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Uncertainty Quantification of Aerothermal

Flow-Material Simulations of Low-Density
Ablative Thermal Protection Systems

Coheur Joffrey
Abstract

Essential to space missions involving an atmospheric entry, the thermal protection system (TPS)
shields the spacecraft and its payload from the severe aerothermal loads. Low-density car-
bon/phenolic composite materials have gained renewed interest to serve as ablative thermal
protection materials (TPMs). These materials can accommodate the high heating rates and
heat loads encountered during the atmospheric entry, at hypersonic velocities, by absorbing part
of the incoming heat through physico-chemical transformations. One of the main endothermic
processes is the pyrolysis of the resin compound, whereby volatile products are released, leaving
a carbonaceous residue on the fibers.

Whereas new experimental data have already been published to characterize the decom-
position of these low-density carbon/phenolic materials, they are yet to be exploited for the
inversion of physico-chemical models. In addition, the issue of uncertainty quantification, re-
quired to assess the reliability of the numerical model and the physico-chemical models, is yet to
be addressed. Therefore, the overarching objective of this thesis is to contribute to the develop-
ment of an uncertainty-quantified numerical modeling of the ablation of new porous composite
materials and to the analysis of the impact of uncertainty on TPS design. To that aim, we first
address the development and the uncertainty characterization of physico-chemical models for
resin pyrolysis on the basis of new experimental data relevant to the pyrolytic decomposition of
the phenolic resin used in carbon/phenolic composite TPMs. Then, we analyze the impact of
the uncertainty in the physico-chemical models on the numerical modeling of ablation of TPS
by means of non-intrusive stochastic methods.

The central contribution of this thesis is to infer from these new experimental data an
uncertainty-quantified pyrolysis model. We adopt a Bayesian probabilistic approach to account
for uncertainties in the model identification. We use an approximate likelihood function involv-
ing a weighted distance between the model predictions and the time-dependent experimental
data. To sample from the posterior, we use gradient-informed Markov chain Monte Carlo meth-
ods with an adaptive selection of the numerical parameters. We develop a versatile code for
performing uncertainty characterization using Bayesian inference tools on engineering problems
in which the proposed methods are implemented. To select the decomposition mechanisms to
be represented in the pyrolysis model, we proceed by progressively increasing the complexity of
the pyrolysis model until a satisfactory fit to the data is ultimately obtained. To improve the
computational time, we derive a fast semi-analytical solution for the resin pyrolysis using multi-
component parallel reactions both for the case of a constant temperature and the case of a linear
heating rate. The pyrolysis model thus obtained involves six reactions and has 48 parameters.

A second contribution is the assessment of the impact of uncertainties on the material re-
sponse of an ablating TPS relevant to in-flight performance prediction. Using the six-reaction
pyrolysis model, we demonstrate its use in a numerical simulation of heat shield surface reces-
sion in a Martian entry. We provide probabilistic projections of the recession of the surface, the
production of gaseous species at the surface, and the temperature.

In addition to the aforementioned contributions, we also provide three supplementary pieces
of research. For the first one, we contribute to the development of a model for representing
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the process of ablation from resin pyrolysis to char ablation in a unified flow-material approach
where the Volume-Averaged Navier-Stokes equations are solved. This model is implemented in
the high-fidelity numerical code Argo from the research center Cenaero and verified by a code-
to-code comparison. The second one pertains to the development of an uncertainty-quantified
pyrolysis model including competitive mechanisms for the pyrolytic decomposition of the PICA
material. Finally, the third one concerns the calibration of material properties and environ-
mental conditions in a Bayesian inference framework using post-flight data of the Mars Science
Laboratory mission.

Keywords Atmospheric entry, thermal protection system, carbon/phenolic composite, Bayesian
inference, chemical kinetics, Markov chain Monte Carlo



Quantification des incertitudes pour la

simulation aérothermique fluide-matériau des
systéemes de protection thermique ablatifs légers

Coheur Joffrey

Résumé

Essentiel aux missions spatiales impliquant une entrée dans I’atmosphere, le systéme de pro-
tection thermique (SPT) proteége le véhicule spatial et sa charge utile contre les contraintes
aérothermiques importantes. Les matériaux composites de type carbone/phénol a faible densité
ont connu un regain d’intérét dans leur utilisation comme matériaux de protection thermique
(MPT) ablatifs. Ces matériaux peuvent supporter les taux de chauffe élevés et les contraintes
thermiques rencontrées lors de I'entrée dans 'atmospheére, a des vitesses hypersoniques, en ab-
sorbant une partie de la chaleur grace a des transformations physico-chimiques. L’un des prin-
cipaux processus endothermiques est la pyrolyse du composé résineux, qui libére des produits
volatiles et laisse un résidu carboné sur les fibres.

Alors que de nouvelles données expérimentales ont déja été publiées pour caractériser la
décomposition des matériaux carbone/phénol 1égers, ces données restent encore & étre exploitées
pour l'inversion des modeles physico-chimiques. En outre, la question de la quantification des
incertitudes, nécessaire pour évaluer la fiabilité du modele numérique et des modeles physico-
chimiques, n’a pas encore été abordée. Par conséquent, ’objectif global de cette thése est de
contribuer au développement d’une modélisation numérique avec quantification des incertitudes
sur ’ablation de ces matériaux composites poreux et a ’analyse de 'impact de 'incertitude sur
la conception des SPT. Dans ce but, nous abordons dans un premier temps le développement
et la caractérisation de l'incertitude de modeles physico-chimiques pour la pyrolyse de la résine
sur base des nouvelles données expérimentales relatives a la décomposition pyrolytique de la
résine phénolique. Ensuite, nous analysons I'impact de 'incertitude des parametres des modeles
physico-chimiques sur la modélisation numérique de I'ablation des MTP au moyen de méthodes
stochastiques non intrusives.

La contribution centrale de cette these est d’inférer a partir de ces nouvelles données ex-
périmentales un modele de pyrolyse avec quantification des incertitudes. Nous adoptons une
approche probabiliste bayésienne pour tenir compte des incertitudes dans l'identification du
modele et de ses parametres. Nous utilisons une fonction de vraisemblance approximative
impliquant une distance pondérée entre les prédictions du modele et les données expérimen-
tales dépendant du temps. Pour échantillonner le postérieur, nous utilisons des méthodes de
Monte-Carlo par chaines de Markov informées par gradient avec une sélection adaptative des
parametres numériques. Nous développons un code polyvalent pour effectuer la caractérisa-
tion de l'incertitude en utilisant des outils d’inférence bayésienne sur des problémes d’ingénierie
dans lesquels les méthodes proposées sont mises en ceuvre. Afin de sélectionner les mécanismes
de décomposition du modele de pyrolyse, nous procédons par augmentation progressive de la
complexité du modele jusqu’a ce qu'un ajustement satisfaisant aux données soit obtenu. Afin
d’améliorer le temps de calcul, nous dérivons une solution semi-analytique au modele de pyrolyse
faisant intervenir des réactions paralleles de composants multiples, a la fois pour le cas d’une
décomposition a température constante et le cas d’un taux de chauffe linéaire. Le modele de
pyrolyse ainsi obtenu implique six réactions et comporte 48 parametres.

Une deuxiéme contribution est ’évaluation de I'impact des incertitudes sur la réponse du
matériau d’'un SPT ablatif, pertinente pour la prédiction des performances en vol. En utilisant
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le modele de pyrolyse a six réactions, nous démontrons son utilisation dans une simulation
numérique de la récession de la surface du bouclier thermique lors d’une entrée dans I’atmosphere
de Mars. Nous fournissons des projections probabilistes de la récession de la surface, de la
production d’especes gazeuses a la surface et de la température.

En plus des contributions susmentionnées, nous apportons également trois travaux de recherche
supplémentaires. Pour le premier, nous contribuons au développement d’un modeéle représentant
le processus d’ablation, a partir de la pyrolyse de la résine jusqu’a décomposition de la matiére
carbonisée, suivant une approche unifiée fluide-matériau dans laquelle les équations de Navier—
Stokes moyennées en volume sont résolues. Ce modele, implémenté dans le code numérique
haute-fidélité Argo du centre de recherche Cenaero, est vérifié au moyen d’une comparaison des
résultats numérique avec ceux d’un autre code. Le second concerne le développement d’un mod-
ele de pyrolyse avec quantification des incertitudes, incluant des mécanismes compétitifs pour la
modélisation de la décomposition pyrolytique du matériau PICA. Enfin, le troisiéme concerne
la calibration des propriétés du matériau et des conditions environnementales dans un cadre
d’inférence bayésienne en utilisant les données post-vol de la mission Mars Science Laboratory.

Mots-clés Entrée atmosphérique, systéme de protection thermique, matériau composite car-
bone/phenol, inférence bayésienne, cinétique chimique, Monte-Carlo par chaines de Markov
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Chapter

Introduction

1.1 Research context: atmospheric entry and thermal
protection systems for spacecraft

“The exploration of space will go ahead [...], and it is one of the great adventures
of all time.”

John F. Kennedy, 1962

More than half a century after the first Apollo missions, the adventure of space exploration has
become even more of a reality as humans are now preparing to go back to the surface of the Moon
and further on Mars. The number of space missions that will need to enter into the atmosphere
of a planet and safely deliver their payload is going to increase in the next decade (Bousquet et al.
[2015]). With the Artemis program, the National Aeronautics and Space Administration (NASA)
is planning to send astronauts to the Moon and increase the presence of humans in space, which
will require to safely return on Earth. Missions that will collect samples on the surface of Mars
or other celestial bodies will have to bring back the samples to Earth, such as for instance
the Mars Sample Return campaign (Joffre et al. [2018]), a joint effort of the European Space
Agency (ESA) and NASA. Future missions, increasingly more ambitious in scope, with heavier
payloads and targeting more extreme environments, call for the development of new technologies
and robust methods for the design of all parts of spacecraft.

One critical part of space exploration missions is the atmospheric entry, descent, and landing
(EDL) phase. It begins when the spacecraft reaches the uppermost layer of the atmosphere, after
its separation from the cruise spacecraft, until touchdown. For instance, Fig. 1.1 illustrates the
EDL sequence of events for the Mars Science Laboratory (MSL), whose entry capsule successfully
delivered the Curiosity Rover on the surface of Mars on the 5th August 2012 (Way et al. [2007];
Prakash et al. [2008]; Vasavada et al. [2012]).

First, during the atmospheric entry, the spacecraft follows a ballistic descent. As it reaches a
hypersonic flow regime, a strong shock wave is created in front of the body and leads to a sharp
increase of the temperature of the surrounding flow, typically more than 10000 K in the shock
layer (Anderson [2006]). The spacecraft loses most of its kinetic energy and is exposed to a
severe aerothermal environment. A thermal protection system (TPS) is essential to protect the
spacecraft from these harsh conditions. For instance, the Galileo probe was designed to survive
a peak heating of 30 kW cm ™! and a total heat load of 300 kJ cm~! during its atmospheric entry
on Jupiter while transmitting data until the pressure and temperature completely destroyed the
spacecraft (Milos [1997]). Second, during the descent, parachutes are released to reduce further
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Figure 1.1: MSL entry, descent and landing sequence of events (artist’s concept). Image credit:
NASA /JPL-Caltech.

the speed of the spacecraft. A series of parachutes can be deployed, and the heat shield can be
separated from the main part. Eventually, the spacecraft operates its final descent and, for some
missions, operates its landing, in which case the spacecraft also includes lander in its payload
for the touchdown, such as for instance the MSL (Prakash et al. [2008]), or more recently the
NASA’s Perseverance mission to Mars. In all cases, the spacecraft has to go through the severe
atmospheric entry and requires to be protected by a heat shield.

1.2 Atmospheric entry flows and thermal protection ma-
terial (TPM) decomposition

Atmospheric entry flows are intimately related to hypersonic flows. There is no general criterion
to define hypersonic flows, but it can be identified by the appearance of several complex multi-
physics phenomena that become dominant as the Mach number increases (Anderson [2006]). The
effects of high temperature flows are by far the most dominant effects that are responsible of
two typical mission-killers, namely the gas-surface interactions (GSIs) and the radiation. Some
of these effects are illustrated in Fig. 1.2 and described below.

Because of the presence of the spacecraft entering the atmosphere at high-speed velocities,
the density of the flow changes drastically across the shock wave: the ambient air in front of the
body is strongly compressed and intense frictional dissipation creates high temperatures. Part
of the kinetic energy of the spacecraft is transferred to the internal energy of the flow molecules,
which increases the gas temperature. The internal energy modes are progressively excited due
to the rise of the translational temperature through the shock and molecules start to vibrate,
dissociate and even ionize (and thus is commonly referred as a plasma flow) for sufficiently high
temperatures. The gas can also emit radiation when going from an excited state to a less excited
one, adding radiative heating to the surface of the TPS. The importance of the radiation varies
from one mission to another. For low-speed entries, the radiative heat flux is low but increases
fastly with velocity (Duffa [2013]). It also depends strongly on the atmosphere considered:
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Figure 1.2: The hypersonic flow results in high enthalpy conditions with a bow shock and a
rarefied region behind the capsule. The figure shows the temperature in the symmetry plane
and flow streamlines. Image adapted from https://boltzplatz.eu/.

for example, the atmosphere of Titan is largely dominated by nitrogen (98.6%) with a small
amount of methane (1.4%). During the atmospheric entry of the Huygens probe, the formation
of cyanide (CN) molecules, which is known to be a strong radiator, was particularly prevailing
in that case (Magin et al. [2006]).

The gas in the shock layer is hot because of the strong shock wave. In the boundary layer (BL)
close to the surface of the TPS, where viscous effects are important, the high viscous dissipation
can also generate high temperatures. Chemical reactions occur inside the gas and the surface of
the vehicle is covered by a chemically-reacting boundary layer that interacts with the surface of
the TPS. This chemically-reacting boundary layer leads to high heat-transfer rates to the TPS.
The aerodynamic heating of the surface of the TPS induced by the hot boundary layer is called
the convective heating. At the surface, the recombination of the atoms can be triggered. These
phenomena strongly influence the behavior of the flow around the spacecraft and the interaction
with its surface, and depending on the type of material used for the TPS, additional phenomena
can occur. In any case, the high heat flux transmitted to the surface of the TPS results in the
heating of its surface and the increase of its inner temperature, which can eventually cause the
recession of its surface. Hence, a careful design of the heat shield is of utmost importance for
the integrity of the vehicle and its payload, and for the safety of the crew in the case of manned
missions.

1.2.1 Thermal protection materials

The type of materials used in TPS depends on the entry conditions. The TPS has to sustain
the peak heating and all the heat loads encountered over the entry trajectory. Examples of
entry trajectories expressed under the form of a velocity-altitude map are shown in Fig. 1.3 for
certain reentries into Earth’s atmosphere. Spacecraft coming from extra-terrestrial bodies (Mars
Sample Return, Apollo missions) usually enter on Earth’s atmosphere at a relatively high speed
(> 11 km/s), and the aerobraking will generate very high heat fluxes that are transferred to the
heat shield. Yet, for moderate velocity entries, such as for the Space Shuttle, the heat load on
the spacecraft is lower.

Therefore, TPMs are classically divided into two main categories (Williams and Curry [1992]).
On the one hand, non-ablative materials are used for reusable TPSs. They absorb the incoming
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Figure 1.3: Atmospheric entry flight paths on a velocity-altitude map for the Space Transporta-
tion System (STS), or Space Shuttle, Apollo capsule and Mars Sample Return (MSR) missions.
The peak heatings are indicated by dots. Real gas effects as dissociation (more than 10% after
the shock) and ionization are drawn in dotted lines. For the comparison with a supersonic air-
craft, the Concorde trajectory is also represented. Figure modified from Howe [1989].

heat from the shock and boundary layers and re-radiate the energy away from the surface towards
the gas. They are more subjected to recombination because of the nature of the material used
(metals, ceramic). Reusable TPSs are preferred for moderate speed entries, typically below 7.5
km/s and heat fluxes up to 1 MW/m?. A well-known example of reusable TPS was implemented
on the Space Shuttle, for which the underside part of the TPS was made up of silica ceramic tiles.
Two other examples are the ESA Intermediate eXperimental Vehicle (IXV), shown in Fig. 1.4(a),
and the Space Rider (Bernard et al. [2019]). The TPS tiles are made up of a thin outer layer
of carbon fiber reinforced carbon-silicon carbide (C/SiC) material designed to withstand the
mechanical loads and resist to the heat fluxes (Pichon et al. [2006]; Panerai [2012]), while layers
of insulating material are inserted underneath for thermal insulation (alumina blankets close to
the outer surface and silica aerogels close to the cold structure). The Space Rider is planned to
be used up to six times, with minimum maintenance between two flights (Bernard et al. [2019]).

On the other hand, ablative materials can accommodate the high heating rates and heat
loads encountered during the reentry through phase change and mass loss. They lose their mass
when heated, due to chemical reactions such as oxidation or nitridation (Helber et al. [2017]),
or mechanical erosion which can further fasten the recession process. Generally ablative TPMs
are filled with resin that also sublimates when subjected to high heat fluxes, called pyrolysis
reactions. They are largely used for entry speeds higher than 8 km/s and heat fluxes exceeding
1.5 MW /m?, typically for extra-orbital high-velocity entry missions. The AVCOAT material
(density ~ 510 kg m~2) has been used for the TPS of the Apollo missions for direct lunar return
at ~ 11 km/s (Erb et al. [1970]) and is planned to be used for the multi-purpose crew vehicle
Orion (Harris et al. [2018]).

Lightness is an important factor to account for in order to reduce the energy costs associated
to the propulsion of the spacecraft and for maximizing its payload. Yet TPSs must be strong
enough to resist to mechanical erosion (spallation) and other possible mechanical failures of
the material. By the end of the 80’s, these requirements led to the development of a new
class of low-density carbon/phenolic ablative materials, like the Phenolic Impregnated Carbon
Ablator (PICA) material (density ~ 280 kg m~3) by NASA (Tran et al. [1997b]) and later on to
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Figure 1.4: Examples of reusable and ablative thermal protection systems. (a) Illustration of
the ESA IXV atmospheric entry (reusable TPS). (b) MSL heat shield made up of PICA ablative
TPMs. Credit: NASA/JPL-Caltech/Lockheed Martin.

the development of Asterm by Airbus DS for ESA missions (Ritter et al. [2011]). These materials
are typically made up of a carbon fiber matrix in which a resin component is impregnated. The
fibers provide mechanical resistance and the resin absorbs the heat transmitted to the material,
which makes these kind of material a suitable choice for thermal protection systems. Many types
of resins have been studied (see a review in Sharpe and Wright [2009]), and phenolic resins, used
for instance in the PICA material, are widely used. Under the increasing heat encountered during
the reentry, decomposition of this reinforced fiber/resin composite materials occurs mainly in
two steps (Duffa [2013]). First, the resin is progressively pyrolyzed, producing pyrolysis gases
that percolate through the material and leave a carbonaceous residue on the fibers, the char.
These pyrolysis gases add a blockage effect on the boundary layer gases reducing further the
overall heating of the material by acting as a barrier against the incoming flow. Then, the
charred material is ablated simultaneously by heterogeneous chemical reactions, sublimation,
and spallation. The high porosity of such materials is not only efficient in terms of weight,
but also reduces the effective thermal conductivity of the material and thus helps to keep the
substructure at a relatively low temperature for the payload to be safe.

In order to understand the physical phenomena at stake, experimental tests are necessary.
Studies on ablative materials date back to the 60’s with the development of early material
response codes (Kendall et al. [1968]; Chen and Milos [1999]) based on the experiments of Sykes
[1967] and Goldstein [1969]. Several experiments have been carried out more recently to get
new insight into the pyrolysis of the resin (Trick and Saliba [1995]; Trick et al. [1997]; Wong
et al. [2015b, 2016]; Bessire et al. [2014]; Bessire and Minton [2017]), char ablation (Panerai
et al. [2014, 2016]), or both pyrolysis and ablation of the material such as the experiments
in the von Karman Institute (VKI) Plasmatron facility (Helber et al. [2016b,a]). The Zuram
material (Natali et al. [2016]; Reimer et al. [2018]) is now being tested in order to have open
access materials properties for material simulations. Then, mathematical models are elaborated
and numerical simulations are used to validate them based on the experimental results and to
perform predictions. To predict the material thermal decomposition, current models are still
based on these early experiments, although nowadays numerical solvers allow the use of more
accurate models.

Low-density ablative thermal protection materials have proven to be successful during atmo-

spheric entries of several missions such as Stardust (Willcockson [1999]; Kontinos and Stackpoole
[2008]; Stackpoole et al. [2008]; Trumble et al. [2010]) the Mars Science Laboratory (Wright et al.
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[2011, 2014]), or more recently the SpaceX Dragon capsule (Seedhouse [2016]). Currently, only
ablative materials allow to sustain the high heat fluxes encountered during high-speed entries.
These materials will therefore enable future sample return missions and planetary space explo-
ration programs.

1.2.2 Importance of the coupling between the flow and material abla-
tion

The interactions of the hypersonic flow and the reactions occurring at the surface and within
the heat shield are manifold and there is a need to provide a detailed modeling for a correct
estimations of the heat fluxes transmitted to the spacecraft. Figure 1.5 summarizes the most
dominant physical phenomena.

High heat fluxes are transmitted to the material by convection from the boundary layer and
radiation from the shock layer, heating up the surface, and melting and sublimation of the surface
can be observed. Conduction within the material increases the heat shield temperature. Species
from the chemically-reacting boundary layer can diffuse towards the surface of the TPS and
react, for instance, through oxidation or nitridation (heterogeneous) reactions that lead to the
recession of the surface. Additional material can be removed by mechanical erosion (spallation)
at the surface. For low-density porous fiber/resin materials, species can even diffuse below the
surface, leading to the ablation of the bulk of the material (Lachaud et al. [2010]; Panecrai et al.
[2014]; Schrooyen [2015]). The increase of temperature induces the pyrolysis of the resin of the
material, which loses its mass. The gaseous products of ablation and pyrolysis are blown into the
boundary layer where they may react with the boundary layer gases coming from the shock layer.
Species produced in-depth from volume ablation and pyrolysis reactions percolate towards the
surface and add to the mixture. For strong mass blowing rates, the boundary layer can be blown
off of the surface, significantly reducing the thermal gradients at the surface and decreasing the
convective heat flux. Depending on their type and concentration, ablation and pyrolysis gases
may block a significant amount of the incoming radiation as well, through absorption. This
process, known as radiation blockage, is still not fully characterized, due to the complexity of
the phenomena leading to the creation of the ablation and pyrolsyis gases. To further complicate
matters, certain ablation products such as CO, CN, and C3 are known to be strong radiators,
leading to the possibility that ablation may actually increase the radiative flux to the vehicle
through spontaneous emission of these species as they are heated in the boundary layer (Scoggins
[2017]).

Finally, as the flow moves across the surface of the ablator, the boundary layer thickness tends
to grow. For larger vehicles, the laminar boundary layer flow can transition to turbulent, which
may significantly increase the convective heating rate to the surface. Shock and boundary layer
gases are convected towards the after-body of the vehicle (see Fig. 1.2). As the flow wraps around
the leading corner of the vehicle, a significant decompression and separation occurs, generating a
large, turbulent wake and leading to rarefied regions where low-density effects are important. As
the wake cools, previously dissociated atmospheric gases and ablation products may recombine,
adding radiative heat flux to the after-body. Although relatively smaller compared with the fore-
body heating, a significant radiative heat flux can occur on the backshell due to recombination
and exceeds the convective heating. For Martian entries, a significant radiative heat flux can
occur on the backshell of the vehicle due recombination of COs which is a strong emitter in the
infrared region (Brandis et al. [2020]). This phenomenon may become increasingly important for
future missions aiming to send increasingly large vehicles to Mars, and for which it is therefore
important to quantify the species that are present in the boundary layer and their associated
uncertainty.
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1.3 Uncertainty quantification for TPS modeling

In many engineering domains, the ability to predict the outcome of a physical system is criti-
cal to understand and advance the state of science and technology, and is essential for engineers
throughout any design process. Predictive science is at the confluence of computational, physical,
and mathematical sciences. The field of uncertainty quantification (UQ) has recently emerged
at the intersection of these three pillars and proposes to investigate, based on the probability
theory and the use of statistical tools, the role played by uncertainty in the model and the data
on the behavior of complex science and engineering systems (Le Maitre and Knio [2010]; Smith
[2014]; Arnst and Ponthot [2014]; Ghanem et al. [2017]). Due to the interdisciplinary nature of
the field, UQ encompasses a broad range of problems driven by real challenges of practical impor-
tance involving the interplay between physics, modeling, computational hardware, algorithmic
complexity, and decisions.

Computational studies are crucial in many fields that study complex physical systems or
when experimental campaigns are expensive and difficult to perform. Major advancements have
been made in the field of mathematical modeling, scientific computing, and data science that
have progressively improve the reliability of numerical predictions. The goal of uncertainty quan-
tification in numerical analyses is to characterize the impact of all the sources of uncertainty,
that can stem from the model inputs (such as parameter values, or initial and boundary condi-
tions), the difference between the model and the physical system (model discrepancy), numerical
approximations and errors, on the model output, with the ultimate objective to provide more
reliable predictions for practical problems.

We can think of the simulation tool as a black-box model that provides some output values, or
quantity of interests (Qols), based on some input parameter values for the model, as illustrated in
Fig. 1.6. The first step toward the quantification of uncertainty in the Qols is the characterization
of input uncertainties by means of probability density functions (PDF's) that rely on experimental
data; these PDF's can then be propagated through the numerical model to obtain the uncertainty
in the Qols.

In present context of TPS design, the purpose of an uncertainty quantification study is
twofold. Firstly, it can be used to assist the design of TPS by performing predictions on the en-
vironment and the material-response by using computational software and statistical projections
for future mission design. By providing a statistical characterization<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>