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Abstract: We propose amodel selection criterion to detect purely causal from purely noncausal models in the
framework of quantile autoregressions (QAR). We also present asymptotics for the i.i.d. case with regularly
varying distributed innovations in QAR. This new modelling perspective is appealing for investigating the
presence of bubbles in economic and financial time series, and is an alternative to approximate maximum
likelihood methods. We illustrate our analysis using hyperinflation episodes of Latin American countries.

Keywords: causal and noncausal time series; financial bubbles; model selection criterion; quantile autore-
gressions; regularly varying variables.

1 Motivation

Mixed causal and noncausal time series models have been recently used in order (i) to obtain a stationary
solution to explosive autoregressive processes, (ii) to improve forecast accuracy, (iii) to model expectation
mechanisms implied by economic theory, (iv) to interpret non-fundamental shocks resulting from the
asymmetric information between economic agents and econometricians, (v) to generate non-linear features
from simple linear models with non-Gaussian disturbances, (vi) to test for time reversibility. When the dis-
tribution of innovations is known, a non-Gaussian likelihood approach can be used to discriminate between
lag and lead polynomials of the dependent variable. For instance, the R package MARX developed by (Hecq,
Lieb, and Telg 2017a) estimates univariate mixed models under the assumption of a Student’s t-distribution
with v degrees of freedom (see also Lanne and Saikkonen 2011, 2013) as well as the Cauchy distribution as a
special case of the Student’s t when v = 1. Gouriéroux and Zakoian (2016) privilege the latter distribution to
derive analytical results. Gouriéroux and Zakoian (2015); Fries and Zakoian (2017) provide an additional
flexibility to involve some skewness by using the family of alpha-stable distributions. However, all those
aforementioned results require the estimation of a parametric distributional form. In this article we take
another route.

The objective of this paper is to select between causal and noncausal models without using parametric
distributional assumptions. To achieve that, we adopt a quantile regression (QR) framework and apply
quantile autoregressions (QCAR hereafter) (Koenker and Xiao 2006) on candidate models. Although we
obviously also require non-Gaussian innovations in time series, we do not make any parametric distributional
assumption about the innovations. By using quantile regressions, we consider a statistic called the sum of
rescaled absolute residuals (SRAR hereafter) to measure model performances and reveal properties of time
series. Remarkably we find that SRAR cannot always favour a model uniformly along quantiles. This issue is
common for time series of asymmetric distributed innovations, which causes confusion inmodel selection and
calls for a robust statistic to meet the goal. Considering that, we propose to aggregate the SRAR information
over quantiles. It is worth mentioning that when coefficients are constant in the underlying model with a
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symmetrically i.i.d. error term, the aggregate SRAR criterion is equivalently to select between forward and
backward conditional meanmodels (termed by Gourieroux and Zakoian (2017)). However, the aggregate SRAR
is a measure based on the whole dynamics of the underlying process, which is not dominated by the condi-
tional mean information any more. This characteristic of the aggregate SRAR criterion indeed makes it robust
in model selection even for some general situations such as with asymmetric distributed innovations. Another
remark on this paper is that our method is restricted to the model framework of purely causal or noncausal
autoregressions without other explanatory variables, thereby this method can be used to questions like asset
pricing of exchange rate where current exchange rate is associated with future exchange rates. However, it
cannot be used to questions like the Taylor (1993) rule which associates the dynamics of the nominal interest
rate with dynamics of some endogenous variables (e.g. inflation).

The rest of this paper is constructed as follows. Section 2 introduces mixed causal and noncausal models
and our research background. In Section 3, we propose quantile autoregressions in the time reverse version
called quantile noncausal autoregressions (QNCAR) along with a generalized asymptotic theorem in a stable
law for both QCAR and QNCAR. Section 4 brings out a common issue in the model selection through SRAR
comparison. The use of the aggregate SRAR over all quantiles as a new model selection criterion is then
proposed with the shape of SRAR curves being analysed. Furthermore, we illustrate our analysis using hy-
perinflation episodes of four Latin American countries in Section 6. Section 7 concludes this paper.

2 Causal and noncausal time series models

Brockwell andDavis introduce in their texbooks (Brockwell andDavis 2016; Brockwell, Davis, and Fienberg 1991)
a univariate noncausal specification as a way to rewrite an autoregressive process with explosive roots into a
process in reverse time with roots outside the unit circle. This noncausal process possesses a stable forward
looking solution whereas the explosive autoregressive process in direct time does not. This approach can be
generalized to allow for both lead and lag polynomials. This is the so called mixed causal-noncausal univariate
autoregressive process for yt that we denote MAR(r, s)

π(L)ϕ(L−1)yt = εt , (1)

where π(L) = 1−π1L−…−πrLr,ϕ(L−1) = 1−ϕ1L
−1−…−ϕsL

−s. L is the usual backshift operator that creates lags when
raised topositive powers and leadswhen raised to negative powers, i.e.Ljyt= yt−jandL

−jyt= yt + j. The roots of both
polynomials are assumed to lie strictly outside the unit circle, that is π(z) = 0 andϕ(z) = 0 for |z| > 1 and therefore

yt = π(L)−1ϕ(L−1)−1εt = ∑
∞

i=−∞
aiεt−i (2)

has an infinite two sided moving average representation. We also have that E(|εt|δ) <∞ for δ > 01 and the
Laurent expansion parameters are such that∑∞

i=−∞|ai|δ <∞. The representation (2) is sometimes clearer than (1)
to motivate the terminology “causal/noncausal”. Indeed those terms refer to as the fact that yt depends on a
causal (resp. noncausal) component∑∞

i=0aiεt−i (resp. noncausal∑−1
i=−∞aiεt−i).With this inmind, it is obvious that

an autoregressive process with explosive roots will be defined as noncausal.
Note that in (1), the process yt is a purely causal MAR(r, 0), also known as the conventional causal AR(r)

process, when ϕ1 = … = ϕs = 0,

π(L)yt = εt , (3)

while the process is a purely noncausal MAR(0, s)

1 The errors do not necessarily have finite second order moments. For δ ≥ 2the second order moment exists, for δ∈[1, 2)the errors
have infinite variance but finite first order moment, for δ∈(0,1)the errors do not have finite order moments.

394 A. Hecq and L. Sun: Quantile noncausal autoregressions



ϕ(L−1)yt = εt , (4)

when π1 = … = πr = 0.
A crucial point of this literature is that innovation terms εt must be i.i.d. non-Gaussian to ensure the

identifiability of a causal from a noncausal specification (Breidt et al. 1991). The departure from Gaussianity is
not as such an ineptitude as a large part of macroeconomic and financial time series display nonlinear and
non-normal features.

We have already talked in Section 1 about the reasons for looking at models with a lead component. Our
mainmotivation in this paper lies in the fact that MAR(r, s) models with non-Gaussian disturbances are able to
replicate non-linear features (e.g. bubbles, asymmetric cycles) that previouslywere usually obtained by highly

nonlinear models. As an example, we simulate in Figure 1 anMAR(1,1) of (1−0.8L)(1−0.6L−1)yt = εtwith εt ∼
d t(3)

for 200 observations.2 One can observe asymmetric cycles and multiple bubbles.3

Once a distribution or a group of distributions is chosen, the parameters in π(L)ϕ(L−1) can be estimated.
Assuming for instance a non-standardized t-distribution for the innovation process, the parameters of mixed
causal-noncausal autoregressive models of the form (1) can be consistently estimated by the approximate
maximum likelihood (AML)method (Hecq, Lieb, and Telg 2016). Let (ε1,…,εT) be a sequence of i.i.d. zeromean
t-distributed random variables, then its joint probability density function can be characterized as

f ε(ε1,…, εT |σ, ν) = ∏
T

t=1

Γ(ν+12 )
Γ(ν2) ̅̅̅πν√

σ
(1 + 1

ν
(εt
σ
)2)−ν+12

,

where Γ(⋅) denotes the gamma function. The corresponding (approximate) log-likelihood function conditional
on the observed data y = (y1, … , yT) can be formulated as

ly(ϕ,φ, λ, α|y) = (T − p)[ln(Γ((ν + 1)/2)) − ln( ̅̅̅νπ√ ) − ln(Γ(ν/2)) − ln(σ)]
− (ν + 1)/2 ∑

T−s

t=r+1
ln(1 + ((π(L)ϕ(L−1)yt − α)/σ)2/ν), (5)

where p = r + s and εt = π(L)ϕ(L−1)yt − α is replaced by a nonlinear function of the parameters when expanding
the product of polynomials. The distributional parameters are collected in λ = [σ, ν]′, with σ representing the
scale parameterand ν the degreesof freedom.αdenotes an intercept that canbe introduced inmodel (1). Thus, the
AML estimator corresponds to the solution θ̂ML = arg  maxθ∈Θly(θ⃒⃒⃒y), with θ=[ϕ′,φ′, λ′]′ and Θ is a permissible
parameter space containing the true value of θ, say θ0, as an interior point. Since an analytical solution of the
score function is not directly available, gradient based numerical procedures can be used to find θ̂ML. If ν > 2, and
hence E(|εt|2) <∞, the AML estimator is

̅̅
T

√
-consistent and asymptotically normal. Lanne and Saikonen (2011)

Figure 1: Simulation of a MAR(1,1) model, T = 200.

2 We uses the package MARX develops in R by Hecq, Lieb, and Telg (2017a, 2017b).
3 MAR(r, s) models can be generated in two steps (see Gourieroux and Jasiak 2016; Hecq, Lieb, and Telg 2016). We propose in the
Appendix an alternativemethodbased onmatrix representation that is very compact in codewriting and intuitive in understanding.
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also show that a consistent estimator of the limiting covariancematrix is obtained from the standardized Hessian
of the log-likelihood. For the estimationof theparameters and the standard innovations aswell as for the selection
of mixed causal-noncausal models we can also follow the procedure proposed by Hecq, Lieb, and Telg (2016).

However, the AML estimation is based on a parametric form of the innovation term in (1), which makes this
method not flexible enough to adapt uncommon distributions as complex in reality. To bemore practical and get
rid of strong distribution assumptions on innovations, innext sectionweadopt quantile regressionmethodswith
some properties discussed there. This paper only focuses on purely causal and noncausal models.

3 QCAR & QNCAR

Koenker and Xiao (2006) have introduced a quantile autoregressivemodel of order p denoted as QAR(p) which
is formulated as the following form:

yt = θ0(ut) + θ1(ut)yt−1 +… + θp(ut)yt−p, t = p + 1,…,T , (6)

where ut is a sequence of i.i.d. standard uniform random variables. In order to emphasize the causal char-
acteristic of this kind of autoregressive models, we refer to (6) as QCAR(p) hereafter. Provided that the right-
hand side of (6) is monotone increasing in ut, the τ−th conditional quantile function of yt can be written as

Qyt(τ|yt−1,…yt−p) = θ0(τ) + θ1(τ)yt−1 +… + θp(τ)yt−p. (7)

If an observed time series {yt}Tt=1 can be written into a QCAR(p) process, its parameters as in (7) can be obtained
from the following minimization problem.

θ̂(τ) = arg min
θ∈Rp+1

∑
T

t=1
ρτ(yt − xt

′ θ), (8)

where ρτ(u): =u(τ−I(u < 0)) is called the check function, xt′: = [1, yt−1,… , yt−p], andθ′: = [θ0,θ1,…,θt−p].Wedefine
the sum of rescaled absolute residuals (SRAR) for each pair of (τ, θ) as

SRAR(τ, θ) ≔ ∑
T

t=1
ρτ(yt − xt

′ θ). (9)

Substitute (9) into (8) and write the minimization problem (8) as

θ̂(τ) = arg min
θ∈Rp+1

 SRAR(τ, θ). (10)

The estimation consistency and asymptotic normality in the minimization problem (8) have been provided by
Koenker and Xiao (2006). Amodified simplex algorithm proposed by Barrodale and Roberts (1973) can be used
to solve the minimization, and in practise parameters for each τ−th quantile can be obtained, for instance,
through the rq() function from the quantreg package in R or in EViews.

3.1 QNCAR

A QNCAR(p) specification is introduced here as the noncausal counterpart of the QCAR(p) model by reversing
time, explicitly as follows:

Qyt(τ|yt+1,…yt+p) = ϕ0(τ) + ϕ1(τ)yt+1 +… + ϕp(τ)yt+p. (11)

Analogously to the QCAR(p), the estimation of the QNCAR(p) goes through solving
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θ̂(τ) = arg min
θ∈Rp+1

 SRAR(τ, θ)

with

xt
′ = [1, yt+1,…, yt+p],

where for the simplicity of notations, we use θ̂(τ) to denote the estimate in quantile noncausal autoregression.
Drawing on the asymptotic derived by Koenker and Xiao (2006), we present the following theorem for
QNCAR(p) based on three assumptions which are made to ensure covariance stationarity of the time series (by
(A1) and (A2)) and the existence of quantile estimates (by (A3)).

Remark. There is an issue in the estimation consistency ofQCAR(p) as reported by Fan and Fan (2010). This is due
to the violation on themonotonicity requirement of the right side of (6) in ut but not exclusively themonotonicity of
θi(ut) in ut. So to recover anAR(p) process of coefficients θi(ut) (i= 0,…,p)monotonic in ut, quantile autoregression
is not a 100%match tool unless the monotonicity requirement is met beforehand. This issue is also illustrated in
Section 4.1.

Theorem 1. A QNCAR(p) model can be written in the following vectorized companion form:

x̃t = Atx̃t+1 + νt, (12)

where x̃’t ≔ [yt , yt+1,…, yt+p−1], x’t ≔ [1, x̃t ′], At ≔ [ϕ1, t ϕ2, t … ϕp, t
Ip−1 0(p−1)×1

] and νt ≔ [ εt
0(p−1)×1

], satisfying the
following assumptions:

(A1):{εt}nt=1 are i.i.d. innovations with mean 0 and variance σ2 <∞. The distribution function of εt, denoted as F(⋅),
has a continuous density f(⋅) with f(ε) > 0 on U ≔ {ε : 0 < F(ε) < 1}.

(A2): The eigenvalues of E[At ⊗ At] have moduli less than one.
(A3): Fyt|x̃t+1(⋅)≔ P[yt < ⋅ 

⃒⃒⃒⃒
 yt+1, yt+2,…, yt+p] has derivative f yt|x̃t+1(⋅) which is uniformly integrable on U and non-

zero with probability one.

Then,

Σ−
1
2
̅̅
T

√ (θ̂(τ) − ϕ(τ))∼d Bp+1(τ), (13)

where Σ: = Σ1−1Σ0Σ1−1, Σ0 ≔ E[xtxt ′], Σ1 ≔ limT−1∑ ​T
t=1f yt|x̃t+1(F−1

yt|x̃t+1(τ)) xtxt
′, ϕ(τ)′ ≔ [F−1(τ),ϕ1(τ),…, ϕp(τ)],

Bp+1(τ)≔ N (0, τ(1 − τ)Ip+1) with sample size T.

The above result can be further simplified into Corollary 2 by adding the following assumption:

(A4): The coefficient matrix At in (12) is constant over time. (We denote A≔ [ϕ1 ϕ2 … ϕp
Ip−1 0(p−1)×1

] for At

under this assumption.)

Corollary 2. Under assumptions (A1), (A2), (A3) and (A4),̅̅
T

√
 f(F−1(τ)) Σ1

2
0(θ̂(τ) − ϕτ)∼d Bp+1(τ), (14)

where ϕτ: = [F−1(τ),ϕ1,…,ϕp].

As can be seen, QCAR(p) and QNCAR(p) generalize the classical purely causal and purely noncausal
models respectively by allowing random coefficients on lag or lead regressors over time. Corollary 2 provides
additional resultswhen the same coefficients except the intercept are used to generate each quantile. However,
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themoment requirement in (A1) is very strict for heavy tailed time series. In order to study noncausality by QAR
in heavy tailed distributions, we have to show its applicability whenweakening the assumption (A1). This goal
is achieved by Theorem 3 which presents the asymptotic behaviour of the QAR estimator for a classical purely
noncausal model. Similarly, the asymptotic in a classical purely causal model follows right after reversing
time.

Theorem 3. (Asymptotics in regularly varying distributed innovations).
Under Assumption (A4), a purely noncausal AR(p) of the following form

ϕ(L−1)yt = εt ,

where ϕ(L−1) = 1−ϕ1L
−1−…−ϕpL

−p, also satisfies the following assumptions:

(A5): {εt}nt=1 are i.i.d. innovation variables with regularly vary tails defined as

P(|εt| > x) = x−αL(x), (15)

where L(x) is slowly varying at ∞and 0 < α < 2. There is a sequence {aT} satisfying

T ⋅ P{ ‖ εt ‖ >aT  x}→ x−α f or   all x > 0. (16)

with bT = E[εt  I[|εt| ≤ aT ]] = 0.4 The distribution function of εt, denoted as F(⋅), has continuous density f(⋅)
with f(ε) > 0 on {ε:0 < F(ε) < 1} in probability one;

(A6): The roots of the polynomial ϕ(z)are greater than one, such that yt can be written into

yt = ∑
∞

j=0
cj  εt+j, (17)

where ∑
∞

j=0
j 
⃒⃒⃒⃒
cj
⃒⃒⃒⃒δ <∞ for some δ < α, δ ≤ 1.

Then

f(F−1(τ)) ⋅aT

̅̅
T

√̅̅̅̅
τ(1−τ)

√
 

(θ̂(τ)−ϕτ)∼d
⎡⎢⎢⎣
1 0

0 (∫1
0

S2
α(s) ds Ω)

−1
⎤⎥⎥⎦[W(1),∑

∞

j=0
cj  ∫

1

0

Sα(s) dW(s),…,∑
∞

j=0
cj∫

1

0

Sα(s) dW(s)]
(p+1)×1

.

(18)

whereϕτ ≔ [ F−1(τ)
aT

,ϕ1,…,ϕp],Ω: = [ωik] being a p×pmatrix with entryωik ≔∑∞
j=0cj  cj+|k−i| at the ith row and the kth

column, {Sα(s)}being a process of stable distributions with index α which are independent of Brownian motions
{W(s)}. In this theorem the intercept regressor in QNCAR(p) is changed to aT such that x′t: = [aT, yt, yt+1,… , yt+p−1].
Proof. See the appendix

Heuristically, next we restrict our focus on the classical models and explore consequences of causality
misspecification in quantile regressions.

3.2 Causal and noncausal models with Gaussian i.i.d. disturbances

Suppose a causal AR(1) process {yt}Tt=1, yt = α + βyt−1 + εt, with for instance [α, β] = [1, 0.5], i.i.d. standard normal
{εt} and T = 200. Figure 2 displays a simulated sample following this data generating process (DGP).

4 Without loss of generality, we assume bT to be zero in the derivation for the simplicity.
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The information displayed in Figure 3 is the SRAR(τ) of each candidate model along quantiles,
indicating their goodness of fit. The two SRAR curves almost overlap at every quantile, which implies
no discrimination between QCAR and QNCAR in Gaussian innovations, in line with results in the OLS
case. The Gaussian distribution is indeed time reversible, weak and strict stationary. Its first two mo-
ments characterize the whole distribution and consequently every quantile. Note that we obtain similar
results for a stationary noncausal AR(p) process with i.i.d. Gaussian {εt}. The results are not reported to
save space.

3.3 Causal and noncausal models with Student’s t distributed innovations

Things become different if we depart from Gaussianity. Suppose now a causal AR(1) process yt = α + βyt−1 + εt
with again [α, β] = [1, 0.5] but where {εt} are i.i.d. Student’s t−distributed with 2 degrees of freedom (hereafter
using shorthand notation: t(2)). Figure 4 depicts a simulation in this AR(1) with T = 200. Applying QCAR and
QNCAR respectively on this series results in the SRAR curves displayed in Figure 5. The distance between the
two curves is obvious compared to theGaussian case, favouring the causal specification at almost all quantiles.
Figure 6 is the SRAR plot of a purely noncausal process with i.i.d. Cauchy innovations. The noncausal
specification is preferred in the SRAR comparison.

Figure 2: Simulation of a one-regime process with N(0, 1)
innovations, T = 200.

Figure 3: SRAR plot under an AR(1) with N(0, 1)
innovations, T = 200.
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It seems now that applying the SRAR comparison at one quantile, such as the median, is sufficient for
model identification, but it is not true in general. In Section 4, we will spot an identification issue in the SRAR
plots, the true model even having higher SRAR values at certain quantiles than the misspecified model.

So far we have applied QCAR and its counterpart QNCAR on the classical purely causal or noncausal
models with symmetrically i.i.d. innovations. Within this restricted scope, the conditional mean models of
those data generating processes only differ from their conditional quantile models in the intercept term. And
we see thatmodel selection by the SRAR comparison gives uniformdecisions along quantiles. However, such a
model selection is not always that clear in practise. For example, in the empirical study later, wewill encounter
an identification issue which can be seen by checking the SRAR plots. In the next section, we will present this

Figure 5: SRAR plot under an AR(1) with t(2), T = 200.

Figure 4: Simulation of an AR(1) with t(2) innovations,
T = 200.

Figure6: SRARplot under a noncausalmodelwithCauchy
innovations, T = 200.
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identification issue with some possible reasons, and propose a robust model selection criterion called the
aggregate SRAR to cope with this issue.

4 SRAR as a model selection criterion

It is natural to think about SRAR as a model selection criterion since a lower SRARmeans a better goodness of
fit in quantile regressions. However, SRAR is a function of quantile, which raises a question on which quantile
to be considered formodel selection. It is empirically common to see an identification problem by checking the
SRARplots, which gives differentmodel selections at certain quantiles andmakes a selection unreliable if only
one quantile is considered. In this section, we discuss this issue and propose a more robust model selection
criterion based on aggregating SRARs.

4.1 Identification issue spotted from the SRAR plots

First let us see some possible model settings causing the identification problem in SRAR plots. The first case is
linked to the existence of multi-regimes in coefficients.

Suppose a regime-shift model is specified as follows:

yt = βtyt+1 + εt , (19)

where {εt} is an i.i.d. innovation process with cumulative probability function F(⋅), and βt is defined as follows:

βt = { β1, if  0 < F(εt) ≤ τ*;
β2, if  τ* < F(εt) ≤ 1, (20)

with τ* ∈ (0, 1) and β1 < β2. In essence, the regime shift of βt depends on the quantile occurrence of εt which is
indexed by τt: = F(εt) with {τt} being i.i.d. in the standard uniform distribution.

If {yt} can be negative, then there is a problem in using QNCAR to recover the coefficients in the underlying
model (19) because the τ-th regime is not necessary to produce the τ-th conditional quantile of yt. So the
comonotonicity condition of the linear quantile regressions (19) is not satisfied. However, by restricting to the
non-negative region of the covariate yt+1 (also see Fan and Fan 2010) we force the regression model to satisfy
the comonotonicity requirement without losing its association with {τt}. The obtained estimator is also

Figure 7: Simulation of a noncausal model with Cauchy
innovations, T = 200.
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consistent to the true coefficients in (19).5 QCAR (or QNCAR) with such a restriction, hereafter denoted as
RQCAR (or RQNCAR) shorthand for restricted quantile causal autoregression (or restricted quantile noncausal
autoregression), is formulated as follows:

θ̂ τ( ) = arg min
θ∈Rp+1

∑
T

t=1
I t ∈ I[ ]ρτ yt − x′tθ( ) (21)

where I is the set restricting the quantile regression on a particular information set. The restriction is usually
imposed in order for quantile regressions to meet the comonotonicity condition. To study the regime-shift
model (19), we restrict the QNCAR on non-negative covariates, i.e. I = t : xt ≥ 0{ }.

Figure 8 shows four SRAR curves estimated fromQCAR, QNCAR, RQCAR and RQNCAR.We consider a time

series {yt}600t=1 simulated from the model (19) with τ* = 0.7, β1 = 0.2, β2 = 0.8 and i.i.d. innovation process in t(3),
i.e. F−1(⋅) = Ft(3)

−1(⋅).
Figure 8 illustrates such an identification issue in which the SRAR curve from a true model is not always

lower than one frommisspecification. Applying restriction helps to enlarge the SRAR difference between a true
model and a misspecified time direction.

The second case we investigate is the presence of skewed distributed innovations.
Let us consider a time series {yt} following a purely noncausal AR(1): yt = 0.8yt+1 + εt with {εt} i.i.d. in a

demeaned skewed t distribution with skewing parameter γ = 2 and v = 3 degrees of freedom (hereafter t(v, γ) is
the shorthand notation for a skewed t-distribution). The probability density function of t(v, γ) (see Francq and
Zakoïan 2007) is defined as

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

γ + 1
γ

f t(γx)  for x < 0

2

γ + 1
γ

f t(xγ)  for x ≥ 0

(22)

where ft(⋅) is the probability density function of the symmetric t(v) distribution. Figure 9 shows four SRAR
curves obtained from the estimation of the QCAR, the QNCAR, the RQCAR and the RQNCAR respectively. The

Figure 8: Identification problem spotted in the SRAR plot
for restricted quantile autoregressions.

5 An alternative is to use simultaneous linear quantile regressions (see Tokdar and Kadane 2012; Liu 2019) which assumes a base
quantile function for all coefficients in a (reparametrized) regression model. The dependence structure of these coefficients and
priors on parameters in the base quantile function are further assumed for simulation, model fitting and posterior distribution
summary. We do not include this method here as this paper aims to avoid assumptions on parametrizing underlying conditional
distributions in themodel setting. Additionally, regarding the data in our empirical study, very few negative points are observed. So
the concern on losing data by such a restriction can be addressed.
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curves from the QNCAR and the RQNCAR almost overlap each other, which confirms our understanding that
the monotonicity requirement is met in the true model. The estimations and the corresponding SRAR curves
should be the sameunlessmany observations are omitted by the restriction. On the other hand, the SRAR curve
gets enlarged from the QCAR to the RQCAR, which is very reasonable as the feasible set in the QCAR is larger
and the misspecification is not ensured to satisfy the monotonicity requirement. Again we see this identifi-
cation problem from the SRAR plot. Remarkably, the SRAR curve from a true model can be higher at certain
quantiles than the one from a misspecified model. Consequently the SRAR comparison relying only on
particular quantiles, such as the least absolute deviation (LAD) method for the median only is not robust in
general. Therefore, we propose a newmodel selection criterion in next subsection by including the information
over all quantiles.

Figure 9: Identification issue spotted from the SRAR plot
for a skewed distribution.

Table : Frequencies of selecting the correct model using the SRAR criteria.

Quantiles Gaussian t (2) t (1) Two-regime t (v = 3,γ = 2)
(Figure 2) (Figure 4) (Figure 7) (Figure 8) (Figure 9)

 . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
 . . . . .
Aggregate SRAR . . . . .
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4.2 The aggregate SRAR criterion

Based on the same number of explanatory variables in QCAR and QNCAR with a fixed sample size in quantile
regressions, the best model is supposed to exhibit the highest goodness of fit among candidate models.
Similarly to the R-squared criterion in theOLS,when turning to quantile regressions,we are led to use the SRAR
criterion for model selection. The aggregate SRAR is regarded as an overall performance of a candidate model
over all quantiles such as:

aggregate SRAR ≔ ∫
1

0

SRAR(τ)dτ.

There are many ways to calculate this integral. One way is to approximate the integral by the trapezoidal rule.
Another way is to sum up SRARs over a fine enough quantile grid with equal weights. In other words, this
aggregation is regarded as an average of performances (SRAR(τ), τ∈(0, 1)) of a candidate model. In practise,
there is almost no difference in model selection between the two aggregation methods.

As equal weights are used on all quantiles in the aggregate SRAR above, people may argue to use a
different weighting scheme. The weighting scheme indeed can be different as when weight being one for one
quantile and zero for others is to select a conditional quantile model. We agree that the weighting scheme can
be customized in justice of users’ purpose. The equal-weight scheme proposed here is inspired to calculate the
area under the SRAR curve over quantiles when we check the SRAR plot. Intuitively, such areas are directly
linked to model performance when we concerns the whole dynamics of the underlying process. And we
compare models by viewing the gap between their SRAR curves, which is the difference between the areas
under their SRAR curves. This leads us to the aggregate SRAR measure.

Performances of the SRAR model selection criteria in Monte Carlo simulations are reported in Table 1. It
shows the average frequencies with which we find the correct model based on the SRAR criterion per
quantile and the aggregate SRAR criterion. The sample size T is 200 and each reported number is based on
2000 Monte Carlo simulations. Columns of Table 1 refer to as a particular distribution previously illustrated
in this paper. As observed, the aggregate SRAR criterion performs very well even in situations with the
identification issue. The Gaussian distribution being weakly and strictly stationary we cannot obviously
discriminate between causal and noncausal specifications leading to an average frequency of around 50% to
detect the correct model.

4.3 Shape of SRAR curves

By observing SRAR plots, we see that SRAR curves vary when the underling distribution varies. It is interesting
to investigate the reasons. In this subsection, we will provide some insights on the slope and concavity of

SRARyt(τ, θ̂(τ)) curves under assumptions (A1), (A2), (A3) and (A4). Since ρτ(yt−xt’θ) is a continuous function in

θ ∈ R(p+1), by the continuous mapping theorem and τ, θ̂(τ)), we know that

ρτ(yt − xt
′ θ̂)→p ρτ(yt − xt

′ ϕτ).
We also know that

ρτ(yt − xt
′ ϕτ) = ρτ(εt − F−1(τ)).

Therefore instead of directly deriving the shape of a SRARyt(τ, θ̂(τ)) curve, we look at the properties of its

intrinsic curve SRARεt(τ, F−1(τ)). We derive the first and second order derivatives of SRARεt(τ, F−1(τ)) with
respect to τ in order to determine the shape of SRARyt(τ, θ̂(τ)).
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4.3.1 The slope property

Onemajor difference between SRAR curves in a plot is their slopes.We can compute the first-order derivative of
SRAR with respect to τ if the derivative exists. Under the following assumption:
(A7) : The inverse distribution function F−1(⋅) of innovation εtis continuous and differentiable on (0, 1) to the

second order;

we can then take the first-order derivative of SRARεt(τ, F−1(τ))with respect to τ.
Suppose 0 < τ < τ + Δτ < 1, Δτ > 0and denote ΔF−1(τ): = F−1(τ + Δτ)−F−1(τ).

SRARεt(τ + Δτ, F−1(τ + Δτ)) − SRARεt(τ, F−1(τ)) = ∑
T

t=1
(ρτ+Δτ(εt − F−1(τ + Δτ)) − ρτ(εt − F−1(τ)))

= ∑
T

t=1
((εt − F−1(τ + Δτ))(τ + Δτ − 1{εt−F−1(τ+Δτ)≤0}).

−(εt − F−1(τ))(τ − 1{εt−F−1(τ)≤0}))
= ∑

T

t=1
εt(Δτ − 1{F−1(τ)<εt≤F−1τ+Δτ)}) + τ(F−1(τ) − F−1(τ + Δτ)) − Δτ F−1(τ + Δτ)(

+ F−1(τ + Δτ) 1{εt≤F−1τ + Δτ)}− F−1(τ) 1{εt≤F−1τ)})
= ∑

T

t=1
(Δτ(εt − F−1(τ + Δτ)) + (F−1(τ + Δτ)

− F−1(τ)) (1{εt≤F−1(τ + Δτ)}− τ) + 1{F−1(τ) < εt ≤ F−1τ + Δτ)}
× (F−1(τ) − εt)) (23)

Divide the above difference by Δτ, and take the limit Δτ↓0. It gives us

lim
Δτ↓0

SRARεt(τ + Δτ, F−1(τ + Δτ)) − SRARεt(τ, F−1(τ))
Δτ

= ∑
T

t=1
(εt − F−1(τ) + dF−1(τ)

dτ
 (1{εt≤F−1(τ)} − τ)), (24)

because

lim
Δτ↓0

Δτ(εt − F−1(τ + Δτ))
Δτ

= εt − F−1(τ),

lim
Δτ↓0

(F−1(τ + Δτ) − F−1(τ)) (1{εt≤F−1(τ+Δτ)} − τ)
Δτ

= dF−1(τ)
dτ

 (1{εt≤F−1(τ)} − τ), (25)

lim
Δτ↓0

1{F−1(τ)<εt≤F−1(τ+Δτ)}(F−1(τ) − εt)
Δτ

= 0.

The last line is from

{ 1{F−1(τ) < εt ≤ F−1(τ + Δτ)}(F−1(τ) − εt) = 0, when εt ∉ (F−1(τ), F−1(τ + Δτ)] ;
(F−1(τ) − F−1(τ + Δτ)) ≤ (F−1(τ) − εt) < 0, when εt ∈ (F−1(τ), F−1(τ + Δτ)] ; (26)

and

0 = 1{F−1(τ)<εt≤F−1(τ)}
dF−1(τ)

dτ
≤ lim

Δτ↓0

1{F−1(τ)<εt≤F−1(τ+Δτ)}(F−1(τ) − εt)
Δτ

≤ 0. (27)
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In analogue, the left-hand limit lim
Δτ↑0

SRARεt(τ+Δτ,F−1(τ+Δτ))−SRARεt(τ,F−1(τ))
Δτ gives the same result. Therefore, we have

the first-order derivative as below.

d SRARεt(τ, F−1(τ))
dτ

= ∑
T

t=1
(εt − F−1(τ) + dF−1(τ)

dτ
 (1{εt≤F−1(τ)} − τ)). (28)

To manifest this result with a fixed T, we take expectation and obtain

E[ d SRARεt(τ, F−1(τ))
d τ

] = T(E[εt] −  F−1(τ)), (29)

whenE[εt] exists. In practise, we are not strict withE[εt] <∞ since themean of an i.i.d. {εt}Tt=1 can be estimated
empirically to replace E[εt] in (29) without affecting other terms.

Now we have the expectation of d SRARεt(τ,F−1(τ))
d τ which can be regarded as the underlying guideline for the

slope of a SRAR curve. Before interpreting this result, let us derive the second-order derivative of SRARεt(τ,
F−1(τ)) with respect to τ and make an interpretation together.

4.3.2 The concave property

One empirically observed property of SRAR curves is their concavity which can be explained through the
second-order derivative of SRARεt(τ, F−1(τ)) with respect to τ under assumptions (A1), (A2), (A3), (A4) and (A7).
Suppose 0<τ<τ+Δτ<1,Δτ>0.

Δ2  SRARεt(τ, F−1 (τ))≔ SRARεt(τ + Δτ, F−1(τ + Δτ)) − 2 SRARεt(τ, F−1(τ)) + SRARεt(τ − Δτ, F−1(τ − Δτ))
= ∑

T

t=1
(εt − F−1(τ))(1{F−1(τ−Δτ)<εt≤F−1(τ)} − 1{F−1(τ)<εt≤F−1(τ+Δτ)}) + τ(2 F−1(τ) − F−1(τ + Δτ) − F−1(τ − Δτ))
+ Δτ(F−1(τ − Δτ) − F−1(τ + Δτ)) + (F−1(τ + Δτ) + F−1(τ − Δτ) − 2 F−1(τ))1{εt≤F−1(τ−Δτ)} + (F−1(τ + Δτ)
− F−1(τ))1{F−1τ<εt≤F−1τ+Δτ}) (30)

Divide the above second order central difference by Δτ2, and take the limit Δτ↓0. It gives us

d2  SRARεt(τ, F−1(τ))
dτ2

= lim
Δτ↓0

Δ2  SRARεt(τ, F−1(τ))
Δτ2

= ∑
T

t=1( d2F−1(τ)
dτ2

 (1{εt≤F−1(τ)}− τ) − 2 
dF−1(τ)

dτ
),

(31)

the last line of which is obtained similarly to (25). To interpret this result, we take expectation and get the
following:

E[ d2  SRARεt(τ, F−1(τ))
d τ2

] = −2  dF
−1(τ)
dτ

 T < 0. (32)

where the inequality holds with probability one since f(ε) > 0with probability one in the assumption (A1).
Now we have the expectation of d2  SRARεt(τ,F−1(τ))

d τ2 which can be regarded as the underlying guideline for
the concavity of a SRAR curve. Together with the slope information, it implies that SRAR curves are always in
arch shapes, going upward and then downward, with a peak point at E[εt] = F−1(τ). We can also know the
skewness of εtfrom the location of the peak point: εtis left-skewed when the SRAR curve reaches its peak in the
region τ < 0.5, or right-skewed when the peak in τ > 0.5. If εtis symmetrically distributed, its SRAR curve is
symmetric, and vice versa.
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5 Binding functions

Plotting SRAR is away to present the goodness of fit in quantile regressions for each candidatemodel. Quantile
regressions are the path to get residuals for SRAR calculation. As we know and provide unbiased consistent
estimation for true models. To study the estimation in misspecification we adopt the concept of binding
function (Dhaene, Gourieroux, and Scaillet 1998). Binding function is defined as amapping from coefficients in
the true model to pseudo-true coefficients in a misspecified model.

The estimator of a pseudo-true coefficient in quantile regression for a misspecified QCAR(p) or QNCAR(p)
converges to a limiting value which is characterized into the binding function. It is difficult to derive the
binding functions explicitly in a general case so that they are studied bymeans of simulations (see Gouriéroux
and Jasiak 2017). Suppose a noncausal AR(1): yt=π1yt+1 + εt, with {εt} i.i.d. t(ν) for v = 1, 3, 5 and 10. It is observed
that the binding function in the misspecified QCAR(1) varies with two factors: (i) the distribution of εt and (ii)
the distance function in regression which is the check function ρτ(⋅) in quantile regression. Figure 10, Figure 11
and Figure 12 illustrate the effect of those factors. Each point is an average value of estimates based on 1000

Figure 10: Quarterly inflation rate series plot for 4 Latin
American countries.

Figure 11: Binding function for a misspecified QCAR(1) in
0.3rd-quantile regression.

Figure 12: Binding function for amisspecified QCAR(1) in
0.1st-quantile regression.
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simulations and 600 observations. Since t(ν) is symmetric, the estimation results are in the same pattern for
negative true coefficient region and (1−τ) th-quantile regression as in these three figures. Sometimes the
binding function is not injective, which is evidenced in Figure 10 and Figure 11 for small absolute true
coefficients. The non-injectivity of the binding function for Cauchy distributed innovations is also illustrated in
Gouriéroux and Jasiak (2017) result that disables encompassing tests. On the other hand, we see that on
Figure 12 the injectivity of binding functions seems recovered at τ = 10%. In the case of Cauchy distributed
innovations, there are no binding functions from extreme quantile regressions like 0.1 th- or 0.9 th-quantile
regression because the estimate is not convergent. Although a value for π1∈(0,1) is plotted in Figure 12, it is just
the average of binding function estimates for π1for illustration.

6 Modelling hyperinflation in Latin America

6.1 The model specification

The motivation of our empirical analysis comes from the rational expectation (RE) hyperinflation model
originally proposed byCagan (1956) and investigated by several authors (see e.g. AdamandSzafarz 1992; Broze
and Szafarz 1985). We follow Broze and Szafarz (1985) notations with

md
t = αpt + βE(pt+1

⃒⃒⃒⃒
It) + xt . (33)

In (33), mt
d and pt respectively denote the logarithms of money demand and price, xt is the disturbance term

summarizing the impact of exogenous factors. E(pt+1|It) is the rational expectation, when it is equal to con-
ditional expectation, of pt+1 at time t based on the information set It. Assuming that themoney supplymt

s = zt is
exogenous, the equilibrium mt

d = mt
s provides the following equation for prices

pt = −β
α
[E(pt+1

⃒⃒⃒⃒
It)] + zt − xt

α
,

= ϕ[E(pt+1
⃒⃒⃒⃒
It)] + ut .

Broze and Szafarz (1985) show that a forward-looking recursive solution of this model exists when xt is

stationary and
⃒⃒⃒⃒
ϕ
⃒⃒⃒⃒
< 1. The deviation from that solution is called the bubble Bt with pt = ∑∞

i=0ϕ
iE(ut+i|It)] + Bt .

Finding conditions under which this process has rational expectation equilibria (forward and or backward
looking) is out of the scope of our paper. We only use this framework to illustrate the interest of economists for
models with leads components. Under a perfect foresight scheme E(pt+1|It) = pt+1 we obtain the purely
noncausal model

pt = ϕpt+1 + ε̃t , (34)

with ε̃t = ut . In the more general setting, for instance when E(pt+1|It) = pt+1 + vt with vt a martingale difference,
the new disturbance term is ε̃t = vt + ut . Empirically, a specification with one lead only might be too restrictive
to capture the underlying dynamics of the observed variables. We consequently depart from the theoretical
model proposed above and we consider empirical specifications with more leads or lags. Lanne and Luoto
(2013, 2017) and Hecq, Lieb, and Telg (2017a, 2017b) in the context of the new hybrid Keynesian Phillips curve
assume for instance that ε̃t is a MAR(r−1, s−1) process such as

ρ(L)π(L−1)ε̃t = c + εt , (35)

where εt is iid and c an intercept term. Inserting (35) in (34) we observe that if ε̃t is a purely noncausalmodel (i.e.
a MAR(0, s−1) with ρ(L) = 1) we obtain a noncausal MAR(0, s) motion for prices

(1 − ϕL−1)pt = π(L−1)−1(c + εt),
(1 − ϕL−1)(1 − π1L

−1 −… − πs−1L−(s−1))pt = c + εt ,

408 A. Hecq and L. Sun: Quantile noncausal autoregressions



Wewould obtain amixed causal andnoncausalmodel if ρ(L)≠ 1. Our guess that the same specificationmight in
some circumstances empirically (although not mathematically as the lag polynomial does not annihilate the
lead polynomial) gives rise to a purely causal model in small samples when the autoregressive part dominates
the lead component.

The above illustration presents a context of pure causal and noncausal models so that we can apply our
approach to give an empirical analysis. It would be interesting to extend our modelling to investigate theo-
reticalmodelswith both forward andbackward behaviours such as backward- and forward-looking Taylor rule
for instance. To do that however we have to introduce additional regressors and extend the approach of Hecq,
Issler, and Telg (2020) to quantile regressions, which can be further investigated by future research and is out
of the scope of this paper.

6.2 The data and unit root testing

We consider seasonally unadjusted quarterly Consumer Price Index (CPI) series for four Latin American
countries: Brazil, Mexico, Costa Rica and Chile. Monthly rawprice series are downloaded at theOECDdatabase
for the largest span available (in September 2018). Despite the fact that quarterly data are directly available at
OECD,we do not consider those series as they are computed from the unweighted average over threemonths of
the corresponding quarters. Hence, these data are constructed using a linear filter, leading to undesirable
properties for the detection of mixed causal and noncausal models (see Hecq, Telg, and Lieb 2017a, b on this
specific issue). As a consequence, we use quarterly data computed by point-in-time sampling from monthly
variables. The first observation is 1969Q1 for Mexico, 1970Q1 for Chile, 1976Q1 for Costa Rica and 1979Q4 for
Brazil. Our last observation is 2018Q2 for every series. We do not use monthly data in this paper as monthly
inflation series required a very large number of lags to capture their dynamic feature. Moreover, the detection
of seasonal unit roots in the level of monthly price series was quite difficult.

Applying seasonal unit root tests (here HEGY tests, seeHylleberg et al. 1990) with a constant, a linear trend
and deterministic seasonal dummies, we reject (see Table 2 inwhich a * denotes a rejection of the null unit root
hypothesis at a specific frequency corresponding to 5% significance level) the null of seasonal unit roots in
each serieswhereaswe donot reject the null of a unit root at the zero frequency. The implementation of the unit
root tests here is concerned with conditional mean models of the raw data to ensure that we process the data
anduse itsweakly stationary time series in quantile regressions for analysis. The unit root testing can also been
done per quantile (Koenker and Xiao 2004) to relate short-term explosiveness of time series to unit-root
quantilemodels, which is an interesting perspective to treat explosive time series and alternative to causal and
noncausalmodelling.Wedonot godeeper in the unit-root direction for this paper butwith its outlook on future
research.

The number of lags of the dependent variable used to whiten for the presence of autocorrelation is chosen
by AIC. From these results we compute quarterly inflation rates for the four countries in annualized rate, i.e. Δ
ln Pt

i × 400.Next we carry out a regression of Δ ln Pt
i × 400 on seasonal dummies to capture the potential

presence of deterministic seasonality. The null of no deterministic seasonality is not rejected for the four series.
Figure 13 displays quarterly inflation rates and it illustrates the huge inflation episodes that the countries had
faced. Among the four inflation rates, Brazil and Mexico show the typical pattern closer to the intuitive notion

Table : Seasonal HEGY unit root tests in the log levels of prices.

Country H0:π1=0 H0:π2=0 H0:π3=π4=0 Sample

lnPBra
t −. −.* .* Q−Q

lnPChi
t −. −.* .* Q−Q

lnPCosta
t −. −.* .* Q−Q

lnPMex
t −. −.* .* Q−Q
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of what a speculative bubble is, namely a rapid increase of the series until a maximum value is reached before
the bubble bursts.

6.3 Empirical findings and identification of noncausal models

Table 3 reports for each quarterly inflation rates the autoregressive model obtained using the Hannan–Quinn
information criterion. Given our results on the binding function (see also Gouriéroux and Jasiak 2017) it is safer
to determine the pseudo-true autoregressive lag length using such an OLS approach than using quantile
regressions or using maximum likelihoodmethod. Indeed there is the risk that a regression in direct time from
a noncausal DGP provides an underestimation of the lag order for some distributions (e.g. the Cauchy) and
some values of the parameters.

Table : Descriptive statistics for quarterly inflation rates.

Country HQ BJ skew. kurt. LM[1−2] ARCH[1−2]

ΔlnPBra
t  <. −. . . <.

ΔlnPChi
t  <. . . . .

ΔlnPCosta
t  <. . . . .

ΔlnPMex
t  <. −. . . <.

Figure 13: Quarterly inflation
rate series plot for 4 Latin
American countries.

Table : SRAR identification results.

Country SRARτ=0.1 SRARτ=0.3 SRARτ=0.5 SRARτ=0.7 SRARτ=0.9 SRARtotal

ΔlnPBra
t MAR(, ) MAR(, ) MAR(, ) MAR(, ) MAR(, ) MAR(, )

ΔlnPChi
t MAR(, ) MAR(, ) MAR(, ) MAR(, ) MAR(, ) MAR(, )

ΔlnPCosta
t MAR(, ) MAR(, ) MAR(, ) MAR(, ) MAR(, ) MAR(, )

ΔlnPMex
t MAR(, ) MAR(, ) MAR(, ) MAR(, ) MAR(, ) MAR(, )
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Estimating autoregressive univariate models gives the lag length range from p = 1 for Brazil to p = 7 for the
Chilean inflation rate. The p−values of the Breush-Pagan LM test (see column labelled LM[1−2]) for the null of
no-autocorrelation after having included those lags show that we do not reject the null in every four cases. On
the other hand, we reject the null of normality (Jarque–Bera test) in the disturbances of each series. We should
consequently be able to identify causal from noncausal models. From columns skew. and kurt. it emerges that
the residuals are skewed to the left for Brazil and Mexico and skewed to the right for Chile and Costa Rica.
Heavy tails are present in each series. At a 5% significance level we reject the null of no ARCH (see column
ARCH[1−2]) for Brazil and Mexico. Gouriéroux and Zakoian (2017) have derived the closed form conditional
moments of a misspecified causal model obtained from a purely noncausal process with alpha stable dis-
turbances. They show that the conditional mean (in direct time) is a random walk with a time varying
conditional variance in the Cauchy case. This result would maybe favour the presence of a purely noncausal
specification for Brazil and Mexico as the null of no ARCH is rejected. But this assertion must be carefully
evaluated and tested, for instance using our comparison of quantile autoregressions in direct and reverse time.
The results by the Q(N)CAR are reported in Table 4, and the RQ(N)CAR produces the same results. Each cell of
Table 4 provides the selection frequency of MAR(0, p) or MAR(p, 0) identified by the SRAR at quantiles 0.1, 0.3,
0.5, 0.7, 0.9 aswell as the aggregated SRAR. Figure 14 displays the SRAR curves from0.05th-quantile to 0.95th-
quantile by the Q(N)CAR for the four economies respectively, similarly to the ones by the RQ(N)CAR with
restriction on non-negative regressors. As observed, the identification problem is raised in the SRAR plots.
Especially in the SRARplot for Brazil, it is hard to trust amodel from evidence at single quantiles. However, the
aggregate SRAR criterion comes to help in this situation from an overall perspective. We conclude that Brazil,
Mexico and Costa Rica are better characterized as being purely noncausal while Chile being purely causal
according to the aggregate SRAR criterion.

7 Conclusions

This paper introduces a newway to select between causal and noncausal models by comparing residuals from
quantile autoregressions developed by Koenker and Xiao (2006) and from the time-reverse specifications. To
adapt to heavy tailed distributions, we generalize the quantile autoregression theory for regularly varying

Figure 14: SRAR plots of the
inflation rates of four Latin
American countries
respectively.
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distributions. This also confirms the validity of quantile autoregressions in analysing heavy tailed time series,
such as explosive or bubble-type dynamics. It is natural to consider SRAR as a model selection criterion in the
quantile regression framework. However due to the identification problem spotted in the SRAR plots as
presented in this paper, we propose to use the aggregate SRAR criterion for model selection. The robustness in
its performance has been seen from all the results in this paper. It is worth mentioning that when coefficients
are constant in the underlying model with a symmetrically i.i.d. error term, the aggregate SRAR criterion is
equivalently to select between forward and backward conditional mean models (termed by Gourieroux and
Zakoian (2017)). However, the aggregate SRAR is a measure based on the whole dynamics of the underlying
process, which is not dominated by the conditional mean information any more. This characteristic of the
aggregate SRAR criterion indeed makes it robust in model selection even for some general situations such as
with asymmetric distributed innovations. In the empirical study on the inflation rates of four Latin American
countries, we found that the purely noncausal specification is favoured in three cases.

Finally some possible extensions of our approach can be to the identification of mixed models in addition
to purely causal and noncausal specifications, to enhancing QCAR and QNCAR with some explanatory vari-
ables in order to investigate the Taylor (1993) rule, and to investigating the unit-root testing per quantile for
QCAR as well as QNCAR. Also, a formal testing on SRAR differences would require the application of a
bootstrap approach which is beyond the scope of this paper but in our outlook for the future research.
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Appendix
Alternative way to simulate MAR models

Suppose that the DGP is a MAR(r, s) as in (1). First, we rewrite (1) into a matrix representation as follows:

My = ε,

M≔

⎡⎢⎢⎢⎣
π(L)ϕ(L−1) 0 … 0

0 π(L)ϕ(L−1) … 0
…

0 0 … π(L)ϕ(L−1)

⎤⎥⎥⎥⎦,
y ≔ [ y1 y2 … yT ]′,
ε≔ [ ε1 ε2 … εT ]′,

(36)

where M is T × T matrix and T is the sample size. The equivalence to (1) holds by assuming y1−r, y2−r, … , y0
and yT+1, yT+2, … , yT+s are all zeros. This assumption effect can be neglected by deleting enough observa-
tions from the beginning and the end of a simulated sample, for instance, {yt}T−200t=201 kept for analysis from a first
simulated {yt}Tt=1. Next,M can be decomposed into a product of two diagonal matrices, denoted as L and U, of
main diagonal entries being π(L) and ϕ(L−1) respectively as follows.
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L =

⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 … 0
−π1 1 0 0 … 0
−π2 −π1 1 0 … 0

… …

0 … −πr … −π1 1

⎤⎥⎥⎥⎥⎥⎦,

U =

⎡⎢⎢⎢⎣
1 −ψ1 … −ψs 0 … 0
0 1 −ψ1 … −ψs 0 … 0
… … …

0 … 0 … 1

⎤⎥⎥⎥⎦ (37)

Substitute (37) into (36). We get

LUy = ε,

such as

y = U−1L−1  ε . (38)

Given ε, y can be obtained directly since L and U are positive definite triangular matrices. This MAR(r, s)
simulating method can easily be generalized, for instance, for an MAR(r, s) involving some exogenous
independent variables presented by Hecq, Issler, and Telg (2020). In practise this vector-wise simulation
method is slower than the element-wise method because of the matrix creation and storage in simulation.

Proof of Theorem 3
Proof.
First, we rewrite SRAR(τ, θ̂(τ)) as follows:

SRAR(τ, θ̂(τ)) = ∑
t=1

T
ρτ(yt − xt

′ θ̂(τ))
= ∑

t=1

T
ρτ(yt − xt

′ ϕτ + xt
′ ϕτ − xt

′ θ̂(τ))
= ∑

t=1

T
ρτ(utτ − 1

aT

̅̅
T

√ ν′xt),
(39)

where xt’:=[aT, yt+1, … , yt+p], utτ ≔ yt − x’
tϕτ = εt − F−1(τ), ν ≔ aT

̅̅
T

√ (θ̂(τ) − ϕτ). We know from Davis and
Resnick (1985) and Knight (1989, 1991) that

1
aT
( ∑

t=1

⌊T⋅s⌋
(εt − bT))∼d Sα(s),

1
aT  

̅̅
T

√ ∑
t=1

T (yt − ⌊T ⋅ s⌋ ∑
∞

j=0
cjbT)∼d ∑

∞

j=0
cj ∫

1

0

Sα(s) ds, (40)

1
a2
T  T

∑
t=1

T (yt ⋅ yt+h − ⌊T ⋅ s⌋ ∑
∞

j=0
cj  cj+hb

2
T)∼d ∑

∞

j=0
cj  cj+h ∫

1

0

S2α(s) ds,

where t=⌊T⋅s⌋, and {Sα(s)} is a process of stable distributions with index α. Without loss of generality, we
assume bT = 0 for the proof below. In use of the limiting behaviour information presented in (40), we get that

1
a2
t T

∑
T

t=1xtxt
′ ∼d
⎡⎢⎣
1 0

0 ∫
1

0

S2α(s) ds Ω

⎤⎥⎦
(p+1)×(p+1)

(41)

where

Ω ≔ [ωik]p×p,
ωik ≔ ∑

∞

j=0
cj  cj+|k−i|,
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with ωikbeing the entry at Ω’s ith row and kth column. Ω is positive definite symmetric. Note that θ̂(τ) =
arg min
θ∈Rp+1

 SRAR(τ, θ) which also minimizes

ZT(ν)≔ ∑
T

t=1
[ρτ(utτ − 1

aT

̅̅
T

√ ν′xt) − ρτ(utτ)]. (42)

ZT(ν) is a convex random function. Knight (1989) showed that if ZT(ν) converges in distribution to Z(ν) and Z(ν)
has unique minimum, then the convexity of ZT(ν) ensures ν̂ = arg min

ν∈Rp+1
ZT(ν) converging in distribution to

arg min
ν∈Rp+1

Z(ν).

By using the following check function identity:

ρτ(v1 − v2) − ρτ(v1) = −v2ξ τ(v1) + (v1 − v2)(I(0 > v1 > v2) − I(0 < v1 < v2))
= −v2ξ τ(v1) + ∫

​v2
0
(I(v1 ≤ s) − I(v1 < 0))ds,

(43)

where ξτ(v): = τ−I(v < 0), we can rewrite ZT(ν) into

ZT(ν) = − ∑
T

t=1

1
aT

̅̅
T

√ ν′xt  ξ τ(utτ) + ∑
T

t=1
∫

1
aT T̅

√ ν′xt
0 (I(utτ ≤ s) − I(utτ < 0))ds

= Z(1)
T (ν) + Z(2)

T 1(ν),
(44)

where Z(2)
T (ν)≔∑​T

t=1∫
​

1
aT T̅

√ ν′xt
0 (I(utτ ≤ s) − I(utτ < 0))ds and Z(1)

T (ν) ≔ −∑​T
t=1

1
aT T̅

√ ν′xt  ξ τ(utτ). Further denote

ηt(ν) ≔ ∫
1

aT T̅
√ ν’xt

0 (I(utτ ≤ s) − I(utτ < 0))ds,  η̄t(ν)≔ E[ηt(ν)
⃒⃒⃒⃒
xt] and Z̄

(2)
T (ν) ≔∑​T

t=1η̄t(ν). By Assumption (A5) and

small enough 1
aT T̅

√ ν′xt, we further rewrite Z̄
(2)
T (ν) as follows:

Z̄
(2)
T (ν) = ∑

T

t=1
E

⎡⎣∫ ​
1

aT T̅
√ ν′xt

0 (I(utτ ≤ s) − I(utτ < 0))ds
⃒⃒⃒⃒⃒
⃒⃒⃒xt

⎤⎦

= ∑
T

t=1
∫
​

1
aT T̅

√ ν′xt
0 [∫ ​s+F−1

F−1(τ)(τ)f(r)dr]ds

= ∑
T

t=1
∫
​

1
aT T̅

√ ν′xt
0

F(s + F−1(τ)) − F(F−1(τ))
s

s ds (45)

= ∑
T

t=1
∫
​

1
aT T̅

√ ν′xt
0 f(F−1(τ))s ds

= 1
2a2

T  T
∑
T

t=1
f(F−1(τ))ν′xtxt

′ ν + op(1)

= 1
2a2

T  T
 f(F−1(τ)) ν ′ ( ∑

T

t=1
xtxt

′ )ν + op(1)

Using the limiting behaviour information presented in (40), we get the limiting distribution for Z̄
(2)
T (ν) so as for

Z(2)
T (ν) as follows:
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Z(2)
T (ν)∼d 1

2
f(F−1(τ)) ν′

⎡⎢⎢⎢⎣
1 0

0 ∫
1

0

S2α(s) ds Ω

⎤⎥⎥⎥⎦ ν, (46)

by the fact that Z(2)
T (ν) − Z̄

(2)
T (ν)∼p  0 which can be proved by following the arguments of Knight (1989).

The limiting distribution of Z(1)
T (ν) can also be deduced in using (40) as follows.

−∑
T

t=1
1

aT

̅̅
T

√ ν′xtξ τ(utτ)∼d ν′[σξW(1), ∑
∞

j=0
cjσξ∫

​1

0
Sα(s)dW(s),…, ∑

∞

j=0
cjσξ∫

​1

0
Sα(s)dW(s)]

(p+1)×1
, (47)

where […](p+1)×1 is a column vector of (p + 1) elements, ∫dW(s) is a stochastic integral with Brownian motion
{W(s)} independent of {Sα(s)}(see Knight (1991)), and σξ is the standard deviation of ξτ(utτ)which equals̅̅̅̅̅̅̅
τ(1 − τ)√

. Therefore by Davis and Resnick (1985) and Knight (1989, 1991),

Z(1)
T (ν)∼d ν′ ̅̅̅̅̅̅̅τ(1 − τ)√ [W(1), ∑

∞

j=0
cj∫

​1

0
Sα(s) dW(s) ,…, ∑

∞

j=0
cj∫

​1

0
Sα(s) dW(s)]

(p+1)×1
. (48)

Thus,

ZT(ν)∼d Z(ν) ≔ ν′
̅̅̅̅̅̅̅
τ(1 − τ)√ [W(1), ∑

∞

j=0
cj  ∫

​1

0
Sα(s) dW(s) ,…, ∑

∞

j=0
cj  ∫

​1

0
Sα(s) dW(s)]

(p+1)×1

+ 1
2
f(F−1(τ)) ν′[ 1 0

0 ∫
​1

0
S2α(s) ds Ω]ν. (49)

and so

f(F−1(τ)) ⋅aT

̅̅
T

√̅̅̅̅
τ(1−τ)

√
 

(θ̂(τ)−ϕτ)∼d
⎡⎢⎣ 1 0

0 (∫​1

0
S2
α(s) ds Ω)−1

⎤⎥⎦[W(1),∑
∞

j=0
cj∫

​1

0
Sα(s) dW(s) ,…,∑

∞

j=0
cj∫

​1

0
Sα(s) dW(s)]

(p+1)×1
.

follows by setting the derivative of Z(ν)to 0 and solving for ν. □
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