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Abstract

Landslide susceptibility maps can be a useful tool to
support holistic urban planning in mountainous environ-
ments. Data-driven methods for landslide susceptibility
modeling work well even in data scarce areas, and there is
an increasing relevance of machine learning methods that
help analyze efficiently large and complex datasets. In this
contribution we present some of our study examples to
show how data quality, quantity, complexity, and prepa-
ration can have major effects on the outcomes of landslide
susceptibility modeling. The aforementioned aspects are
too often neglected in spite of their relevance, both in data
scarce, but also data rich areas. We also use these
examples to discuss the way we evaluate landslide
susceptibility models, as the spatial performance of
landslide susceptibility maps often differs from the
mathematical performance. We finally discuss the neces-
sity of standards for input data, modeling results and
result communication to improve the usability of land-
slide susceptibility models in urban planning.
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Introduction

With current trends of increasing intensity of climatic events
and rapid urbanization in many areas of the world, it is
becoming more important to systematically consider geo-
logical hazards in urban and land-use planning and build
more resilient cities (UNISDR 2015). Landslide suscepti-
bility mapping, which is defined as the analysis of the spatial
probability of landslide occurrence, is a valuable tool for
implementing slope stability in urban and land-use planning
in inhabited mountainous areas (Fell et al. 2008).
Data-driven, or statistically based methods work very well in
data scarce areas, because although they require certain
amounts of data, the required data can be relatively simple
and is easily accessible as compared for instance to physi-
cally based methods. Usually, a landslide inventory, mor-
phological and hydrological information derived from a
digital elevation model (DEM), and some geological infor-
mation are the minimum of data used in landslide suscep-
tibility modeling (Reichenbach et al. 2018). Increasing
availability of satellite data and methods for automatic
landslide detection, as well as increasing availability of
elevation data, make it possible to generate landslide sus-
ceptibility models even in data scarce areas.

The goal of data-driven or statistically based landslide
susceptibility modeling is to quantify the spatial relationship
between occurred landslides and related factors and to ulti-
mately identify locations likely to be affected by future
landslides by using only information about the factors. This
can be achieved with simple bivariate statistical or multi-
variate methods, while in the last decade machine learning
methods have increasingly proven to be useful for this task,
as they can be employed to yield high accuracies while being
able to handle large datasets. They are particularly relevant
considering the increasing collection and accessibility of
data. One main idea of data-driven methods is to overcome
subjectivity based on decisions of the operator (van Westen
et al. 2006). Landslide susceptibility can furthermore help to
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develop process understanding for landslides in a regional or
even wider scale.

There is a huge amount of publications on the topic of
statistically based landslide susceptibility modeling, as
Reichenbach et al. (2018) demonstrated in their extensive
review of 565 articles published between 1983 and 2016. As
many of these authors showed, the methods for data-driven
landslide susceptibility modeling work very well. They yield
impressive performances measured by skill scores such as
the area under the receiver operator characteristics
(AUROC) curve. However, apart from tweaking models to
reach better performances, two important topics are rarely
ever discussed: data quality and usefulness of results.

As the name already suggests, in data-driven modeling
we are replacing the expert reasoning with data, not algo-
rithms. No matter how complex or advanced an algorithm is,
it can only discover effects that are in the data. This point is
often neglected in the literature, and until now, there exists
no standard or unified approach for assessing the required
quality, consistency, quantity, and preparation of input data
for landslide susceptibility modeling.

The other point is the usefulness of resulting models.
Evaluation criteria for landslide susceptibility models should
depend on the goals of a study (Hearn and Hart 2019;
Teimouri and Kornejady 2019). This point also implies the
issue of the spatial plausibility of the resulting model and a
reality check by local experts or through field verification,
which could even help to develop new process understand-
ing. To sum it up, we need better, standardized tools to
define goals and assess the usefulness of landslide suscep-
tibility models.

In this contribution we want to discuss the aspects data
quality, consistency, quantity, and pre-processing of land-
slide inventories and input factor datasets, respectively, as
well as result usefulness in landslide susceptibility modeling
and their implications for data scarce areas using some
examples from our research with machine learning tools on
different scales.

Data and Methodology

Study Areas

In the following sections we want to use examples from
three of our studies related to landslide susceptibility map-
ping with machine learning methods to discuss the
above-mentioned aspects. The studies differ in the size of the
study area and their environment, as well as in their specific
goals and challenges. Two rather small study areas are the
urban area of Tegucigalpa, capital city of Honduras
(353 km2, see Table 1), and the rural area of Ningnan

County in southwestern China (726 km2). The third study
with a very large extent covers a good part of the Kyrgyz and
Tajik Tien Shan Mountains (115,000 km2).

The goal of the Tegucigalpa study was to generate a
susceptibility map for urban planning with the challenge
related to the availability of input data. The goal of the
Ningnan study was to model landslide susceptibility based
on parameters expressing rock quality and weathering, with
a challenge regarding the landslide inventory quality. The
goal of the Tien Shan study was to try to grasp the big
picture, while the challenge was to handle a large dataset
with uncertainties regarding the consistency of data for a
large area covering two different countries.

Input Data

For all studies referred to in this contribution the freely
available ALOS 30 m World DEM has been used (JAXA
2015–2019) as the basis to derive primary and secondary
terrain and hydrological parameters with ArcGIS and
SAGA GIS. In terms of data quality of the DEM all our
studies are comparable.

The landslide inventory of the Ningnan study was map-
ped during field campaigns in 2015 and 2017. It will be
discussed in more detail in the following section. The
Tegucigalpa landslide inventory was generated in 2013 in
collaboration with the Japan International Cooperation
Agency (JICA) and the National Autonomous University of
Honduras (UNAH), based on stereoscopic aerial image
interpretation and field surveys (Braun et al. 2019). The Tien
Shan landslide inventory has been created by Havenith et al.
(2015) using Google Earth imagery.

For Ningnan a geological map was available that was
reclassified regarding the geotechnical properties of the
lithologies. For Tegucigalpa, different geological maps were
available. For the Tien Shan only a classification into soft or
hard rock was available ready-to-use.

All data was prepared on a pixel basis matching the
ALOS 30 m DEM that was resampled to 30 m cells in UTM
projection.

Modeling

For all three study areas landslide susceptibility was ana-
lyzed with the IBM SPSS Modeler. First, the data was
transferred from a GIS into a table format and imported to
the modeller. In a first step, the datasets were explored
regarding their completeness and quality, distributions and
inter-correlations of variables. In order to optimize the
mathematical representation of the data, the variables were
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transformed, scaled and recoded if necessary. More details
about this workflow can be found in Braun et al. (2019).

In all studies, different classifiers, mainly Artificial Neural
Networks (ANN) and Decision Trees (DT), were explored
for their capabilities to model landslide occurrence in the
different study areas using separate training, test, and
sometimes validation subsets of the data using different
compositions of the parameter sets. The models are descri-
bed in Braun et al. (2019). The modeling results were
evaluated with different skill scores, such as the total per-
centage of correct classifications, the percentage of correctly
classified landslides (hit rate), false positives (false alarms),
and false negatives (misses). Moreover, the results, namely
the raw propensities (confidence that a cell is a landslide)
and the binary classification result were plotted back in a
GIS to evaluate the spatial quality, plausibility, and useful-
ness of the resulting models.

Landslide Inventories

Inventories of past landslides are the most crucial input for
landslide susceptibility modeling, and also a great source of
uncertainty and bias. Until recently, landslide inventories
have mainly been created by experts, e.g. in field recon-
naissance and through aerial or satellite image interpretation.
Depending on experience, method, data quality, goal, scale,
landslide type and landslide discretization (e.g. point or
polygon) the results can vary greatly, e.g. in terms of
accuracy and completeness, making it difficult to compare
studies.

However, with the increasing availability of satellite data,
techniques for automatic landslide detection, such as InSAR
(Schlögel et al. 2015) or optical object recognition (Behling
et al. 2014), are advancing. Another way to make landslide
inventories more comparable is the use of slope units to
discretize landslide occurrence (Alvioli et al. 2016; Schlögel
et al. 2018).

In this section, we want to show how we used slope units
to fix a landslide inventory with high uncertainties, and we
want to discuss the problem of underrepresentation of
landslides in datasets and how it can be solved using sam-
pling or balancing techniques.

Improving a High Uncertainty Landslide
Inventory with Slope Units

The landslide inventory available for the Ningnan study had
spatial uncertainties. Landslides were mapped during an
extensive field campaign, but mainly based on communica-
tions from local villagers. The inventory was updated in
another field campaign and using Google Earth, but the spa-
tial discretization of most landslides remained difficult. The
reports of the villagers were however believed to be reliable,
and thus a slope unit approach was implemented to spatially
discretize slopes where failures have occurred in the past.

A slope unit is a region of space delimited between ridges
and valleys under the constraint of homogenous slope aspect
distribution (Carrara et al. 1991), which corresponds to
either the left or right side of a sub-basin of any order into
which a watershed is subdivided. Slope units were delin-
eated in the study area by further subdividing watersheds
computed in ArcGIS according to the main slope aspect and
three geotechnical classes. Each pixel in a slope unit con-
taining a landslide location was classified as a landslide
pixel. The landslide susceptibility analysis was then carried
out on a pixel basis. The advantage was that by assigning an
event to an entire slope unit, a landslide to non-landslide
pixel ratio of 15/85 could be achieved, which made it pos-
sible to model without any further balancing or sampling
steps (see explanation below).

Underrepresentation of Landslide Cases

A very common problem in modeling with real-world
datasets is the underrepresentation of the target class, making
it hard for machine learning algorithms to capture it. In
general, ratios of the target class of 20/80 to 30/70 are
considered ideal (Pyle 1999).

There are different techniques to enhance the represen-
tation of the target class, such as balancing and
under-sampling. In balancing techniques, duplicates of target
datasets are generated for the training of the models. In
under-sampling, a fraction of the non-target class is sampled
to reach the desired distribution. Balancing is useful in small
study areas to maintain a maximal sample size. For large

Table 1 Key figures about the
study areas presented in the
examples in this contribution

Location Area (km2) Landslides (%) Variables (n)

Tegucigalpa 353 7 19

Ningnan 726 15 8

Tien Shan 115,000 0.8 25
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areas, under-sampling is ideal, as it helps reduce the com-
putational effort by decreasing the total sample size.

When working with these techniques, care has to be taken
to maintain the original distributions of the variables within
the dataset. Also, with a higher representation of the target
class in the training data, models might tend to overestimate
its occurrence and produce increased numbers of false
alarms.

We have worked with balancing in the Tegucigalpa study
(Braun et al. 2019) and with under-sampling in the Tien Shan
study (Dohmen 2019). Exploring different ratios of landslides
to non-landslides revealed that a 30/70 ratio was ideal to
increase the hit rates of models but still keep the false alarms
reasonably low. Figure 1 shows for the Tien Shan and the
Tegucigalpa studies how the hit rate (hr) of ANN increased
significantly with an increasing ratio of landslides. At the
same time, the number of false positives (fp) increased, which
can be useful to a certain degree depending on the goal of the
study (Teimouri and Kornejady 2019). For DT on the other
hand we found they responded less to balancing, it even
promoted over fitting (Braun et al. 2019).

Input Factor Sets—Sometimes More Is More

When it comes to the composition of the input dataset, we
have made the experience that more is sometimes really
more. In science we like to follow the principle of parsimony
and strive for the simplest solution, which means in landslide

susceptibility modeling to create a model with a minimum of
influence factors. This makes a lot of sense for more basic
bivariate statistical methods for landslide susceptibility
mapping, as it also helps improve the interpretability by
experts and end-users. In data mining however, the main
idea is to use as much data as possible to maximize the
chances that patterns can be discovered. Some algorithms,
such as ANN, depending on their complexity actually
require a certain number of input variables and samples,
although there is no general rule as to how much data is
enough.

Maximizing Information

In the Tien Shan study, we explored the response of ANN
and DT models to the complexity of the set of input vari-
ables in a very large dataset. We used different combinations
of input parameter sets, with a very basic set of parameters
that is usually used in bivariate statistical modeling (eleva-
tion, slope, aspect, landforms, distance to rivers and faults,
lithology), a complex set of 25 parameters (morphological,
hydrological, climatic, geological, seismic, and anthro-
pogenic factors), and a set of the 10 most important
parameters as identified in the latter model. Then, to examine
the effect of the continuous vs. nominal nature of the data,
sets with only nominally coded data and with only contin-
uous data were tested, respectively.

Interestingly, as it can be seen in Fig. 2, while the per-
formance in terms of hit rate (hr) of the ANN increased with
increasing complexity of the input parameter set, the DT
already reached their optimal performance with 10 parame-
ters. Two interesting aspects could be concluded from this.
For the ANN more data really meant a better performance,
even though most of the added data was derived from the
same DEM. Moreover, it could be concluded that the DT
model is an interesting choice when a simpler model is
anticipated. Then again, the DT models produced significant
artefacts wherever a variable was split into different branches
of the DT. In the spatial validation, it also turned out that the
ANN containing both, continuous and nominally discretized
parameters, had a tendency to form spatial artefacts as well,
while the artefacts did not occur when only continuous
parameters were considered (Fig. 4). This underlines how
skill scores alone do not enable a meaningful evaluation of
landslide susceptibility models.

The Role of Lithological Information—Can Less
Be Ok?

One parameter that is not always available in some areas, or
not in a consistent form, but which is used in most
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Fig. 1 Effect of balancing. Hit rates (hr), efficiency (e), and false
positives (fp) for test run of ANN models trained with different
landslide to non-landslide ratios for the Tien Shan (TS, black) and
Tegucigalpa (T, blue)
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publications (Reichenbach et al. 2018), is lithology. For
Tegucigalpa, different geological maps were available, but
they were not consistent. With some “expert interpolation”
we tried to fix the geological information into a consistent
map. In order to find out the effect of this highly uncertain
information we generated ANN and DT with and without
lithology as an input. We found that while the ANN per-
formed a little poorer in terms of hit rate without the infor-
mation about the lithology, the DT actually performed better
without the lithology information (Fig. 3).

One explanation is that the nominal nature of the lithol-
ogy variable is unfavourable for the DT because the dataset
can only be split between classes, giving only few options

for the tree to split with this variable. It should be noted that
in the Tegucigalpa study ANN and DT developed quite
different skills. While the DT developed very high accura-
cies with a tendency to over-fitting, the ANN produced more
false positives, which formed however consistent patterns
that seemed to be more useful for zoning. In the spatial
context, the ANN trained with lithological information
showed a more concise and coherent pattern than the one
trained without it. Thus, in this case, in spite of being noisy,
information on lithology could improve the model.

In the large study area of the Tien Shan on the contrary,
as already explained above, the ANN had a better,
artefact-free, spatial performance when no nominal param-
eters, such as the lithology class, were included (Fig. 4).
However, the spatial evaluation of the entire, very large area
showed that their accuracy differs strongly in different areas,
which might be related to local effects. The analysis of this
large area showed in the end that some landslides can be
explained with such a general model, while others cannot. It
will be interesting to explore this in future research to dis-
tinguish local from global effects.

Conclusions

In this contribution we presented three studies of landslide
susceptibility mapping with machine learning methods to
discuss the importance of different aspects regarding data
quality, quantity, complexity, and preparation for
data-driven landslide susceptibility modeling. We showed
how we used slope units to fix a messy landslide inventory.
We also showed how balancing, dataset complexity, and
scale can have significant effects on both, the mathematical
and spatial performance of different types of machine
learning models of landslide susceptibility. The message of
this is how important the data itself is, but also that there are
techniques to overcome data quality related issues.

Perspectives

One point we want to discuss is the usefulness of landslide
susceptibility models. There is a clear lack of studies
regarding the implementation of landslide susceptibility maps
in urban planning (Hearn and Heart 2019). In spite of the great
potential that has been demonstrated in hundreds of publi-
cations, it remains difficult to implement machine learning
methods for landslide susceptibility assessment into planning
due to the lack of transparency for the end-user. Decision
makers are most likely not impressed by high AUROC
numbers that they are unable to interpret. In order to build
confidence in landslide susceptibility maps as a tool for

0

20

40

60

80

100

nominal
only (6)

bivaria te
(7)

10 most
important

continuous
only (21)

all (27)

e,
 h

r, 
fp

 (%
)

ANN
DT

e

hr

fp

Fig. 2 Effect of dataset complexity. Hit rates (hr), efficiency (e), and
false positives (fp) for validation run of ANN and DT models trained
with different input parameter sets in the Tien Shan

0

20

40

60

80

100

7 %
landslides

7 %
landslides,
no lithology

30 %
landslides

30 %
landslides,
no lithology

e,
 h

r,
 fp

 (%
)

ANN
DT

e

hr

fp

Fig. 3 Hit rates (hr), efficiency (e), and false positives (fp) for
validation run of ANN and DT models trained with different input
parameter sets in Tegucigalpa

Overcoming Data Scarcity Related Issues … 245



holistic urban planning, we need to define universal standards
for input data, methodology, and evaluation criteria.

We also need to discuss more the way we communicate
landslide susceptibility to make it more accessible for target
audiences. The final medium of communication is the
resulting map, which should look plausible and reliable to
the end-user. Maps like the ones in Fig. 4 may be accurate
but seem rather difficult to communicate. Slope units could
be a tool that should be explored more for risk communi-
cation, as has been done in Italy for decades. It is easier to
communicate that a whole slope is susceptible, rather than

explain to the citizen why his house is on a red pixel, while
his neighbours house is on a green pixel.

With the increasing challenges we are facing with the
ongoing climate change and increasing urbanization we need
to work on the way we do landslide susceptibility modeling
to create a more useful tool for planning resilient cities. The
data and methods are there.
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