
experimentally the observed behaviors, whereas our uncertainty bounds will allow to specifically
assess the extent to which discrepancies can be explained as a consequence of uncertainty in the
physico-chemical models. Any unexplained discrepancies will provide useful guidance to future
efforts to improve the physico-chemical models and the computational methods as well as to
design experimental setups.

Within Argo, a comparison of a Plasmatron experiment from Helber et al. [2016b] was
already compared with the numerical simulations in Schrooyen et al. [2017] for a carbon pre-
form material. A comparison with a problem relevant to pyrolysis-ablation is still missing, and
the comparison with the experiments would require to have material properties for pyrolyzing
materials, which are still lacking from the literature. The Zuram database, currently under
development (Rothermel et al. [2014]), is a first step towards the development of such detailed
material properties.

Besides the replication of ground-test experiments, analyzing the post-flight data as in Chap-
ter 8 will help to refine the models used in the simulations for predicting the atmospheric entry
for future missions. The comparison of the reconstructed environment from post-flight data
with more CFD results will clarify the validity of the models currently used in state-of-the-art
computer models, will further enrich these models and allow to have a quantification of the
error, which will be useful for future uncertainty-quantified pre-flight analyses. This will ulti-
mately improve our confidence in the models used, hence reducing the uncertainty margins and
benefiting the design of TPSs for future space missions.
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Appendix A
Analytical solutions and link between
competitive and multi-component parallel
pyrolysis models

A.1 Computation of derivatives for multi-component par-
allel models

The computation of derivatives is also required for gradient-informed algorithms to compute the
solution of inverse problems. Derivatives are expressed here as a function of temperature and
for the linearly increasing temperature case as it will be used in an illustrative example in the
next section. The chain rule provides the following results:
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Note that in Eq. (A.7), the last term on the right-hand side may pose some numerical issues
because of the indetermination. This is the case, for instance, after sufficiently large time after
the reaction is completed, or when the different reactants have distant activation energies leading
to the reaction i being completed much earlier than other ones. In both cases, αi → 1 and we
have to resolve (1−αi) log(1−αi) for which the limit 0×∞ is of indeterminate form. This limit
can be determined using l’Hôpital’s rule for computing the limit of the ratio of two functions
and is equal to 0. Practically speaking, in our numerical implementation, every time one of the
advancement of reaction factor αi reaches a value of εα = 1 − 105, we set to zero the quantity
(1− αi) log(1− αi).

Derivatives with respect to Fij are trivial. Issues regarding the computation of the solution
when αi → 1 in (1 − αi)ni−1 with 0 < ni < 1 that may arise are avoided because we assumed
that ni > 1. Finally, because the pyrolysis reactions are considered to be independent (parallel),
we have ∂π/∂Ai = ∂πi/∂Ai = ∂(νj(1− γC,i)/γij)/∂Ai (same for Ei, ni, wi).

A.2 Discussion on the existence of a solution for general-
ized competitive mechanisms

The system Eq. (3.44) is linear and the coefficients will be generally non-constant due to the
temperature dependence of the reaction rates. The solution is of the form

m(t) = e

∫ t
t0
L(τ)dτ

m0 (A.11)

which can be checked by differentiating it. When the coefficient matrix L is constant (isothermal
pyrolysis) the matrix-exponential method can be used and the solution of the system writes

m(t) = eL(t−t0)m0 (A.12)
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where the exponential of a given square matrix X is defined as

exp(X) =
∞∑

k=0

1
k!X

k. (A.13)

This solution can be used to simulate isothermal pyrolysis or a when the temperature is a
piecewiese constant function as inWong et al. [2015b], with initial conditionsm0 = (minit, 0, . . . , 0)T.

For a non-constant coefficient matrix L, the system of ODEs from Eq. (3.44) has to be
integrated numerically. Indeed, in order to have a solution of the type A.11, we need to prove that
L commutes with its integral IL =

∫ t
t0
L(t)dt for the exponential matrix to be valid (Nemytskii

and Stepanov [1960]). Two matrices X and Y commute if XY = Y X. There is not a condition
or criterion for a matrix to commute with its integral, although we can cite the work of Epstein
[1963]. We demonstrate here using a counterexample that the non constant coefficient matrix
does not commute with its integral and so that a solution of the type Eq. A.11 cannot be found.
We consider the simple case of a two-step reaction mechanism ρ1 → ρ2 → ρ3. The non-singular
2× 2 coefficient matrix is L =

(−k1 0
k1 −k2

)
and m = (m1,m2)T. It is worth noting that only the

activated variables m1 and m2 need to be considered for the resolution of the system, as m3 is
a linear combination of the previous variables (the physical meaning is that m3 can be obtained
using mass conservation of the two reactants m1 and m2); considering ρ3 in the system of ODEs
would make the coefficient matrix singular. The two matrix products are

LIL =
(

k1I1 0
−k1I1 − k2I1 k2I2

)
, ILL =

(
k1I1 0

−k1I1 − k1I2 k2I2

)
. (A.14)

The condition for L to commute with IL is k1I2 = k2I1. The result for L constant is immediately
verified as we have k1k2 = k2k1. For the non constant case, we can show that the condition is
exp(−E1/(RT )) Ei(−E2/(RT )) = exp(E2/(RT )) Ei(−E1/(RT )) (where Ei is the exponential in-
tegral function) which is not verified. As a conclusion, when considering multi-step non isotherm
reactions, an analytical solution of the form A.11 will generally not be found.

A.3 From generalized competitive models to multi-component
models

A.3.1 Linear multi-component, multi-step competitive reactions
We consider the most general case of multi-component multi-steps competitive reactions. For
this general case, we can again use the matrix formalism of Eq. 3.38 where now

L =




L1 0 · · · 0
0 L2 · · · 0
...

... . . . ...
0 0 · · · Ln


 (A.15)

is a block diagonal matrix. Each block Li is a lower triangular square matrix of different
dimension ni representing a particular component of the pyrolysis mechanism. The null entries
represent matrices which dimensions are consistent with the block diagonal. Each block is
decoupled and can be solved separately. The generalized initial conditions are now

m0 = (m1,init, 0, . . . , 0︸ ︷︷ ︸
n1

,m2,init, 0, . . . , 0︸ ︷︷ ︸
n2

, . . . ,mn,init, 0, . . . , 0︸ ︷︷ ︸
nn

)T. (A.16)

The previous case of pyrolysis reactions for aerospace applications was in fact considering 1× 1
matrices Li = ki with m0 = (m1,init,m2,init, . . . )T and is therefore a particular case of this
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general formulation. For this case, because L is diagonal it commutes with its integral and it is
possible to find an analytical solution. It was also possible to find a closed form of the solution
for the non-linear system of PDEs, both for L constant and for linear heating rates.

In the case of time dependent heating rates (linear, modulated, ...) with multi-step pyrolysis,
or for non-linear reaction orders (n 6= 1), the numerical treatment of the system of ODEs is
required.

A.3.2 Link with multi-component parallel models
Except from the non-linearity in the system of ordinary differential equations induced by the
reaction order that is not accounted for in the competitive mechanisms presented here, the multi-
component model presented in Section 3.3 can be seen as a particular case of this general model
assuming that:

1. there are no competitive reactions (Nci = 1, 1 ≤ i ≤ N), which simplifies Eq. 3.43 into

dmi

dt
(t) = −kimi(t) +

N∑

l=1
klγl,iml(t), (A.17)

2. each fictitious component produces only gas and no other solid component (γl,i = 0 ∀l ∈
Is).

3. the gaseous products do not deposit (γl,i = 0 ∀i ∈ Is) and there are no secondary reactions
(frozen chemistry) among gaseous species (ki = 0 ∀i ∈ Ig).

In matrix form, Eq. A.17, together with hypotheses 2 and 3, leads to the following system of
ODEs for the solid species:

dms
dt

(t) = −Kms(t) (A.18)

where we denoted ms = {mi, i ∈ Is} and K = diag(k1, k2, . . . , kNs). The matrix K is diagonal
because thems,i are independent from each other, following from hypothesis 2, and each ordinary
differential equation for i ∈ Is can be solved independently. Once we have solved for the ms,
the solution for the gaseous product then follows from the right-hand side of Eq. A.17 together
with hypothesis 3 and we have

dmg
dt

(t) = ΓTms, with Γ =




k1γ11 k1γ12 · · · k1γ1Ng

k2γ21 k2γ22 · · · k2γ2Ng
...

... . . . ...
kNsγNs1 kNsγNs2 · · · kNsγNsNg


 , (A.19)

where Γ is the Ns × Ng matrix of coefficients for the production of gaseous species. Matrix Γ
completely defines the finite rate chemistry produced by the decomposition of the solid material
and the elements of Γ are unknown parameters.



Appendix B
Additional implementation details

B.1 Effect of the reparametrization on the Metropolis–
Hastings algorithm

The change of parameter is denoted p̃ = s(p) and the inverse change is denoted by s−1. Here, a
given iteration in the Metropolis–Hastings algorithm is indexed by i and the proposed parameter
value has the superscript ∗. The acceptance ratio is

r = π0(p̃∗)π(d|s−1(p̃∗))J(p̃∗|p̃i−1)
π0(p̃i−1)π(d|s−1(p̃i−1))J(p̃i−1|p̃∗)

. (B.1)

The new proposal function J is defined on the p̃ parameter space. The likelihood function is not
affected by the change of parameter space since the code output is unaffected. The prior density
needs however to be recomputed. Because the probability density is conserved, we can write for
a general density of probability π

πp̃(p̃)dp̃ = πp(p)dp (B.2)

πp̃(p̃) = πp(p) det
(
dp

dp̃

)
. (B.3)

In terms of the transformed parameter p̃, we can write

πp̃(p̃) = πp(s−1(p̃)) det
(
d(s−1(p̃))

dp̃

)
. (B.4)

For the random-walk Metropolis-Hastings algorithm (the random walk being performed now on
the p̃ space) and assuming a uniform πp prior distribution, the acceptance ratio is therefore

r =
det
(
d(s−1(p̃))

dp̃ |p̃=p̃∗

)
π(d|s−1(p̃∗))

det
(
d(s−1(p̃))

dp̃ |p̃=p̃i−1

)
π(d|s−1(p̃i−1))

. (B.5)

For linear transformations, we can see directly that the acceptance ratio is unaffected by the
reparametrization. However, in case of non-linear transformations, the determinant of the Ja-
cobian must be computed explicitly. For instance, the non-linear transformation introduced in
Section 7.2.3 for the pyrolysis equations, the determinant of the Jacobian writes as

det =
N∏

i=1
exp(Ãi + ẼiXi) =

N∏

i=1
Ai, (B.6)

197



198 B.1. Effect of the reparametrization on the Metropolis–Hastings algorithm

where N is the number of reaction rates in the model.



Appendix C
Link with Bayesian statistics, additional
graph of convergence for activation energy
and table of input parameter values

C.1 Motivation for the expression of the approximate like-
lihood function

C.1.1 Link with Bayesian statistics
Equation 7.5 can be seen as an application of the Bayes’ theorem to the calibration of model
parameters, where π0 and π are interpreted as probability density functions. The prior PDF
π0 is updated through the likelihood function to obtain the posterior PDF on the parameters
π(·|Yobs). The function from Eq. (7.6) for the prior is improper in the sense that its value does
not integrate to 1 and we will check numerically that the resulting posterior has a finite inte-
gral Gelman et al. [2014]. The likelihood function from Eq. (7.8) can also find an interpretation
from a statistical point of view. Assuming that the discrepancy between the model predictions
and the observations is due only to experimental errors and that these experimental errors (rep-
resented by the ε in Eq. (5.28)) are statistically independent and Gaussian with mean zero and
variance

(
s

(e)
ij

)2
, the likelihood is the multivariate (non-normalized) Gaussian distribution from

Eq. (7.8) with entries w−1
jji =

(
s

(e)
ij

)2
/nr since

nobs∏

i=1

nt∏

j=1

nr∏

k=1
exp


−1

2

(
yobsijk − ηij(m)

s
(e)
ij

)2

 ∝ exp


−1

2

nobs∑

i=1

nt∑

j=1

( 1
nr

∑nr
k=1 y

obs
ijk − ηij(m)

s
(e)
ij /
√
nr

)2

 ,

(C.1)

and provides the probability density of observing the quantity Y given the parameters m.
However, for the case considered here, the discrepancy between the model predictions and the
observations is not only due to experimental errors, but model inadequacy and parametric un-
certainty are also present. Thus, to account for model inadequacy and parametric uncertainty,
we allow w−1

jji to be different from and greater than
(
s

(e)
ij

)
2/nr.

The use of diagonal matrices W::i may not be fully justified within a Bayesian statistics
perspective. Most likely, full matrices should be used and they could be obtained either from the
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experiments or from the inference process together with the parameter distribution. The inverse
of the weight matrices can be estimated, for instance, by computing the covariance matrices
for the data. However, in general the covariance matrices computed from the experiments are
singular when only few realizations are available, and inferring on large non-singular covariance
matrices is complex and beyond the scope of this work.

One way to simplify the covariance matrix and make it non-singular is to reduce the correla-
tion between the data such that the covariance matrix becomes diagonal. As off-diagonal entries
depend on the acquisition frequency of the data, we could reduce the correlation by subsampling
the initial measurement time series. However, selecting the subsampling ratio that results in a
sufficient decorrelation without significant loss of information about the physical process is not
trivial. Indeed, reducing too much the data set could lead to a loss of information that would
result in an increase of the parameter uncertainty.

A case where reducing the data set is feasible without losing significant information is when
important characteristics that summarize the physics of the model can be identified within the
data set. Navarro et al. [2018] have been able to pursue such a strategy and identify three impor-
tant characteristics in an application relevant to debris flow, namely, arrival time, location of the
maximum height and decay behavior. However, finding important characteristics is challenging
in the case of pyrolysis reactions because it is more difficult to identify common characteristics
to all curves; from the pyrolysis experiments (see Fig. 3.3), it can be seen that some species
have characteristics that are not common to all curves: CO2 has two local maxima, or CO has
a plateau above 1100 K. Reducing the data set may also lead to the presence of undesirable
modes in the solution when parameters from nonlinear models are inferred. Using all the time
measurements increases the chance to suppress the modes in the inferred distribution that are
not present in the parameter distribution.

Therefore, instead of trying to reduce the data set, we will use all the data we have from the
experiments. To take into account the dependence of the covariance matrix on the data, we use
a likelihood function that will depend on the data acquisition frequency as discussed in the next
section.

Finally, from a statistical point of view, Eq. (C.1) can be seen as the product of Gaussian
functions centered at the different time observations averaged by the number of observations
nt. From that point of view, the Gaussian assumption might also be questionable as the data
may not be distributed according to a Gaussian function at every time step. This assumption
is difficult to verify based only on a small number of experimental repetitions and is thus not
addressed in this work. However with more data points, the Gaussian assumption could be
verified using, for instance, a kernel density estimation at each time observations.

C.1.2 Likelihood function for time series measurements

Because the weighting matrices W::i are assumed to be diagonal, the likelihood function from
Eq. (7.8) does not take into account the dependence structure. The concentration of the posterior
depends on the data acquisition frequency and there may be a risk for the posterior to have a
region of high density over a small domain if there are too many terms in the second sum and
the weights are too large.

To choose the values of the wjji, we introduced two normalizations. The first normalization
takes into account the observed dispersion by choosing the weights wjji inversely proportional
to s2

ij . The second normalization takes into account the number of data acquired in the time
series nt. The motivation for this second normalization is discussed below.

Instead of starting from the discretized problem and the weighted norm from Eq. (7.7), we
start from the continuous dynamical model and we define the norm for a time-dependent function
that we will eventually discretize. Given a strictly positive and bounded weight function v, we
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define the weighted norm of a square integrable time-dependent function u : [0, tf ]→ R

||u||v :=
(∫ tf

0
v(t) (u(t))2

dt

)1/2

, (C.2)

where tf denotes the total time duration of the process. Defining a potential function Ui(m)
as the square of Eq. (C.2), with u equal to the difference between the continuous observations
yobsi (·) and the continuous model output ηi(·,m) for observation i, we have

Ui(m) = 1
tf

∫ tf

0
vi(t)

(
yobsi (t)− ηi(t,m)

)2
dt, (C.3)

where the ratio 1/tf is used to normalize the potential over the integration domain. Next,
we discretize the observations yobsi (·) and we approximate the integral in Eq. (C.3) by a finite
sum of nt rectangular boxes of widths ∆tj that coincide with the times between the different
experimental observations. Using this discretization in the potential in Eq. (7.7) results in

φi
(
yobsi: , gi:(m)

)
=

nt∑

j=1

∆tj
tf

vij
(
yobsij − ηij(m)

)2
, (C.4)

and we end up with the following likelihood function for the nr experimental runs

exp
(
−Φ

(
Yobs, G(m)

))
= exp

(
−1

2

nobs∑

i=1
φi
(
yobsi: ,ηi:(m)

)
)

= exp


−1

2

nobs∑

i=1

nt∑

j=1

∆tj
tf

vij
(
yobsij − ηij(m)

)2

 . (C.5)

This last expression for the likelihood function is similar to Eq. (7.8) with wij = vij(∆tj/tf ).
The factors ∆tj depend on the acquisition frequency of the experimental data that fixes the
successive values of ∆tj , and, for a constant acquisition frequency, the ratio ∆tj/tf = 1/nt is
constant. In the limit where we have only two time instants in the time series (t = 0 and t = tf ),
then ∆tf/tf = 1 and the likelihood thus obtained with the single data at j = 1 is proportional
to the evaluation of a Gaussian with mean yobs:1 and diagonal covariance matrix with diagonal
entries (the data at t = 0 is the initial condition that provides no information).

C.1.3 Interpretation using the notion of push-forward measure
We wish to have a posterior that converges to a unique posterior when increasing the data ac-
quisition frequency and that is representative of the variability of the experimental observations.
For a given model, increasing the acquisition frequency should have no influence on the posterior.
For instance, two contiguous observations separated by a very short time interval are probably
providing the same information, and the resulting posterior using the two observations instead
of a single one should not become thinner. The presence of the factor ∆tj/tf in Eq. (7.9) serves
to ensure this behavior.

The presence of the factors ∆tj/tf and ϑ in Eq. (7.9) can also be linked with the concept
of push-forward measure (Butler et al. [2018]), that is, a posterior for which the result of the
forward propagation through the model matches the data-generating probability distribution.
This concept differs from a purely statistical interpretation of the Bayesian formula, according
to which collecting more data provides more confidence.
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C.2 Influence of the initial covariance matrix

In Fig. C.1, we compare the effect of the initial estimations of the covariance matrix and its
adaptation on the sampling of the bivariate posterior for A and E in the case of the one-reaction
pyrolysis model and using the ISDE algorithm. Using the identity matrix and the inverse of the
diagonal of the Hessian does not provide a satisfactory sampling of the posterior (top figures)
as the sampling remains in the region of high probability. The adaptation of the covariance can
be observed on the bottom left picture where we see a higher density of samples in the high
probability region close to the starting value and is due to the time for the algorithm to learn
from the scale and correlations. In this case, the exploration of the posterior is more efficient
and has a comparable efficiency to when using the full Hessian matrix (bottom right). The first
samples drawn in the high probability region could be discarded.
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Figure C.1: Comparison of the posterior sampling with the different covariance matrix estimation
for the ISDE algorithm. (a) identity covariance matrix, (b) ISDE with diagonal Hessian and no
adaptation, (c) ISDE diagonal Hessian with adaptation, (d) ISDE with full Hessian. In total,
1000 samples are shown on each graph for the sake of clarity and emphasizing the adaptation
of the covariance matrix. They were obtained from a single run of 10000 samples from which
we took the first 2000 samples every 2 iterations. The sample values are compared to the direct
evaluation of the posterior distribution rendered in the background. The “+” marker symbolizes
the starting value.
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It is not shown here, but it is worth noting that in the case where we apply first the change
of variables based on the structure of the pyrolysis model, it induces a transformation and a
rescaling of the posterior distribution. If the scaling factors appearing in the change of variable
are chosen carefully, the tuning of the covariance matrix is made easier as it is close to the
identity matrix. Therefore, because the change of variables proposed here is appropriate for the
pyrolysis equations, the RWMH can be very efficient with a proposal covariance matrix that
requires a minimum tuning.

The use of gradient-informed sampling algorithms was motivated by the high number of
scaling factors that are unknown in high dimensions. Moreover, a change of variables well-
suited to the equations considered is not always available. Nevertheless, even gradient-informed
algorithms still require to be scaled according to the directions of the posterior distribution that
are not known a priori. The results in this section show that the covariance matrix estimate
is essential. Further improvements to the adaptation of the covariance matrix estimate for
gradient-informed algorithms could be performed by considering locally adaptive covariance
matrices based on a state-dependent scaling, as already suggested in Rosenthal [2010].
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C.3 Graph of convergence for E
Additional graphs for the convergence of the parameter E are provided in Figs. C.2–C.3.
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Figure C.2: Comparison of the convergence of the mean (a) and variance (b) of E as a function of
the number of function evaluations (after the burn-in phase) for the different sampling methods.
Random-Walk Metropolis–Hastings (RWMH); RWMH with the change of variable based on the
structure of the pyrolysis equations (RWMH-CVR); ISDE with the covariance matrix estimated
from the diagonal of the inverse of the Hessian and change of variable based on the support
of the posterior (ISDE-D); ISDE-D with the covariance matrix resulting from the adaptation
process (ISDE-CA); HMC with with the change of variable based on the structure of the pyrolysis
equations (HMC-CVR); HMC with the covariance matrix estimated from the diagonal of the
inverse of the Hessian and change of variables based on the support of the posterior (HMC-D);
HMC-D with the covariance matrix resulting from the adaptation process (HMW-CA).

C.4 Parameter value table
Table C.1 provides the values for the six-equation pyrolysis model at the MAP (maximum a
posteriori), which was approximated by the maximum value of the posterior reached during the
MCMC iterations, for ϑ = nt (left) and for ϑ = 0.7nt (right). A is in s−1, E is in J mol−1, r and
F are dimensionless.
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ϑ = nt ϑ = 0.7nt
A0 2.39130813546179 · 108 3.33948906150348 · 108

E0 7.64474934 · 104 7.72205470 · 104

r0 9.37226700 8.494309
F02 1.1380 · 10−3 2.9000 · 10−4

F03 7.5300 · 10−4 7.1300 · 10−4

F05 2.0350 · 10−3 1.5040 · 10−3

A1 3.928878043671898926 · 1012 5.033745123431458984 · 1012

E1 1.80048760 · 105 1.81634729 · 105

r1 5.499556 5.756187
F11 3.6940 · 10−3 4.7540 · 10−3

F12 1.1827 · 10−2 1.1795 · 10−2

F15 4.2520 · 10−3 4.2790 · 10−3

F16 4.8600 · 10−4 5.0700 · 10−4

F110 4.7200 · 10−4 4.5400 · 10−4

F111 7.4400 · 10−4 7.3300 · 10−4

A2 4.703951292689136 · 1015 1.9854747464107464 · 1016

E2 1.82589107 · 105 1.89029514 · 105

r2 6.019494 7.154706
F21 5.2500 · 10−4 6.3700 · 10−4

F22 1.9490 · 10−3 2.4920 · 10−3

F23 3.4400 · 10−4 3.6900 · 10−4

F24 1.0790 · 10−3 1.0210 · 10−3

F25 3.4730 · 10−3 3.6410 · 10−3

F26 2.0800 · 10−4 2.1200 · 10−4

F27 1.5230 · 10−3 1.7790 · 10−3

F28 1.3110 · 10−3 1.8200 · 10−3

F29 4.1700 · 10−4 4.6200 · 10−4

F211 1.3300 · 10−4 7.7000 · 10−5

A3 5.3413100200432137 · 1010 1.88989329806231567 · 1011

E3 1.73244332 · 105 1.79307529 · 105

r3 6.987248 7.905416
F30 2.4960 · 10−3 2.8290 · 10−3

A4 1.421255610884815104 · 1018 1.0922370953018785792·1019

E4 2.35776070 · 105 2.45429327 · 105

r4 6.970952 7.76469
F43 7.9000 · 10−4 8.7000 · 10−4

F44 2.2850 · 10−3 2.7990 · 10−3

F45 3.3010 · 10−3 3.6330 · 10−3

F47 3.3010 · 10−3 3.0980 · 10−3

F48 1.6810 · 10−3 1.5940 · 10−3

F49 1.5800 · 10−4 1.2600 · 10−4

A5 8.81607232326933760 · 1017 1.911837989333075968 · 1018

E5 4.06141069 · 105 4.07562253 · 105

r5 9.071686 8.263785
F50 8.1300 · 10−4 7.5800 · 10−4

F52 3.2850 · 10−3 2.8690 · 10−3

F53 2.2000 · 10−4 2.5600 · 10−4

F55 1.5020 · 10−3 1.1920 · 10−3

Table C.1
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HMC, nf = 2.5 × 102 HMC, nf = 5 × 102 HMC, nf = 103

HMC, nf = 5.5 × 103 ISDE, nf = 5 × 103 ISDE, nf = 104

ISDE, nf = 2 × 104 ISDE, nf = 1.1 × 105
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Figure C.3: Comparison of the convergence of the mean (a) and variance (b) of E for different
values of nf . The number of iteration in the adaptation phase are compared for the HMC and
ISDE algorithms.
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Figure C.4: Comparison of the convergence of the mean (a) and variance (b) of E using the
ISDE algorithm as a function of the number of function evaluations with different values for the
damping factor f0.



Appendix D
Tables for the probabilistic predictions for
gas elemental composition

This Appendix provides additional tables of the probabilistic predictions of the elemental gas
composition on the heat shield surface at the wind side, lee side, and middle side. See the results
in Section 9.3.1.

ϑ = nt
50.3 s 75 s

C 0.412 [0.279;0.461] (44.27 %) 0.564 [0.551;0.575] (4.29 %)
H 0.113 [0.072;0.127] (48.84 %) 0.104 [0.099;0.109] (8.92 %)
O 0.476 [0.413;0.650] (49.93 %) 0.332 [0.321;0.346] (7.52 %)

ϑ = 0.7nt
50.3 s 75 s

C 0.398 [0.261;0.467] (51.63 %) 0.568 [0.550;0.584] (5.95 %)
H 0.108 [0.057;0.129] (66.44 %) 75.000: 0.103 [0.097;0.111] (13.64 %)
O 0.495 [0.405;0.675] (54.60 %) 75.000: 0.329 [0.313;0.348] (10.53 %)

Table D.1: Probabilistic predictions for the gas elemental composition at the surface of the heat
shield (wind side) for the two values of ϑ at t = 50.3 s (maximum uncertainty) and t = 75 s
(around peak heating). The values are the median predictions with their 2.5–97.5 % probability
intervals between squared brackets, and the ratio of the thickness of the probability interval and
the median between parentheses.
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ϑ = nt
50.7 s 75 s

C 0.420 [0.282;0.470] (45.02 %) 0.575 [0.563;0.588] (4.37 %)
H 0.072 [0.056;0.119] (87.37 %) 0.102 [0.098;0.107] (9.15 %)
O 0.465 [0.399;0.648] (53.40 %) 0.322 [0.311;0.336] (7.87 %)

ϑ = 0.7nt
50.7 s 75 s

C 0.287 [0.233;0.447] (74.23 %) 0.579 [0.561;0.596] (6.09 %)
H 0.071 [0.047;0.124] (108.85 %) 0.102 [0.096;0.109] (12.99 %)
O 0.481 [0.394;0.669] (57.22 %) 0.319 [0.302;0.338] (11.44 %)

Table D.2: Probabilistic predictions for the gas elemental composition at the surface of the heat
shield (lee side) for the two values of ϑ at t = 50.4 s (maximum uncertainty) and t = 75 s
(around peak heating). The values are the median predictions with their 2.5–97.5 % probability
intervals between squared brackets, and the ratio of the thickness of the probability interval and
the median between parentheses.

ϑ = nt
50.6 s 75 s

C 0.347 [0.259;0.456] (56.65 %) 0.565 [0.551;0.576] (4.43 %)
H 0.092 [0.061;0.126] (71.09 %) 0.099 [0.094;0.103] (9.03 %)
O 0.560 [0.418;0.675] (45.94 %) 0.330 [0.318;0.345] (8.09 %)

ϑ = 0.7nt
50.6 s 75 s

C 0.327 [0.243;0.464] (67.46 %) 0.569 [0.550;0.585] (6.07 %)
H 0.084 [0.050;0.128] (93.65 %) 0.104 [0.098;0.112] (13.71 %)
O 0.593 [0.408;0.692] (47.96 %) 0.327 [0.310;0.346] (11.01 %)

Table D.3: Probabilistic predictions for the gas elemental composition at the surface of the heat
shield (middle side) for the two values of ϑ at t = 50.6 s (maximum uncertainty) and t = 75 s
(around peak heating). The values are the median predictions with their 2.5–97.5 % probability
intervals between squared brackets, and the ratio of the thickness of the probability interval and
the median between parentheses.
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